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ON THE ¢-DICHOTOMY FOR HOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

ABSTRACT. In this article we present some conditions for the 1-dichotomy of
the homogeneous linear differential equation 2’ = A(t)z. Under our condition
every 1-integrally bounded function f the nonhomogeneous linear differential
equation ' = A(t)z + f(t) has at least one 1-bounded solution on (0, +00).

1. INTRODUCTION

The problem of solutions being 1-bounded and i-stable for systems of ordinary
differential equations has been studied by many authors; see for example Akinyele
1], Avramescu [2], Constantin [3]. In particular, Diamandescu [0} [7] presented
some necessary and sufficient conditions for existence of a 1-bounded solution to
the linear nonhomogeneous system o’ = A(t)z + f(t).

Denote by R? the d-dimensional Euclidean space. Elements in this space are

denoted by x = (71,2, ..,24)" and their norm by ||z| = max{|x1], |22], ..., |z4|}.
For real d x d matrices, we define norm |A| = supy,<; [[Az|. Let Ry = [0, +00)
and ¥; : Ry — (0,00),4=1,2,...,d be continuous functions. Set

¢ = dianga w27 LRI Tﬁd}
Definition 1.1 (J6]). A function f: R, — R? is said to be
e ¢-bounded on Ry if ¥(¢)f(t) is bounded on R.

e ¢-integrable on R if f(t) is measurable and ¥ (¢) f(¢) is Lebesgue integrable
on R, .

In R?, consider the following equations
2 =At)z+ f(t) (1.1)
= A(t)x (1.2)

where A(t) is continuous matrix on Ry.

By solution of , , we mean an absolutely continuous function satisfying
the system for all t € R,. Let Y (t) be fundamental matrix of with Y (0) = I,
the identity d x d matrix. By X; denote the subspace of R? consisting of the initial
values of all ¥-bounded solutions of equation and let X5 be the closed subspace
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of R?, supplementary to X;. Also let P;, P, denote the corresponding projections
of R% on to X1, Xo.

Definition 1.2. The equation (1.2 is said to has a t-exponential dichotomy if
there exist positive constants K, L, o, 8 such that

W)Y () PY " H(s)p (s)| < Ke @) for 0<s<t, (1.3)
[W(t)Y (£)PY "L ()™ (s)| < KePt=9) for 0<t<s. (1.4)

The equation (|1.2)) is said to be has a ¥-ordinary dichotomy if (1.3)), (1.4) hold with
a=p0=0.

We say that ([1.2) has i-bounded grow if for some fixed h > 0 there exists a
constant C' > 1 such that every solution z(t) of (1.2)) is satisfied

[¥@®)z(B)]] < Cllp(s)a(s)| for 0 < s <t < s+ h. (1.5)

Remark 1.3. For ¢; = 1, ¢ = 1,2,...,d, we obtain the notion exponential and
ordinary dichotomy [4} [5].

Diamandescu proved the following results.

Theorem 1.4 ([6]). The equation (L.1) has at least one -bounded solution on
Ry for every v-integrable function f on Ry if and only if (1.2) has a v-ordinary
dichotomy.

Theorem 1.5 ([§]). Let
(AR ()| < M for all t >0,
[Pt~ (s)| <L for0<s<t.

Then (1.1) has at least one -bounded solution on Ry for every i-bounded function
f on Ry if and only if (1.2)) has -exponential dichotomy.

In this paper we prove some condition of the -dichotomy for a homogeneous
linear differential equations and we concerted that with the preceding results. Fi-
nally, it is noted that the concept of v-dichotomy for linear differential equations
remain valid in Banach spaces. In this case we need a few changes for the definition
of ¥. It seems to us that the majority of the results of this paper remain true for
Banach spaces.

