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2 Georg Hetzer EJDE{1996/05is, then, how classes of climatologically relevant solutions depend on the parameter� 2 R+, the so-called solar constant. For Example, considering the case of a modelwith seasonal forcing Q(t; �), 1-periodic in t, the possible climate regimes of theearth are identi�ed with the stable 1-periodic solutions of the functional reaction-di�usion equation under consideration, and one is interested in the structure of theunbounded branch of solution pairs (�;w) with w 1-periodic in t. Likewise, elim-inating the seasonal forcing leads to problems involving a solar forcing Q = Q(x).The function w should be a stationary solution in that context.The same program will ultimately guide the study of the reaction-di�usionequation in (1.1), but before addressing such structural questions one has of courseto deal with some basic mathematical aspects and to establish a dynamic theory forthis setting, that is to say global existence, uniqueness, continuous dependence andboundedness of solution trajectories for the initial value problem (1.1) have to bederived �rst. These questions will be the subject of this paper.Existence and uniqueness results for certain classes of quasilinear functionaldi�erential equations were previously obtained in the literature, cf. [18] and thereferences therein, but (1.1) does not fall into the scope of those papers, whichmostly focus on problems with time-delays in the highest order spatial derivatives.It should also be noted that the special form of the memory term is, as far as c isconcerned, crucial for obtaining the rather sharp results in this paper.It turns out that Amann's approach [6] to linear evolution equations of parabolictype provides an appropriate frame for our purposes, and we will rely heavily on someof his so-called Stability Estimates. Moreover, we will follow the line of reasoning in[1] when establishing maximal solvability, uniqueness and continuous dependence inSection 2. Of course, the delay term R 0�T �(s)u(t+s; x) ds requires special attention,and we shall frequently utilize its smoothing action in time, which is one of thereasons for focusing on (1.1) rather than investigating general quasilinear reaction-di�usion systems with delays. On the other hand, since we are employing tools from[6] that were developed for dealing with systems of quasilinear parabolic di�erentialequations, our results promise to be extendable to problems arising from multi-layerenergy balance models as considered in [12] for example, when delays of the aboveform are added.Section 2 is devoted to the study of local aspects, maximal unique solvability andcontinuous dependence; global existence onR+ and boundedness of the solutions aretreated in Section 3, where the special form of the delay term is crucial for obtainingboundedness for mild solutions in [6]. This is the reason, why L1-estimates translatehere so much more easily into estimates with respect to Sobolev norms than it isusually the case in a quasilinear parabolic setting (cf. e.g. [2, 3, 6] for the e�ortnecessary in case of parabolic systems without delays).x2. Local Existence, Uniqueness and Continuous DependenceThroughout we are going to employ the following hypotheses:(H1) M is a connected, 2-dimensional, compact, oriented Riemannian manifold with-out boundary;



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 3(H2) k 2 C2(M) is positive, c 2 C2(M � R) is bounded, with inf c > 0, @2c isbounded, T 2 (0;1), � 2 C1([�T; 0]), �(�T ) = 0, �(s) > 0 for s 2 (�T; 0],R 0�T �(s) ds = 1;(H3) R 2 C3(R+ �M �R2).Clearly, we later have to be more speci�c about the net radiation 
ux term Rwhen addressing global existence. It should also be noted that it is more convenientto deal with the solvability of (1.1) allowing arbitrary initial conditions rather thanonly the climatologically relevant nonnegative ones. It will not be too hard to seethat solutions with nonnegative initial data stay nonnegative under those hypotheseswhich R ful�lls in the climatological context. For the moment, we could think ofR and c as being appropriately extended to the non-physical range of \negativeabsolute temperature". Fixing a 2 (0;1) and # 2 C([�T; 0]; C(M)) e.g. we aregoing to deal with the initial value problem8>>>>>><>>>>>>: c�x;Z 0�T �(s)u(t+ s; x) ds�@tu(t; x)� div (k gradu(t; �))(x)= R�t; x; u(t; x);Z 0�T �(s)u(t+ s; x) ds� x 2M; t > au(a+ s; x) = #(s; x) s 2 [�T; 0]; x 2M: (2:1)In order to reformulate (2.1) as a functional evolution equation we select p 2 (4;1)and set E0 := Lp(M) and E1 :=W 2;p(M). Moreover, L(E1; E0) denotes the Banachspace of bounded linear operators fromE1 into E0. De�ne A 2 C1(C(M);L(E1; E0))by A( )(')(x) := �div (k grad')(x)c(x;  (x))for x 2M , ' 2 E1 and  2 C(M). It is easy to derive thatkA( 1)�A( 2)kL(E1;E0) � Cdi� k@2ck1(inf c)2 k 1 �  2k1 (2:2)for all  1,  2 2 C(M), where k�kL(E1;E0) denotes the operator norm on L(E1; E0)and Cdi� := k' 7! �div (k grad')kL(E1;E0).Now, choose � 2 ( 14 ; 12 ), �� 2 (0; 2� � 2p ) and � 2 (�; 1) and denote by Ek thereal interpolation space [E0; E1]k;p for k 2 f�; �; ��g. We refer to [17] for functionspaces on manifolds and mention only that Ek is norm-isomorph to W 2k;p(M) fork 2 (0; 1)nf 12g. This fact is well-known if M is a bounded domain in Rn (cf. [5,14, 16]) and carries easily over to the situation in (H1) thanks to the existenceof a �nite oriented atlas for M with subordinated partition of unity. De�ne F 2C1(R+ �E� �E�; E��) byF (t; ';  ) = R(t; '(�);  (�))c(�;  (�)) ' ; 2 E�:One has



