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THE FUNDAMENTAL SOLUTION FOR A CONSISTENT COMPLEX
MODEL OF THE SHALLOW SHELL EQUATIONS

Matthew P. Coleman

Abstract

The calculation of the Fourier transforms of the fundamental solution in shallow

shell theory ostensibly was accomplished by J.L. Sanders [J. Appl. Mech. 37 (1970),
361–366]. However, as is shown in detail in this paper, the complex model used by

Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders’s

complex model, along with the Fourier transforms of the fundamental solution for this

corrected model. The inverse Fourier transforms are then calculated for the particular

cases of the shallow spherical and circular cylindrical shells, and the results of the latter

are seen to be in agreement with results appearing elsewhere in the literature.

§1. Introduction

The study of shells is quite an important area in the field of structural mechan-
ics. Often it is not possible to find exact solutions for the equations of shell theory,
in which case they must be solved numerically. However, in order to apply many of
the available numerical methods, especially the boundary element methods – BEMs,
it is first necessary to know the fundamental solution of the problem in question. It
was exactly this reasoning which led to the calculation of the fundamental solution
for the shallow cylindrical shell ([3]).

It was while writing [3] that the authors were informed that, in fact, this
fundamental solution had already been calculated by the applied mathematicians
J.L. Sanders and J.G. Simmonds in [28] and [30] (in 1970!). However, upon careful
study of these works, this author discovered that the complex equations for shallow
shell theory developed by Sanders in [28], and used to solve the above problem in
[30], are inconsistent. The model treated in [3] is the consistent real (as opposed to
complex) model which is given in [28] and from which Sanders derives his question-
able complex model; this model is equivalent to the models for the cylindrical shell
developed in [7], [16] and [35], after including all simplifications therein.

The advantage of a complex model is that, using certain symmetries in the
shell equations (the so-called static-geometric analogy), the order of the problem is
effectively halved – e.g., the model treated in [3] has order eight, whereas the corre-
sponding complex model would have order four. Thus, it would be very convenient
to have a consistent complex model for the general equations of shallow shell the-
ory. Novozhilov ([23]) seems to have provided such; however, the approach used by
Sanders in [28] is much more amenable to the calculation of fundamental solutions.
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The purpose of this paper, then, is to provide a corrected, consistent version of
Sanders’s complex model of the shallow shell theory, and also to use this model to
calculate the Fourier transforms of its fundamental solution. The organization of the
paper is as follows: In Section 2, we give a careful derivation of Sanders’s complex
equations, pointing out in detail where the model fails, and modifying it so that,
while remaining true to Sanders’s basic approach, our new model is consistent. In
Section 3, we calculate the Fourier transforms of the fundamental solution for the
general model from Section 2. In Section 4, we invert these transforms for the case of
the shallow spherical shell, thus providing a correct derivation for the fundamental
solution in this particular case. Finally, in Section 5, we do the same for the shallow
cylindrical shell, and we show in the Appendix that our results do agree with those
appearing elsewhere in the literature.

§2. A consistent model of the equations of shallow shell
theory in complex form

In this section we look carefully at the complex model for the general shallow
shell developed by J.L. Sanders in [28]. We point out where this model fails (in more
detail than was done in [3]) and, in the process, we provide a corrected, consistent
version. We note that our approach, along with Sanders’s, is similar to that used by
Novozhilov, except that we strive to keep Sanders’s relationship between complex
stresses and changes in curvature, a relationship which Novozhilov’s model does not
satisfy.

We wish to point out that, although our ultimate aim is to be able to calculate
the fundamental solution for various types of shallow shell, the purpose of this
section is only to develop a consistent model. The model must not depend on the
smoothness of the quantities involved – in particular, it must be consistent when
the quantities involved have derivatives of arbitrary order.

We start with the real model for the shallow shell equations given in [28]. This
model is equivalent to those models for the spherical and the circular cylindrical
shell treated in [16] and [35], after including all simplifications therein. It is also a
special case of the general (real) shell equations developed in [23].

Sanders gives the fundamental equations of shallow shell theory in dimensionless
form for a shell with quadratic middle surface

z = (ax2 + 2bxy + cy2)/2µ, (2.1)

where µ =
L2
√
12(1−ν2)

Rh
. Here, L is a “reference length”and R a “reference radius of

curvature”. Also, h is the constant shell thickness and ν is Poisson’s ratio. Using
lower case letters to denote real quantities (reserving capitals for complex quantities),
the equations are (again, [28, p. 362]):

CONSTITUTIVE RELATIONS:

e11 = n11 − νn22, e22 = n22 − νn11, e12 = (1 + ν)n12; (2.2)

m11 = k11 + νk22, m22 = k22 + νk11, m12 = (1− ν)k12; (2.3)



EJDE–1999/32 Fundamental Solution 3

EQUILIBRIUM EQUATIONS:

∂n11
∂x
+
∂n12
∂y
= −p1, (2.4)

∂n12
∂x
+
∂n22
∂y
= −p2, (2.5)

∂2m11
∂x2

+ 2
∂2m12
∂x∂y

+
∂2m22
∂y2

+ an11 + 2bn12 + cn22 = −p; (2.6)

COMPATIBILITY EQUATIONS:

∂k22
∂x
−
∂k12
∂y
= 0, (2.7)

−
∂k12
∂x
+
∂k11
∂y
= 0, (2.8)

∂2e22
∂x2

− 2
∂2e12
∂x∂y

+
∂2e11
∂y2

− ak22 + 2bk12 − ck11 = 0; (2.9)

STRAIN-DISPLACEMENT RELATIONS:

e11 =
∂u

∂x
− aw, e22 =

∂v

∂y
− cw, e12 =

1

2

(
∂u

∂y
+
∂v

∂x

)
− bw, (2.10)

k11 = −
∂2w

∂x2
, k22 = −

∂2w

∂y2
, k12 = −

∂2w

∂x∂y
. (2.11)

Here, the nij are the stresses per unit length; mij , the moments per unit length;
eij the strains; kij , the changes of curvature; p1, p2 and p the x-, y- and z-direction
forces, respectively; and u, v and w the x-, y- and z-direction displacements, respec-
tively.

