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THE FUNDAMENTAL SOLUTION FOR A CONSISTENT COMPLEX
MODEL OF THE SHALLOW SHELL EQUATIONS

Matthew P. Coleman

Abstract

The calculation of the Fourier transforms of the fundamental solution in shallow
shell theory ostensibly was accomplished by J.L. Sanders [J. Appl. Mech. 37 (1970),
361-366]. However, as is shown in detail in this paper, the complex model used by
Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders’s
complex model, along with the Fourier transforms of the fundamental solution for this
corrected model. The inverse Fourier transforms are then calculated for the particular
cases of the shallow spherical and circular cylindrical shells, and the results of the latter
are seen to be in agreement with results appearing elsewhere in the literature.

§1. Introduction

The study of shells is quite an important area in the field of structural mechan-
ics. Often it is not possible to find exact solutions for the equations of shell theory,
in which case they must be solved numerically. However, in order to apply many of
the available numerical methods, especially the boundary element methods — BEMs,
it is first necessary to know the fundamental solution of the problem in question. It
was exactly this reasoning which led to the calculation of the fundamental solution
for the shallow cylindrical shell ([3]).

It was while writing [3] that the authors were informed that, in fact, this
fundamental solution had already been calculated by the applied mathematicians
J.L. Sanders and J.G. Simmonds in [28] and [30] (in 1970!). However, upon careful
study of these works, this author discovered that the complex equations for shallow
shell theory developed by Sanders in [28], and used to solve the above problem in
[30], are inconsistent. The model treated in [3] is the consistent real (as opposed to
complex) model which is given in [28] and from which Sanders derives his question-
able complex model; this model is equivalent to the models for the cylindrical shell
developed in [7], [16] and [35], after including all simplifications therein.

The advantage of a complex model is that, using certain symmetries in the
shell equations (the so-called static-geometric analogy), the order of the problem is
effectively halved — e.g., the model treated in [3] has order eight, whereas the corre-
sponding complex model would have order four. Thus, it would be very convenient
to have a consistent complex model for the general equations of shallow shell the-
ory. Novozhilov ([23]) seems to have provided such; however, the approach used by
Sanders in [28] is much more amenable to the calculation of fundamental solutions.

1991 Subject Classification: 35Q72, 35A08, 73K15, 42B10.

Key words and phrases: shallow shell theory, fundamental solution, spherical
shell, cylindrical shell.

(©)1999 Southwest Texas State University and University of North Texas.
Submitted June 9, 1999. Published September 9, 1999.



2 Matthew P. Coleman EJDE-1999/32

The purpose of this paper, then, is to provide a corrected, consistent version of
Sanders’s complex model of the shallow shell theory, and also to use this model to
calculate the Fourier transforms of its fundamental solution. The organization of the
paper is as follows: In Section 2, we give a careful derivation of Sanders’s complex
equations, pointing out in detail where the model fails, and modifying it so that,
while remaining true to Sanders’s basic approach, our new model is consistent. In
Section 3, we calculate the Fourier transforms of the fundamental solution for the
general model from Section 2. In Section 4, we invert these transforms for the case of
the shallow spherical shell, thus providing a correct derivation for the fundamental
solution in this particular case. Finally, in Section 5, we do the same for the shallow
cylindrical shell, and we show in the Appendix that our results do agree with those
appearing elsewhere in the literature.

§2. A consistent model of the equations of shallow shell
theory in complex form

In this section we look carefully at the complex model for the general shallow
shell developed by J.L. Sanders in [28]. We point out where this model fails (in more
detail than was done in [3]) and, in the process, we provide a corrected, consistent
version. We note that our approach, along with Sanders’s, is similar to that used by
Novozhilov, except that we strive to keep Sanders’s relationship between complex
stresses and changes in curvature, a relationship which Novozhilov’s model does not
satisfy.

We wish to point out that, although our ultimate aim is to be able to calculate
the fundamental solution for various types of shallow shell, the purpose of this
section is only to develop a consistent model. The model must not depend on the
smoothness of the quantities involved — in particular, it must be consistent when
the quantities involved have derivatives of arbitrary order.

We start with the real model for the shallow shell equations given in [28]. This
model is equivalent to those models for the spherical and the circular cylindrical
shell treated in [16] and [35], after including all simplifications therein. It is also a
special case of the general (real) shell equations developed in [23].

Sanders gives the fundamental equations of shallow shell theory in dimensionless
form for a shell with quadratic middle surface

z = (az® + 2bxy + cy?) /2u, (2.1)

where pu = Hiw Here, L is a “reference length”and R a “reference radius of
curvature”. Also, h is the constant shell thickness and v is Poisson’s ratio. Using
lower case letters to denote real quantities (reserving capitals for complex quantities),
the equations are (again, [28, p. 362]):

CONSTITUTIVE RELATIONS:
€11 = Mi1 — VNag, €22 = Nag — VN1, e12 = (1 + v)nqo; (2.2)
mi1 = ki1 + vkaa, mog = koo + vki1, mia = (1 — v)kio; (2.3)
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EQUILIBRIUM EQUATIONS:
oni1 onia

Ox oy b (24)
onia Onaga

Ox oy - P (2:5)
62m11 82m12 62m22

22 + 2 D20y + 6y2 4+ anii + 2bnis + cnge = —p; (26)

COMPATIBILITY EQUATIONS:

Okas  Oki2
_ =0 2.7
Ok12 . Okn1
— =0 2.8
2 2 2
Oem 0712 O%Cu ot obky — chiy = O; (2.9)

Oz Oxdy Oy?

