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GROUND STATE AND MULTIPLE SOLUTIONS FOR CRITICAL
FRACTIONAL SCHRODINGER-POISSON EQUATIONS WITH
PERTURBATION TERMS

LINTAO LIU, KAIMIN TENG

ABSTRACT. In this article, we study a class of critical fractional Schrodinger-
Poisson system with two perturbation terms. By using variational methods
and Lusternik-Schnirelman category theory, the existence of ground state and
two nontrivial solutions are established.

1. INTRODUCTION
In this article, we consider the nonlinear fractional Schrodinger-Poisson system
with critical nonlinearity

(—A)*u+ u+ K(2)du = a(a)|ul’~2u + pba)]ul2u + Jul 2

(-A)'p = K(z)u?, inR?,

u, in R?,

(1.1)

where (—A)* is the fractional Laplacian operator for a« = s,t. p,q € (4,2%),
s € (2,1), 2s4+2t > 3, p > 0 is a parameter, K(z), a(z) and b(z) satisfy the
following conditions:

(A1) K(z) € C(R?), K(z) > 0 and limj,_,oo K(2) = Koo > 0;
there exist Cy > 0 and k > 0 such that K (x)
there exist C; > 0 and d > 0 such that K (x)

) Oofﬁforaﬂxel&g;
)

4) a(x) € C(R?), a(z) > 0 and lim |, a(z) = as > 0;
)
)

K
Koo+ 51— for all z € R3;

<
< THen?

there exist Cy > 0 and a > 0 such that a(z) > as —
b(z) € C(R?), b(z) > 0 and lim|,|_, b(z) = 0;
7) there exist C3 > 0 and b > 0 such that b(z) > uf;iiw for all x € R3.

C .
W for all S R?’,

Since the first equation in is of fractional Schrédinger equation with a po-
tential ¢ satisfying the fractional Poisson equation, we call system a fractional
Schrédinger-Poisson system. In recent years, equations or systems with fractional
Laplace operators have been studied extensively because they are widely used in
fractional quantum mechanics, physics, chemistry, obstacle problems, optimization
and finance, we refer to see [12] [16] 20] 2], 23] and so on. It is also well applied in
the mathematical theory of conformal geometry and minimal surface, see [9].
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As far as we know, there are a few papers considering (|L.1)) after it was introduced
in [I5]. In [I5], the author studied the local and global well-posedness of the Cauchy
problem

10U + %AJC\I/ = AoV + UM, (t,z) €R xR,
(—A)7/24, = 0P,
v(,z) =/,
where 0 € (0,1), « = £1, 1 < v < 5. Recently, Zhang, Do 6 and Squassina [3§]

established the existence of radial ground state solution to the following fractional
Schrodinger-Poisson system with a general subcritical or critical nonlinearity

(~A)u+ Agu = f(u), inR?,
(—=A)'¢p = M?,  in R
Teng [33] studied the existence of a nontrivial ground state solution through using

the method of Pohozaev-Nehari manifold, the monotonic trick and global compact-
ness Lemma for the system

(—A)*u+V(x)u+ ¢u = [ufP"tu, in R3,
(-A)*¢p=u? inR>

Using a similar argument, Teng in [32] also studied the existence of ground state
solutions for the critical problem with a perturbation term
(=A)*u+ V(x)u + pu = plul u+ |u*"2u, in R?

(A =u?, inR3

For other related works, see [22, [28] and their references.
On the other hand, when s = t = 1, system (|1.1]) reduces to classical Schrodinger-
Poisson system written by a more general form

—Au+V(z)u+ K(x)pu = f(x,u), in R

—A¢ = K(z)u?, inR3, (1-2)

This is called the system of Schrodinger-Poisson equations because it consists of a
Schrédinger equation coupled with a Poisson term. In the previous decades, there
has been a lot of work dealing with the system under different assumptions
on V, K and f, see |2, [3, [4] [8, 1O, 111 15, 07, 19, 24 27, 29], B35}, B7, B39 40] and the
references therein. For example, in [3], the authors proved the existence of ground
state solutions for the subcritical 3 < p < 6 and the critical case f = |u[P~2u + u®
with 4 < p < 6. For the case p < 2 or p > 6, the reader may see [11] and for the case
2 < p < 6, can see [2 [3 8, 10, 24]. In the case of V being non-radial, K = 1 and
f = |ulP~2u, the existence of ground state solution for system was obtained
in [B, 0] for 4 < p < 6 and 3 < p < 4; In [5], the authors proved the existence
of ground state and bound states for the case when V =1 and f = a(z)[u[P~2u
with 4 < p < 6. In [37], the author considered a general critical situation with
two perturbation term and obtained the existence and multiplicity of solutions via
using Lusternik-Schnirelman category due to [ [6].
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To the best of our knowledge, there are few papers on the multiplicity solutions
for system . Inspired by [, 6, 37], we construct two mappings:
Fr:S?={yecR%: |yl=1} = {ue M:I(u) <ms —e(R)},
G:{ueM:I(u)<ms}— 52
so that Go Fr homotopic to the identity. Using the theory of Lusternik-Schnirelman

category, we will establish the existence of two nontrivial solutions for system (1.1).
Our main results are stated as follows.

Theorem 1.1. Assume that K, a and b satisfy (Al), (A2), (A4)—(A6) with 0 <
k < a, where o = min{a, (3 4+ 2s)p}. Then problem (1.1)) admits a positive ground
state solution.