2. PRELIMINARIES

lemma 2.1. The equation (1.2)) has a v¥-exponential dichotomy if there exist posi-
tive constants K', L', T, «, 3 such that

W)Y () PY (s (s)| S K'e %) for T < s <t (2.1)
[W(t)Y (1) PyY ~Y ()~ (s)| < L'ePt=%) for T < s <. (2.2)
Proof. We will show that (1.3]) holds. Using a lemma of Coppel [4],
Y (s)|"
|detY (s)|”
On the other hand Y (s) is continuous, we deduce |Y ~1(s)| < Ny < 400 for 0 < s <
T. Tt follows from the continuity of 1 (t), ¥~ 1(t), Y (t), that [(t)|, [~ 1(¢)], |Y (t)|are

Y~i(s) < (2~ 1)
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bounded on [0,7]. Thus [ ()Y (t)P,Y " 1(s)y~1(s)] < N < +o0 for 0 < s < T,
0<t<T. If0<s<T <t then
()Y () PLY ()i ()
< WO (OPY (D) (DI E(T)Y (1)Y ()67 (s)
< NI @Y ()P (T} (T)|
< NK/e—a(t—T) < NK/eaTe—a(t—s).
< T, then
1/)( Y () PLY " (s)p~ (s)]
<[ OY Oy H D)~ (D)[W(T)Y (T)PY ~H(T)y~H(T)|
[W(T)Y(T)Y () (s)]
< N2K' < NQK/eaTe—(x(t—s)-

Thus the inequality (1.3) holds for K = max{K’, NK'e*T N2K'eT}. Similarly,
inequality (T.4)) holds for L = max{L’, NL'e*T N2L'e“T}. O

Ifo<s <

lemma 2.2. Equation (1.2) has a -exponential dichotomy if only if following
statements are satisfied

e @)Y () Prig]| < K'e > |i(s)Y (s)Pigll, for all § €R? and t > 5 >0 (2.3)
@)Y (£)Pogl < L'e® ()Y () Pog]|,  for augeRd and s>t >0 (24)
W)Y (O)PY TN () < M fort >
where K', L', M are positive constants.

Proof. If ) has a v-exponential dichotomy then for any vector y € R?, we get

IIw(t) (OPY ()Y~ ()yll S Ke *ly| for 0 < s <t

Choose y = ¥(s)Y (s)P1&, we obtain . The proof of |-j is similar. Inequality
5) evidently holds. Conversely, if 1nequahty [2-3), (.4), (2.5) are true. For any

vector y € R, putting &€ = Y 1(s)y~1(s)y we get
lo()Y (O PLY (s )yl < K'e=29 |g(s)Y () PrY ()6 (s)yl
< MK'e™E9|jy|| fort>s>0.
Thus, we have (|1.3). The proof of ([1.4) is similar. O

Remark 2.3. By Lemma[2-1] and in the same way as in the proof of Lemma [2.3,
we can show that (1.2) has ¥-exponential dichotomy if there exists positive constant
Q such that

@)Y () Piéll < K'e= ()Y (s)Piéll,  for all§ € R and t > s > Q,

(2.6)
(Y () Pot]| < L'e® 2 |lp(s)Y (s)Pokl,  for all R and s > ¢ > Q, (2.7)
WOY(OPY (OO <M fort > Q. (2.8)

lemma 2.4. Equation (1.2) has ¥-bounded grow if and only if there exist positive
constants K, v such that

()Y ()Y " (s)v1(s)| < Ke?* ™), fort>s>0. (2.9)
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Proof. Suppose that (1.2) has a ¥-bounded grow. For arbitrary vector £ € R?, we
consider the solution z(t) of (L.2), with 2(0) =Y ~!(s)y~*(s)¢. Setting n = [152],
we get

[¥(@®)z )] = [[¢(nh + s)z(nh + )|
< ClY(nh + s — h)z(nh+ s — h)||
< SO [(s)z(s)]
< CF|Jp(s)a(s)| for 0 < s < .
Set K =C,v=h"'InC, we obtain
[ )] < KV =[i(s)a(s)].

Therefore, || ()Y (£)Y 1 ()1 (s)€|| < Ke?t=9)|€]|. Tt follows (2.9).
Conversely, if (2.9) is true, then we can take C' = Ke”". Thus (1.5) is satisfied.

O

Remark 2.5. The preceding proof shows that the condition of ¥-bounded grow of
(1.2) is independent of the choice of h.

