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1. INTRODUCTION

This thesis considers a problem in a branch of abstract algebra known as finite

group theory. Finite group theory is concerned with the structure of finite sets of

objects related to one another by a binary operator such as multiplication or

addition. Often, these structures represent various forms of symmetry. In this

thesis, we study a problem inspired by a series of publications.

In 2008, Noah Snyder [14] published a result on a group parameter e. He

classified groups based on fixed values of e and bounded the order of a group in

terms of e. His definition was this:

Definition Let G be a group of order n and V an irreducible representation of G

over C of dimension d. Define e to be the non-negative integer satisfying

n= d(d+ e).

The parameter e must be an integer since d divides |G| [7, p.96]. It has the

interesting property that if e is small relative to d, then G has a character of large

degree.

Before Snyder, Yakov Berkovich classified groups where e= 1 and e= 2 [1].

Snyder added to this classification by solving the case where e= 3. His most

noteworthy contribution to this problem, though, is the following theorem:
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Theorem 1.1 (Snyder [14]). Let G be a group of order n and d be the degree of

some irreducible character of G and d(d+ e) = n. If e > 1, n≤ ((2e)!)2.

This sparked a series of publications aiming to improve upon the bound. The

first article along this line of inquiry was written by Isaacs [9]. The relevant theorem

from his article is as follows:

Theorem 1.2 (Isaacs [9]). Let G be a group of order n and d be the degree of some

irreducible character of G. If e > 1, then n≤Be6 for some universal constant B.

This result required the simple group classification theorem for full generality,

but succeeded in giving a polynomial bound. Interestingly, it spawned another

paper [11] whose results were necessary to complete certain cases of Isaacs’ proof.

Two students of Isaacs, Christina Durfee and Sara Jensen, were the next to

make headway on the problem. They removed the universal constant from Isaacs’

bound. Their main result was the following:

Theorem 1.3 (Durfee-Jensen [6]). For e > 1, we have the follwing bounds on |G| in

terms of e:

1. If e is divisible by two distinct primes, then |G|< e4 + e3.

2. If e is a prime power then |G|< e6− e4.

3. If e is a prime, then |G|< e4 + e3.
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Since e is an integer, this theorem has as an immediate corollary that |G|< e6− e4

for all groups G. It is still a polynomial of degree 6, but is significantly smaller than

Isaacs’ bound.

Mark Lewis made the most recent advance. He gave general conditions [12] for

a group to satisfy the stronger bound |G| ≤ e4− e3.

Theorem 1.4 (Lewis [12]). Let G be a group with a nontrivial, abelian normal

subgroup. Let d be the degree of some irreducible character of G and |G|= d(d+ e).

If e > 1, then d≤ e2− e and |G| ≤ e4− e3. This bound is best possible.

Notably, all solvable groups satisfy the conditions of this theorem. Since there exist

solvable groups where |G|= e4− e3 (a result due to Isaacs [9]), this problem is

completely solved for solvable groups.

A related problem was the subject of Durfee’s dissertation [5]. She studied a

parameter that is essentially Snyder’s e relative to a fixed normal subgroup.

Definition Let N be a normal subgroup of a finite group G. Let χ and Θ be

irreducible characters of G and N , respectively, such that Θ is fixed by the

conjugation action of G and χ restricts to a multiple of Θ on N . Let d= χ(1)/Θ(1).

Define e by |G/N |= d(d+ e).

Durfee’s parameter, like Snyder’s, is always a non-negative integer. In her

dissertation, she studies the case where e= 1 and e= 2 and gives consideration to

supersolvable groups and nilpotent groups. Her main result, though, was the

following:
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Theorem 1.5 (Durfee [5]). Let N be a normal subgroup of a finite group G where

G/N is solvable and let Θ be an irreducible character of N that is G-invariant. Let

χ be an irreducible character of G that is a multiple of Θ and let d= χ(1)/Θ(1).

Write |G :N |= d(d+ e) for some non-negative integer e. If e≥ 1 and d > e5− e,

then we can find groups X and Y such that:

1. N ⊆X /Y ⊆G

2. |Y/X|= (d/e)(d/e+ 1)

3. Y/X is either the group of order 2 or is a 2-transitive Frobenius group.

In light of the aforementioned research, a group theoretic analog is studied in

this thesis. There is a close connection between characters and conjugacy classes

that often motivates a problem for one based off a result of the other. Sometimes,

the theorems produced from this line of research are very similiar. A survey of such

results can be found in [4].

Our approach is to preserve the following identity:

|G|=
n∑
i=1

d2
i (1.1)

where di is the degree of an irreducible character and i indexes the n ordinary

irreducible characters of G. This is a well-known identity that holds for all finite

groups [7]. We thus want to replace the di’s with analogous values for conjugacy

classes. Since the number of irreducible characters is the same as the number of

conjugacy classes [7, p.96], this is a reasonable goal. Furthermore, the sizes of
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conjugacy classes satisfy a similar identity:

|G|=
n∑
i=1
|xGi |

where there are n distinct conjugacy classes and the xi ∈G are representatives of

each of these conjugacy classes. The primary difference between the two identities is

the presence of squared terms in the former. The simplest way to accomodate this is

to consider the square root of conjugacy class sizes instead of just conjugacy class

sizes:

|G|=
n∑
i=1

(√
|xGi |

)2
.

This maintains the form of (1.1) even though our terms are no longer rational. The

main benefit of this change is that it makes the definition of an analogous e

resemble the original very closely.

Taking d to be the square root of a conjugacy class size, we can define an

analog e with Snyder’s equation: |G|= d(d+ e). We still have that d2 +de is a sum

of non-negative integers but, unfortunately, that is the extent of the parallel. This

analog can take on irrational values. It does, however, have the property that small

values of e relative to d correspond to large conjugacy class sizes (see Chapter 5).

For non-trivial groups, this indicates that our e is an adequate analog. In this

thesis, we bound the group order in terms of this analogous e and then classify

groups attaining the bound.

We also consider a relative parameter in the spirit of Durfee’s research. Let N

be a fixed normal subgroup of G. Let x ∈G and d=
√
|xG|/|xN |. Define e via

|G/N |= d(d+ e). Here we have the same issue as above: e can be irrational. In

spite of this, there are still some worthwhile results for the analog. We will provide

results for fixed values of e and discuss the groups associated with them.

The rest of this paper proceeds with chapters of background material and then
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two chapters for our main results, one for Snyder’s analog and the other for Durfee’s

analog. A solid understanding of group theory is assumed in the following although,

where possible, we try to present all supporting results. When it is not feasible to

provide a proof, a reference is given.