Theorem 1.2. Suppose that (A1), (A3)—(AT7) hold with b < min{«, 3}, where
a = min{a, (3 + 2s)p} and B = min{d,6 + 4s}. Then problem admits a

positive ground state solution.

Theorem 1.3. Assume that K € C1(R3), a € CY(R?) and b(x) satisfy (A1), (A3)-
(A7) with K(z) > Ku, a(z) < a0 and meas{z € R3 : K(x) > Ko} > 0. Then
there exists pug > 0 small such that for any p € (0, o), problem admits at
least two montrivial solutions.

The rest of the paper is organized as follows: In Section 2, we give some prelim-
inaries. In Section 3, we prove Theorem [I.1] and Theorem Section 4 devotes to

proving Theorem

2. PRELIMINARY LEMMAS

In the sequel, we use the following notation:
e H*(R?) denotes the fractional sobolev space with norm

Julls= [ (-2)5uP + )i

and
D*2(R3%) := {u € L% (R®) : (—~A)3u € L*(R%)}
denotes the homogeneous fractional sobolev space with the norm

iy = [ 1(=8)ufde.

e ( denotes a universal positive constant (possibly different).

o It is well known that H*(R3) is continuously embedded into LP(R3) for
2 <p <252, = 35-), and for any a € (0, 1), there exists a best constant
S+ > 0 such that

3 _A % 2
Su= inf Joa |(Z2) FulFde
DT (Jps [ul@)Pade) >

e For simplicity, we assume K., = 1 and ao, = 1. Denote H = H*(R?) and
Ds,2 — DS’Q(RB).
In this section, we assume (A1), (A4) and (A6) hold. Similar to the argument
in [24], we know the function ¢! has the following properties.

Lemma 2.1. For any u € H, we have
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(i) ¢, >0;
(i) L, = h2¢t, VA > 0;
(iii) @4llpez < Cllull?yy < COllull®, Jps Srude < Cllulllys < Cllull*.

By the Lax-Milgram theorem, there exists a unique ¢!, € D%?(R?®) such that
(—A)t¢t, = K(z)u®. Thus, we can rewrite (1.1 as
(=A)*u+ u+ K(2)ohu = alz)|ulP~2u+ pb(a)|u|?2u + |u|* 2. (2.1)
To find weak solutions to (2.1), we look for critical points of the functional I(u) :
H — R associated with (2.1)) which is defined by
1

I(u) = 3 /}RB(\(—A)%m2 +u?)dx + % . K (x)¢! u?dx

1 u/ 1/
- = a(x)|u|Pdx — = b(x)|u|fdx — — u
o | a@epas =2 [ bwlrar - g

To prove the compactness, we need to consider the following problem at infinity
associated with (| @

(=A)*u+u+ ¢u = |uP~2

23

2—2

u, u >0, (2.2)
where ¢!, € D"2(R?) is the unique solution to problem
(—A)'6 = ul.
The functional associated with (| @ is
1

Im(u)=§/3(|( AYsuf? +12)de + - /(bt W2dz

_7/ \u|pdx——/ |

= e = B T

2*

Let

where
M = {u e H (R)\{0} : [I'(u), u] = 0},
Mo = {u € H*(R)\{0} : 1, (u), u] = 0}
are Nehari manifolds correspond to the functionals I and I, respectively. Similar

argument as [22, Proposition 3.4], we can obtain the following Lemma.

Lemma 2.2. By using [22, Proposition 3.4], problem (2.2)) has a positive ground
state solution us, € CH25To=1(R3) N L2(R3), where o € (0,1) and 2s + o > 1.

From v € H N CH?$T7~1(R?), we see that lim|y_ye ties(z) = 0. Similar as the
proof of [32, Proposition 3.8], we conclude that there exists C' > 0 such that
G
(1 + |x|)3+23’
Moreover, in [22], the authors showed that me, = coo = infyer max;e(o 1) Ioo (Y(%)),

where I' = {y € C([0,1], H) : v(0) = 0, Io(v(1)) < 0} and

Moo = Coo = Inf  max I, (tu). (2.3)
u€H\{0} t>0

0 < uoo(x) < Yz € R3.
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To prove the (PS), condition, we need the following function and its estimates

(see [32)
) ve(z) = Y(2)Uc(x), =€ Rg’

where U.(z) =&~ "2 u*(x/e),

Lo i(w/SE)
w2 = Tl

)

k € R\{0}, u > 0, and zg € R? are fixed constants, i(z) = k(u? + |z — aco\2)*¥,
and ¢ € C*(R3) such that 0 < ¢ < 1in R3 ¢(z) = 1 in Bs and ¥(z) = 0 in
R3\ Bas. We know that

|’Ue(.’1?)|25d;13 = 532% +O(€3)’ (25)
R3
(2—p)3+2sp

Ok = ), [
Py = (2-p)3+2sp 332 »
ve(wf?dr = § OCe logel), p= 525 (2.6)

- 3-2s g
0(6 2 p)’ p<m'

Lemma 2.3. Let {u,} C H be a bounded sequence such that I(u,) — ¢ € (0, M)
and I'(un) = 0. Then {u,} admits a strongly convergent subsequence in H.

Proof. First we show that me, < £ 5’25 By (2.3 » We see that coo < sup;>g loo(tve).