STRAIN-DISPLACEMENT RELATIONS:

ou ov 1 /0u Ov
el = o aw, egy = 8_y —Ccw, ez = B (8_y + %) —bw, (2.10)

2 2 2
0“w 0“w 0“w (2.11)

ki1 =——5=, koo =———, kia = — .
11 2 22 o7 12 D20y

Here, the n;; are the stresses per unit length; m;;, the moments per unit length;
e;; the strains; k;;, the changes of curvature; p;,ps and p the z-, y- and z-direction
forces, respectively; and u,v and w the z-, y- and z-direction displacements, respec-
tively.

Now, we notice a certain symmetry between each equilibrium (force/moment)
equation and the corresponding compatibility (strain/curvature) equation — the so-
called static-geometric analogy. This symmetry suggests that we extend the real
quantities to complex quantities by way of the following definitions, as Sanders
does:

Ni1 =n11 +tkaa, Nag =nog + ik, Niz =nie — ko,

. . . 2.12
K11 = ki1 —ingg, Koo = kg —ing1, Kig = k12 +ingo, ( )

and

E11 = Ni1 —vNag, Esy = Nog —vNyy, Ejp = (14 v)Nyo,

2.13
My = K11 +vKge, Msy = Ko +vKy1, Mis = (1—-v)Kys. ( )

We note here that equations (2.12) imply that Ni; = iKa3, Nag = K11, Nio =
—iKi2 ([28,(13), p. 363]).

The above quantities satisfy the following “complex equilibrium equations”:

ON11 n ON1y B
O 8y = —P1,

(2.14)
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8N12 (9N22
= —po, 2.15
e + oy D2 (2.15)
O*Myy  0*Miy  9*Mos
2 N 20N Nog =
O0x? * 0zdy * 0y? et 12+ ez
. (Op1 | Op2
— 2 — 4+ == 2.16
p+ 2iv ( 5 T 9 ) (2.16)
as well as the “complex compatibility equations”
0Ky 0Kyo .
_ = 2.17
oz y L (2.17)
0Kia 0K .
_ = 2.18
Ox + oy P2, (2.18)
O0*E. 0’E 0*E
22 _ 92 12 L Tl Ky + 26K1s — cK1y = —ip, (2.19)

0x? 0x0y oy?

where py,ps and p are still the real forces from above.

Since our equations (2.16) and (2.19) differ from those obtained by Sanders
([28, p. 363, (3) and (9)']), let us provide a derivation of each. First, let us rewrite

equations (2.6) and (2.9):

82m11 (92m12 (92m22 82 62
Oz Ox0y oy a2 (k11 +vka2) +2 Ox0y

= (2.6) can be written as

+2 +

82k11 82]€12 82k22 y 82k22 62]€12 82k11
0x? 0x0y oy?

0x? 0x0y oy?
+aniy + 2bnig + cngg = —p;
62622 82612 62611 82 82

o2 zﬁway + Oy? B W(nﬂ —vn) - 28m3y

= (2.9) can be written as

)

[(1 — I/)k‘lg] +

2

0
a—yQ (k‘gg + I/k'll)

(2.20)

62

(1 +v)ni] + 6—y2(n11 — Unag)

627122 _ 627112 4 827111 _ 627111 627112 4 827122
0x? 0x0y oy? 0x? 0x0y oy?
- ak'gg + 2bk‘12 - Ckll =0. (221)
Further, we note that
32”11 i 2327112 i 627122 _ ﬂ onn i onia 3 onia 4 Onaa
0x? 0x0y 0y? Ox \ Ox Oy oy \ Oz Oy
_ O Op2
ox Oy’
0

0%kaa _232k12 %k1y 0 (Okyy  Okip
Oz 00y oy2 Oz \ Oz Oy

dy

(

ox

B Ok12 n Ok11 >

dy
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The latter implies that we can further simplify (2.20):

2 2
8 k11 +28 k‘lg + 8 k22
0x? 0x0y 0y?

+ anq1 + 2bnis + cnoy = —p. (222)

Now for the proofs of equations (2.16) and (2.19):

PROOF OF EQUATION (2.16):

0* M. 9% M. 02 M.
1 12 22 4 aN11 + 2bNps + cNos

0x? 0x0y oy?
52 2 2
= 9.2 (K11 +vKa) + 8w8y[(1 —v)Ki9] + By =5 (K22 + VK1) + aNiy + 2bN1g + cNao
0? 9?
= 9.2 (k11 — in22) + v(kge —in11)] + 289063/ [(1 —v)(k12 + in12)]
62

6 W) [(kgg — ZTL11) + l/(kn — ang)] + a[n11 + ikgg] + Qb[nlg — iklg]

+ c[nas + ik11]
0%k11 0%k1a 0%kao 0%koo 0%k1y  0%kn1
= 2 2
O0x? + 0zdy * 0y? Ty ( * )

+anii + 2bn12 + cnoo

—|—Z |:_ 827222 627212 827L11 iy (_ 8277,11 28277,12 627222)

0z 00y Oy?