Our notation will follow closely that used in Isaacs’ Finite Group Theory [10]

and other notation will be introduced as needed.



2. DIHEDRAL GROUPS

Dihedral groups will play an important role in later results. While some

familiarity with their structure is assumed, we will review their relevant properties.

We begin with our definition:

Definition A dihedral group is a group D having a cyclic subgroup C of index 2

such that D−C contains only elements of order 2.

Remark Both the cyclic subgroup of order 2 and the Klein 4-group are dihedral.

For the former, take C = 1. In the latter, all non-identity elements are involutions

and any subgroup of order 2 will suffice for C.

Since |D : C|= 2, we know that C /D and D has even order. Dihedral groups

also have two generators: There exists a c ∈ C such that 〈c〉= C. We also have that

D−C is a coset of C. If t ∈D−C, then Ct=D−C and 〈c, t〉=D. Another

important property of dihedral groups is that, for c ∈ C and t ∈D−C, conjugation

of c by t yields the inverse of c, that is ct = c−1. Showing this is slightly more

involved but still follows quickly from our definition. We know that ct ∈D−C, so

ct must be an involution. Then (ct)2 = ctct= 1. Left multiplication by c−1 now

gives the desired relation: tct= ct = c−1. This last property is often used as a

7
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defining characteristic in the presentation of dihedral groups:

D = 〈c, t : cn = 1, t2 = 1, t−1ct= c−1〉

where |D|= 2n for some n ∈ Z. That presentation is the same as what we have

defined above since 〈c〉 is a cyclic group and t cannot be in 〈c〉. Furthermore, 〈c〉t

contains only involutions because (ckt) · (ckt) = ck · (t−1ckt) = ckc−k = 1.

Another way to view dihedral groups is as the semi-direct product of CnoϕC2

where Cn denotes the cyclic group of order n and ϕ : C2→ Aut(Cn) is the map that

sends 1C2 to the identity automorphism and C2’s other element to the

automorphism c 7→ c−1. From this view, we have some element (c,1) ∈ CnoC2 that

generates the subgroup identified with Cn and another element (1, t) ∈ CnoC2 that

generates the subgroup identified with C2. Furthermore, (1, t) has the desired

conjugation action on (c,1), i.e. (c,1)(1,t) = (c−1,1). Finally, we note that (c,1) and

(1, t) comprise a complete set of generators for CnoC2. Then

CnoC2 = 〈(c,1),(1, t) :(c,1)n = (1,1),

(1, t)2 = (1,1),

(1, t−1)(c,1)(1, t) = (c−1,1)〉

for which there is an obvious isomorphism to 〈c, t : cn = 1, t2 = 1, t−1ct= c−1〉.

While not strictly necessary for our results, we will frequently make use of the

fact that, up to isomorphism, there is exactly one dihedral group of a given order.

Proposition 2.1. All dihedral groups of order 2n are isomorphic.

Proof. Let D0 and D be dihedral groups of order 2n. We seek an isomorphism

ϕ :D0→D. Let D0 = 〈c0, t0〉 and D = 〈c, t〉 such that |c0|= |c|= n and
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|t|= |t0|= 2. Define ϕ(ck0tm0 ) = cktm for 0≤ k < n and 0≤m< 2. Then ϕ(ck0) = ck

and ϕ(t0) = t. We now show ϕ to be a homomorphism. There are 4 cases:

1. ϕ(ck1
0 c

k2
0 ) = ck1+k2 = ck1ck2 = ϕ(ck1

0 )ϕ(ck2
0 ).

2. ϕ(ck1
0 (ck2

0 t0)) = ck1+k2t= ck1(ck2t) = ϕ(ck1
0 )ϕ(ck2

0 t0).

3. ϕ((ck1
0 t0)ck2

0 ) = ck1−k2t= (ck1t)ck2 = ϕ(ck1
0 t0)ϕ(ck2

0 ).

4. ϕ((ck1
0 t0)(ck2

0 t0)) = ck1−k2 = (ck1t)(ck2t) = ϕ(ck1
0 t0)ϕ(ck2

0 t0).

The above gives that ϕ respects the multiplication of D0 and is, hence, a

homomorphism. Because every d ∈D can be written d= cktm with 0≤ k < n,

0≤m< 2 and that ϕ(ck0tm0 ) = cktm, ϕ is surjective. To show injectivity, suppose

ϕ(ck0tm0 ) = ϕ(cl0tr0) for 0≤ k, l < n and 0≤m,r < 2. Then cktm = cltr which implies

that l ≡ k (mod n) and r ≡m (mod 2). By the bounds imposed on k, m, l, and r,

we must have k = l and m= r. Then ck0t
m
0 = cl0t

r
0. We conclude that ϕ is an

isormorphism and the proof is complete.

2.1 Conjugacy Classes

We now discuss the conjugacy class structure of dihedral groups. The number

and sizes of conjugacy classes are completely determined by the order of a dihedral

group. In the following propositions, let D be a dihedral group and C /D be cyclic

of index 2.

Proposition 2.2. If c ∈ C, then cD = {c,c−1}.

Proof. Since C is abelian, cC = {c}. Then we must only consider the action of the

involutions in D−C. Let z be a generator of C and t be an involution in D−C.
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Then every element of D−C is of the form zkt for some non-negative integer k. For

any c ∈ C:

tz−kczkt= tct= c−1.

Thus every involution of D−C sends an element of C to its inverse via conjugation.

It follows that cD = {c,c−1} for all c ∈ C.

The remaining conjugacy classes have a different structure depending on the

parity of the |C|. Note also that if |C| is even, it contains an involution which must

have a conjugacy class consisting only of itself. The following lemma is easy, but

necessary for the next proposition. It is presented here for completeness.

Lemma 2.3. Let n be an even integer and k be any integer. Then k and k mod n

have the same parity.

Proof. Suppose k ≥ 0 and let k mod n= r. Then r = k−n ·m for some integer m.

Immediately, r and k have the same parity since n ·m must be even. If k < 0, then

r =−k−n ·m and the same logic gives that k and k mod n have the same

parity.

Proposition 2.4. Let D have order 2n, n even. Then D has 3 distinct conjugacy

classes of involutions: two of size n/2 and one of size 1.

Proof. Since C has even order n, it contains a unique involution which lies in its

own conjugacy class by the Proposition 2.2. The remaining involutions are of the

form zkt (k ∈ Z) where 〈z〉= C and t ∈D−C. Consider the following:

z−m(zkt)zm = z−m(zkt)zmtt= zk−2mt

tz−m(zkt)zmt= tzk−mtzmt= z2m−kt,

with m an arbitrary integer. Note that k, k−2m, 2m−k are all of the same parity.