Thus we only need to prove sup;sq I (tvs) 3523 for ¢ > 0 small. By Lemma
we have

o

Lo (tv.) i (2.7)

1 2 2 4 4 1 2%
< Z — 2
< 3l + Ol —

Form (2.4)-(2.6)), there exists 1 > 0 small enough such that

s 3 3 .3
el = /Rz(I(—A)?vaP +2)dr < SF +0(27) + 0(7%) < 55F, (28)

1 3
Hvs 2t = 52* +0(%) > 5355, (2.9)
for € € (0,e1). Thus, form (2.7 -, we have
3 3 9 3 1 -1
Lo(tv) < 1#55’3 n CZ#SE 5t 525 (2.10)

By 2 < 4 < 2%, there exist a small {1 > 0 and a large to > 0 independent of
¢ € (0,e1) such that

3
sup Io(tve) < 257 (2.11)
t€[0,¢1] U2, 400) 3

Form Lemma and (2.4)-(2.6), we obtain

El 1 * *
sup Ioo(tve) < sup| t2/ [(=A)z E|2d33——t25/ v ()| da]
2*
tE[ty,ta] t>0 s R3
+ Ol + Cleellsy. — Clleel (212)

(2—p)3+2sp
2 .

— 258 +0(% ) — Ce
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In view of p € (4,2%), s € (3,1), so we see that w < 3 — 2s. By choosing
e € (0,e1) small, we obtain

3
sup JToo(tve) < f.5'523. (2.13)
te(ty,t2] 3
By (2.11)) and (2.13]), we have
3

Moo < gsgs. (2.14)
Since {u,} is bounded in H, up to a subsequence, we may assume that u, — u
weakly in H, u, — w in L (R?) for 1 < r < 2% and u, — u a.e. R®. Thus

by standard argument, we can show that I'(u) = 0. Set v, = u, — u. By the
Brezis-Lieb Lemma in [36], we have that

[on]|* = llunll* = [[u]l* + o(1),
(2.15)

9% = Hun

s

2% 2%
2% - ||u 2% +0(1)a

and

[ a@lapis = [ ol - [ atlul? + o),
/R3 b(z)|v,|?dx = /RB b(x) |, |? — /RS b(z)|ul? + o(1).

From limy,e a(z) = 1, lim, e b(z) = 0, and v, — 0 in L] (R® for any
r € [1,2%), we deduce that

/]RS a(@)lun|” — /R3 a(x)|ulP = /RS on|Pda + o(1),

(2.16)
bolunl? ~ [ Bolul? = o(1)
R3 R3
By [33, Lemma 2.5], we can see that
K(z)¢!, vide = K(z)¢!, uide— [ K(z)¢!u*dx + o(1).
R3 R3 R3
From lim|;| o K (2) = 1 and Holder’s inequality, it is easy to deduce that
/ qf)f)nvi dz = K(z)¢!, updr — K(z)¢t u?dx + o(1). (2.17)
R3 R3 R3
Thus, from (2.15)-(2.17)), it follows that
¢ —I(u) = Io(vy) + o(1). (2.18)

By using [I3, Proposition 5.1.1], we see that u € L>(R®). Then by [36, Lemmas
8.1 and 8.9], we have that

211 - 2 -1
G ub =o' pdz| = o(1)llell, Ve € H,
R

\/ a(@)(|un [P~ — [ul”™?u — o [P~ vn)pda] = o(D)|l¢]l, Ve € H, (2.19)
R3

|/ b(x)(‘unr]—gun - |u|q—2u - |Un|q_20n)§0d$| =o(1)[lell, Ve e H.
R3
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Together with lim;| o a(x) = 1, lim|;| o b(2) = 0, we deduce that

|/ ) (tnlP 210, — [l %) — o P 2va)pd| = o(1) ], Vip € H,
| / ) (|24 — [ulT2u)pdz] = o(1)gll, Voo € H.
Using [33], Lemma 2.5], we have
|/ K(x u” qﬁtu—qﬁt Up Yodx| = o(1)|le|l, Ve € H.

From lim|,| o K(2) = 1, and similar to the of proof of (2.17), we obtain
| [ K@)l w0 = e~ [ 34, ongds| = o(0llell. Vo€ B

Hence, by (2.19)-(2.21)), it holds
Il (vy) = o(1).

We claim v, — 0 in H. Two cases occur: either
lim sup/ v, |2dz = 0,
n—oo yGRg Bl (y)

or there exists v > 0 such that

lim sup / |vp|2da > .
Bi(y)

n— 00 yERS

(2.20)

(2.21)

(2.22)

Thus, either ||v,|, — 0 for any r € (2,2%) through using vanishing Lemma, or
there y, € R3 with |y,| — oo such that v, (. + y,) — v # 0 weakly in H. If
Un(. +yn) = v # 0 weakly in H, from (2.18]) and (2.22)), it follows that ¢ — I(u) =

Io(vn(. +yn)) +0(1) and I. (v, (. + yn)) = 0o(1). Thus I’ (v) = 0 and

¢~ 1) = Lo(on(- +yn) = e (onl + yn))son + 0]

= I+ )P+ (G =) [ lonl )P

1 1
+(Z - 2:)/]1%3 |(vn (- + Yn)
form which we obtain

1 1 1
> ol 4 (5= =
e 1w+l + G- [ 1o

= (W) + Lo() — 5[ 0), )] = T(w) + Ioow).

By the definition of mu, we have Ioo(v) > meo. Since I'(u) = 0, we have
1
I(u) = I(u) = 7 [I'(w), 4]
1 1
= 1l \\2 <a -2 [ a@lupds

1.1 /b )

2da + o(1),

dx >0,
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which leads to a contradiction with ¢ < ms. Thus ||v,|| L — 0 for any r € (2,2%).