3. THE MAIN RESULTS

Theorem 3.1. If (1.2) has a ¥-exponential dichotomy, then for any 0 < 6 < 1
there exists constants T > 0 such that every solution x(t) of (1.2)) satisfies

[p)z@)] <0 W [ (s)z(s)l|  forallt >T. (3.1)

Proof. Set z1(t) =Y (t)P1Y ~Y(t)z(t), z2(t) = Y (t)P2Y ~1(t)z(t). Suppose that
[P (s)za(s)]| = [lo(s)zr(s)]]-
It follows from that
lo(s)ai(s)ll < K'em [ (s)ar ()] < K'e™ ™ u(s)aa(s)]| for 0< s <t
Applying for & =Y ~1(s)za(s),
(22O = 1LY () PY ™ (s)aa(s)|
> L' P9 |jp(s)Y (s) PoY " (s)aa(s)]| for 0< s <t
Note that xo(t) = Y (¢t)P,Y ~1(t)22(t). Thus
[l > L' g(s)als)l] for 0< s <.
Therefore,
l(e)e(t)]| > 52780 — Ko p(s)a(s)]| for 0< s <t
Similarly, if [[¢:(s)zrs(s)] > [6(s)aa(s)]], then
[b(t)(t)]| = %[K’*lea“—ﬂ — L'e U 9|jgp(s)(s)|| for 0 <t < s
For any 0 < 6 < 1 we can choose T' > 0 large so that
LT _K'emoT > 9971 and K’ 'ecT — [/e BT > 991
Thus for t > T,
[Pzl < max{0]|$(t + T)a(t + T)||, 0]t — T)a(t = T)||}-
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Then (3.1)) is satisfied. O

Definition 3.2. The function f : R, — R? is said to be 1/-integrally bounded if

it is measurable and Lebesgue integrals f:“ |l (w) f (u)]|du are uniformly bounded
for any t € Ry.

Theorem 3.3. Fquation (1.1) has at least one ¥-bounded solution on Ry for every
Y-integrally bounded function f if and only if (1.2) has a 1-exponential dichotomy.

Proof. First we prove the “if” part. Suppose that (1.2)) has a -exponential di-
chotomy. Consider the function

H(t) = / BOY () PY N (s) ()ds — / T Y ()P () f(s)ds
- / GO (H)PY () (s)0(s) £ (5)ds
- / T Y ()P sy (5)ib(s) ) ds

for t > 0. The function Z(t) is bounded. In fact, suppose that

t+1
/ ll(s)f(s)||ds < ¢ fort > 0.
¢
Then

/ e ) (s s < et — e ),
0
/ [ (5)f(s)lds < el — ),

0
by using a Lemma in Massera and Schaffer. Set

2(t) = v (1)F(t) = /0 Y (4)PY "1 (s) f(s)ds — /1t T Y () PY I (5) f(s)ds.

Then z(t) is the ¥-bounded and continuous function on R,.

' (t) = A(t)[/o Y (t)PY (s)f(s)ds — /too Y (t)PY ' (s) f(s)ds]
Y (OPY T O f() + Y (O RY ) f(1)
= A()z(t) + f(1).

It follows that xz(t) is a solution of (1.1)).
Now, we prove the “only part”. We define the set

Cy = {z : Ry — R% 1z is ¢-bounded and continuous on R }.

It is well-known that Cy is real Banach space with the norm
lzllc, = sup[[¢()z(t)]-
>0

First we show that (L.1) has a unique t-bounded solution x(t) with (0) € X5 for
each f € Cy. Further, there exists a positive constant r independent of f such that

[zlle, <7llflle,- (3.2)
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We prove the existence. Suppose f € Cy. By hypothesis, there exists a -bounded
solution z(t) of ([L.1). We denote by y(t) the solution of the Cauchy problem

Yy =Al)y;  y(0) = —P1z(0).
This solution y(t) is ¥-bounded by definition of the subset X;. But then z =z +y
is a 1-bounded solution of (|I.1]) for which

Py2(0) = Pyz(0) — P2x(0) = 0.

Thus z(0) € Xo. Hence z(¢) is a ¢-bounded solution of with z(0) € X5.

We prove the uniqueness. Let z(t) and y(t) be the w-bounded solutions of
equation with 2(0) € X2, y(0) € X3. Hence z —y is a ¢-bounded of and
2(0) — y(0) € X3. But 2(0) — y(0) € X;. we obtain x(0) = y(0), hence z = y.