By Lemma 2.3, we must have that k mod n, k−2m mod n, and 2m−k mod n share



11

the same parity as well. Then the conjugacy classes of involutions in D−C are

{zkt : k is even} and {zkt : k is odd}. Each class must contain exactly half of the

involutions in D−C so they are both of size n/2.

Now for the odd case, we have:

Proposition 2.5. Let D have order 2n, n odd. Then D has exactly one class of

involutions of size n.

Proof. Each involution of D generates a Sylow 2-subgroup of order 2. All of these

are distinct and must be conjugate. Then all involutions of D are in the same

conjugacy class.

2.2 Factor Groups

We will show that dihedral groups have the property that every factor group is

dihedral. Before we get to this, let us discuss the normal subgroups of dihedral

groups.

Proposition 2.6. If N /D is not a subgroup of C, then N =D or |D :N |= 2.

Proof. Let D have order 2n, 〈z〉= C, t ∈D−C, and N /D. Suppose t ∈N . By

normality, tD ⊆N . If n is odd, then Proposition 2.5 gives us that zt ∈N . So

zt · t= z ∈N and thus N =D. If n is even, then z2t ∈N by Proposition 2.4. Then

〈z2〉<N and 〈z2〉t⊂N . We infer that |N | ≥ n. But then, |D :N | ≤ 2 and the

proposition holds.

Proposition 2.7. If D is dihedral and N /D, then D/N is dihedral.
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Proof. There are two cases, either N contains an involution from D−C or N ≤ C.

In the former case, we know by the previous proposition that either N =D or

|D/N |= 2. Since both the trivial group and the cyclic group of order 2 are dihedral,

we must only show the remaining case.

Let N ≤ C. Let a “bar” denote the image under the canonical mapping of

D 7→D/N , e.g. D =D/N (the “bar convention”). We know that C is cyclic and

that |D : C|= |D : C|= 2. Furthermore, for all t ∈D−C, t ∈D−C and t
2 = tt= 1.

Then D is dihedral.
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2.3 Generalized Dihedral Groups

It is possible to extend the notion of a dihedral group by relaxing the cyclic

condition on the subgroup of index 2.

Definition A generalized dihedral group is a group G with an abelian subgroup B

of index 2 such that G−B contains only involutions.

As in the case of dihedral groups, we may view G under a semi-direct product

construction where G=BoϕC2 where B is an abelian group, C2 is the cyclic group

of order 2, and ϕ sends the non-identity element of C2 to the inverse map (b 7→ b−1).

It is not suprising then that this class of groups shares a similar conjugacy class

structure with the usual dihedral groups in certain cases.

Proposition 2.8. If G is generalized dihedral of order 2n with odd n, then G has a

single conjugacy class of involutions.

Proof. This follows immediately from the Sylow conjugacy theorem.

We cannot, however, say much about the conjugacy classes of involutions if n is

even. Consider the direct product of 3 cyclic groups of order 2: C2×C2×C2. This

group satisfies the conditions of generalized dihedral groups but is abelian and every

element is an involution! Thus, every conjugacy class consists of only a single

element.



3. GROUP ACTIONS

We will need a few properties of group actions in later results. Here we present

the required background.

Definition Let G be a group and Ω be a set. A group action of G on Ω is a

mapping from Ω×G to Ω that satisfies:

α ·1 = α

(α ·g) ·h= α · (gh)

for α ∈ Ω and g,h ∈G.

For a simple example, let Ω =G and define α ·g = αg. Then α ·1 = α1 = α and

(α ·g) ·h= αgh= α · (gh) and so G acts on itself by right multiplication.

Conjugation gives a more interesting action. Again take Ω =G but let α ·g = αg.

Now, α ·1 = α1 = α and (α ·g) ·h= (αg)h = αgh = α · (gh).

To extend this idea, let us introduce the concept of an orbit.

Definition The orbit of α ∈ Ω is the set:

Oα = {β ∈ Ω : α ·g = β for some g ∈G}.

14
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Orbits partition Ω into distinct classes. This is shown by analyzing the implied

relation: α∼ β if and only if there exists g ∈G such that α ·g = β. A few quick

calculations show it to be an equivalence relation:

α ·1 = α (reflexive)

if α ·g = β, then β ·g−1 = α (symmetric)

if α ·g = β and β ·h= γ, then α ·gh= γ (transitive)

where α,β,γ ∈ Ω and g,h ∈G.

For the conjugation action discussed above, orbits are conjugacy classes. That

is:

Og = gG = {gh : h ∈G}.

Using properties of orbits, we can easily determine the size of conjugacy classes.

This calculation involves the notion of a stabilizer.

Definition The stabilizer of α ∈ Ω is the group

Gα = {g ∈G : α ·g = α}.

It should be clear that Gα ≤G: if α ·g = α and α ·h= α then

α ·gh= (α ·g) ·h= α. For the conjugation action mentioned above, the stabilizer of

g ∈G is exactly CG(g), the centralizer of g. To see this, let h ∈Gg. Then

g ·h= h−1gh= g if and only if gh= hg and so h ∈ CG(g). The same argument

suffices to prove h ∈ CG(g) implies h ∈Gg. Then Gg = CG(g) for the conjugation

action of G on itself.
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We now determine the size of orbits and conjugacy classes.

Theorem 3.1 ([10], p.5). Let H =Gα and Λ = {Hx : x ∈G}. There exists a

bijection θ : Λ→Oα such that θ(Hx) = α ·x. In particular, |Oα|= |G :H|.

Proof. We first show that if Hx=Hy, then α ·x= α ·y. Since y ∈Hx, y = hx for

some h ∈H. Then:

α ·y = α ·hx= (α ·h) ·x= α ·x

where the final equality holds because H is the stabilizer of α. This shows that each

coset of H sends α to exactly one element of Oα.

Then we can define the map θ : Λ→Oα by θ(Hx) = α ·x. Since every element

of G lies in some coset of H, it follows from the definition of an orbit that θ is

surjective. This leaves injectivity. Suppose θ(Hx) = θ(Hy). Then:

α = (α ·x) ·x−1 = (α ·y) ·x−1 = α ·yx−1.

Then yx−1 ∈H and so y ∈Hx. It follows that θ is a bijection. Thus, the size of Oα

is equal to the number of cosets of H, i.e. Oα = |G :H|.