By (2.18) and (2.22)), we have
1

1
¢ = 1(w) = 5 llonll* = -1

ot
3¢ =o(1).

5 +o(1),

[vnll® = llon

Up to a subsequence, we may assume that ||v,[|> — I. Thus |lv, ; — 1. If1>0,

by the definition of S,, we obtain [ > (S,)3:. Hence,
1
23

Jeo

s
b

S

@ )

1
- ) >
5 )=

S

1 2"
c=1I(u)+ glval* - or = I(u) + (

w| ®

(|,

3
which contradicts with ¢ < mqy, < §55°. Thus [ = 0 and we complete the proof. [J

Lemma 2.4. Suppose that o, 8 > n, f,g € L>°(R") and

Cl 02
fl2) < ey 9(2) £ s
(=) (1 + [z])~ () (L+ |z])?
Then there exits C > 0 such that
C
< -

where v = min{c, B}.
Proof. By direct computations,

|f* g()|
Ch Co
- ’/n (L+ [z =y~ (1 + |y])? dy’

7/ Cl CQ dy+/ Cl CQ dy
o—ylz 2l (L+ |z —y[)* (1+[y])? lo—yl<lzl (L+ |z —y[)* (1+[y])?

Cl / CQ / Cl C?
< 2 dy+ dy
(1+ e Jiomyz g 1+ 1y)? lelcpyl<gla) (T+ ]z —yD* (1+ly))?

<G / Cr gy / L

T (14 Zhye S (14 Jyl)? (14 208 Jizl cpyj<sie) L+ o —y[)*
C1Co2° / 1 C1Co2° / 1

< dy + - dy
2+ [z))> Jrn (1+ [y])? 2+ [2)? iamy<zia) L+ |z —y))e

010220‘/ 1 01022ﬁ/ 1
< dy + dy
1) S TP YT @ ) Joe T e —a)®
1 1
<C +
@ T et
_c
STy

where v = min{«, 8}. O

Now we recall the definition of Lusternik-Schnirelman category.
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Definition 2.5. (i) For a topological space X, we say a non-empty, closed subset
A C X is contractible to a point in X if and only if there exist a continuous mapping
n:[0,1] x A — X such that for some zy € X,

(a) n(0,z) =z for all z € A,
(b) n(1,x) =z for all x € A.

(ii) We define
cat(X) = min {k € N : there exist closed subsets Ay, ..., Ay C X such that

A; is contractible to a point in X for all 4 and
UF L A=X }

We say cat(X) = oo if do not exist finitely many closed subsets Aj,..., A C X
such that A; is contractible to a point in X for all ¢ and UleAi =X.

We need the following two important lemmas. See [I, Proposition 2.4 and Lemma
2.5].

Lemma 2.6. Suppose that M is a Hilbert manifold and ¥ € C1(M,R). Assume
that there exist co € R and k € N such that ¥ (u) satisfies the Palais-Smale condition
for e < co and cat({u € M : U(u) < ¢o}) > k. Then ¥(u) has at least k critical
points in {u € M : ¥(u) < co}.

Lemma 2.7. Let X be a topological space. Suppose that there exist two continuous
mappings F : 2 = {y e R® : |y| = 1} - X and G : X — S?, such that Go F
is homotopic to identity id : S? — S2, that is, there is a continuous mapping
¢ :[0,1] x §% — 82 such that ((0,z) = (G o F)(z) for all z € S? and ((1,z) =z
for all x € S?. Then cat(X) > 2.

3. PROOF OF MAIN RESULTS

Proof of Theorem[I.1. Let {u,} C M be a minimizing sequence for functional I,
that is, {u,} C M and I(u,) — m, where

M = {u e H\{0} : G(u) = [I'(u),u] = O}

We claim I'(u,) — 0. By the Lagrange multiplier Theorem, there exists A, € R
such that

I'(up) — MG (uy) — 0.
Since u,, C M, we have

m+o(1) = I(uy,) — i(['(un),un) > 1HunHQ,
which implies that {w,} is bounded in H. Hence
An |G (), upn] — 0. (3.1)
By (A4) and (A6), for any € > 0, there exists C; > 0 such that
a(@)[ul? + b(@)|ul? + [ul** < elul® + Cclul.
Taking ¢ = 1/2 and recalling the definition of S, we have

funl? < [ a@lunPdo+ [ pbie)unlde+ [,
R3 R3 R3

2 dg
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1
< */ |Un\2d$+c1/2
2*
S - b
which implies that

3

Sz2s

un|? > — (3.2)
(201/2) 2s

By , we obtain
[Gl(un)7un]
= [Gl(un) un] - 4[I/<Un)vun]

=2+ 4 [ K@yt e —p [ a@lunde—a [ @)tz
R3

—2*/ | d — A |2 + /K unundx—/ o) un | dz
RS
~ [ b@lunlrde ~ [ fun [ da)
R3 R3

= —2fju |2 + (4 - p) / o) |Pdz
R3
+(4— q)/ pb(2) | |2z + (4 — 2;)/ lup |2 dz
R3 R3

3
SSQS
(2Cy o) 5
From (3.1)), we have A, — 0. Thus I’(u,) — 0. This means that {u,} is a (PS),
sequence for I, that is, I(u,) — m and I’(u,) — 0. By Lemma[2.2] if m € (0,moo),
then uw, — w in H and thus I(u) = m and I'(u) = 0. Hence, m is attained by
u € H\{0}. For this purpose, it is sufficient to prove m < mu.
Similar argument as (2.3]), we can obtain the equivalent characterization of the
least energy m:

< =2|un | < -2

m= inf maxI(tu). (3.3)
u€H\{0} t>0

Let R > 0 and v € R? with |y| = 1. By (B.3), clearly, we have
m < sup I(tu(z — R)),
>0

where u, is a positive ground state solution for limit problem (2.2)). Since
I(tus (@ — R7))
2

2*

12 .
< 5 lluse(z — RY)|IP + CtYtoe (2 — RY)||* — o [[tioe (z — Rv)lliz

23
E 2:

t2
= S llueoll* + CtHJuco || — 2%

EHUOO
there exist a small ¢’ > 0 and a large ¢ > 0 independent of R and « such that

sup I(tuso(z — R7)) < Meo. (3.4)
te[0,t|U[t",400)
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On the other hand, by (AG6), for any u € H, we have

4

I(tu) < Lo(tu) + % /R (K(@) = DgluPde - %tp /R (a(@) ~ D)fulda

t 5
Tl R AT
R3
= Io(tu) + t;/ (K (z) — 1)¢! u?da +
R3
1y Dl
¢ /R (a(z) — 1)|ulPda.

p

t4

(K(x) — 1)$Zu2 dx
4 s

Thus, choosing u = ue(x — Ry) in the inequality above and using (K32), (a1), we
obtain

I(tuce(x — Ry))

< Too(tune) — %Co /Rs ( L K(y + Ry)ud, (y)

Trlet BaF oo o=yl

dyluce (z)|? da dy

tt 1 .
-t /R AT T e (Dloe ()P

1+ |z + Ry|)
+ 1tpc/ 1 uoe (2)[Pd
— U €T
p 2 Jgs U+ |z + Ry

1 K(y + Ry)u* (y)
s (L+ ]z + RyDF Jpa |z —y[3~2

4
4 R

t4 1 0t 2
500 [ e @l (o)

1+ |z + Ryl
1 1 1
+ tPC: C};/ d
p 7 Jas (Tt o+ RAD (L4 [a])@F2r ™

tt 1 -
< I by 2
< Loo(tting) = —Co /R (1+|x+R7|)k¢um(x)|uoo(x)| da

1 1
s (L+ |z + By (1 + o) B+29)

1
_¢p P
+ CCY —da.

Set I(t) = Io(tuss), t € (0,00). Tt is easy to verify that sup;>ql(t) = Io(ue) =
Meo. Moreover, we have

I " 2 I 9
/R3 (1+ |$+R7|)k¢ux(x)|u00(x)| do > /qu 0+ |x+Rfy|)k¢“°°(x)|u°°(z)| dx

1 R
|z|<1 md)zoc ('r>|uoo (l‘)‘Qdm

s ¢
2+ R)k

>C

By Lemma [2.4] we have

/ 1 1 dr < ¢
o (L o+ Bl (L Ja) Orom = (T Ry
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where o = min{a, (3 + 2s)p}. Thus

(tl)4 ~ ]' 1 1'\p P 1
C’OC(2+R)k +p(t ) 020067(14_1%)&.

sup I (tuoo(z — R7Y)) < Moo —
t<t<tr 4

By 0 < k < «, there exists R>0 large such that for R > ]:2,

sup I(tuso(z — RY)) < Moo, V]| =1.
v <t<t"

Thus, combing with (3.4), for R > R, we have

sup I (tueo(z — RY)) < Mmoo, YV |y =1,
>0

which yields m < my,. The remaining of the proof of Theorem is to show that
the solution v € H is positive. (I

Proof of Theorem[I.4 The argument is similar to the on in Theorem [T.I] we only
need to prove for R > 0 large, sup;>q I (ttoo (z—R7Y)) < Mmoo uniformly in . Clearly,
there exist 0 < ¢’ < t” independent of R and ~y such that
sup I(tus (z — RY)) < Moo-
t€[0,¢/]U[t"",+o00)
On the other hand, by (A3), (A5), (A7), and we have for any o > 0, there exist
C, > 0 such that

sup I(tuso(z — RY))
te[t ']

Ci(t")! / 1 K(y + Ry)ul,(y)
ra

d 2d
[T A B Jps o gpat W@l

< sup I (tueo) +
>0 4

AV .
 Gl) /< L (@)lune() 2

4 1+ |z 4+ Ryl)
1 1 1
+ = (t")PC: CP/ dx
PO | T e Ry (L )

Cs(t')q/ 1 q
Uoo ()] ?d.
q Jes (1+I$+R7|)b| (@)

By calculations, we have

1
- q
/Rg 1+ [z + Ry|)P oo (@)[*d

1
> —  |us a4
1
> oo (@) |dr > C——.
/Ixél PRSI 2+ R)?
From Lemma [2.4] we obtain
1 1 o
du < .
/RS (14 |z + Ry|)* (1 + |x])B+29)p r= (1+R)>’ (3.6)

where o = min{a, (3 + 2s)p}.
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By Holder’s inequality, (A3) and (3.6, we have

/ 1 K(y+ Ry)u2 (y)
rs (L+ |2+ Ry Jps |z —yP~2

1 u? (y) 2
<(1+C et dy|teo d
< (1+ 1)/]RS 0+ 2+ Ry /R3 lz— g% Y|too (x)|*da

=(1+0C) /11@3 m%w (2) |too (x)*d (3.7)

dyluss(2)]*dz

< C|é},.. ()