Now, we notice a certain symmetry between each equilibrium (force/moment)
equation and the corresponding compatibility (strain/curvature) equation – the so-
called static-geometric analogy . This symmetry suggests that we extend the real
quantities to complex quantities by way of the following definitions, as Sanders
does:

N11 = n11 + ik22, N22 = n22 + ik11, N12 = n12 − ik12,
K11 = k11 − in22, K22 = k22 − in11, K12 = k12 + in12,

(2.12)

and

E11 = N11 − νN22, E22 = N22 − νN11, E12 = (1 + ν)N12,
M11 = K11 + νK22, M22 = K22 + νK11, M12 = (1− ν)K12.

(2.13)

We note here that equations (2.12) imply that N11 = iK22, N22 = iK11, N12 =
−iK12 ([28,(13), p. 363]).

The above quantities satisfy the following “complex equilibrium equations”:

∂N11
∂x

+
∂N12
∂y

= −p1, (2.14)
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∂N12
∂x

+
∂N22
∂y

= −p2, (2.15)

∂2M11
∂x2

+ 2
∂2M12
∂x∂y

+
∂2M22
∂y2

+ aN11 + 2bN12 + cN22 =

− p+ 2iν

(
∂p1
∂x
+
∂p2
∂y

)
, (2.16)

as well as the “complex compatibility equations”

∂K22
∂x

−
∂K12
∂y

= ip1, (2.17)

−
∂K12
∂x

+
∂K11
∂y

= ip2, (2.18)

∂2E22
∂x2

− 2
∂2E12
∂x∂y

+
∂2E11
∂y2

− aK22 + 2bK12 − cK11 = −ip, (2.19)

where p1, p2 and p are still the real forces from above.

Since our equations (2.16) and (2.19) differ from those obtained by Sanders
([28, p. 363, (3) and (9)′]), let us provide a derivation of each. First, let us rewrite
equations (2.6) and (2.9):

∂2m11
∂x2

+2
∂2m12
∂x∂y

+
∂2m22
∂y2

=
∂2

∂x2
(k11+νk22)+2

∂2

∂x∂y
[(1−ν)k12]+

∂2

∂y2
(k22+νk11)

⇒ (2.6) can be written as

∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ ν

(
∂2k22
∂x2

− 2
∂2k12
∂x∂y

+
∂2k11
∂y2

)
(2.20)

+ an11 + 2bn12 + cn22 = −p;

∂2e22
∂x2

− 2
∂2e12
∂x∂y

+
∂2e11
∂y2

=
∂2

∂x2
(n22 − νn11)− 2

∂2

∂x∂y
[(1 + ν)n12] +

∂2

∂y2
(n11 − νn22)

⇒ (2.9) can be written as

∂2n22
∂x2

− 2
∂2n12
∂x∂y

+
∂2n11
∂y2

− ν

(
∂2n11
∂x2

+ 2
∂2n12
∂x∂y

+
∂2n22
∂y2

)
− ak22 + 2bk12 − ck11 = 0. (2.21)

Further, we note that

∂2n11
∂x2

+ 2
∂2n12
∂x∂y

+
∂2n22
∂y2

=
∂

∂x

(
∂n11
∂x
+
∂n12
∂y

)
+
∂

∂y

(
∂n12
∂x
+
∂n22
∂y

)

= −
∂p1
∂x
−
∂p2
∂y
,

∂2k22
∂x2

− 2
∂2k12
∂x∂y

+
∂2k11
∂y2

=
∂

∂x

(
∂k22
∂x
−
∂k12
∂y

)
+
∂

∂y

(
−
∂k12
∂x
+
∂k11
∂y

)
= 0.
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The latter implies that we can further simplify (2.20):

∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ an11 + 2bn12 + cn22 = −p. (2.22)

Now for the proofs of equations (2.16) and (2.19):

PROOF OF EQUATION (2.16):

∂2M11
∂x2

+ 2
∂2M12
∂x∂y

+
∂2M22
∂y2

+ aN11 + 2bN12 + cN22

=
∂2

∂x2
(K11 + νK22) + 2

∂2

∂x∂y
[(1− ν)K12] +

∂2

∂y2
(K22 + νK11) + aN11 + 2bN12 + cN22

=
∂2

∂x2
[(k11 − in22) + ν(k22 − in11)] + 2

∂2

∂x∂y
[(1− ν)(k12 + in12)]

+
∂2

∂y2
[(k22 − in11) + ν(k11 − in22)] + a[n11 + ik22] + 2b[n12 − ik12]

+ c[n22 + ik11]

=
∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ ν

(
∂2k22
∂x2

− 2
∂2k12
∂x∂y

+
∂2k11
∂y2

)
+ an11 + 2bn12 + cn22

+ i

[
−
∂2n22
∂x2

+ 2
∂2n12
∂x∂y

−
∂2n11
∂y2

+ ν

(
−
∂2n11
∂x2

− 2
∂2n12
∂x∂y

−
∂2n22
∂y2

)

+ ak22 − 2bk12 + ck11

]

=
∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ ν

(
∂2k22
∂x2

− 2
∂2k12
∂x∂y

+
∂2k11
∂y2

)
+ an11 + 2bn12 + cn22

− i

[
∂2n22
∂x2

− 2
∂2n12
∂x∂y

+
∂2n11
∂y2

− ν

(
∂2n11
∂x2

+ 2
∂2n12
∂x∂y

+
∂2n22
∂y2

)

− ak22 + 2bk12 − ck11

]

− 2iν

(
∂2n11
∂x2

+ 2
∂2n12
∂x∂y

+
∂2n22
∂y2

)

= −p+ 2iν

(
∂p1
∂x
+
∂p2
∂y

)
.