Immediately, we have:

Corollary 3.2. The size of a conjugacy class gG is |G : CG(g)|.

3.1 Transitive Actions

Definition Let G be a group acting on the set Ω. We call this a transitive action if

and only if it has exactly one orbit.
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Equivalently, transitive actions are those that, for all pairs α,β ∈ Ω, there exists

a g ∈G such that α ·g = β. This view is perhaps more suggestive but, in our results,

the former definition will prove more immediately useful.

An easy transitive action is to let a group G act on itself by right multiplication.

Take g ∈G. Then for any h1 ∈G there is an h2 ∈ g such that gh2 = h1. Then all

elements of G are in Og and the right multiplication action is transitive.

Another example, to build on previous material, is to take G to be a generalized

dihedral group such that |G|= 2n with n odd. Then G acts transitively on its

involutions.

Later, we will be concerned with groups that permit a transitive action on some

finite set. The following proposition may be illustrative.

Theorem 3.3 ([7], p.34). Let G be a finite group that acts transitively on the finite

set Ω. This action is equivalent to one on the right cosets of a subgroup of G.

Proof. Let α0 ∈ Ω and let H be the stabilizer of α0. We first show that there is a

one-to-one correspondence between the cosets of H and the set Ω.

Suppose α0 ·gβ = β for β ∈ Ω and gβ ∈G. Then α0 ·hgβ = β for all h ∈H. All

elements of the coset Hgβ then send α0 to β. Now, take g ∈G such that α0 ·g = β.

Then α0 ·gg−1
β = α0 and g ∈Hgβ. We infer that Hgβ contains all elements of G

sending α0 to β.

Since each element of G must act on α0 and send it to some β ∈ Ω, the set

Ω′ = {Hgβ : β ∈ Ω} is a complete set of cosets.

Now, we show these actions to be equivalent via the bijection Θ : Ω→ Ω′ where

Θ(β) =Hgβ and α0 ·gβ = β. Consider Hgβg =Hgγ for β,γ ∈ Ω. Then

α0 ·gβg = β ·g = γ = α0gγ .
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Applying Θ to the middle equality, β ·g = γ, gives (Hgβ)g =Hgγ . This shows that

the action of G on Ω is preserved under the bijection Θ and is, hence, isomorphic to

the action of G on Ω′. This completes the proof.



4. FROBENIUS GROUPS

Frobenius groups will play an important role in the results of this thesis.

Definition Let G be a group and N be a normal subgroup of G with complement

A. The group G is a Frobenius group if and only if na 6= n for non-identity elements

n ∈N and a ∈ A.

An important example, for our purposes, will be the “odd-order” dihedral

groups, that is, dihedral groups of order 2n for odd n. In this class of groups, we

take N to be the cyclic subgroup of order n and A to be any subgroup generated by

an involution (refer to the discussion in Chapter 2). Then A acts on N via

conjugation such that na = n−1 for non-identity elements a ∈ A and n ∈N .

Moreover, since N has odd order, n= n−1 if and only if n= 1. Thus, the action of

A on N satisfies the definition above and we may conclude that “odd-order”

dihedral groups are Frobenius groups.

Similarly, generalized dihedral groups G=BoC2 are Frobenius if |B| is odd.

4.1 Kernels and Complements

From here on, the normal subgroup N from the definition of Frobenius groups

will be referred to as a Frobenius kernel and its complement, A, will be a Frobenius
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complement. These subgroups have many nice properties and relationships of which

we will now mention a few.

Lemma 4.1 ([10], p. 177). Let G be a Frobenius group with kernel N and

complement A. Then |N | ≡ 1 (mod |A|) and, in particular, |A| and |N | are coprime.

Proof. Consider the A-orbits of N . By the Orbit-Stabilizer theorem,

|On|= |A : CA(n)| for all n ∈N . But, na 6= n for non-identity elements n ∈N and so

CA(n) = 1 unless n= 1. Exactly one orbit of N is then of size 1 and all others are of

size |A|. We conclude that |N |= 1 +k|A| for some positive integer k and thus

|N | ≡ 1 (mod |A|).

Lemma 4.2 ([10], p. 183). If G is a Frobenius group with kernel N having

complement A, then A∩Ag = 1 for g ∈G−A.

Proof. Suppose A∩Ax > 1 for some x ∈G. Since G= AN , we may write x= an for

some a ∈ A and n ∈N . Then A∩Aan = A∩An > 1 and there exists some

non-identity bn ∈ A∩An. This gives us that [b,n] = b−1bn ∈ A. Since N is normal,

[b,n] ∈N for b ∈ A and n ∈N . But then [b,n] ∈ A∩N = 1 and so b must centralize

n. Since G is Frobenius we are forced to conclude n= 1 and that x ∈ A. Thus,

A∩Ag = 1 for g ∈G−A.

Other properties can be found in [10], [7], [8] for the interested reader.

4.2 Frobenius’ Theorem

Frobenius groups can be viewed as those with a transitive action on a set

satisfying the properties that:

1. Its stabilizers are non-trivial.
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2. Only the identity fixes more than one letter.

To see this, let G be a Frobenius group with complement A and consider right

multiplication action of G on the cosets of A. We know that this action is transitive,

so all that remains to be shown is that it satisfies the aforementioned properties.

The subgroup Ag of G fixes the coset Ag of A, giving the former property. For

the latter, the bulk of the work has already been done in Lemma 4.2. If x ∈G fixes

A and Ag, then x ∈ A∩Ag = 1.

Now, consider the elements not fixing any cosets of A:

X =G−
⋃
g∈G

Ag.

It turns out that X ∪1 is exactly the Frobenius kernel of G and is, hence, normal.

This is the content of the next theorem:

Theorem 4.3 (Frobenius, [7], p. 140). Let G be a Frobenius group acting on a set

Ω. Let A be the subgroup fixing α0 ∈ Ω. Then the set:

N = (G−
⋃
g∈G

Ag)∪{1}

is a normal subgroup of order |G : A|.

Unfortunately, no character free proof of this result has been discovered. The

proof has been omitted here as the background material would significantly

lengthen this thesis. For the motivated reader, one may consult Isaacs’ Algebra: A

Graduate Course [8, Ch. 15] for a chapter devoted to reaching this result as quickly

as possible.

A useful corollary is this:

Corollary 4.4. Let G be a Frobenius group with kernel N and complement A. If

g ∈G−N , then g is contained in some conjugate of A.
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Moving on, we use these results to prove some other relevant characterizations.