4 Georg Hetzer EJDE{1996/05Lemma 2.1. There exists a function CF : R+ �! R+ withjjF (t1; '1;  1)�F (t2; '2;  2)jjE��� CF (r)[jt1 � t2j+ k'1 � '2kE� + k 1 �  2kE� ] (2:3)for all r 2 R+, t1; t2 2 R+ and '1; '2;  1;  2 2 BE�(0; r), the closed ball withradius r and center 0.A well-known procedure for deriving such results consists in proving mappingproperties of (t; ';  ) 7! R(t; '(�);  (�))c(�;  (�))in a suitable H�older space setting and then employing the embeddingsW 2�;p(M) ,!C�(M) for 2� � 2p > � and C ~�(M) ,! W 2��;p(M) for ~� > 2��. We refer to [9] fora proof of similar results and note only that some extra care is necessary, since thefunction spaces under consideration are based over a manifold. The C3-regularityof R required in (H3) is a convenient su�cient condition in this context and canactually be relaxed, e.g. to R being C2 and Q 2 C3(R+�M) supposing the specialform R(t; x; u; v) = �Q(t; x)[1 � �(x; u; v)] � g(u) mentioned in the introduction.For b > 0 de�ne I 2 L(C([a�T; a+b]; C(M)); C([a; a+b]; C(M))) by Iw(t; x) :=R 0�T �(s)w(t+s; x) ds for w 2 C([a�T; a+b]; C(M)), t 2 [a; a+b] and x 2M . It turnsout that I 2 L(C([a�T; a+b]; E�); C([a; a+b]; E�)) �note E� ,! C(M) compactly�,and we shall write jjjIjjj for kIkL(C([a�T;a+b];E�);C([a;a+b];E�)) throughout.We can now reformulate (2.1) as a quasilinear functional evolution equation( _u+ (A � I u)u = F (t; u; I u) t > au(a+ s) = #(s; �) s 2 [�T; 0] (2:4)and call u a local solution of (2.4), i� there exists a b > 0 and a u 2 C([a � T; a +b]; E0) \C1((a; a+ b); E0) with dom(u(t)) 2 E1 for t 2 (a; a+ b) satisfying (2.4) on(a; a+ b).A standard method for dealing with quasilinear problems consists in freezingthe \nonlinearities" and applying a �xed point argument to the solution operatorgenerated by the family of associated linear problems. In our situation this takesalso care of the delay terms, and thus we can employ the theory of linear parabolicevolution equations as developed in [6]. We adapt the followingNotations. Let H(E1; E0) denote the set of all B 2 L(E1; E0) such that �B con-sidered as a mapping in E0 is the in�nitesimal generator of a strongly continuousanalytic semigroup on E0. Moreover, given & 2 [1;1) and ! 2 (0;1) we mean byH(E1; E0; &; !) the subset of all B 2 H(E1; E0) such that B + !Id is a homeomor-phism and &�1 � k��+BC�kLp(M;C)j�j k�kLp(M;C) + k�kW 2;p(M;C) � &for � 2W 2;p(M;C)nf0g and � 2 C with <� � !. Here, BC denotes the complexi�-cation of B. Since it will mostly be clear from the context that the complexi�cations