PROOF OF EQUATION (2.19):

∂2E22
∂x2

− 2
∂2E12
∂x∂y

+
∂2E11
∂y2

− aK22 + 2bK12 − cK11

=
∂2

∂x2
(N22 − νN11)− 2

∂2

∂x∂y
[(1 + ν)N12] +

∂2

∂y2
(N11 − νN22)

− aK22 + 2bK12 − cK11
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=
∂2

∂x2
[n22 + ik11 − ν(n11 + ik22)]− 2

∂2

∂x∂y
[(1 + ν)(n12 − ik12)]

+
∂2

∂y2
[n11 + ik22 − ν(n22 + ik11)]− a(k22 − in11) + 2b(k12 + in12)− c(k11 − in22)

=
∂2n22
∂x2

− 2
∂2n12
∂x∂y

+
∂2n11
∂y2

+ ν

(
−
∂2n11
∂x2

− 2
∂2n12
∂x∂y

−
∂2n22
∂y2

)
− ak22 + 2bk12 − ck11

+ i

[
∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ ν

(
−
∂2k22
∂x2

+ 2
∂2k12
∂x∂y

−
∂2k11
∂y2

)

+ an11 + 2bn12 + cn22

]

= i

[
∂2k11
∂x2

+ 2
∂2k12
∂x∂y

+
∂2k22
∂y2

+ an11 + 2bn12 + cn22

]
= −ip.

♦

The next question is: How do we define the imaginary parts of the complex
displacements U, V and W ? This is where Sanders’s complex model becomes incon-
sistent – he chooses to define W so that

K11 = −
∂2W

∂x2
, K22 = −

∂2W

∂y2
, K12 = −

∂2W

∂x∂y
, (2.23)

N11 = −i
∂2W

∂y2
, N22 = −i

∂2W

∂x2
, N12 = i

∂2W

∂x∂y
. (2.24)

Now, for sufficiently smooth forces p1, p2 and p, the remaining quantities will also
be sufficiently smooth so that the order of partial differentiation doesn’t matter.
That being the case, if we use (2.24) to define N11,N22 and N12, the equilibrium
equations (2.14) and (2.15) become

∂N11
∂x

+
∂N12
∂y

=
∂

∂x

(
−i
∂2W

∂y2

)
+
∂

∂y

(
i
∂2W

∂x∂y

)
= 0 = −p1,

∂N12
∂x

+
∂N22
∂y

=
∂

∂x

(
i
∂2W

∂x∂y

)
+
∂

∂y

(
−i
∂2W

∂x2

)
= 0 = −p2,

(2.25)

each of which is a contradiction unless the corresponding force is zero. Similarly,
the compatibility equations (2.17) and (2.18) become

∂K22
∂x

−
∂K12
∂y

=
∂

∂x

(
−
∂2W

∂y2

)
−
∂

∂y

(
−
∂2W

∂x∂y

)
= 0 = ip1,

−
∂K12
∂x

+
∂K11
∂y

= −
∂

∂x

(
−
∂2W

∂x∂y

)
+
∂

∂y

(
−
∂2W

∂x2

)
= 0 = ip2,

(2.26)

again leading to a contradiction for nonzero p1 or p2. Thus, the complex model
developed and used by Sanders in [28] (and by Sanders and Simmonds in [30])
is, indeed, inconsistent. (We will exhibit later in the paper a third inconsistency,
involving the normal force, p.)
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In order to avoid these inconsistencies, we introduce the real quantities F11, F22
and F12, and we define complex W so that

K11 = −
∂2W

∂x2
− iF22, K22 = −

∂2W

∂y2
− iF11, K12 = −

∂2W

∂x∂y
+ iF12, (2.27)

N11 = iK22 = F11 − i
∂2W

∂y2
, N22 = iK11 = F22 − i

∂2W

∂x2
,

N12 = −iK12 = F12 + i
∂2W

∂x∂y
. (2.28)

Introducing these additional quantities allows us three extra degrees of freedom with
which we may avoid the above inconsistencies. Further, in requiring the Fij to be
real, we do not lose the important relationships

Re K11 = −
∂2w

∂x2
, Re K22 = −

∂2w

∂y2
, Re K12 = −

∂2w

∂x∂y
.

The introduction of these three quantities is certainly not a new idea – e.g., it is
similar to the introduction of the expressions T ∗1 , T

∗
2 and S

∗ by Novozhilov in his
consistent complex model ([23, p. 73]).

Inserting (2.27) and (2.28) into the equilibrium equations (2.14)–(2.16) leads to

∂F11
∂x
+
∂F12
∂y
= −p1, (2.29)

∂F12
∂x
+
∂F22
∂y
= −p2, (2.30)

∆2W + i

(
a
∂2W

∂y2
− 2b

∂2W

∂x∂y
+ c
∂2W

∂x2

)
+ i

(
∂2F22
∂x2

− 2
∂2F12
∂x∂y

+
∂2F11
∂y2

)

− (aF11 + 2bF12 + cF22) = p− iν

(
∂p1
∂x
+
∂p2
∂y

)
, (2.31)

where ∆2 =
(
∂2

∂x2
+ ∂2

∂y2

)2
is the biharmonic operator in two dimensions.

We may now define complex U and V so that

E11 =
∂U

∂x
− aW, E22 =

∂V

∂y
− cW, E12 =

1

2

(
∂U

∂y
+
∂V

∂x

)
− bW. (2.32)

Then equations (2.32) imply

∂U

∂x
= aW + F11 − i

∂2W

∂y2
− νF22 + iν

∂2W

∂x2
, (2.33)

∂V

∂y
= cW + F22 − i

∂2W

∂x2
− νF11 + iν

∂2W

∂y2
, (2.34)

∂U

∂y
+
∂V

∂x
= 2bW + 2i(1 + ν)

∂2W

∂x∂y
+ 2(1 + ν)F12. (2.35)
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At this point, equations (2.29)–(2.31), (2.33)–(2.35) give us six equations in the
six unknowns U, V,W , F11, F22 and F12. However, we choose to replace (2.31), as

follows. First, taking ∂2

∂y2
of (2.33) plus ∂

2

∂x2
of (2.34) minus ∂2

∂x∂y
of (2.35) results in

∆2W + i

(
a
∂2W

∂y2
− 2b

∂2W

∂x∂y
+ c
∂2W

∂x2

)

+ i

(
∂2F22
∂x2

− 2
∂2F12
∂x∂y

+
∂2F11
∂y2

)
= −iν

(
∂p1
∂x
+
∂p2
∂y

)
. (2.36)

Then we replace (2.31) with the equation which results from subtracting (2.36) from
(2.31), i.e., with

aF11 + 2bF12 + cF22 = −p. (2.37)

We note here that (2.37) also follows from the compatibility equation (2.19). We
also note here that, without the quantities F11, F22 and F12, the insertion of (2.32)
into this compatibility equation would lead to a contradiction similar to those found
in (2.25) and (2.26). Hence, Sanders’s model is inconsistent even when p1 = p2 = 0.