/ 1 1 T ]
x| )"
“LJps \(1+ [o + Ry)d (1 + [2[)6+4s

1 sz 1
6 <67

<Clazre © =arrp

where m = min{%, 12}. Similar as the above argument, we obtain

1

1 0t 2
/R3 (—d%w () |too ()| "dz < Cm7

1+ |z + Ryl|)

where § = min{d, 6 + 4s}. By (3.5)-(3.8)), we have

_ 1 — 1 — 1
iy Tl = D S e = O+ Ry Ry

where Cy, C3, C3 are positive constants. Since b < min{a, 8}, we obtain that there
exists Ry > 0 such that for R > Ry, sup;>q I (tuc(r — RY)) < My uniformly in .
The proof is complete. O

4. PROOF OF THEOREM [L3|

Let h(t) = I(tuoo(z — RY)), t € (0,00), v € R?® with |y| = 1. Form the proof
of Theorem [T.2] we know there exists Ry > 0 such that for R > Ry, there exists
e(R) > 0 satistying

sup h(t) < meo — e(R) < My uniformly in 7.
>0

For any fixing R and 7, it is easy to check that h(t) attains its maximum at a unique
point t = t.,. Hence, we define a mapping Fr:S? ={y€R3:|y|=1} - M by

Fr(v) = tootco(x — R7).
Immediately we have the following Lemma.

Lemma 4.1. There exists Ry > 0 such that for R > Ry, there exists e(R) > 0
satisfying Fr(S?) C {u € M : I(u) < ms — e(R)} uniformly in v € S2.
For w € H, we define a map ® : H — H by
1

— m T 3

where | By (z)| is the Lebesgue measure of By(z). Let
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and 3 : H\{0} — R? given by
1
Bu) = A—/ xt(z)dz.
R3

[l
Obviously, 8(u) is well defined for all v € H\{0} and §(u) has a compact support
in R3. Moreover, 3(u) is continuous in H\{0} and satisfies the following properties.
Lemma 4.2. (i) For anyt # 0 and v € H\{0}, B(tu) = B(u).
(ii) For any z € R3 and u € H\{0}, B(u(z — 2)) = B(u) + 2.

Define a functional J : H — R given as follows

1 1 1 1
I =3P+ ;[ K@dtads - [ a@lurde = 5 [ o
2 4 Jps D Jgrs 2% Jrs

Lemma 4.3. mg := infyy, J(u) = ms is not attained, where
My = {u e H\{0} : [J'(u),u] = 0}.

Proof. First, we show that for any u € My, there exists a unique 0 < 7 < 1 such
that 7u € M. Indeed, by v € My and Tu € M, we have

:dx, u € H.

ulf? + [ K@dialds = [ a@lulrds+ [ Jufd. (4.1
R3 R3 R3
and then
Tp/ a(x)|ulPdz + 72 / |u\2:dx < Tp/ |u|Pdx + 72 / |u|2:da§
R3 R3 R3 R3 (4 2)
= 72||ul|® + 7'4/ (ﬁf‘u2daj.
R3

From (A3) and K (x) > 1 for any z € R?, it follows that

Ptuldr < K(x)¢tulde < K(z)¢! ud. (4.3)

R3 R3 R3

If 7> 1, by (4.1)), (4.2) and (4.3), we deduce that
7 (J|ull® +/ K (z)¢}u*dz) > 74(||U||2+/ ¢! u*dz)
R3 R3
> Tp(/ a(z)|u|Pdx +
RS RS
= (P + [ K@)dhalda),
Rfi

which yields 7 < 1, this achieves a contradiction. Hence 7 < 1 and the claim is
true.

For u € My, using (4.3)), we have

2 dx)

T(w) = J(w) = (7' (w)
— (3 lulP + ,”/K oatde + ()
> (5=l + (G = ot [ dtelde+ (- %) ;
=Io(1u) — E[I{)O(TU),TU]
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= Ioo(Tu) = Mo,

which implies that mg > M.

Next we prove mg < Meo. Let w, = oo (. — 2,), where z, € R? with |z,| — oco.
We claim that for w, € M, there exists 7, > 1 such that m,w, € My. In fact,
from w,, € M, and 7, w, € My, it holds

|\wnu2+/ asgnwgdx:/ |wn\pdx+/ wn
R3 R3 R3

Tf{/ |wn|pdx+75:/ |wn\2:‘dx
R3 R3

Zrﬁ/ a(m)|wn|pdx+772l:/ |wn|2:dx
R3 R3

Zde,

and then

=l + 7 [ K)ol udda,
R3

If 7, < 1, then

72 / o |Pdz + / fwn
R3 R3

o) 2 il + [ K@), whdo)
R3

> 2 (wa 2 + / &, wid)
R?)

:Tﬁ(/ |wn|pdaj+/ |wp,
R3 R3

which leads to a contradiction with 7, < 1. Hence 7,, > 1 and the claim holds.
By the definition of mq and 7,u,, € My, we have

2 dz),

1 1
mo < J(ann) = 7T72LHU‘OO||2 + 77—3 K(I) fu widl’
2 2™ Jo "

1 1 o
B / a(@)|wn|Pde — —715° / oo (2)
P R3 2% R3

S

2 da.