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 5of the space or operator are meant, we will sometimes just use E0 andB for Lp(M;C)and BC, respectively.Setting Aw(t) := A � Iw(t) for w 2 C([a� T; a+ b]; C(M)) and t 2 [a; a+ b] wehave:Lemma 2.2. Let b > 0 and w; w1; w2 2 C([a� T; a+ b]; C(M)). Then1. Aw 2 C1([a; a + b];L(E1; E0));2. kAw(t1)�Aw(t2)kL(E1;E0) � Cdi� k@2ck1(inf c)2 (�(0) + k�0kL1) kwk1 jt1 � t2j for allt1; t2 2 [a; a+ b];3. kAw1 �Aw2kC([a;a+b];L(E1;E0)) � Cdi� k@2ck1(inf c)2 kw1 � w2k1;4. There exist & 2 [1;1) and ! 2 (0;1) with Aw� 2 C([a; a+ b];H(E1; E0; &; !))for w� 2 C([a� T; a+ b]; C(M)).Proof of 1. Since A 2 C1(C(M);L(E1; E0)), it su�ces to observe that �w : t 7!R 0�T �(s)w(t+s; �) ds 2 C1([a; a+b]; C(M)) with �w0(t) = �(0)w(t; �)�R 0�T �0(s)w(t+s; �)ds for t 2 [a; a+ b].Let us only consider the di�erentiability from the right at t 2 [a; a + b). Let� 2 (0; a + b� t) with 2� < T . We get for x 2M :��� �w(t+�)(x)� �w(t)(x) � ��(0)w(t; x) + � Z 0�T �0(s)w(t + s; x)ds�������Z 0�T �(s)w(t+ � + s; x) ds� Z 0�T �(s)w(t+ s; x) ds� ��(0)w(t; x)+ � Z 0�T �0(s)w(t+ s; x)ds�������Z 0��T [�(s� �)� �(s) + ��0(s)]w(t + s; x)ds���+ ���Z �0 �(s� �)w(t+ s; x)ds� ��(0)w(t; x)���+ ���Z ��T�T [�(s)� ��0(s)]w(t+ s; x)ds����kwk1 �hT sups2[�T;0] sup�2[s��;s] j�0(s)� �0(�)j + sups2[0;� ] j�(s� �)� �(0)j+ sups2[�T;��T ] j�(s)� ��0(s)ji+ �(0)� sups2[0;� ] supx2M jw(t+ s; x)� w(t; x)j :The �rst two terms under the last bracket tend to 0 as � �! 0+ thanks tothe uniform continuity of �0 and the continuity of � at 0, respectively. Also,sups2[�T;��T ] j�(s)� ��0(s)j � sups2[0;� ] j�(s� T )j + 2� k�0k1 �! 0 as � �! 0+in view of �(�T ) = 0, and the last term divided by � converges to 0 thanks to theuniform continuity of w.



6 Georg Hetzer EJDE{1996/05Proof of 2. Let t; � 2 [a; a+ b) with � < t, thenkAw(t)�Aw(�)kL(E1 ;E0)� Cdi� 




 1c(�; R 0�T �(s)w(t + s; �) ds) � 1c(�; R 0�T �(s)w(� + s; �) ds)




1� Cdi� k@2ck1(inf c)2 



Z 0�T �(s)[w(t + s; �)� w(� + s; �)] ds



1� Cdi� k@2ck1(inf c)2 (�(0) + k�0kL1) kwk1 jt� � jProof of 3. We havekAw1 �Aw2kC([a;a+b];L(E1;E0))� Cdi� supt2[a;a+b]




 1c(�; R 0�T �(s)w1(t+ s; �) ds) � 1c(�; R 0�T �(s)w2(t+ s; �) ds)




1� Cdi� k@2ck1(inf c)2 kw1 � w2k1Proof of 4. This can be derived from general results in [7], cf. in particular Theorem10.1 there. A direct argument would utilize the local Lp-estimates (cf. [15; 3.1.5,p. 76] e.g.) and an appropriate choice of a �nite atlas for M to conclude that for each0 < 
 < �
 there exist �& 2 (1;1) and ! > 0 with j�j k�kLp � �& k��� 
div (k grad�)kLpfor all � 2 C, <� � !, � 2 W 2;p(M;C) and all 
 2 C(M) with ran(
) � [
; �
].[6; I.1.2.1.(a)] shows that this is equivalent to the estimate&�1 � k��� 
div (k grad�)kLpj�j k�kLp + k�kW 2;p � &for all � 2 C, <� � !, � 2W 2;p(M;C) and all 
 2 C(M) with ran(
) � [
; �
]. Theclaim follows then in view of c bounded and inf c > 0.Moreover, de�ning Fw 2 C([a; a + b]; E��) by Fw(t) := F (t; w(t); I(w(t)) fort 2 [a; a+ b] and w 2 C([a� T; a+ b]; C(M)) we getLemma 2.3. Let b; r 2 (0;1), w1; w2 2 C([a�T; a+ b]; E�) with kwjkE� � r forj = 1; 2, � 2 (0; 1] and w 2 C([a� T; a+ b]; E�) \ C�([a; a + b]; E�). Then1: kFw1 � Fw2kC([a;a+b];E�� )� CF (rmaxf1; jjjIjjjg)�1 + jjjIjjj) kw1 � w2kC([a�T;a+b];E�)2: Fw 2 C�([a; a + b]; E��) :Proof. Statement 1 follows from (2.3). This inequality and Iw 2 C1�([a; a+b]; E�)yield Statement 2, hence the latter remains to be shown. Let t1; t2 2 [a; a+ b] with



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 7t1 < t2, we havekIw(t2)� Iw(t1)kE�=