Finally, it is easy to show that Sanders’s final system of four PDEs ([28, p. 365,
(42) and (43)]) is inconsistent as well.

§3. The Fourier transform of the fundamental solution for an
arbitrary shallow shell

We are now in a position to find the Fourier transform of the fundamental
solution for the system developed above. To this end, we set the forces p1, p2 and
p equal to constant multiples of the Dirac delta function δ(x, y) = δ(x)δ(y) (i.e.,
we allow them to be concentrated forces, acting at the origin). Our system (2.29),
(2.30), (2.33)–(2.35), (2.37) then becomes

∂F11
∂x
+
∂F12
∂y
= −λ1δ(x, y), (3.1)

∂F12
∂x
+
∂F22
∂y
= −λ2δ(x, y), (3.2)

aF11 + 2bF12 + cF22 = −λδ(x, y), (3.3)

∂U

∂x
= aW − i

∂2W

∂y2
+ iν

∂2W

∂x2
+ F11 − νF22, (3.4)

∂V

∂y
= cW − i

∂2W

∂x2
+ iν

∂2W

∂y2
+ F22 − νF11, (3.5)

∂U

∂y
+
∂V

∂x
= 2bW + 2i(1 + ν)

∂2W

∂x∂y
+ 2(1 + ν)F12, (3.6)

where λ1, λ2 and λ are arbitrary constants.

We note here that we now treat the problem in a distributional setting – we
mention this only because it is not clear whether Sanders ([28]) considers the problem
in such a setting.

For a tempered distribution f on R2, define its Fourier transform by

f̂(α, β) = F(f)(α, β) =

∫ ∫
R2

e−i(αx+βy)f(x, y)dxdy.
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Then the inverse Fourier transform of f̂ is

f(x, y) = F−1(f̂)(x, y) =
1

4π2

∫ ∫
R2

ei(αx+βy)f̂(α, β)dαdβ.

The transform of system (3.1)–(3.6) then becomes

αF̂11 + βF̂12 = iλ1, (3.7)

αF̂12 + βF̂22 = iλ2, (3.8)

aF̂11 + 2bF̂12 + cF̂22 = −λ, (3.9)

iαÛ = aŴ + iβ2Ŵ − iνα2Ŵ + F̂11 − νF̂22, (3.10)

iβV̂ = cŴ + iα2Ŵ − iνβ2Ŵ + F̂22 − νF̂11, (3.11)

iβÛ + iαV̂ = 2bŴ − 2i(1 + ν)αβŴ + 2(1 + ν)F̂12. (3.12)

We eliminate F̂11, F̂22 and F̂12 and then solve the remaining three equations
for Û , V̂ and Ŵ . Rather than presenting the results in general form, we present
them, as Sanders does, for the three cases: I, normal force (λ = 1, λ1 = λ2 = 0);
II, x-direction tangential force (λ1 = 1, λ = λ2 = 0); and III, y-direction tangential
force (λ2 = 1, λ = λ1 = 0). In each case, Λ1 = (α

2 + β2)2 − iΛ2, where Λ2 =
aβ2 − 2bαβ + cα2.

I. NORMAL FORCE:

Ŵ1 =
1

Λ1
−
i

Λ2
, (3.13)

Û1 = −
να

Λ1
−

1

Λ1Λ2
[aα3 + (2a− c)αβ2 + 2bβ3], (3.14)

V̂1 = −
νβ

Λ1
−

1

Λ1Λ2
[cβ3 + (2c− a)α2β + 2bα3]; (3.15)

II. x-DIRECTION TANGENTIAL FORCE:

Ŵ2 = −Û1, (3.16)

Û2 =
1

Λ1
[(1− ν2)α2 + 2(1 + ν)β2 − 2iaν)] (3.17)

−
i

Λ1Λ2
[(a2 + c2)α2 − 4bcαβ + 2(a2 + 2b2)β2],

V̂2 = −
2bνi

Λ1
−
(ν + 1)2αβ

Λ1
−

i

Λ1Λ2
[2abα2 − (a− c)2αβ + 2bcβ2]; (3.18)

III. y-DIRECTION TANGENTIAL FORCE:

Ŵ3 = −V̂1, (3.19)

Û3 = V̂2, (3.20)

V̂3 =
1

Λ1
[(1− ν2)β2 + 2(1 + ν)α2 − 2icν]

−
i

Λ1Λ2
[(a2 + c2)β2 − 4abαβ + 2(2b2 + c2)α2]. (3.21)
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We note the many symmetries which are apparent – not only do we have that
Ŵ2 = −Û1, Ŵ3 = −V̂1 and Û3 = V̂2 (which are also satisfied by Sanders’s incorrect
Fourier transforms), but we also have the following:

If we denote Û1 = f(α, β, a, b, c), then V̂1 = f(β, α, c, b, a). The same

relationship is satisfied by Û2 and V̂3.

In those cases where the expression Λ1 can be factored, the method of partial
fraction expansions can be used to write the above in a form for which the inverse
transform may be found using methods such as those which were used in [3]. We
illustrate this statement in the next section, where we solve the problem for the case
of the spherical shell.