We prove the inequality Consider the map T : ¢y, — ¢y which is defined
Tf = z, where z is the 1)-bounded solution of with 2(0) € X,. We will show
that T is continuous. Suppose that z, =T f,, f, — f and x,, — x. For any fixed
t, we have

lim | / [Fa(s) — £())ds]| < lim / =L ($)114(5) fu(s) — (5) £(5) s
(3.3)
< Tim £~ fle, / [ (5)\ds = 0.
On the other hand
lim | / A()[ea(s) - o(s)lds]
< Jim |A<> U)o (s)an(s) — (s)z(s)]ds (3.4)

t
< lim ||xn—x||cw/ | A(s)wr(s)|ds =
n—oo 0

From and we obtain
2(t) —2(0) = lim (2,(t) - 2,(0))
= lim [ [A(s)zn(s) + 2}, (t) — A(s)zn(s)]ds

n—oo 0

t

— tim [ [A(s)en(s) + fu(s)|ds /0 [A(s)2(s) + £(s)]ds.

Thus z(t) is a solution of (1.1f). Since z(¢) is ¢-bounded and
z(0) = lim z,(0) € X»

we have x = T'f. It follows from the Closed Graph Theorem that the linear map T
is continuous. Hence (3.2)) is proved. Now, put

)Y@ PYHs)  for0<s <t
Gt s) = {Y(t)Png(s) for0 < ¢ < s
If f e Cy, f(t)=0for t >t; >0, then
ty
i(t)= [ G(t,s)f(s)ds (3.5)

0
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is a solution of (1.1)). Moreover & € Cy, since
t1 ~
i(t) = / DY () PLY ()~ (s)(s) f(s)ds  for t >ty

On the other hand, £(0) = — P f (s)f(s)ds € Xy. Thus

1Z e, < 7llflley (3.6)

Let z is an nontrivial solution of ([1.2)) and let a(t) be any continuous real-valued
function such that 0 < «a(t) < 1 for all t > 0, a(t) = 0 for ¢t > t9, a(t) = 1 for
0 <ty <t<ty <t Set

f(t) = a(t)a()|lp@)zt)] "
Then f € Cw From and ., we have

I ) lﬁ(t)G(t, s)a(s)[v(s)a(s)| T dslle, =7 forti >to > 0. (3.7)

By continuity, (3.7) remains true also in the case t = s. Choose z(0) = P&, ¢ € R9.
By the arbitrary of ¢;, from we get

()Y ()i / ()Y P~ du < v for £ o > 0.
Choose z(0) = Py¢, & € R, By the arbitrary of g, from we get
Y WPl [ Y @pel < foro<t<t,
Next, putting z1(¢) = Y (t)PLY ~1(s)z(s) = Y (t) P£, we have
R @) [ el s fort> 6030 (39
0
Also putting z2(t) = Y (#) Y ~1(s)x(s) = Y (t) P&, we get
[P ()22 ()] ttl [ (w)az ()] " du < for ty >t > 0. (3.9)

It follows by integration that

s t
e (w)y (w)]|~ du < e*T”(H)/ lp(w)z1 (u)]|~du fort > s>ty (3.10)
to to

t1 1 t1
/ lep(w) s ()]~ tdu < e =) / ll(w)za(u)|| " tdu fort; >s>t. (3.11)
s t

Because a 9-integrable function is ¢-locally integrable, by Theorem [T-4] there exists
a positive constant K such that

[P ()21 (2)]
[9 ()22 (1))

Kllp(s)z(s)l| for

0<s<t, (3.12)
K¢ (s)z(s)]| for 0<t <

s. (3.13)

NN

|
|
Thus
r+s
K e < [ )] e for s> o
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Using (3.10)), replacing to by s, s by s + r we deduce

r+s 1 . t

[ ml < e 0 [ )
S S
t
<ee " (FS)/ (w)zy (w)|| " tdu  for t > s +r.
Hence
S —1 —
r( [ @@ ) < Rl ooz s
t

From (3.8)), replacing to by s, s by s + r, we get

9 ()a1 ()| < eK[[(s)z(s) e ) for t > s+

It is easy to see that the inequality holds also for s < ¢ < s+ r. Since z1(t) =
Y (t)P Y ~1(s)x(s), it follows that

@)Y () PY () (s)]| < K'e @) fort >s5>0
where K’ = eK, a = r~!. By the same way, using (3.9), (3.11), (3.13)), we get
()Y () PoY "L ()~ (s)|| < K'e™ for s >t > 0.