Z 0�T �(s)w(t2 + s) ds� Z 0�T �(s)w(t1 + s) ds



E�=



Z t2t2�T �(s� t2)w(s)ds � Z t1t1�T �(s� t1)w(s)ds



E��




Z t2�Tt1�T �(s� t1)w(s)ds




E� + 



Z t1t2�T [�(s� t2)� �(s� t1)]w(s)ds



E�+ 



Z t2t1 �(s� t2)w(s)ds



E�� const.h2 k�k1 sups2[a�T;a+b] kw(s)kE� + T sups2[a�T;a+b] kw(s)kE� k�0k1i jt2 � t1jIt should be noted that the Sobolev{Slobodeckii norm k�k2�;p is an equivalent normon E� and that, say,hZ tt 
(s)w(s)dsi2�;p =�ZM�M ���R tt 
(s)w(s)(x)ds � R tt 
(s)w(s)(y)ds���pjx� yj2+2�pM dx dy� 1p��Z tt j
(s)jp0 ds� 1p0 �ZM�M R tt jw(s)x� w(s)yjp dsjx� yj2+2�pM dx dy� 1p��Z tt j
(s)jp0 ds� 1p0 ��t� t�� 1p � sups2[a�T;a+b] kw(s)kp2�;p� 1p�2 k�kp0 T 1p sups2[a�T;a+b] kw(s)k2�;p ;in case that 
 stands for one of the expressions �(s � t1), �(s � t2) � �(s � t1)or �(s � t2) and [t; t] denotes one of the respective integration intervals, which haslength � T . Here, dx refers to integration with respect to the volume form inducedby the Riemannian metric of M, and jx� yjM is the distance between x and y onM. Now, we can apply [6; II.1.2.2, p. 44] for �xed w 2 C([a � T; a + b]; E�) \C�([a; a+ b]; E�) to ( _u+Awu = Fw on (a; a+ b]u(a) = w(a) (2:5)and obtain a solution U = U(t;w) = U(t; x;w) with U(�;w) 2 C([a; a + b]; E�) \C1((a; a + b]; E�) \ C((a; a+ b]; E1).Clearly, U(�; w) is a solution of (2.4), i� w = U(�; w). Thus we can derive uniquesolvability for (2.4) as in the case of a quasilinear parabolic system via the contractionmapping principle by investigating the dependence of the solution operator of anon-homogeneous linear parabolic problem on its coe�cients. Note that no delaysare involved in the linear equation (2.5), thus the memory e�ect only enters as



8 Georg Hetzer EJDE{1996/05\parameter dependence". The line of reasoning is rather similar to that in the proofof [1; Proposition 6.1] (cf. also [4] for corrections of statement and proof of thatproposition).Proposition 2.1. Fix b 2 (0;1). Let r > 0 and � 2 (0; � � �). Then thereexists b 2 (0; b] such that (2.4) has a unique solution in C([a � T; a + b]; E�) \C�([a; a+ b]; E�) \C1((a; a+ b]; E�) \C((a; a+ b); E1) for each # 2 C([�T; 0]; E�)with #(0) 2 E� and k#kC([�T;0];E�) � r. This solution is a Lipschitz function on theabove set of initial data under the metric induced by k�kC([�T;0];E�).We are going to employ several estimates from chap. II.5. in [6] and begintherefore by deriving hypotheses (5.0.1) there, which we reformulate here for thereader's convenience:Hypotheses (5.0.1) in [6]. Let a; � 2 R+, b; ! 2 (0;1), � 2 (0; 1), & 2 (1;1),% 2 R and B � C�([a; a + b];L(E1; E0)) such that[B]�;[a;a+b] := supa��1<�2�a+b kB(�1)�B(�2)kj�1 � �2j� � � for B 2 Band %+B 2 H(E1; E0; &; !) for B 2 B:These assumptions guarantee in particular the existence of a uniform exponen-tial bound � for the parabolic evolution operator VB = VB(t; �) of B 2 B. Moreprecisely, [6; (5.1.1)] states:Existence of a uniform Exponential Bound �. ([6; II.5.1.1]) There exists aconstant c0(�) > 0 independent of � such that � := c0(�)�1=� + %+ ! ful�lls:kVB(t; s)kL(Ej) + (t� s) kVB(t; s)kL(E1;E0) � Ce�(t�s)for a < s < t < a + b, B 2 B and j = 1; 2, where C 2 R+ is independent of0 < s < t < b, B 2 B and j = 1; 2.Proof of Proposition 2.1. Let � 2 (0; � � �) and C�;1 2 [1;1) withkwkC([a�T;a+b];C(M)) � C�;1 kwkC([a�T;a+b];E�) 8w 2 C(a� T; a+ b]; E�):It follows from Statement 2 in Lemma 2.2 thatB :=fAw : w 2 C([a� T; a+ b]; E�); kwkC(a�T;a+b];E�) � 5rg� C�([a; a + b];L(E1; E0))for every � 2 (0; 1). Fix � 2 (�; 1) su�ciently large. Statement 4 in Lemma 2.2shows that there exist & 2 [1;1) and ! 2 (0;1) such that fAw : w 2 C([a �T; a+ b]; C(M))g � C([a; a + b];H(E1; E0; &; !)), hence in particular B � C([a; a +b];H(E1; E0; &; !)). Thus, (5.0.1) in [6] is ful�lled, and we �nd a uniform exponentialbound � 2 R for B and � as stated before.