§4. The fundamental solution for the shallow spherical shell

The dimensionless equation for the middle surface of a shallow spherical shell
(see [28, p. 366]) is

z = −
1

2
x2 −

1

2
y2. (4.1)

Therefore, we treat (1.1) for the case a = c = −µ, b = 0. In this case,

Λ2 = −µ(α
2 + β2),Λ1 = (α

2 + β2)2 + iµ(α2 + β2)

and (4.2)

1

Λ1
=
i

µ

(
1

α2 + β2 + iµ
−

1

α2 + β2

)
.

The transforms from Section 2 then become

I. NORMAL FORCE:

Ŵ1 =
i

µ

1

α2 + β2 + iµ
, (4.3)

Û1 = −(ν + 1)
α

Λ1
, (4.4)

V̂1 = −(ν + 1)
β

Λ1
; (4.5)

II. x-DIRECTION TANGENTIAL FORCE:

Ŵ2 = −Û1, (4.6)

Û2 = 2iµ(ν + 1)
1

Λ1
+ (1− v2)

α2

Λ1
+ 2(ν + 1)

β2

Λ1
, (4.7)

V̂2 = −(ν + 1)
2αβ

Λ1
; (4.8)

III. y-DIRECTION TANGENTIAL FORCE:

Ŵ3 = −V̂1, (4.9)

Û3 = V̂2, (4.10)

V̂3(α, β) = Û2(β, α). (4.11)
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Now, to find the inverse transforms, we will need (see [1], [3])

F−1
(

1

α2 + β2

)
= −

1

4π
ln(x2 + y2), (4.12)

F−1
(

1

α2 + β2 + iµ

)
=
i

4
H
(1)
0 (ω

3√µ r), where ω = e
iπ
4 , r =

√
x2 + y2,(4.13)

F−1(αf̂ (α, β)) =
1

i

∂

∂x
F−1(f̂(α, β)), (4.14)

d

dz
[H
(1)
0 (z)] = −H

(1)
1 (z), (4.15)

d

dz
[H
(1)
1 (z)] = H

(1)
0 (z) −

1

z
H
(1)
1 (z), (4.16)

where H
(1)
n (z) is the Hankel function of the first kind, of order n. Applying (4.12)–

(4.16) to (4.3)–(4.11), and after much simplification, we have

I. NORMAL FORCE:

W1 =
1

4µ
H
(1)
0 (ω

3√µ r), (4.17)

U1 = −
ω(ν + 1)

4
√
µ

x

r
H
(1)
1 (ω

3√µ r)−
ν + 1

2πµ

x

r2
, (4.18)

V1(x, y) = U1(y, x); (4.19)

II. x-DIRECTION TANGENTIAL FORCE:

W2 = −U1, (4.20)

U2 = −
i(ν + 1)2

4

x2

r2
H
(1)
0 (ω

3√µ r) +
ω3(ν + 1)2

4
√
µ

y2 − x2

r3
H
(1)
1 (ω

3√µ r) (4.21)

−
ν + 1

π
ln r +

i(ν + 1)2

2πµ

y2 − x2

r4
,

V2 = −
i(ν + 1)2

4

xy

r2
H
(1)
0 (ω

3√µ r)−
ω3(ν + 1)2

2
√
µ

xy

r3
H
(1)
1 (ω

3√µ r)

−
i(ν + 1)2

πµ

xy

r4
; (4.22)

III. y-DIRECTION TANGENTIAL FORCE

W3 = −V1, U3 = V2 V3(x, y) = U2(y, x), (4.23)–(4.25)

where, again, r =
√
x2 + y2 and ω = e

iπ
4 .

It is interesting to compare these results with those obtained by Sanders ([28,

p. 366, (69)–(74)]). Using the facts thatK0(z) =
πi
2 H

(1)
0 (iz) andK1(z) = −

π
2H

(1)
1 (iz)

for −π < ayz ≤ π
2 , where Kn(z) is the modified Bessel function of the second kind,

of order n (see [1]), we see, surprisingly, that Sanders’s real parts are identical to
ours. His imaginary parts differ from ours, of course, given our introduction of the
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functions Fij in (2.27) and (2.28). However, we can compare them by looking at the
stress measures nij. For example, we have (from (2.28))

n11 = F11 + Im Wyy, (4.26)

while Sanders has ([28, p. 362, (5) and (13)])

n11 = Im Wyy. (4.27)

Likewise for n12 and n22. We see, after solving for the function Fij , that Sanders’s
results again agree with ours! We are astounded that Sanders had the intuition to
arrive at the correct results, using an inconsistent model. However, it is because of
his use of an inconsistent model that we must consider the results in this paper as
a justification for his results, and not vice versa.

§5. The fundamental solution for the shallow cylindrical shell

The dimensionless equation for the middle surface of a shallow cylindrical shell
(see [30, p. 368]) is

z = −
1

2
y2. (5.1)

Therefore, we treat (1.1) for the case c = −µ, a = b = 0. In this case,

Λ2 = −µα
2,Λ1 = (α

2 + β2)2 + iµα2

and
1

Λ1
=
ω

2
√
µ

[
1

α(α2 + β2 + ω2
√
µ α)

−
1

α(α2 + β2 − ω3
√
µ α)

]
(5.2)

=
ω

2
√
µ

[
1

αD+
−
1

αD−

]
.

The transforms from Section 3 become:

I. NORMAL FORCE:

Ŵ1 =
1

Λ1
+
i

µ

1

α2
, (5.3)

Û1 = −
να

Λ1
+
β2

αΛ1
, (5.4)

V̂1 = −(ν + 2)
β

Λ1
−
β3

α2Λ1
; (5.5)

II. x-DIRECTION TANGENTIAL FORCE:

Ŵ2 = −Û1, (5.6)

Û2 =
iµ

Λ1
+ (1− ν2)

α2

Λ1
+ 2(1 + ν)

β2

Λ1
, (5.7)

V̂2 = −(ν + 1)
2αβ

Λ1
−
iµβ

αΛ1
; (5.8)
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III. y-DIRECTION TANGENTIAL FORCE:

Ŵ3 = −V̂1, (5.9)

Û3 = V̂2, (5.10)

V̂3 =
2iµ(ν + 1)

Λ1
+ 2(ν + 1)

α2

Λ1
+ (1− ν2)