The proof is complete. ([l

Now, we are going to show some conditions for (|1.2)) has a w-exponential di-
chotomy in the case it has 1-bounded grow.

Theorem 3.4. Suppose that (1.2) has p-bounded grow. Equation (L.2)) has a -
exponential dichotomy if there exists constants T > 0, 0 < 0 < 1 such that every

solution of (1.2)) satisfies (3.1)).

Proof. By Remark -, we shall show that ., ., (2.8) are satisfied for some
Q > 0. We may conmder x(t) is nontrwlal solution of (|1.2). The first we prove that
every solution x(¢) of (1.2) with x(0) € X; satisfies

lp()z(t)]| < Ke™*y(s)a(s)|| for 0< s <t
By Remark [2.5| we can choose h = T, so that

[p@)x@)] < Cllg(s)z(s)l| for 0<s <t <s+T. (3.14)
Hence [[1(t)z(t)|| < Osup, s, [P (u)z(u)|| for s >0, ¢ > s +T'. Therefore,

sup [[P(u)a(w)| > [lv(E)z(t)]]

u>=s

for t > s+ T. It follow that

sup [ (w)z(u)l| = sup l(r)z(7)]]. (3.15)

u=s s<T<s+T
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Hence (3.14)) and (B.15)) yield || (t)z(t)|| < C|lv(s)a(s)| for 0 < s < t. Set n = [£=2]
then

%))l

<O sup [[P(u)z(u)f
lu—tl<T

<0 sup {0 sup [e)z()[} <67 sup J(v)a)]
lu—tl<T " lu—vl|<T lo—tli<2T

<O" s [[p(0)2(v)]| legslantd"C [ (s)x(s)|| < 071COT [ih(s)a(s)].

lo—t]| <nT

Put K=0"1C>1, a=-T"1Inf > 0, we get
9 (&) (t)]| < Kem ) |j(s)x(s)|| for 0 < s <t

Now, for each ¢ € RY, consider the solution z(t) of the equation (1) with z(0) = P,£.
Apply this inequality we deduce (2.6]) for any Q > 0.

Now, suppose that z(t) is any solution x(t) of (1.2]) with z(0) € X5.
May be consider [|1(0)z(0)|| = 1. We can define sequence t,, — +oo by

lo(ta)a(tn)l = 6-"C,  [b(Da(t)] < 6°C for 0 <t < .
Since || (t)z(t)]| < C for 0 <t < T and ||¢(t1)z(t1)]] = CO' > C we get T < t;.
Consequently,
T<ti<te< - <t,<....

From

[PEn)z(ta)] <O sup  [[¢(u)z(u)]

0<ut,+T
and
[ (wa(u)| < 07 H[e(t)a(ta)l| for 0 <u <ty
we get t,41 < t, +T. Suppose that 0 < s <t and ¢, <t < tipa1, th <5 <ty
(1 <m < n). Then
lb@®)z@)| <o~m1C = 0" [P (tng1) 3 (Eng)|
< OO [y (s)a(s)||

<CO0T [[y(s)a(s)]-

Thus |1 (t)z(t)|| < Ke*E=0||yh(s)z(s)|| for t1 <t < s.
For any unit vector £ € X, let x(t, £) be the solution of (1.2)) with ¢(0)z(0) = &.
Then x(t,£) is unbounded, and hence there is a value ¢t = t1(£) such that

ll(t)x(t)] = 0~ LC.

We will show that the values t1(£) are bounded. In fact, otherwise there exists
a sequence of unit vector &, € X, such that t§ = (&) — 400 as k — +oo.
By the compactness of the unit sphere in X, we may suppose that & — & as
k — +o0, where £ is a unit vector. Then x(¢,&;) — x(t,&) for every ¢t > 0. Since
lv®)z(t, &) < 871C for 0 <t > 5 and t§ — 400 we get

eh(t)x(t, &)|| <O71C  for all t >0

which is a contradiction because £ € X5. Thus there exists @ > 0 such that ¢;({) for
all unit vector ¢ and every solution z(t) of equation (1.2]) with x(0) € X, satisfies

lp()z()] < Ke™*CVy(s)a(s)]| for Q <t <s.
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Thus [(1)Y () PY ~1(s)y~1(s)| < LeP=%), for Q < t < s. Thus (2.7) is proved.
Note that ([2.8]) is proved in [§, Theorem 2.1, estimate (12)]. So the proof is cimplete.
(]

From Theorem [3.1] and Theorem we have the following result.