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 9Employing the \H�older estimate" for mild solutions of (2.5) (cf. [6; (5.3.2)]) one�nds a constant C1 withkU(t1;w)� U(t2;w)kE� � C1 jt1 � t2j��� e�t2hkw(a)kE� + kFwkL1([a;a+t2];E0)ifor all a � t1 � t2 � a+ b and all w 2 C([a� T; a+ b]; E�) \C�([a; a+ b]; E�) withw(a) 2 E� and kwkC([a�T;a+b];E�) � 2r. Note that Aw belongs to B for each suchw. Moreover,kFwkL1([a;a+t];E0) � area(M)1=p 

RjR+ �M � [�2rC�;1; 2rC�;1]2

1for all t 2 [a; a+ b]) and w as above, hence selecting b1 2 (0; b] withC1 maxf1; e�bgb�����1 �r + area(M)1=p 

RjR+ �M � [�2rC�;1; 2rC�;1]2

1� � 1one obtains kU(t1;w) � U(t2;w)kE� � jt1 � t2j� 8t1; t2 2 [a; a+ b1] (2:6)for all w 2 C([a� T; a+ b1]; E�) \ C�([a; a+ b1]; E�) with w(a) 2 E�, kw(a)k� � rand kwkC([a�T;a+b1];E�) � 2r.Finally, let us consider solutions u1 = U(�;w1) and u2 := U(�;w2) to (2.5)for given w1; w2 2 C([a � T; a + b]; E�) \ C�([a; a + b]; E�) with wj(a) 2 E�,kwj(a)kE� � r and kwjkC([a�T;a+b];E�) � 2r for j = 1; 2. [6; II.5.2.1, p. 71] showsthe existence of a C2 2 (0;1) such thatku1(t)� u2(t)kE�� C2maxf1; e�bgnt��� kAw1 �Aw2kC([a;a+t];L(E1;E0)) �kw1(a)kE�+ t1��+�� kFw1kL1([0;t];E�� )�+ kw1(a)� w2(a)kE�+ t1�� kFw1 � Fw2kL1([0;t];E0)o (2:7)for t 2 [a; a+ b]. Statement 3 in Lemma 2.2 and the choice of C�;1 implykAw1 �Aw2kC([a;a+t];L(E1;E0)) � Cdi� k@2ck1(inf c)2 C�;1 kw1 � w2kC([a�T;a+t];E�) :(2:8)Statement 1 in Lemma 2.3 yieldskFw1kL1([0;t];E�� ) � supa�t�a+b kF (t; 0; 0)kE�� + CF �2rmaxf1; jjjIjjjg�2r(1 + jjjIjjj) :(2:9)Observing that maxa�t�a+b ���R 0�T �(s)w(t + s; x) ds��� � kwk1 for w 2 C([a� T; a +b]; C(M)) and setting C3R;2r := sup

@3RjR+ �M � [�2rC�;1; 2rC�;1]2

1 andC4R;2r := sup

@4RjR+ �M � [�2rC�;1; 2rC�;1]2

1 one obtainskFw1 � Fw2kL1([0;t];E0) � [C3R;2r + C4R;2r k�0kLp0 T ] kw1 � w2kC([a�T;a+t];E0)� C�;0[C3R;2r + C4R;2r k�0kLp0 T ] kw1 � w2kC([a�T;a+t];E�)(2:10)