β2

Λ1
+ iµ

β2

α2Λ1
. (5.11)

To find the inverse transforms we will need (again, see [1], [3])

H(x) = Heaviside function, H ′(x) = δ(x), (5.12)

sgn x = H(x)−H(−x),

F−1
(

1

αn+1βm+1

)
= −

in+m

4n!m!
(xn sgn x)(ym sgn y), n,m = 0, 1, 2, . . .(5.13)

F−1
(
1

αn+1

)
=
in+1

2n!
δ(y)xn sgn x, n = 0, 1, 2, . . . (5.14)

F−1
(
1

βn+1

)
=
in+1

2n!
δ(x)yn sgn y, n = 0, 1, 2, . . . (5.15)

F−1(f̂ ĝ) = f ∗ g =

∞∫
−∞

∞∫
−∞

f(x− x1, y − y1)g(x1, y1)dx1dy1

(convolution of f and g), (5.16)

and

F−1
(
1

D+

)
=
i

4
e
ω
√
µ x

2 H
(1)
0

(
ω2
√
µ

2
r

)
= F (x, y), (5.17)

F−1
(
1

D−

)
= F (−x, y). (5.18)

Now, formally, we have

F−1
(
1

αD+

)
=

[
i

2
δ(y) sgn x

]
∗ F (x, y)

=
i

2

∞∫
−∞

∞∫
−∞

δ(y − y1) sgn(x− x1)
i

4
e
ω
√
µ x1
2 H

(1)
0

(
ω3
√
µ

2
ρ

)
dx1dy1(5.19)

= −
1

8

∞∫
−∞

sgn(x− x1)e
ω
√
µ x1
2 H

(1)
0

(
ω3
√
µ

2
ρ

)
dx1, ρ = x

2
1 + y

2.

However, the above diverges “at x1 =∞” since, for large |x1|, H
(1)
0

(
ω3
√
µ

2 ρ
)
behaves

like (see [1])
1

(x21 + y
2)1/4

e−
ω
√
µ|x1|
2

and, thus, the integrand behaves like

1

(x21 + y
2)1/4

e
ω
√
µ(x1−|x1|)

2 .
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Similarly,

F−1
(
1

βD±

)
= −
1

8
e±

ω
√
µ x

2

2∫
−∞

sgn(y−y1)H
(1)
0

(
ω2
√
µ

2
ρ

)
dy1, ρ = x

2+y21, (5.20)

but these integrals converge. We can then write

1

αD±
=
1

β2

(
1

α
−
α

D±
∓

√
µ ω3

D±

)
. (5.21)

Finally, we also will need

F−1
(
1

β2D±

)
= −

i

8
e±

ω
√
µ x

2

∫ ∞
−∞
(y − y1) sgn(y − y1)H

(1)
0

(
ω3
√
µ

2
r1

)
dy1,(5.22)

F−1
(
1

β3D±

)
=
1

16
e±

ω
√
µ x

2

∫ ∞
−∞
(y − y1)

2 sgn(y − y1)H
(1)
0

(
ω3
√
µ

2
r1

)
dy1,(5.23)

where, in these and below, we have r1 =
√
x2 + y21 . We now proceed to find the

inverse transforms of (5.3)–(5.11). Following [3], let us define

F03(x, y) = F (−x, y), F07(x, y) = F (x, y), (5.24)

where F was defined in (5.17). (For the “official” definition of F0j and F1j , see the
Appendix.) We then have

∂

∂x
F03(x, y) = i

[
ω3
√
µ

2
F03(x, y)− F13(x, y)

]
, (5.25)

∂

∂x
F07(x, y) = i

[
−ω3
√
µ

2
F03(x, y)− F17(xy)

]
, (5.26)

where F13(x, y) =
ω3
√
µ

8

x

r
e
−ω

√
µ x

2 H
(1)
1

(
ω3
√
µ

2
r

)
, (5.27)

F17(x, y) =
ω3
√
µ

8

x

r
e
ω
√
µ x

2 H
(1)
1

(
ω3
√
µ

2
r

)
. (5.28)

Using this notation, and after much computation, our solutions are

I. NORMAL FORCE:

W1 = −
1

8

∫ ∞
−∞
(y − y1) sgn(y − y1)[F03(x, y1) + F07(x, y1)]dy1

+
ω

4
√
µ

∫ ∞
−∞
(y − y1) sgn(y − y1)[F13(x, y1)− F17(x, y1)]dy1 (5.29)

−
i

2µ
x sgn x δ(y).
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(Please note: in the rest of this paper, Fi3 = Fi3(x, y) unless it is part of an integrand,
in which case Fi3 = Fi3(x, y1); similarly for Fi7. Also,

∫
means

∫∞
−∞.)

U1 =
ω(1 + ν)

2
√
µ
(F03 − F07)−

ω3
√
µ

8

∫
(y − y1) sgn(y − y1)(F03 − F07)dy1

−
1

4

∫
(y − y1) sgn(y − y1)(F13 + F17)dy1 (5.30)

−
i

4
y sgn x sgn y;

V1 =
i(1− ν)

8

∫
sgn(y − y1)(F03 + F07)dy1

+
µ

16

∫
(y − y1)

2 sgn(y − y1)(F03 + F07)dy1

+
ω3(1 + ν)

4
√
µ

∫
sgn(y − y1)(F13 − F17)dy1 (5.31)

−
ω
√
µ

8

∫
(y − y1)

2 sgn(y − y1)(F13 − F17)dy1

−
i

4
x sgn x sgn y;

II. x-DIRECTION TANGENTIAL FORCE:

W2 = U1, (5.32)

U2 =
(3− ν)(1 + ν)

4
(F03 + F07)−

iµ

8

∫
(y − y1) sgn(y − y1)(F03 + F07)dy1(5.33)

−
ω(1 + ν)2

2
√
µ
(F13 − F17) +

ω3
√
µ

4

∫
(y − y1) sgn(y − y1)(F13 − F17)dy1,

V2 = −
ω3(1 + ν)2

2
√
µ

∂

∂y
(F03 − F07) +

ω
√
µ

4

∫
sgn(y − y1)(F03 − F07)dy1,

−
ω3µ3/2

16

∫
(y − y1)