4.3 Characterizations

Lemma 4.5 ([10], p. 183). Let G be a finite group and N be a normal subgroup

complemented by A. The following are equivalent:

1. G is Frobenius.

2. CG(a)≤ A for all non-identity a ∈ A.

3. CG(n)≤N for all non-identity n ∈N .

Proof. We will show that (1) is equivalent to (2) and then that (3) is equivalent to

(1).

Suppose that G is Frobenius. Let a ∈ A be a non-identity element and take

x ∈ CG(a). Then a ∈ A∩Ax. Since the intersection is non-trivial, x ∈ A and (2)

holds.

Now, assume (2) and we show (1). Let a ∈ A be a non-identity element. Then:

CN (a) =N ∩CG(a)⊆N ∩A= 1

where the subset relation holds by (2) and the final equality holds because A is a

complement of N . So (1) follows.

Again, suppose G is Frobenius. Let n ∈N be a non-identity element. Assume

that CG(n) 6⊆N . By Corollary 4.4, ag ∈ CG(n) for some non-identity a ∈ A and

g ∈G. If m= ng
−1 , then a ∈ CG(m). Since N is normal, m ∈N and, because G is

Frobenius, we must have m= 1. But then n= 1 — a contradiction. Therefore,

CG(n)≤N .
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Finally, we prove (1) from (3). Let n ∈N be a non-identity element. Then

CA(n) = A∩CG(n)⊆ A∩N = 1

where the subeset relation holds by (3) and the latter equality because A

complements N . Thus, G is Frobenius.

Lemma 4.6 ([7], p. 39). Let A be a non-trivial subgroup of G. Then G is Frobenius

with complement A if and only if A intersects its conjugates trivially and is its own

normalizer.

Proof. Let G be Frobenius with complement A. By Lemma 4.2, we know that

A∩Ag = 1 for all g ∈G−A.

Suppose A∩Ag = 1 for all g ∈G−A. Then CG(a)≤ A for all non-identity

a ∈ A. According to Lemma 4.5, this is equivalent to the statement that G is

Frobenius.

All that remains to be shown is that A is self-normalizing. Let x ∈NG(A).

Then A∩Ax = A. Lemma 4.2 gives that x ∈ A. It follows that NG(A) = A and this

completes the proof.



5. AN ANALOG TO SNYDER’S PARAMETER

Here begin the main results of this thesis. The following chapter is devoted to a

group theoretic analog to Snyder’s parameter. We replace his use of irreducible

character degrees with the square roots of conjugacy class sizes. Both of these

satisfy the identity:

|G|=
n∑
i=1

d2
i

where di is either character degrees or square roots of conjugacy class sizes and i

indexes the total set of characters or conjugacy classes (the number of objects

indexed is the same in both cases [7, p.96]). After initial definitions and examples,

we will analyze the properties of and range of values e can take. Then, we will bound

the order of a group by our parameter and characterize groups attaining this bound.

Without further ado:

Definition Let G be a finite group. For x ∈G let c(x) = |CG(x)| and

k(x) = |G : CG(x)|. We define the parameter e as follows:

e=min{(c(x)−1) ·
√
k(x) : x ∈G}.

To see that this really corresponds with Snyder’s e, let x ∈G be such that
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e= (c(x)−1) ·
√
k(x) and consider the following:

e= (c(x)−1) ·
√
k(x)

= c(x) k(x)√
k(x)

−
√
k(x)

= |G|√
k(x)

−
√
k(x).

If we let d=
√
k(x), we arrive at the equation |G|= d(d+ e). Since k(x) is precisely

the size of the conjugacy class containing x, for a fixed G, when the conjugacy class

of x is very large, e is very small. This behavior is similar to Snyder’s parameter

with character degrees.

For a more detailed analysis of this relation, consider the function

f(c) = (c−1)
√
n/c where n is the order of a group and c is the order of a

centralizer. Then e is the minimum of f over the domain of possible centralizer

orders. Since f ′(c) =
√
n/c · (c+ 1)/2c and c≥ 1, the function f must be

monotonically increasing. Thus, small values of e are correlated with small

centralizers or, equivalently, large conjugacy class sizes. In particular, the smallest

possible values of e are attained only by groups with a conjugacy class that contains

exactly half of the group’s elements, the largest non-trivial conjugacy class possible

relative to a group’s order (see Theorem 5.6).

For abelian groups, calculating e is nearly trivial. Since all conjugacy classes are

singletons in such groups, we have e= n−1. Another easy example is the the

symmetric groups. The largest conjugacy class in Sn is that of the (n−1)-cycles

and it has size n!/(n−1) (see Appendix). The value of e for Sn is then:

e= (n−2) ·
√

n!
n−1.
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We now analyze the smallest possible values our parameter e can take. Note

that the groups here are very small and that e necessarily increases for larger groups

(a closer look at the function f mentioned above reveals that f increases as n does).

In fact, given the order of a group, we can specify the range of values e can take.

We need only look at the largest possible conjugacy class and the smallest possible

conjugacy class. If G is a non-trivial group, its largest conjugacy class can contain

up to half of the group’s elements. This case corresponds to a centralizer of order 2.

For the other extreme, a conjugacy class can contain only a single element. This

happens in abelian groups and the entire group is the centralizer for every element.

Then, for a group G of order n:

√
n

2 ≤ e≤ n−1. (5.1)

This fact makes it easy to classify groups with small values of e.

Theorem 5.1. Let G be a finite group such that e≤ 2. Then one of the following

holds:

1. e= 0 if and only if G is trivial.

2. e= 1 if and only if G is C2.

3. e=
√

3 if and only if G is S3.

4. e= 2 if and only if G is C3.

Proof. We will be begin by showing that statements (1) - (4) hold in isolation and

then prove that there are no other possibilities if e≤ 2. For the following, let x ∈G

be an element such that e= (c(x)−1) ·
√
k(x).

Suppose e= 0. Then c(x) = 1. Only the trivial group has a trivial centralizer.

This is sufficient for (1).
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Let e= 1. Then c(x) = 2 and k(x) = 1. It must be the case that |G|= 2 and so

G is C2. Reversing this argument proves (2).

Take e=
√

3. We must have that c(x) = 2 and k(x) = 3. This implies that G

has order 6. There are only two groups of this order: C6 and S3 [2]. The former is

abelian and thus all its conjugacy classes are singletons. The latter has already been

shown to have e=
√

3.