10 Georg Hetzer EJDE{1996/05for a � t � a+ b with C�;0 the operator norm of the embedding from C([a� T; a+b]; E�) into C([a� T; a+ t]; E0). Inserting (2.8), (2.9) and (2.10) into (2.7) we getku1 � u2kC([a;a+t];E�)� C2maxf1; e�bgnt���Cdi� k@2ck1(inf c)2 C�;1 kw1 �w2kC([a�T;a+t];E�)� �r + t1��+�� supa�t�a+b kF (t; 0; 0)kE�� + CF �2rmaxf1; jjjIjjjg�2r(1 + jjjIjjj)�+ kw1(a)� w2(a)kE�+ t1��C�;0[C3R;2r + C4R;2r k�0kLp0 T ] kw1 �w2kC([a�T;a+t];E�)o: (2:11)If w1(a) = w2(a), b 2 (0; b1] can be chosen in view of (2.11) such thatku1 � u2kC([a;a+b];E�) � 12 kw1 � w2kC([a�T;a+b];E�) (2:12)holds for all w1; w2 2 C([a� T; a+ b]; E�) \ C�([a; a + b]; E�) withkwjkC([a�T;a+b];E�) � 2r for j = 1; 2, w1(a) 2 E� and kw1(a)kE� � r.In order to apply the contraction mapping principle, letY := �� 2 C([a; a+ b]; E�) : �(a) = 0; k�kC([a;a+b];E�) � r;j�(t1)� �(t2)j � jt1 � t2j� 8t1; t2 2 [a; a+ b]	and Z := �# 2 C([�T; 0]; E�) : k#kC([�T;0];E�) � r; #(0) 2 E�; k#(0)kE� � r	:It is easy to see that Y is a closed subset of C([a; a+ b]; E�). Then one de�nes themapping w : Z � Y �! C([a� T; a+ b]; E�) byw(#; �)(t) := �#(t� a) a� T � t � a�(t) + #(0) a � t � a+ b.Note that kw(#; �)(t)kC([a�T;a+b];E�) � 2r for all (#; �) 2 Z � Y , hence estimates(2.7)-(2.12) can be applied in the sequel. Finally, let �(#; �)(t) := U(�; w(#; �))(t) �#(0) for a � t � a+ b.Now it is easy to derive that �(#; �) is a 12 -contraction in Y for each # 2 Z. Infact, �(#; �) belongs to C([a; a + b]; E�) for � 2 Y , since U(�; w(#; �)) is a solutionof (2.5); �(#; �)(0) = U(0; w(#; �)) � #(0) = 0 and (2.6) and the choice of b (� b1)show k�(�; #)kC([a;a+b];E�) � r and j�(�; #)(t1)� �(�; #)(t2)j � jt1 � t2j� 8t1; t2 2[a; a+ b]. Moreover, (2.12) yields the contraction property.Thus the contraction mapping principle ensures the existence of a unique �xedpoint �(#) 2 Y for each # 2 Z. Furthermore, given #1; #2 2 Z we havek�(#1)� �(#2)kC([a;a+b];E�) �12 k#1 � #2kC([�T;0];E�)+ k�(#1; �(#2))� �(#2; �(#2))kC([a;a+b];E�) ;



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 11hence because of (2.11) and the choice of bk�(#1)� �(#2)kC([a;a+b];E�)�2kU(�; w(#1; �(#2))� #1(0)� U(�; w(#2; �(#2)) + #2(0)kC([a;a+b];E�)�kw(#1; �(#2))� w(#2; �(#2))kC([a�T;a+b];E�)+ 2(1 + C2maxf1; e�bg) k#1(0)� #2(0)kE��2(2 + C2maxf1; e�bg) k#1 � #2kC([�T;0];E�) : (2:13)
It is clear that the �xed point �(#) provides a solution of (2.4) via U(�;w(#; �(#))).This is the only solution of (2.4) within C([a� T; a+ b]; E�)\C�([a; a+ b]; E�) anda Lipschitz function of the initial data as (2.13) shows.Sometimes, a setting involving only one intermediate space is more desirable.Again, following Amann's approach one notes that the estimates in [6; 5.2.1 and5.3.1] actually apply to mild solutions of (2.5) and with \� = �". Though the re-sulting inequalities are insu�cient as far as contraction properties are concerned,they allow to derive continuous dependence on initial data in the following frame-work.Lemma 2.4. Let #0 2 C([�T; 0]; E�) and u(�;#0) 2 C([a�T; a+b]; E�) be the solu-tion of (2.4) with # = #0. Then there exists a neighborhood� of #0 in C([�T; 0]; E�)such that a solution u(�;#) 2 C([a�T; a+b]; E�) of (2.4) exist for each # 2 �. More-over, the mapping (t; #) 7! u(t+ �;#) is continuous from [a; a + b] � C([�T; 0]; E�)into C([�T; 0]; E�).Proof. Choose r 2 (k#0kC([a�T;a];E�) ;1) with ku(�;#0)kC([a�T;a+b];E�) < r andset B := fAw : w 2 C([a� T; a+ b]; E�); kwkC(a�T;a+b];E�) � 5rg;then (2.13) and C([a � T; a + b]; E�) ,! C([a � T; a + b]; E�) imply that thereexists a � > 0 such that ku(�;#)kC([a�T;a];E�) � r for # 2 C([�T; 0]; E�) satisfyingk#� #0kC([�T;0];E�) < �. Noting that u(�;#0) 2 C([a�T; a+b]; E�) implies Fu(�;#0) 2L1([a; a+ b]; E0) one can utilize once more [6; II.5.3.1] {this time with � = � = �{and conclude that u(�;#0) 2 C([a�T; a+b]; E�). Moreover, this choice in [6; II.5.2.1]yields the existence of a ~C and a � 2 R withku(t;#)� u(t;#0)kE�� ~Cmaxf1; e�bgn

Au(�;#) �Au(�;#0)

C([a;a+t];L(E1 ;E0)) �k#0(0)kE�+ t1��+�� 

Fu(t;#0)

L1([0;t];E�� )�+ k#(0)� #0(0)kE�+ t1�� 

Fu(�;#) � Fu(�;#0)

L1([0;t];E0)o (2:14)for t 2 [a; a+ b] and # 2 C([�T; 0]; E�) with k#� #0kC([�T;0];E�) < �. By adaptingestimates (2.8) and (2.10) to the present situation one �nds �C 2 R+ with

Au(�;#) �Au(�;#0)