2 sgn(y − y1)(F03 − F07)dy1 (5.34)

−
µ

8

∫
(y − y1)

2 sgn(y − y1)(F13 + F17)dy1

− 8iµy2 sgn x sgn y;

III. y-DIRECTION TANGENTIAL FORCE:

W3 = V1, (5.35)

U3 = V2, (5.36)

V3 =
(3− ν)(1 + ν)

4
(F03 + F07) +

iµ(1− 2ν)

8

∫
(y − y1) sgn(y − y1)(F03 + F07)dy1

+
µ2

48

∫
(y − y1)

3 sgn(y − y1)(F03 + F07)dy1

+
ω(1 + ν)2

2
√
µ
(F13 − F17) (5.37)
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+
ω3
√
µ(1 + 2ν)

4

∫
(y − y1) sgn(y − y1)(F13 − F17)dy1

−
ωµ3/2

24

∫
(y − y1)

3 sgn(y − y1)(F13 − F17)dy1

+
i

4
xy sgn x sgn y.

The real parts of these results are identical to the (real) results in [3], as is
shown in the Appendix. Since the latter results also have been verified by direct
substitution, it is seen that our results are, indeed, correct.

It is difficult to compare these results to those obtained by Sanders and Sim-
monds in [30], as they use “classical” methods and add additional terms which do
not have Fourier transforms, in what seems an ad hoc manner. At any rate, as
they use the inconsistent model developed and used in [28], we are suspect of their
results, as ingenious as their methods may be.

§6. Closing remarks

We have shown that the complex model for the shallow shell equation developed
and used in [28] and [30] is inconsistent, and we have corrected that model. We
have provided consistent complex solutions to the only two cases for which the
denominator Λ1, in the Fourier transforms of the solution, can be factored (into
polynomials in α and β).

Further, the PDE
∆2w − i(wxx +Kwyy) = f, (6.1)

where |K| ≤ 1 and f is the applied surface load, is seen often in the literature of
shallow shell theory (e.g., see [32] and [33]). Equation (5.1) is easily seen to be the
w-equation in Sanders’s system of PDEs ([28, p. 365], (42)), with p1 ≡ p2 ≡ 0 and
after a change of variables. As that system of PDEs is inconsistent, we believe that
special care must be taken when using results from those papers.

Appendix. The equivalence of our solutions with those in [3].

Chen et al., in [3], use the dimensional form of the variables, and the equivalent
dimensional form of the real model given in this paper in (2.1)–(2.11), to derive the
fundamental solution for the circular cylindrical shell.

We show that our solutions are equivalent to those in [3] for Case II: x-
DIRECTION TANGENTIAL FORCE (i.e., for λ1 = 1, λ = λ2 = 0), the remaining
two cases proceeding similarly.

First, we give the relationship between the dimensional form of the variables,
used in [3], and denoted by x̃, ỹ etc., and the dimensionless variables in this paper.
From [28, p. 362], we have

x̃ = Lx ũ = σL
E
u w̃ = µσR

E
w

ỹ = Ly ṽ = σL
E
v p̂1 =

σh
L
p1

(A.1)

where L and R are the reference lengths which were used in the definition of u, E
is Young’s modulus and σ is a “reference stress”. Also, [3] uses the quantity µ̃:

ũ4 =
12(1 − ν2)

R̃h
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where R̃ is the radius of the circular cylindrical shell, h is the shell thickness and ν
is Poisson’s ratio.

We choose to let L = 1 and R = R̃, in which case we have

u = ũ2 ,̃x = x ,̃y = y ,̃p1 = σhp1, (A.2)

and we need to show that the solutions u2, v2, w2 and ũ2, ṽ2 and w̃2 satisfy

û2 =
σ

E
u2 ,̃v2 =

σ

E
v2 ,̂w2 =

uσR

E
w2 (A.3)

for some choice of the parameter σ.

Now, Chen et al. ([3, p. 20, (A.19) and p. 21, (A.23)]) define

F0j(x, y) =
i

4
e
iωj

√
µ x

2 H
(1)
0

(
τjω

j√µ

2

√
x2 + y2

)
,

F1j(x, y) =
τjω

j√µ

8

x√
x2 + y2

e
iωj

√
µ x

2 H
(1)
1

(
τjω

j√µ

2

√
x2 + y2

)
, (A.4)

j = 1, 3, 5, 7;ω = e
πi
4 ,

where τ1 = τ3 = 1, τ5 = τ7 = −1, and where we have used x̃ = x, ỹ = y and ũ2 = u.
Then it is easy to show that

F01 ± F05 = F03 ± F07, F11 ± F15 = −(F13 ± F13), (A.5)

from which we also have

∑
F0j = 2 Re(F03 + F07)∑

ωjF0j =
√
2 i[Re(F03 − F07)− Im(F03 − F07)∑

ω2jF0j = 2 Im(F03 + F07)∑
ω3jF0j =

√
2 i[Re(F03 − F07) + Im(F03 − F07)]

and (A.6)

∑
F1j = 2i Im(F13 + F17)∑

ωjF1j = −
√
2[Re(F13 − F17) + Im(F13 − F17)]∑

ω2jF1j = −2i Re(F13 + F17)∑
ω3jF1j =

√
2[Re(F13 − F17)− Im(F13 − F17)],

where by
∑
aj we mean a1 + a3 + a5 + a7.
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We use equations (A.6) to simplify the expressions for ũ2, ṽ2 and w̃2 ([3, (4.31)–
(4.33)]), resulting in

w̃2 = λ̃1

{
−
3
√
2(1 + ν)

h2Rµ3/2
[Re(F03 − F07)− Im(F03 − F07)]

−
3

2
√
2h2R

√
µ

∫
(y − y1) sgn(y − y1)[Re(F03 + F07) + Im(F03 − F07)]dy1 (A.7)