By Lebesgue dominated convergence Theorem, we deduce that

lim K(z)¢!, widx

n— 00 R3

. Ky + z, ugo
= lim K(x+ z,) —(y 23—275@)
n—0o0 JRr3 R3 |z —y|

_ / 3 (@)oo () 2d, (4.4)
Rd

dyluos (z)|* da dy

lim a(z)|wy|Pde = lim a(x + zp)|ueo (z)|Pdx
n—0o0 R3 n— oo R3

_ /R use (@)

If 7, — 1, we obtain mg < limy, o0 J (trwy) = oo (Uso) = Moo, form which we see
that mg = ms,. Thus we only need to prove 7,, — 1. By m,w,, € My, with 7, > 1,
we have

7 (fwn? + / K(2)¢!, w?dz)
R3
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> 72w, |2 + 7 / K(2)6t,, wldz
RS

:Tﬁ/ a(x)|wn|pdx+72:/ |wi,
R3 R3
> 72([ a@waPde+ [ o)
R3 R3
Thus, by (4.4), we deduce that
| < et o 0l 4 foo K(@)ohy, wide

Jrs a(@)|wn[Pdz + [py wn]% da

lusol|? + Jga @, (@) [tioo () [da + 0(1)
2da’

2 dx

f]RS |u00($)|pd33 + 0(1) + fRS |u<><>($)
which yields 7,, — 1 by using v, € Moo.

Next we prove myg is not attained. Assume by contradiction that there exists
uy € My such that mg = J(ug). We claim J'(ug) = 0. Set G(u) = [J'(u), u], By the
Lagrange multipliers Theorem, we obtain A € R such that J'(ug) — AG’ (ug) — 0,
similar to the of proof of Theorem we have J'(ug) = 0. Note that if ug is sing-
changing, by Remark 5.6 in [34], we see that J(ug) > 2mg, a contradiction. Thus
we may assume that ug > 0 in H and ug # 0, we claim ug > 0, by the definition of

v (@), there exists C' > 0 such that

. K (y)ud(y) K (y)ud(y)
(2) = /| ay+ [ dy

o a—ylz1 [ = y[P* a—yl<1 [T —y[>7%
lz—y|<1 ‘LL’ - y|

and |g| < C(Juo|+uo|*™"), where g(z) = a(x)|uo(2)["~>uo(x) + [uo (x)|* ~*uo (z) —
uo(z) — K ()¢l (x)uo(xz). Then it follows from [22, Proposition 3.4] that there
exists o € (0,1) such that ug € C*7. Let w satisfy —Aw = —ug — K ()¢l u +
a(x)|ug|P~2ug + |uo|* ~2ug € C%?. By the Hélder regularity theory for the Lapla-
cian, we have w € C*?. It follows from 2s + o > 1 that (—A)17Sw € C125to~1
Then, since (—A)*(ug — (—A)'~*w) = 0, the function u — (—A)!~*w is harmonic
and we obtain uy has the same regularity as (—A)l’sw. That is, ug € CL2sto—-1,
The regularity obtained above implies that
A= [ WD) ),
s y[3+2s

Assume that there exists 2o € R3 such that ug(z) = 0, then by ug # 0 and ug > 0,
u(zo +y) + u(zo — y)

—A)u(zg) = — dy < 0.
( ) ( 0) /R3 |y|3+2s Y
However, noting that —Aug = —ug — K ()¢l ug + a(z)|ue[P~2ug + |uo|* ~uo we

obtain —Awg(xg) = 0, which is a contradiction. Therefore, ug > 0.
From the above proof, we see that for ug € My, there exists a unique 79 < 1 such
that Toug € M. Thus,

Moo < Ioo(ToUo)

1
= IOO(T()U()) - E[Iéo(TOUO)ﬂTOUO]
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— - Y+ -1 / O ulda + 5——) Iroto|?

2*
<t - Yo+ f”/K Loudds + (-

= J(uo) — p[J(Uo) ;uo) = J(ug) = mo.

1 "

— I\DM—

1
p
1
— dz
p

N}

From mg = my, it follows that

(7_7)”701“]”2 1 /¢> Zda 4 ( E—*) |Touo|%
= (5= )luoll®+ (5 - = x) ot 1 1 w2
_(2 p)H oll +(4 p)/]RsK() ulda +(p 2*)/ g

that is

2 dg

ol + 7 [ & uddo + 75
R3 R3

— ol + [ K)ot ubdz+ [ Juo
R3 R3

(= Dllwl? + [ (@) - Dot udda+ [ (6, - ot o
+(1- 7'61) /]R3 Azou%dx +(1- 7-05) /RS |u0‘2sdx
= (1 72) fuol? + / (K(z) — 1)(8, + ¢, Judde

1—7'0 / gbt 2d + ( 1—7'0 /|u0

/RS(K(:E) —1)(¢l,, + ¢!, Juddz =0,

this contradicts ug being positive, K (z) > 1 and meas{z € R* : K(z) > 1} >0. O

2 da.

Thus

sdx =0,

by 9 <1, so

Lemma 4.4. There exists pg > 0 such that for u € My satisfying J(u) < moo + po,
it holds |5(u)| > 0.

Proof. Assume by the contrary that there exists {u,} C My such that J(u,) —
Moo = Mg and |S(u)| = 0. Similar to the proof Theorem we can derive by the
Lagrange multipliers Theorem that J'(u,) — 0. We omit the proof here. Similar
to the proof Lemma [2.3] we obtain u,, — u weakly in H, J'(u) = 0, and

Moo — J(u) = Io(vy) + 0(1) and I (v,) = o(1), (4.5)

where v,, = u,, — u.