C([a;a+t];L(E1;E0)) � �C ku(�;#) � u(�;#0)kC([a�T;a+b];E�)
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Fu(�;#) � Fu(�;#0)

L1([0;t];E0) � �C ku(�;#) � u(�;#0)kC([a�T;a+b];E�) ;hence (2.13) and (2.14) provide for a C 2 (0;1) withku(t;#)� u(t;#0)kE� � C k#� #0kC([�T;0];E�) (2:15)for all # 2 C([�T; 0]; E�) with k#� #0kC([�T;0];E�) < � and t 2 [a; a+ b]. Now,ku(t+ s;#)� u(t0 + s;#0)kE� �ku(t+ s;#)� u(t+ s;#0)kE�+ ku(t+ s;#0)� u(t0 + s;#0)kE�for s 2 [�T; 0]. Equation (2.15) and the uniform continuity of u(�;#0) yield thesecond statement of the lemma.In view of Proposition 2.1 and Lemma 2.4, it is a matter of technique to derivea maximal existence, uniqueness and continuous dependence result.Theorem 2.1. Let � 2 (0; � � �) and # 2 C([�T; 0]; E�) with #(0) 2 E�. Thenthere exists a unique maximal solution u = u(�; a; #) of (2.4), which has a domain ofthe form [a� T; a+ t+(a; #)) (maximal interval of existence) with t+(a; #) 2 (a;1].Also, u(�; a; #) 2C([a� T; a+ t+(a; #)); E�) \ C�([a; a + t+(a; #)); E�)\ C1((a; a + t+(a; #)); E�) \ C((a; a+ t+(a; #)); E1)and is unbounded at t+(a; #), if t+(a; #) < 1. Moreover, let t 2 (a; a + t+(a; #)),then # 7! u(t+ �; a; #) is Lipschitz continuous from f� 2 C([�T; 0]; E�) : �(0) 2 E�ginto C([�T; 0]; E�). Finally, f(t; #) : # 2 C([�T; 0]; E�); a � t < t+(a; #)g is openin [a;1)�C([�T; 0]; E�) and (t; #) 7! u(t+ �; a; #) is continuous from that set intoC([�T; 0]; E�).Of course, v 2 C�([a; a+t+(a; #)); E�) means that vj[a; a+b] 2 C�([a; a+b]; E�)for all b 2 (0; a+ t+(a; #)).It is easy to see that Theorem 2.1 yields in fact a classical solution of (2.1),since E� ,! C��(M). Indeed, u(�; a; #) 2 C([a � T; a + t+(a; #)); E�) immediatelyimplies u 2 C([a � T; a + t+(a; #)) �M). Fixing t 2 (a; a + t+(a; #)) we can usestandard elliptic regularity to conclude u(t; a; #) 2 C2+��(M), whereas u(�; a; #) 2C1((a; a + t+(a; #)); E�) in particular yields u(�; x; a; #) 2 C1((a; a + t+(a; #)). Tosummarize we state the following.Corollary 2.1. Given # 2 C([�T; 0]; E�) with #(0) 2 E�, then the unique maximalsolution u of (2.4) is a classical solution of (2.1) in the sense that u 2 C([a� T; a+t+(a; #))�M)\C1((a; a+t+(a; #))�M) with u(t; �) 2 C2(M) for t 2 (a; a+t+(a; #))and (2.1) is satis�ed pointwise in (a; a+ t+(a; #)) �M .