Now, let e= 2. There are two cases. If c(x) = 3 and k(x) = 1, then G must be

C3. Since C3 must have e= 2, we need only consider the remaining case. Assume

c(x) = 2 and k(x) = 4. This implies that |G|= 8. Since c(x)< 8, G cannot be

abelian. The only two groups of order 8 that are not abelian are D8 and Q8 [2], the

dihedral group of order 8 and quaternion group respectively. Neither of these groups

have a self-centralizing involution and thus G can be neither. This completes (4).

We will now show that there are no other values of e≤ 2. By equation (5.1), if

a group is non-trivial, e≥ 1. So consider groups G such that 1< e < 2. The largest

possible order of G is 7 since
√

7/2< 2 but
√

8/2≥ 2. There are no non-abelian

groups of order 3, 4, 5, or 7 [2] so any group where 1< e < 2 must have order 6. As

we showed above, the only possibility is S3.

Next, we extend the work above and classify groups with prime values of e.

This result is the beginning of a complete collection of understood e values. Even

though e is not always an integer, it is based on integral values and, hence, does not

range over all real numbers (as we saw above, e takes exactly one value between 1

and 2). Furthermore, this theorem illustrates that e has a strong relationship with

the structure of a group. Before we get to this classification, we present a required

lemma.

Lemma 5.2. Let P be a group of order p2 for some prime p. Then P is abelian.
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Proof. Let P act on Z(P ), the group’s center, by conjugation. We know that every

element of Z(P ) has an orbit of size one under this action and every other orbit

must have p-power size. Then P −Z(G) is a union of orbits with size divisible by p.

Thus, |Z(P )| ≡ 0 (mod p) and, since 1 ∈ Z(P ), |Z(P )| ≥ p.

If Z(P ) = P we are done, so suppose |Z(G)|= p. Then there is an element

x ∈ P −Z(P ) and 〈x〉∩Z(P ) = 1. Therefore, the group 〈x〉 is a complement of

Z(G) and P = Z(G)oϕ 〈x〉 for some ϕ ∈ Aut(Z(P )). But, for z ∈ Z(P ) we must

have zx = z. Then ϕ is the identity and P = Z(P )×〈x〉. Since both Z(P ) and 〈x〉

are abelian, we must conclude that Z(P ) = P .

Now, we get to a more sweeping characterization:

Theorem 5.3. Let G be a finite group and p be an odd prime. The group G is

abelian of order p+ 1 or generalized dihedral of order 2p2 if and only if e= p.

Proof. Suppose that G is abelian of order p+1. Then c(x) = p+1 for all x ∈G. This

gives that k(x) = 1 for all x ∈G and we may conclude that e= (c(x)−1) ·
√
k(x) = p.

For the other case, let G be generalized dihedral of order 2p2. Take t ∈G to be

an involution. Since G is generalized dihedral, the conjugacy class size of t is p2 by

Proposition 2.8 since p is odd. This conjugacy class is as large as it can be and so

corresponds to the minimal value of e. Then e= (c(t)−1) ·
√
k(x) =

√
k(x). But,

k(x) is the size of t’s conjugacy class, p2, and so e= p.

All that remains to be shown is that no other classes of groups have such an e.

Let e= p. Since e is an integer, we know that k(x) must be a perfect square, less we

arrive at a contradiction (this holds due to the elementary result that the product of

a rational and irrational number must be irrational). Then either c(x) = p+ 1 and

k(x) = 1 or c(x) = 2 and k(x) = p2. In the former case, we know that the group is of

order p+ 1. Since e is minimal, we know that c(x) is the size of the smallest

centralizer. Then every element centralizes every other element and the group must
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be abelian. In the latter case, we know that the group must be of order 2p2 and

have a self-centralizing involution. But, this implies that there are p2 involutions in

G. Furthermore, G must have a Sylow p-subgroup P and it must be disjoint from

these involutions as p is an odd prime. Since P has prime-power order p2, it must

be abelian by Lemma 5.2. Then G is generalized dihedral.

This result is much stronger than any similar one for the character theoretic e.

Snyder specifically mentioned in [14] that arguments classifying groups with

particular values of e did not generalize. That is not the case here.

It is possible to bound the order of a group by e. For Snyder’s orginal

parameter, much work has been done to make a better bound ([9], [6], [12]). In our

case, the answer is much easier and the bound much better:

Theorem 5.4. Let G be a non-trivial finite group. Then |G| ≤ 2e2.

Proof. We begin with the fact that k(x) = |G|/c(x). This gives the following

equation for some x ∈G:

e= (c(x)−1) ·
√
k(x)

= (c(x)−1)√
c(x)

·
√
|G|

If we square this equation we get:

e2 = (c(x)−1)2

c(x) · |G|

from which we may deduce that:

|G|= e2 · c(x)
(c(x)−1)2 .
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Since c(x)/(c(x)−1)2 decreases as c(x) increases, we need only look at the minimal

value of c(x). Our group G is non-trivial and thus all of its centralizers have at least

2 elements. Then c(x)≥ 2. This yields the following inequality:

2e2 ≥ e2 · c(x)
(c(x)−1)2 = |G|

which completes the proof.

A natural follow-up to this theorem is the question: Which groups attain the

bound? Before we answer this, let us a review the following basic fact:

Lemma 5.5 ([10]). Let |G|= 2n for an odd positive integer n. Then G has a

normal subgroup of index 2.

Proof. Consider π :G→ Sym(G), the permutation representation of the right

multiplication action of G on itself. By Cauchy’s Theorem, we can find an element

t ∈G of order two. Under the aforementioned action, t has no fixed points. So π(t),

the permutation of Sym(G) such that g ·π(t) = gt for g ∈G, consists of |G|/2 = n

2-cycles. Since n is odd, t is an odd permutation.

Let H be the elements of G that induce even permutations on G. Take

x ∈G−H. Since x induces an odd permutation, π(xt) is an even permutation.

Then xt ∈H and so x ∈Ht. Thus Ht=G−H. We conclude that H has index 2

and must be normal.

We now classify groups attaining the bound mentioned above.

Theorem 5.6. Let G be a finite group. The group G is generalized dihedral of order

not divisible by 4 if and only if |G|= 2e2.

Proof. Suppose G is generalized dihedral with order not divisible by 4. Such a

group has |G|/2 involutions that are all conjugate. Then there exists an x ∈G such
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that c(x) = 2. Since this is the largest possible conjguacy class, it corresponds to the

smallest possible e. Then:

e2 = (c(x)−1)2

c(x) · |G|= 1
2 · |G|

and so |G|= 2e2.

Now, suppose a finite group G has order 2e2. We know from the proof of

Theorem 5.4, that this implies c(x) = 2 for some x ∈G.