For the sequence {v,}, two cases may occur: |v,||, — 0 for any r € (2,2%), or
there y,, € R with |y,| — oo such that v,(. + y,) — v # 0 weakly in H. By
virtue of J'(u) = 0, we can deduce that J(u) > 0. From Lemma we see that
Moy < %Sszi Thus me — J(u) < %SSZA

If ||lon |l — O for any r € (2,27), by ([.6)), we have moo — J(u) = 3|v,|*> —

2%”1)”\@; +0o(1) and |Jv,||? — ||vn|\§§ = o(1). Up to a subsequence, we may assume
: : :
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ﬁs — . If I > 0, by the definition of S, we obtain

27 ; - .. .
2 = 31 > 355°, a contradiction with

that ||v,||*> — [ and then ||v,
3
1> 5. S0 Mmoo — J(u) = 3||val* —

3
Moo — J(u) < 55¢°. Thus, [ = 0 and then up, — u in H, we obtain mg = J(u), a
contradiction with myg is not attained. Therefore, v, (. + y,) — v # 0 weakly in H.
Similar to the proof Lemma[2:3] we can deduce that

Moo — J (1) = Lo (Vn(. +yn)) + o(1),
I (0n (- 4 yn)) = o(1).

Hence, I’_(v) = 0 and by using Fatou’s Lemma, we have

i”’ (a4 ), v+ )] + o(1)

= 2N+ )P+ / |(0n (. + y)Pdz
+<§——>/ (@l 90

S

> ol + G =) [ et (- 50 [ ol
= IOO(U) - Z(Icgo(v)vv)) = Ioo(v) > Moo

Combining with J(u) > 0, we obtain J(u) = 0 and then v, (. +yn) = un(-+yn) = v
in H. By Lemma we have

Bo(z)) + o(1) = Bun(z +yn)) = B(tn) — Yn = —Yn.
Which yields |3(v(z))| = oo, this leads to a contradiction. 0

Moo — J(u) = o (Vn (- + Yn)) —

sdx +o(1)

Lemma 4.5. There exists po > 0 small such that for p € (0, o), we have |B(u)| > 0
forue{ue M:I(u) <me}.

Proof. Let u € M be such that I(u) < me, then we have
1 1
Mmoo > I(u) = I(u) = Z[I'(w),u] > ZlJul* (4.6)

Using the conditions (A4), (A6) and u € M, we obtain for any € > 0, there exists
C. > 0 such that

||u||2 §/ a(z)|u\pd:c+u/ b(a:)|u\qu+/
R3 R3 R3
§(1+u)[5/( |u|2d:c+C’s/t dex].

Choose ¢ € (0,1/4), we have % ||u||? < (14 p)C: [ps [u[*da for p € (0,1). In fact, if
e€(0,7) and p € (0,1), we obtain 0 < (1+ p)e < 1/2, and then § — (1 + p)e > 0.
Thus, 1t holds

(4.7)

1 1
L aPde+ G-+ u)a)/ luf2dz > 0,
2 ]R3 2 RS

that is
1
§Hu||2 <lull® = (1 + p)e / |ul?da,
R3
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by (4.7)), we have
= 1+ e [ fuPde< @+ e [ u
R3 R3

.
2 dx,

SO

2 dz.

1
Sl < @+ e [ Ju
R3
Thus, by the definition of S, there exists Lo > 0 independent of p € (0,1) such
that

. L
|u 2 dx > 703.
R3 (14 p)2=
Similar to the argument of Lemma we can deduce that for any v € M, there
exists a unique 7(u) > 1 such that 7(u)u € My. Then

@l + [ Kaohatds)

(4.8)

> Pl + i | K(e)sutds
RB
:T”(u)/ a(m)|u|pdx—|—72;(u)/ |u|2:d33
R3 R3
> 7% (u) | |ul*da,
RS

which implies that

P24y < lul® + Jgs K(*SCWZUQCZ«T'
Jgs [u]?: da

Together with (4.6) and (4.8)), we derive there exists C' > 0 independent of z € (0,1)
such that

1< 724 u) < O(1+ p)%. (4.9)
Note that for u € M with I(u) < me, thus
14
Moo > I(u) = sup I(tu) > I(t(w)u) = J(t(u)u) — uﬂ/ b(x)|u|d.
t>0 q R3
By (4.6) and (4.9)), there exists a small ug € (0,1) such that u € (0, po),
14
J(t(u)u) < moo + uf]u)/ b(z)|uldr < moo + po.
R3
Form Lemmal4.4] we have |3(t(u)u)| > 0. Hence, Lemma[d.2]implies |3(u)| > 0. O

Lemma 4.6. For p € (0,10), define G : {u € M : I(u) < muoo} — S? by G(u) =

|§EZ;\ Then for R > Ry and p € (0, po), the map

GoFRr:S5%*— S%y— Go(Fr(y))

is homotopic to the identity.

Proof. Similar to the argument of [1}[37, Proposition 2.9], we define the map ((6,y) :
[0,1] x §% — 52 by
G((1 —20)Fg(y) + 20us(x — Ry)), 6 €][0,1/2),
C(0,y) = { Clu (@ — 5:559), b e1/2,1),
y7 9 == 1
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By the definition of G and Lemma tt is not difficult to check that ((6,y) €
C([0,1] x S2,5%), ¢(0,y) = G o (Fr(y)) for y € S% and ((1,y) =y for y € S%. The
proof is complete. O

Proof of Theorem[1.3 Form Lemma[2.7 Lemma[£.I]and Lemma[4.6] we have that
for R > Ry and p € (0, p10), it holds

cat({u € M : I(u) < me —e(R)}) > 2.

Then by Lemma [2.3] and Lemma [2.6] we see that I admits at least two nontrivial
critical point in {u € M : I(u) < Moo }- O
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