9 _
+ 0x? 0x0y oy?

O0x? Ox0y 0y?

+ ak'gg - 2bk‘12 + Ck}11:|

_ 0%k11 N 262k12 N 0% koo N 0% koo B 262kz12 N 0%k1q
Oz Oxdy Oy? Oz 00y Oy?
— 827122 . 2627112 4 827111 _ 827111 4 2627112 i 827122
0x? 0x0y oy? 0x? 0x0y oy?

) +anyp + 2bn12 + cnao

— akga + 2bk12 — Ckn]

— 9% (827L11 6277,12 827122)

2
0x? + 0x0y + 0y?

_ . (Op1 | Op2
= p+2w<a +3y>

PROOF OF EQUATION (2.19):

PEx 262E12 N 0%’FEhq
0z? Oxdy oy?

0? 0? 0?

8 3 (N22 I/Nll) — anay [(1 + I/)ng] + 6—y2

- aKQQ + 2bK12 - CK11

- CLK22 + 2bK12 - CK11

(N11 - VN22)
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0? , ‘ 52 .
:W[TLQQ + Zkll — l/(nn + Zk'gg)] — 26x8y [(1 =+ V)(n12 — zklz)]
2
+ 6—112[7111 + ikoo — v(naa + ik11)] — a(kez — inq1) + 2b(k12 + in1a) — c(k11 — ings)
0*nao ?nia  0%nyy 0?n1q 0’n1a 0%nas
= -2 - -2 - — akaa + 2bk1z — ck
dar  “ozoy | oy ( 02 “ozdy oy ) abez Bz = R

0x? 0x0y + oy?

2 2 2 2 2 2
0x? 0x0y 0y?
+ anyi + 2bnge + cnzz]

[0%k11 ki 0%koo .
=1 [ 527 + zaway + 3y +anq1 + 2bnia + cnog | = —ip

¢

The next question is: How do we define the imaginary parts of the complex
displacements U,V and W7 This is where Sanders’s complex model becomes incon-
sistent — he chooses to define W so that

0*W 0*W 0*W
K1 = — Koo = ——— Ki9g = ——— 2.2
11 972 22 o2 12 920y’ (2.23)
0*W 0P LO?W
Nip = R Noz = =75, N2 = oxoy (2.24)

Now, for sufficiently smooth forces pi,ps and p, the remaining quantities will also
be sufficiently smooth so that the order of partial differentiation doesn’t matter.
That being the case, if we use (2.24) to define Ny, Noy and Njo, the equilibrium
equations (2.14) and (2.15) become

ONi;  ONip 0 02w o (. .0*°W
+ = a7 | g =0=—p1,
Ox Oy Ox oy? Oy \ 0x0y (2.25)
ON12o N ONyz 0 2,82W N 0 _2,62W - '
Ox oy  Ox \ 0z0y oy a2 )~ P

each of which is a contradiction unless the corresponding force is zero. Similarly,
the compatibility equations (2.17) and (2.18) become

0Ky, 0Kz 0 _62W 0 _82W 0
Ox oy Oz 0y? Oy oxdy) P

_6K12+8K117_2 _82W _1_2 _aQ_W =0=1
Oz oy Oz \ 0Ozdy dy oz ) T

(2.26)

again leading to a contradiction for nonzero p; or ps. Thus, the complex model
developed and used by Sanders in [28] (and by Sanders and Simmonds in [30])
is, indeed, inconsistent. (We will exhibit later in the paper a third inconsistency,
involving the normal force, p.)
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In order to avoid these inconsistencies, we introduce the real quantities F1, Foo
and Fi,, and we define complex W so that

PW O*W Pw

Ky =- —F Ko = — —1F Ko =— 1 Fq, (2.27
11 o2 22 22 g2 (2550 12 D20y +iF2, ( )

, OPW , O*W

Ni :ZK22:F11—18—y2, Nay = iK1y :F22—1W’

Pw

Nig = —iKip = F, ) . 2.28
12 12 12 + Z@xay (2.28)

Introducing these additional quantities allows us three extra degrees of freedom with
which we may avoid the above inconsistencies. Further, in requiring the Fj; to be
real, we do not lose the important relationships

9w 9w 0w

Re Kllz—w, Re K22:—a—y2, Re K12:_8{an

The introduction of these three quantities is certainly not a new idea — e.g., it is
similar to the introduction of the expressions 77,75 and S* by Novozhilov in his
consistent complex model ([23, p. 73]).