+
3

h2Rµ

∫
(y − y1) sgn(y − y1) Re(F13 + F17)dy1

}
,

ũ2 = λ̃1

{
3(3− ν)(1 + ν)

h2R2µ2
Re(F03 + F07) +

3

2h2R2µ

∫
(y − y1) sgn(y − y1) Im(F03 + F07)dy1

−
3
√
2(1 + ν)2

h2R2µ5/2
[Re(F13 − F17)− Im(F13 − F17)] (A.8)

−
3

√
2 h2R2µ3/2

∫
(y − y1) sgn(y − y1)[Re(F13 + F17) + Im(F13 + F17)]dy1

}
,

ṽ2 = λ̃1

{
3
√
2(1 + ν)2

h2R2µ5/2
∂

∂y
[Re(F03 − F07) + Im(F03 − F07)]

−
3

√
2 h2R2µ3/2

∫
sgn(y − y1)[Re(F03 − F07)− Im(F03 − F07)]dy1 (A.9)

+
3

4
√
2 h2R2

√
µ

∫
(y − y1)

2 sgn(y − y1)[Re(F03 − F07) + Im(F03 − F07)]dy1

−
3

2h2R2µ

∫
(y − y1)

2 sgn(y − y1) Re(F13 + F17)dy1

}
,

where we have set λ̃ = λ̃2 = 0 and where, as above,
∫
means

∫∞
−∞. Again, we have

replaced µ̃ by
√
µ.

Now, the question is: what value of λ̃1 ([3, p. 12, (4.6)]) corresponds to λ1 = 1?
First, λ1 = 1 gives a load on the right side of our equation (2.1) equal to

−p1 = −δ(x, y). (A.10)

¿From (A.2), this corresponds to

p̃1 = σhδ(x, y). (A.11)

Finally, from ([3, p. 10, (4.4) and (4.6)]), we have

1− ν2

Eh
p̃1 = λ̃1δ(x, y). (A.12)

Therefore, (A.11) and (A.12) combine to give us

λ̃1 =
1− ν2

Eh
σh =

(1− ν2)σ

E
. (A.13)
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We insert this value of λ̃1 into (A.7)–(A.9), and we compute the real parts of (5.32)–
(5.34) in order to compare. Taking real parts of (5.32)–(5.34) results in

w2 = −
1 + ν

2
√
2
√
µ
[Re(F03 − F07)− Im(F03 − F07)]

−

√
µ

8
√
2

∫
(y − y1) sgn(y − y1)[Re(F03 − F07) + Im(F03 − F07)]dy1 (A.14)

+
1

4

∫
(y − y1) sgn(y − y1) Re(F13 + F17)dy1,

u2 =
(3− ν)(1 + ν)

4
Re(F03 + F07) +

u

8

∫
(y − y1) sgn(y − y1) Im(F03 + F07)dy1

−
(1 + ν)2

2
√
2
√
µ
[Re(F13 − F17)− Im(F13 − F17)] (A.15)

−

√
µ

4
√
2

∫
(y − y1) sgn(y − y1)[Re(F13 − F17) + Im(F13 − F17)]dy1,

v2 =
(1 + ν)2

2
√
2
√
µ

∂

∂y
[Re(F03 − F07) + Im(F07 − F07)]

+

√
µ

4
√
2

∫
sgn(y − y1)[Re(F03 − F07)− Im(F03 − F07)]dy1

+
µ3/2

16
√
2

∫
(y − y1)

2 sgn(y − y1)[Re(F03 − F07) + Im(F03 − F07)]dy1 (A.16)

−
µ

8

∫
(y − y1)

2 sgn(y − y1) Re(F13 + F17)dy1.

We see that the ũ2 and u2, ṽ2 and v2, and w̃2 and w2 involve the same terms.
Therefore, we need only compare coefficients, which we do in tabular form:

w̃2: w2: RATIO
(
w̃2 COEFF.
w2 COEFF.

)
:

−3
√
2(1+ν)(1−ν2)σ
Eh2Rµ3/2

− 1+ν
2
√
2
√
µ

12(1−ν2)σ
Eh2Rµ

= µσR
E

−3(1−ν2)σ

2
√
2 Eh2R

√
µ

−
√
µ

8
√
2

12(1−ν2)σ
3h2Rµ = µσR

E

3(1−ν2)σ
Eh2Rµ

1
4

12(1−ν2)σ
Eh2Rµ

= µσR
E

µ̃2: µ2: RATIO:

3(3−ν)(1+ν)(1−ν2 )σ
Eh2R2µ2

(3−ν)(1+ν)
4

12(1−ν2)σ
Eh2R2µ2

= σ
E

3(1−ν2)σ
2Eh2R2µ

µ
8

12(1−ν2)σ
Eh2R2µ2

= σ
E

− 3
√
2(1+ν)2(1−ν2)σ
Eh2R2µ5/2

− (1+ν)
2

2
√
2
√
µ

12(1−ν2)σ
Eh2R2µ2

= σ
E

− 3(1−ν2)σ√
2Eh2R2µ3/2

−
√
µ

4
√
2

12(1−ν2)σ
Eh2R2µ2

= σ
E
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ṽ2: v2: RATIO:

3
√
2(1+ν2)(1−ν2)σ
Eh2R2µ5/2

(1+ν)2

2
√
2
√
m

12(1−ν2)σ
Eh2R2µ2

= σ
E

3(1−ν2)σ√
2 Eh2R2µ3/2

√
µ

4
√
2

12(1−ν2)σ
Eh2R2µ2

= σ
E

3(1−ν2)σ

4
√
2 Eh2R2

√
µ

µ3/2

16
√
2

12(1−ν2)σ
Eh2R2µ2

= σ
E

− 3(1−ν
2)σ

2Eh2R2µ −µ8
12(1−ν2)σ
Eh2R2µ2

= σ
E

and we see that equations (A.3) are satisfied for any choice of the parameter σ.

In closing, let us note that, for the case λ2 = 1, we have λ̃2 =
(1−ν2)σ
E
, while,

corresponding to λ = 1, we need λ̃ = − (1−ν
2)σR

Eh2µ
.
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