EJDE{1996/05 A Reaction-Di�usion Equation with Memory 13x3. Global ExistenceHere we are concerned with8>>>>>><>>>>>>: c�x;Z 0�T �(s)u(t+ s; x) ds�@tu(t; x)� div (k gradu(t; �))(x)= R�t; x; u(t; x);Z 0�T �(s)u(t+ s; x) ds� x 2M; t > 0u(s; x) = #(s; x) s 2 [�T; 0]; x 2M (3:1)under the hypotheses (H1)-(H3) stated at the beginning of Section 2 and the addi-tional hypothesis(H4) R(t; x; y1; y2) = �Q(t; x)[1��(x; y1 ; y2)]�g(y1) for t � 0, x 2M and y1; y2 2 R,where Q � 0 is bounded; � 2 C2(M �R+�R+), with inf � > 0 and sup� < 1,and where g 2 C2(R+), g(0) = 0, with g 2 C2(R) strictly increasing and odd,and limy!1 g(y) =1Throughout we assume that # 2 C([�T; 0]; E�) for some � 2 ( 14 ; 12 ). Choosing� 2 ( 14 ; �) we can apply Theorem 2.1 and obtain a maximal solution u = u(�;#)of (3.1), actually, of the associated evolution equation (2.4) with a = 0, which is aclassical solution of (3.1). Writing t+(#) for t+(0; #) we have:Theorem 3.1. t+(#) =1, and u(�;#) is bounded with respect to k�kE� on [�T;1].Proof. We �rst establish a priori bounds w.r.t. k�k1, which are easy to obtainby recalling that R(t; x; y; z) = �Q(t; x)[1 � �(x; y; z)] � g(y). In fact, assume forb 2 (0; t+(#)) that uj[�T; b]�M takes on a positive maximum u in (t; x) 2 (0; b] �M . The left hand side of (3.1) is � 0 at (t; x), hence 0 � � kQk1 [1 � inf �] �g(u), which shows supu � maxfk#k1 ; g�1(� kQk1 [1 � inf �])g. Likewise, inf u �minf�k#k1 ; g�1(� inf Q[1 � k�k1])g, thus kuk1 � maxfk#k1 ; g�1(� kQk1 [1 �inf �])g.Now, assume that t+(#) < 1. We set �u(t) := R 0�T �(s)u(t + s; �) ds fort 2 [0; t+(#)) and observe that �u can be extended continuously to [0; t+(#)] as afunction into C(M). In fact, �u 2 C([0; t+(#)); C(M)) \ C1((0; t+(#)); C(M)) with�u0(t) = �(0)u(t; �) � R 0�T �0(s)u(t+ s; �) ds in view of �(�T ) = 0. Thus, k�u0(t)k1 �(�(0)+k�0kL1([�T;0])) kuk1 for t 2 (0; t+(#)), which implies k�u(t)� �u(�)k � (�(0)+k�0kL1([�T;0])) kuk1 jt� � j for t; � 2 [0; t+(#)). We denote the continuous extensionof �u into t+(#)) again by �u.In order to employ [6; II.5.4.1], we introduce A : [0; t+(#)] �! L(E1; E0) bysettingA(t)'(x) := �div (k grad')(x)c(x; �u(t)(x)) 8 t 2 [0; t+(#)]; x 2M and ' 2 E1and establish that the mapping A ful�lls hypotheses (5.0.1) in [6] stated behindProposition 2.1 here.



14 Georg Hetzer EJDE{1996/05� It follows from Lemma 2.2.2 that A 2 C1�([0; t+(#)];L(E1; E0)) and that�(�) := Cdi� k@2ck1(inf c)2 (�(0) + k�0kL1) kuk1 t+(#)1�� is an appropriate choice forany � 2 (0; 1).� Also one obtains in quite the same way as described in the proof of Lemma 2.2.4that there exist & 2 [1;1) and ! 2 (0;1) withA 2 C([0; t+(#)];H(E1; E0; &; !)).Set f(t) := R(t;�;u(t;�);�u(t))c(�;�u(t)) for t 2 [0; t+(#)), then f 2 L1([0; t+(#)); Lp(M))andkfkL1([0;t+(#));Lp(M)) � (inf c)�1hkQk1 [1� inf �] + g(kuk1)i(meas(M))1=p :Noting that u is a mild solution of_v +A(t)v = f(t) 0 < t < t+(#) (3:2)and choosing � according to [6; (5.1.1)] {observe � > 0, here{ and setting � = � = �and �� = 
 = 0 in [6;II.5.4.1], one concludes that there is a C 2 (0;1) withku(t; �)kE� � C�t��e�t k#(0)kE� +B�(t; �) kfkL1([0;t+(#));Lp(M))�; (3:3)for t 2 [0; t+(#)), where B�(t; �) := ���1 R �t0 ���e� d�. Consequently, ku(t; �)kE� <1, which contradicts t+(#) < 1 in view of Theorem 2.1, hence t+(#) = 1 isderived.The boundedness of u as a curve in E� follows by re�ning the previous argumentsomewhat. Roughly speaking, we pass to_v + (A(t)� �) v = f(t)� �u(t; �) t 2 (0;1) (3:4)and observe that the right hand side of (3.4) is still in L1(R+; Lp(M)). More-over, writing UC�(R+; C(M)) for the Banach space of uniformly H�older boundedfunctions on R+ we have �u 2 UC�(R+; C(M)) for every � 2 (0; 1), since �u 2UC1�(R+; C(M)) (same argument as before) and k�uk1 � kuk1. In fact,k�ukUC�(R+;C(M)) � (2 + �(0) + k�0kL1([�T;0])) kuk1. Thus, �xing � 2 (0; 1) andselecting c0(�) according to [6; II.5.1.1] we can �nd % 2 (�1; 0) with � := c0(�)� 1� +% + ! < 0, where ! has the same meaning as in the �rst part of this proof and� := kA(�)kC�(R+;L(E1;E0)), which is �nite in view of the previous observation andLemma 2.2.3. Thus, one can employ [6; II.5.4.2] (rather than [6; II.5.4.1] ) andobtainsku(t; �)kE� � C�t��e�t k#(0)kE� + kfkL1([0;t+(#));Lp(M))� t 2 (0;1);which yields the second part of this theorem.Remark. It is of interest to note that the bound for u depends only on kuk1 andk#(0)kE� . Moreover, the proof shows that the statement of Theorem 3.1 remainstrue under hypotheses (H1)-(H3), whenever L1-boundedness of u can be establishedotherwise.
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