Corollary 3.5. Suppose that (1.2) has y-bounded grow. Then equation (1.2)) has
a Y-exponential dichotomy if and only if there exists constants T > 0, 0 < 6 < 1

such that every solution of (1.2) is satisfied (3.1)).

Theorem 3.6. Suppose that (1.2)) has -bounded grow. Then (L.1) has at least
one -bounded solution on Ry for every i-bounded function f on Ry if and only if

(1.2) has v-exponential dichotomy.

Proof. Diamandescu presented this Theorem. In the proof [8, Theorem 1.2], the
author proved that |¢(t)A(t)y=1(¢)] < M for all t > 0 and | () ~1(s)| < L for

t > s 2 0 deduce (2.9). Throughout the proof, he only used condition (2.9). By
lemma condition (2.9)) is satisfied if and only if ((1.2) has ¥-bounded grow. The

proof is complete U

Now, consider the perturbed equation
Z'(t) = [A(t) + B(t)]=(t) (3.16)

where B(t) is a d X d continuous matrix function on R;. We have the following
result.

Theorem 3.7. (a) Suppose that (1.2) has a ¥-exponential dichotomy. If § =

sup;sq |[0(¢) By~ (t)| is sufficiently small, then (3.16) has a ¢-exponential di-
chotomy.

(b) Suppose that (1.2) has a -exponential dichotomy or -ordinary dichotomy. If
Jo° () B(t)y =1 (t)|dt < oo, then (BI6) has a y-ordinary dichotomy.

Proof. (a) By Theorem it suffices to show that the equation
a'(t) = [A(t) + B®)2(t) + f(¢) (3.17)

has at least a ¥-bounded solution for every ¥-integrally bounded f function. Denote
Y (t), P1, P> as in the proof of the Theorem (3.3
Consider the map T': Cyy — Cy which is defined by

Tz(t) = /0 Y (t)PY "1 (s)[B(s)z(s) + f(s)]ds

- /too Y (t)PoY "1 (s)[B(s)z(s) + f(s)]ds.
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It is easy verified that Tz € Cy. More ever if z1, 29 € Cy then
Tz — Tz

/ [ (t) YT I () B(s)w ™ (5)llv(s)21(s) — w(s)22(s) | ds
/t [BO)Y () PoY ()0 ()l () B(s)e ™" (s)l[|v(s)21(5) — W(s)22(s) | ds

t o0
< Kél||z1 — ZQHCw/ 67a(t78)d8—|—L5||21 _ Z2HC¢/ B9 g
0

t
<6(Ka™ '+ LBz — 22le, -

Hence, by the contraction principle, if §(Ka~! + L3~!) < 1, then the mapping T'
has a unique fixed point. Denoting this fixed point by z, we have
t 00
A0 = [ YORY I OBE))+ folds— [ YORY T )[B(s)x(5)+ F(5)ds
0 t

It follows that z(t) is a solution of (3.17).

(b) We can assume that has a -ordinary dichotomy. By Theorem it
suffices to show that has at least a ¢ - bounded solution for every 1)-integrable
f. From [ [1(t)B(t)y " (t)]dt < oo, it follows that

b=k [T lwoB@s 0l <1

for a sufficiently large and positive 7. Let Cr, be the Banach space of all % -
bounded and continuous functions z(t) on [T, 00) equipped with the norm

12llcy,,, = sup [[¥()2(t)]].
t>T

Consider the map T : Cry — Cr which is defined by
Tz(

/ YORY B0+ f9lds — [ YORY OB + fo))ds

It is easy to check that Tz € C'r . Moreover if z1, 29 € Cr . then

ITz1 = Tzsler, < K/TOO [¥(s)B(s)v™" ()ll¥(s)21(s) — (s)22(s)llds

<kllzr — 22llor, -

It follows from the contraction principle that the equation Tz = z has a unique
solution Z € Cr . Denote by y the solution of (3.16), which is extension of Z on
R, . Clearly y is a 9 - bounded solution of (3.16|). The proof is complete. O

We remark that (1.2]) has a -ordinary dichotomy with P; = I if and only if it
is ¢-uniformly stable. Theorem follows [7, Theorem 3.4].
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