Inserting (2.27) and (2.28) into the equilibrium equations (2.14)—-(2.16) leads to

oF OF;
8;1 + a; = —p1, (2.29)
OF OF:
a: + 6;2 = —p, (2.30)
| O*W o*w  PW (O®Fyy  _O0°Fyy,  O?Fp
A? -2 -2
Wi (a 0y? b@way e Ox? ) T ( Ox? 0xdy * 0y? )
0 0
—(CLF11+2bF12+CF22) :p—’iV <% +8ly2> y (231)

2 2.2, . . . . .
where A? = (% + 53—?!2) is the biharmonic operator in two dimensions.

We may now define complex U and V so that
ou oV
Ell = = — CLVV, E22 - = — CW E12 == — + =] - bw. (232)
ox oy

Then equations (2.32) imply

ou O*W . O*W
6_1; :aW+F11—’La—y2 _VF22+ZVW’ (233)
ov O*W _O*W
6_y :CW—FFQQ—ZW—I/FH—FZVa—yQ, (234)
2
O LV g 4210+ 2V 4 o1 4 1) P (2.35)

8_y + Oz 0xdy



8 Matthew P. Coleman EJDE-1999/32

At this point, equations (2.29)—(2.31), (2.33)—(2.35) give us six equations in the
six unknowns U, V, W, Fi1, F»s and Fj5. However, we choose to replace (2.31), as

follows. First, taking 86—; of (2.33) plus 8’9—;2 of (2.34) minus %;y of (2.35) results in

A2W+Z,<a2w 02w 82W)

“ o2 2b8m6y te 0x?
. 62F22 62F12 32F11 . Op1 Opa
+Z(6x2 _26w8y+ Oy? >__w(%+8—y)'

(2.36)

Then we replace (2.31) with the equation which results from subtracting (2.36) from
(2.31), i.e., with
aF11 + 2bF12 + CF22 = —D. (237)

We note here that (2.37) also follows from the compatibility equation (2.19). We
also note here that, without the quantities Fy;, Fhs and Fjo, the insertion of (2.32)
into this compatibility equation would lead to a contradiction similar to those found
in (2.25) and (2.26). Hence, Sanders’s model is inconsistent even when p; = p2 = 0.

Finally, it is easy to show that Sanders’s final system of four PDEs ([28, p. 365,
(42) and (43)]) is inconsistent as well.

§3. The Fourier transform of the fundamental solution for an
arbitrary shallow shell

We are now in a position to find the Fourier transform of the fundamental
solution for the system developed above. To this end, we set the forces p;,p. and
p equal to constant multiples of the Dirac delta function §(z,y) = §(x)d(y) (i.e.,
we allow them to be concentrated forces, acting at the origin). Our system (2.29),
(2.30), (2.33)—(2.35), (2.37) then becomes

O 00— Nib(a), (3.1
6;;12 + 85;2 = —X20(z,y), (3.2)
aF11 + 2bF15 + cFay = —Ao(z,y), (3.3)
aa—g —aW—ia;y‘g/ —I—Z'Vaa:z/-i-Fn — vFy, (3.4)
%—Z_CW—ia;;/ —I—iua;;;/ + Foy — vFy, (3.5)
g—ngg—Z _2bW+2i(1+V)§;W; +2(1 + v)Fia, (3.6)

where A1, Ao and A are arbitrary constants.

We note here that we now treat the problem in a distributional setting — we
mention this only because it is not clear whether Sanders ([28]) considers the problem
in such a setting.

For a tempered distribution f on R?, define its Fourier transform by

f(e, 8) = F(f)(a. ) = / / e CTHBY) £ (5 ) dudy.
R2
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Then the inverse Fourier transform of f is

fo) = F Pla) = g3 [ [ € fap)dads.
R2

The transform of system (3.1)—(3.6) then becomes

aFyy + BFip = i),

aFiy + ﬂﬁm = i),

aFyy + 2bFy5 + cFhy = =,

iall = aW + iBQW — i W + ﬁu — VF\QQ,

1517 = W +ia?W — iuﬂzw + ﬁgg - I/ﬁll,

iBU +iaV = 20W — 2i(1 + v)afW + 2(1 + v) Fys.

3.
3.
3.

© o0 3

=

(

)
)
)
)
)
(3.12)

(
(
(
(3.1
3.11
3.12

We elimir@\te ﬁll,ﬁgg and ﬁlg and then solve the remaining three equations
for U,V and W. Rather than presenting the results in general form, we present
them, as Sanders does, for the three cases: I, normal force (A = 1,A; = Ay = 0);
II, z-direction tangential force (A\; = 1,A\ = Ay = 0); and III, y-direction tangential
force (A2 = 1,A = A\; = 0). In each case, A; = (a® + %) — iAy, where Ay =

aB? — 2baf + co’.

I. NORMAL FORCE:

A
1= Al A27
~ 1
U, = ra [aa3 + (2a — c)aﬁ2 + 2bﬁ3],

YTOAL AGA,
EN vp3 1

- _ = 3 2 — 2 9 31.
Vi A AlAz[cﬂ + (2¢ — a)a’ B + 2ba”];

IT. z-DIRECTION TANGENTIAL FORCE:

WQ = _[71)
o = (1~ v7)a? +2(1 4 )" - 2ia)

1

— ' [(a? + *)a? — dbeafd + 2(a® + 27)62),

Ahs

o 2wi (v+1)%aB 2 2 ’
i LI 2be?);

Vo= -7 A 1 [2abe® — (a = ¢)af + 2bef?