Then x has conjugacy class size of e2 = n/2. Also, e2 cannot be divisible by 2

lest x ∈G be contained an abelian subgroup of order p2 by Lemma 5.2. Now, we are

in the situation of Lemma 5.5 and may conclude that G has a normal subgroup B of

index 2. Since x is conjugate to e2 involutions (including itself) and none of these

can be contained in B (its order is not divisible by 2), G−B must be exactly xG.

Thus, G is generalized dihedral of order not divisible by 4.

This theorem can be generalized fairly faithfully.

Theorem 5.7. Let G be a group such that the smallest prime dividing |G| is p and

p2 does not |G|. Then |G|= (p/(p−1)2)e2 if and only if G is Frobenius with

complement Cp.

To prove this we will need the following facts about automorphism groups:

Theorem 5.8 ([8]). Let G be a finite group and H be a subgroup. Then

CG(H)/NG(H) and NG(H)/CG(H) is isomorphic to a subgroup of Aut(H), the

automorphism group of H.

Lemma 5.9 ([10]). Let G be a group of prime order p. Then |Aut(G)|= p−1.

Proof of 5.7. Let |G|= (p/(p−1)2)e2. Then G contains an element of order p that

generates a Sylow p-subgroup H. The subgroup H must either be normal or it must
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intersect its conjugates trivially. If H is normal, then G/CG(H)≤ Aut(H) by

Theorem 5.8 . Since H has prime order, Lemma 5.9 gives |G : CG(H)| ≤ p−1. No

prime less than p divides |G|, so CG(H) =G and H ≤ Z(G). This implies that G

cannot have a centralizer of order p and hence |G| 6= (p/(p−1)2)e2. Then H must

intersect its conjugates trivially.

Take g ∈NG(H)−H and let A= 〈g〉 act on the non-identity elements of H by

conjugation. Since g 6∈ CG(H), there is some h ∈H−{1} such that hg 6= h. Let

h ∈H−{1} be such an element. Then 1< |A : Ah|= |Oh| ≤ p−1 where Ah is the

stabilizer of h. This implies that a prime less than p divides |A| and so must also

divide |G|. This contradicts that p is the smallest prime dividing |G| which lets us

conclude that NG(H) =H. Then H is self-normalizing. By Theorem 4.6, G is

Frobenius with complement H = Cp.

Now we need only show that if G is a Frobenius group with complement

H = Cp it satisfies |G|= (p/(p−1)2)e2. By Theorem 4.6, we know that H is disjoint

from its conjugates and is its own normalizer. Let x ∈H be a non-trivial element.

Then CG(x)≤H and, in fact, CG(x) =H. The conjugacy class of x must be the

largest possible within G. Thus, e= (p−1)
√
|G :H| which lets us conclude that

|G|= (p/(p−1)2)e2.



6. AN ANALOG TO DURFEE’S RELATIVE PARAMETER

In this section, we consider a generalization of the parameter e that

incorporates a normal subgroup. For x ∈G and N /G, let cN (x) = |CG(x) : CN (x)|

and kN (x) = |G :NCG(x)|. We then define eN , the relative parameter, as follows:

eN =min{(cN (x)−1) ·
√
kN (x) : x ∈G}.

If N = 1, then cN (x) = |CG(x)| and kN (x) = |G : CG(x)| which yields

eN =min{(|CG(x)|−1) ·
√
|G : CG(x)|}= e. This new parameter thus generalizes

our previous analog. Note that eN is distinct from our parameter e for the factor

group. An important difference is that eN can be zero for non-trivial groups (see

Theorem 6.3). Therefore, there are groups G for which G/N has a non-zero e but G

has eN = 0 for the same normal subgroup (this is true for all pairs (G,N) such that

eN = 0). For example, take G= S4 and N = A4. We know that the 3-cycles are

self-centralizing in S4 (see Appendix A) and, since these are even permutations,

they are contained in A4. If we let x= (1 2 3) ∈ S4, then we have cN (x) = 1 and

kN (x) = 2 which forces us to conclude that eN = 0. Also, we have that S4/A4 has

e= 1 which further illustrates that eN is distinct from e for the factor group.

We have the following relationship between eN and e:

Theorem 6.1. Let N be a normal subgroup of G. If eN is the relative parameter

for (G,N) and e is the non-relative paramter for G/N , then eN ≤ e.

Proof. Using the “bar convention”, consider the relationship between CG(x) and

CG(x) for x ∈G. If xg = gx (g ∈G), then xg = gx. Thus, CG(x)≤ CG(x). Note

33
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that

cN (x) = |CG(x) : CN (x)|

= |CG(x)/(CG(x)∩N)|

= |CG(x)|.

Since c(x) = |CG(x)|, cN (x)≤ c(x).

Now, the function g(n) = (n−1)/
√
n is increasing over the positive real

numbers since its derivative, g′(n) = (n+ 1)/2n3/2, is positive for n > 0. Then

g(cN (x)) = cN (x)−1√
cN (x)

≤ c(x)−1√
c(x)

= g(c(x)).

We can now show that eN ≤ e. Let y ∈G be such that e= (c(y)−1)
√
k(y).

Then

e= g(c(y)) ·
√
|G :N |

≥ g(cN (y)) ·
√
|G :N |

= (cN (y)−1) ·
√
kN (y).

Finally,

eN =min{(cN (x)−1)
√
kN (x) : x ∈G} ≤ (cN (y)−1)

√
kN (y)≤ e

and so eN ≤ e.

Before we continue to analyze eN , we introduce a definition used by J. Britnell

and M. Wildon [3].
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Definition Let G be a finite group and N /G. A conjugacy class xG of G is

non-split if xG = xN .

The following lemma establishes a useful result regarding the behavior of cN (x)

and kN (x).

Lemma 6.2. Let G be a finite group with normal subgroup N . For x ∈G, cN (x)

and kN (x) are positive integers. The conjugacy class of x is non-split if and only if

kN (x) = 1.

Proof. The first part of the lemma follows directly from the fact that both cN (x)

and kN (x) are indices of finite groups.

For the next part, consider |NCG(x)|. It satisfies the following identity:

|NCG(x)|= |N | · |CG(x)|
|CN (x)| .

Now

kN (x) = |G :NCG(x)|

= |G| · |CN (x)|
|N | · |CG(x)|

= |G : CG(x)|
|N : CN (x)|

and thus kN (x) = 1 if and only if |xN |= |xG|. But, since xN ⊆ xG, it must be the

case that xN = xG and thus xG is non-split.