ITI. y-DIRECTION TANGENTIAL FORCE:

Wiﬂ = _‘71)
[73 :‘/}Qa

Vs = Ai[(l — 133 +2(1 +v)a? — 2icv]
1

1

A Ay

[(a® + c*)B? — 4abaB + 2(2b* + c*)a?].

(3.13)
(3.14)

(3.15)

(3.16)
(3.17)



10 Matthew P. Coleman EJDE-1999/32

We note the many symmetries which are apparent — not only do we have that
Wy = —Uy, W3 = =V; and Us = V5 (which are also satisfied by Sanders’s incorrect
Fourier transforms), but we also have the following:

If we denote U; = f(a, B,a,b,c), then Vi = f(B,a,¢,b,a). The same
relationship is satisfied by U, and V3.

In those cases where the expression A; can be factored, the method of partial
fraction expansions can be used to write the above in a form for which the inverse
transform may be found using methods such as those which were used in [3]. We
illustrate this statement in the next section, where we solve the problem for the case
of the spherical shell.

§4. The fundamental solution for the shallow spherical shell

The dimensionless equation for the middle surface of a shallow spherical shell
(see [28, p. 366]) is
L, 1,
= ——z — —y°. 4.1
2= 30"~ 5y (41)

Therefore, we treat (1.1) for the case a = ¢ = —pu, b = 0. In this case,
Ao = —p(a® + %), Ay = (@ + %)% + ip(a® + §°)

and (4.2)

1 o 1 1
Ay p\a2+82+ip a2+p2)°
The transforms from Section 2 then become

I. NORMAL FORCE:

— 1
_ 1 . 4.3
YT L+ B +ip (43)
U = —(v+1)~—, (4.4)
A
g
V1 = —(V + 1)—, (45)
Ay
II. z-DIRECTION TANGENTIAL FORCE:
Wy = Uy, (4.6)
Oy = 2ip(r + 12 + (1—02)% 120+ 1) (4.7)
2 = 2iu(v A v A v A .
Vo=—(w+ 1)20‘—5; (4.8)
Ay
III. y-DIRECTION TANGENTIAL FORCE:
Wy = -V, (4.9)

Vs(a, B) = Us (3, ). (4.11)
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Now, to find the inverse transforms, we will need (see [1], [3])

P )= e )
F! <m> 4H(§1)( 3R 1), where w = e ,r = /22 + y2,(4.13)
af(,0) = 1 5 F (0, 0), (4.14)
juﬂkﬂz—ﬂﬁwx (1.15)
LD E) = B (@) - L HD) (4.16)

where HS" (z) is the Hankel function of the first kind, of order n. Applying (4.12)—
(4.16) to (4.3)—(4.11), and after much simplification, we have

I. NORMAL FORCE:

Wy = H‘“( BT, (4.17)
_ (V )z 1), 3 v+1lax

Uy =— N rH1 (Wy/pr)— S 12 (4.18)

Vi(z,y) = Ui(y, 2); (4.19)

IT. z-DIRECTION TANGENTIAL FORCE:

Wy = —Un, (4.20)
iv+1)22% ) W +1)2y?—2* )
= - H Hy 4.21
v, = -2 i)+ S it ) a2
2 _ .2
_1/+1lnr+z(u+1) y wa
v 27 r4
i(l/ + 1)2 TY (1), 3 (I/ + 1) (1)
Vo = L ) - o @ )
: 2
_ vt 1) ey, (4.22)
o

ITI. y-DIRECTION TANGENTIAL FORCE

WS = _Vlu US = ‘/2 ‘/23($7y) = UZ(yam)7 (423)7(425)

. in
where, again, r = /22 +y? and w = e 1.

It is interesting to compare these results with those obtained by Sanders (]28,
p. 366, (69)~(74)]). Using the facts that Ko(z) = S HS" (iz) and K, (2) = —ZHV (i2)
for —m < ayz < T, where K,,(2) is the modified Bessel function of the second kind,
of order n (see [1]), we see, surprisingly, that Sanders’s real parts are identical to
ours. His imaginary parts differ from ours, of course, given our introduction of the
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functions Fj; in (2.27) and (2.28). However, we can compare them by looking at the
stress measures n;;. For example, we have (from (2.28))

ni1 = F11 + Im Wyy’ (426)
while Sanders has ([28, p. 362, (5) and (13)])
niy = Im Wyy- (427)

Likewise for ni2 and noa. We see, after solving for the function Fj;, that Sanders’s
results again agree with ours! We are astounded that Sanders had the intuition to
arrive at the correct results, using an inconsistent model. However, it is because of
his use of an inconsistent model that we must consider the results in this paper as
a justification for his results, and not vice versa.

§5. The fundamental solution for the shallow cylindrical shell

The dimensionless equation for the middle surface of a shallow cylindrical shell
(see [30, p. 368]) is

2=y (5.1)

Therefore, we treat (1.1) for the case ¢ = —p,a = b = 0. In this case,

Ay = —pa?, Ay = (a® + 6%)? + ipa®

and
1w 1 - 1 52)
A 2y la(@®+ B2+ w/pa)  ala?+ B2 —wi /i) ’
W 1 1
B 2y laDy  aD_ |’
The transforms from Section 3 become:
I. NORMAL FORCE:
— 1 i1
Wy=-—+— 5.3
~ va 32
U =—— 5.4
! A1 OﬁAl ’ ( )
B B 6°
II. z-DIRECTION TANGENTIAL FORCE:
Wy = U, (5.6)
. 2 2
= L 2\ & B
=P - 21+ .
U2 A1+( V)A1+ ( +V)A1’ (57)
D= (v 1228 _ B (5.8)

A1 aA1 ’
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ITI. y-DIRECTION TANGENTIAL FORCE:

Wfi:_‘/}l)

[73:‘/}2’

s 2ip(v +1) o? 5 B
=T 12 1)— 4+ (1 —v*)— )

Vs A +2(v+ )A1+( u)A +wa2A1

To find the inverse transforms we will need (again, see [1], [3])

H(z) = Heaviside function, H'(z) = 6(z),
sgn x = H(z) — H(—x),

4nlm!

1 1 n+m
a <Oén+1,6m+1) - _—(l‘n sgn x)(ym sgn y)a n,m= 07 1727 ..

1 1 7:n—l—l 5 .
]: an+1 = 2n| (y)ﬂ? sgn r, n = 0, ]., 2, Ce.

1 1 7:n—l—l .
7 Bt = ol d(x)y" sgny, n=0,1,2,...

W =rrg= [ [ s mgermdadn
(convolution of f and g),

and

Now, formally, we have

1 (aD+> _ Ba(y) sgn x] * F(z,9)

wl@

1
8

13

(5.9)
(5.10)

(5.11)

(5.12)

.(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

) w\/ﬁ z
/ /5 Y — Y1) sgn x—x1)4 H(l) (T\/ﬁp>dx1c@119)

/ sgn(x — z1)e =% 1Hél) (T\/ﬁp> dzi,p = z] + 9>

However, the above diverges “at 1 = co” since, for large |z, H, (1) ( ‘/_p) behaves

2

like (see [1]) .
_wyplzy |

@+ )
and, thus, the integrand behaves like
1 wy/i(ry=lzy))
RO |
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Similarly,

2
- 1 1 Lovie w? /1
F 1 <ﬁ> = —_ei 2 / Sgn(y_yl)H[gl) (T\/_p) dylap = $2+y%7 (520)

— 00

but these integrals converge. We can then write

L:LG_i;\/’_“*’S), (5.21)

aDy (2 \a D4 Dy

Finally, we also will need

Fl (;> = —éei%ﬁ . /Oo (y — 1) sgn(y — y1)HS” ( i ) dy(5.22)

B2D+ .
1 1 . i i% > _ 2 . 1 (W \/ﬁ
F (BSDi - 166 _oo(y yl) Sgn(y yl)H() —2 1 dm523)

where, in these and below, we have 11 = /22 + y?. We now proceed to find the
inverse transforms of (5.3)—(5.11). Following [3], let us define

FOS(J:?y) = F(_J:?y)v F07($7y) = F((E,y), (524)

where F' was defined in (5.17). (For the “official” definition of Fy; and F3;, see the
Appendix.) We then have

0
8_F03 x y =1 [ F03 $ y) F13($7y)] ) (5~25)

0
8_F07 z,Y) Fos z,y) — Fiz(zy) | , (5.26)

3 e s 3
where Fiz(z,y) = 2 ,ua: meghe 7Y (WT\/’ET> : (5.27)
3

Fir(z,y) = %%e = HF) (WT\/ET> . (5.28)

Using this notation, and after much computation, our solutions are

I. NORMAL FORCE:

1 oo
Wy = —g/ (y — yl) Sgn(y - yl)[Fos(%%) + F07(3c,y1)]dy1

+ # /_O:o(y — 1) sen(y — y1)[Fis(z,91) — Faz(z, 91)ldys (5.29)

- iw sgn x 0(y).
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(Please note: in the rest of this paper, Fy3 = Fj3(z,y) unless it is part of an integrand,
in which case Fj3 = Fj3(z,y1); similarly for Fj7. Also, [ means ffooo)

U, = 760(21\;7”) (Fosz — For) — w3g/ﬁ /(y —y1) sgn(y — y1)(Foz — For)dy:
=3 [ w) senly — )P + P (5.30)
— iy Sgn T sgn y;

Vi= il ; V) / sgn(y — y1)(Fos + For)dy
+ 1_u6 (y = y1)? sgn(y — y1)(Fos + For)dy:
+ cu?’ili\/—;y) / sgn(y — y1)(Fiz — Fi7)dya (5.31)
- u%/ﬁ (y —y1)? sen(y — v1)(Fis — Fir)dy

i
— 4% S8 T sgn y;

IT. z-DIRECTION TANGENTIAL FORCE:

Wy = U, (5.32)
3—v)(1+v 7
Uz = %(Fos + For) — gu /(y —y1) sgn(y — y1)(Fos + For)dy{5.33)
w(l+ v)? w3
_ (2\/ﬁ ) _(F13 — F17) + ZI/'E /(y _ y1) sgn(y — y1)(F13 — F17)dy1,
W1 +v)2 0 w
Vo = —7(2\/,5 ) 6_y(F03 — For) + T\/ﬁ/ sen(y — y1)(Fos — For)dy,
W2 ,
T / (y = y1)” sgn(y — y1)(Fos — For)dys (5.34)
- % /(y —v1)? sgn(y — y1)(Fiz + Fir)dy:

— 8ipy? sgn x sgn v;

III. y-DIRECTION TANGENTIAL FORCE:

W3 =", (5.35)
Us = V3, (5.36)
B-v)(1+v) ipn(l —2v)
Vs = 4 — (Fos + For) + 8 (y —y1) sgn(y — y1)(Fos + For)dy
2
TR (v — y1)® sgn(y — y1)(Fos + For)dy
w(l+v)?
+ wd +v)” (F13 — Fi7) (5.37)

2/i
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w3 /p(1 4 2v)
e

/(y —y1)® sgn(y — y1)(Fis — Fir)dy

/ (v — 1) sguly — 91)(Fus — Fur)dys

w3/?
24

+ %wy Sgn x sgn y.

The real parts of these results are identical to the (real) results in [3], as is
shown in the Appendix. Since the latter results also have been verified by direct
substitution, it is seen that our results are, indeed, correct.

It is difficult to compare these results to those obtained by Sanders and Sim-
monds in [30], as they use “classical” methods and add additional terms which do
not have Fourier transforms, in what seems an ad hoc manner. At any rate, as
they use the inconsistent model developed and used in [28], we are suspect of their
results, as ingenious as their methods may be.

§6. Closing remarks

We have shown that the complex model for the shallow shell equation developed
and used in [28] and [30] is inconsistent, and we have corrected that model. We
have provided consistent complex solutions to the only two cases for which the
denominator Aj, in the Fourier transforms of the solution, can be factored (into
polynomials in a and ).

Further, the PDE
APw — i(wey + Kwy,) = f, (6.1)
where |K| < 1 and f is the applied surface load, is seen often in the literature of
shallow shell theory (e.g., see [32] and [33]). Equation (5.1) is easily seen to be the
w-equation in Sanders’s system of PDEs ([28, p. 365], (42)), with p; = p2 = 0 and
after a change of variables. As that system of PDEs is inconsistent, we believe that
special care must be taken when using results from those papers.

Appendix. The equivalence of our solutions with those in [3].

Chen et al., in [3], use the dimensional form of the variables, and the equivalent
dimensional form of the real model given in this paper in (2.1)—(2.11), to derive the
fundamental solution for the circular cylindrical shell.

We show that our solutions are equivalent to those in [3] for Case II: z-
DIRECTION TANGENTIAL FORCE (i.e., for Ay = 1, A = Ay = 0), the remaining
two cases proceeding similarly.

First, we give the relationship between the dimensional form of the variables,
used in [3], and denoted by Z, 7 etc., and the dimensionless variables in this paper.
From [28, p. 362], we have

i=Lr i=%u ==Ly
g=Ly 0=%v p1=%p
where L and R are the reference lengths which were used in the definition of u, E
is Young’s modulus and o is a “reference stress”. Also, [3] uses the quantity f:
12(1 — v?
1201
Rh

(A1)



EJDE-1999/32 Fundamental Solution 17

where R is the radius of the circular cylindrical shell, h is the shell thickness and v
is Poisson’s ratio.

We choose tolet L =1 and R = E, in which case we have

u=8" =z Y=y p1=ochp, (A.2)

and we need to show that the solutions us, vs,ws and s, U9 and wy satisfy

R uocR
Vo ,Wo = ng (A3)

N g ~
Uz = ZU2 ,U2 =

o
E E

for some choice of the parameter o.

Now, Chen et al. ([3, p. 20, (A.19) and p. 21, (A.23)]) define

3 iwjfz T(,(jj
Foang) = 1o 10 (P VTR,
‘ 7Tjwj\/ﬁ T iwl i e (1) Tjwj\/ﬁ 5 5
Frilo) = 0 s (V) ()

j=1,3,5Tw=e%,

where 4 = 73 = 1,75 = 7 = —1, and where we have used T =z, § = y and 4* = u.
Then it is easy to show that

Fo1 £ Fos = Fo3 £ For, Fi1 £ Fi5 = —(Fi3 = Fi3), (A.5)
from which we also have
ZFOj =2 Re(Fog + F07)
ijFoj =2 ’i[Re(Fog - F07) - Im(F03 - F07)
> w¥ Fy; = 2 Im(Fps + For)
ngjFoj = 2 i[Re(Fog — F07) =+ Im(F03 — F07)]

and (A.6)

Y Fij = 2i Im(Fy3 + Fir)
> W Fij = —V2[Re(Fis — Fi7) + Im(Fis — Fi7)]
> W Fy; = —2i Re(Fy3 + Fir)
ngjFlj = \/E[RG(FIS - F17) - IHI(F13 - F17)],

where by ) a; we mean a; + a3 + as + ar.
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We use equations (A.6) to simplify the expressions for s, U3 and w2 ([3, (4.31)—
(4.33)]), resulting in

Wy = 5\1{ - %[RG(FM — For) — Im(Fo3 — For)]
- m /(y —y1) sgn(y — y1)[Re(Fos + For) + Im(Fos — For)ldys (A7)
o [0 senly — ) el + Fir)is
iy = M {3(3 ;22)2(;? v) Re(Foz + For) + ﬁ /(y —y1) sgn(y — y1) Im(Foz + For)dy:
- %[RG(FB - F17) - IHI(F13 - F17)] (A.8)
3

—m /(y —y1) sgn(y — y1)[Re(Fi3 + Fi7) + Im(F13 + F17)]dy1} ;

s [3V2(14v)? 0
vFﬂ%?ﬁﬁﬁﬁﬁMﬁ“R”“ﬂﬁr%m
3
T V2 W2 R / sgn(y — y1)[Re(Foz — For) — Im(Foz — For)|dy (A.9)

3
+ TN / (y —91)? sgn(y — y1)[Re(Foz — For) + Im(Foz — For)ldy:
3
- 2h2 Ry /(y - yl)2 sgn(y — y1) Re(Fis + F17)dy1},

where we have set A = Ay = 0 and where, as above, [ means [ . Again, we have
replaced fi by \/u.

Now, the question is: what value of X\ ([3, p- 12, (4.6)]) corresponds to A\ = 17
First, Ay = 1 gives a load on the right side of our equation (2.1) equal to

—P1= —5(1’,y). (AlO)
(From (A.2), this corresponds to
p1 = ohd(z,y). (A.11)

Finally, from ([3, p. 10, (4.4) and (4.6)]), we have

1— 12

Eh

]51 = 5\15(90,,7;) (A12)
Therefore, (A.11) and (A.12) combine to give us

< 1—12 (1—-1v?)o
ME TR s T

(A.13)
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We insert this value of A; into (A.7)-(A.9), and we compute the real parts of (5.32)—
(5.34) in order to compare. Taking real parts of (5.32)—(5.34) results in

wy = _%[Re(%g — Fyr) — Tm(Fos — For)]
—7§%/hrwmS@@—ynmd%s—%ﬂ+hMEm—Ewa (A14)
+ i /(y — 1) sen(y — y1) Re(Fis + Fir)dy,

wo = CEIEED e+ For) + % [ (0= 10) sty — ) Tn(Fos + P
_ %;[Re( Fi3 — Fi7) — Im(Fi3 — Fi7)] (A.15)
= Y& [ =) senly — plRelFia — Fir) + m(Fia — Fir)ldn,

vy — %;%[Re(Fog — Fyr) + Im(For — For)]
n % / sgn(y — y1)[Re(Fos — For) — Im(Fog — For)ldys
+£% (v — 91)? sgn(y — 1) [Re(Fos — For) + Im(Fog — For)ldys  (A.16)

2 [t = )? seny — ) Re(Fis + Fio)dyn.

We see that the @, and uo, 99 and vo, and Wy and ws involve the same terms.
Therefore, we need only compare coeflicients, which we do in tabular form:

Vo . wy COEFF. ) .

iy wpi  RATIO (22-S38EE.) .
-3v2(1+v)(1-v*)0 14w 12(1-v%)o _ uoR
Eh2Ru3/2 22 Vi ERZRy ~ E
—3(1—v2)o R/ 12(1—-v*)o _ uoR
2V2 Eh2R /I 8v/2 3h2Ry ~ E
3(1-v%)o 1 12(1-v*)o _ uoR
EhZRu 4 ERZRy ~— E

flo: o RATIO:

33—v)(1+v)(1=v?)o  (3—v)(1+v) 12(1-v%)o _ o
ERZR212 4 EnZRZu2 — E
3(1—v*)o m 121-v*)0 _ o
2ERZRZpu 8 EnZRZu2 — E
_3V2(1+v)2(1-v*)e (1+4v)? 121-v*)o _ o
Eh2R2p5/2 2\/5\/E Eh2R2u2 - E
__3(1=v®)o /B 121-v*)o _ o
V2Eh2R23/2 42 Eh?R?p? = E
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Vg Va: RATIO:
3v2(1+v2)(1—v?)o (1+4v)2 120-v*)0 _ o
Eh2R?p5/2 2v2 /m  ER?R*u? T E
3(1—v?)o VI 121-1*)0 _ o
V2 Eh2R2u3/2 42 Eh?2R?p? = E
3(1—v?)o ui/? 121-v*)0 _ o
4v2 Eh2R2 /i 162 Eh?2R2pu2 — E
_31-v)o u 121—v%)0 _ o
2ER?R?p 8 Eh?R2p2 — E

and we see that equations (A.3) are satisfied for any choice of the parameter o.

In closing, let us note that, for the case Ao = 1, we have Ay = %, while,
corresponding to A = 1, we need A= —%.
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