We begin by noting that eN ≥ 0 since cN (x) and kN (x) are both greater than 1.

This brings us to our first result:
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Theorem 6.3. Let G be a finite group with normal subgroup N . The parameter

eN = 0 if and only if CG(x)≤N for some x ∈G. In particular, eN > 0 if N

contains no centralizers CG(x) for any x ∈G.

Proof. Suppose eN = 0. Then there exists an x ∈G such that

(cN (x)−1) ·
√
kN (x) = 0. Since kN (x)≥ 1, we must have cN (x) = 1. Then

CG(x) = CN (x) and CG(x)≤N . Reversing this chain of logic gives the converse.

Zero is the minimum value eN can take since both cN (x) and kN (x) are greater

than or equal to 1 and eN is non-decreasing with respect to both cN (x) and kN (x)

(see the previous chapter for a discussion of this; the argument is the same). The

next smallest value of eN is 1. For eN > 0, we must have cN (x)≥ 2. Since eN is

non-decreasing with respect to kN (x), we may conclude that eN = 1 is the smallest

non-zero value eN can take. This mirrors the situation with the non-relative e in

that the values eN are restricted to only a countably infinite subset of the reals (the

values of eN are indexed by pairs of integers).

There are many pairs (G,N) with eN = 0. Since the parameter is defined as a

minimum, if N contains any centralizers, it must fall into this class of groups.

Notably this includes Frobenius groups which were ubiquitous in the last chapter.

This gives further evidence that the relative eN is distinct from the non-relative e.

The next theorem continues our classification of specific values of eN and

considers the case when eN = 1.

Theorem 6.4. The parameter eN = 1 if and only if |G :N |= 2 and xG is non-split.

Proof. Suppose eN = 1. Then there exists an x ∈G such that

(cN (x)−1) ·
√
kN (x) = 1. Because cN (x)−1 is always an integer and kN (x)≥ 1, it

must follow that cN (x) = 2 and kN (x) = 1. By Lemma 6.2 then, xG is non-split.
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Also, we have |G :N |= |CG(x) : CN (x)|= 2 since

1 = kN (x) = |G :NCG(x)|

= |G :N |
|CG(x) : CN (x)| .

Now, let |G :N |= 2 and xG = xN . Then kN (x) = 1 by Lemma 6.2. We may

infer then that 2 = |G :N |= |CG(x) : CN (x)|= cN (x). Thus, eN = 1.

One example giving eN = 1 is G=N ×〈t〉 for any group N and where t2 = 1.

Then t is in the center of G and so, for any x ∈G, xN = xNt. We infer from this

that xN = xG and so all the conjugacy classes of G are non-split. Since |G :N |= 2,

the previous theorem gives eN = 1 for (G,N).

The next value of interest is
√

2. Let G=D8 and N = Z(D8). Then

|G :N |= 4. Since all conjugacy classes of G are either of size 1 or size 4, we know

that each non-central element of G has centralizer of order 4. Then we may

conclude that cN (x) = 2 for x ∈G−N and eN =
√

2 for (G,N).

The relative parameter can also take on the value
√

3. Let G= A4, the

alternating group on 4 letters, and let N = 〈(12)(34)〉. Here |G :N |= 6. There are

two conjugacy class sizes other than 1: 3 and 4 [2]. The latter classes are larger but

must have centralizers of order 3 which cannot intersect N non-trivially. The former

class, let us denote it xG consists of all “double transpositions” of A4 and yields

cN (x) = 2. Given that A4 has no classes of size 6, cN (x) = 2 is minimal. Then, for

(G,N), eN =
√

3.

There are no other possible values between 1 and 2. Theorem 6.4 handles the

case where cN (x) = 1 and kN (x) = 1. The preceding paragraphs handle the

cN (x) = 2, kN (x) = 2 and the cN (x) = 2, kN (x) = 3 cases respectively. All other

choices for these terms imply eN ≥ 2.
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Theorem 6.5. If eN = p for a prime p, then either:

1. |G :N |= p+ 1 and some conjugacy class xG of G is non-split.

2. |G :N |= 2p2 and some conjugacy class xG of G is split.

Proof. Let eN = p. There exists an x ∈G such that (cN (x)−1) ·
√
kN (x) = p. Since

cN (x)−1 is an integer and kN (x)≥ 1, both cN (x)−1 and
√
kN (x) must be factors

of p (i.e., integers whose product is p). Then we may infer, because p is prime, that

either:

1. cN (x)−1 = p and
√
kN (x) = 1 or

2. cN (x)−1 = 1 and
√
kN (x) = p.

Case 1

Suppose cN (x) = p+ 1 and kN (x) = 1. By Lemma 6.2, xG = xN . All that

remains to be shown is the index of N in G. We have

1 = kN (x) = |G :N |
|CG(x) : CN (x)| = |G :N |

p+ 1 .

Then |G :N |= p+ 1.

Case 2

Suppose cN (x) = 2 and kN (x) = p2. Consider kN (x):

kN (x) = |G :N |
cN (x) .

Then |G :N |= kN (x) · cN (x) = 2p2. Also, since kN (x)> 1, xG 6= xN and xG is

split.
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The former case is satisfied by certain direct products. Let G=N ×A where N

can be any group and A is abelian of order p+ 1 for a prime p. Then |G :N |= p+ 1

and A≤ Z(G). Thus, for x ∈G, xN = xNa for a ∈ A. Because all cosets of N

produce the same orbit via conjugation, xG = xN . We know then that all conjugacy

classes of G are non-split with respect to N and so eN = p for (G,N).

For the latter case, we consider another construction. Let G=N ×H where N

is abelian and H is generalized dihedral of order 2p2. Then N ≤ Z(G). We see that

xH = xHn for x ∈G and n ∈N and conclude, as before, that xH = xG for all x ∈G.

Note that |(hn)H |= |hH | for h ∈H and n ∈N . Without loss of generality then, we

can assume that for some h ∈H, eN = (cN (h)−1)
√
kN (h). Also, CG(h) =NCH(h)

so

cN (h) = |CG(h) : CN (h)|= |NCH(h) :N |= |CG(h)|.

Now,

eN = (cN (h)−1) ·

√√√√ |G :N |
cN (h)

= (|CH(h)|−1) ·
√
|H : CH(h)|. (6.1)

We recognize (6.1) as being equivalent to the non-relative parameter for H. By

Theorem 5.3 then, eN = p.



APPENDIX A: The Largest Conjugacy Class of the Symmetric Group

Conjugation in the symmetric group is well-understood. Here we build off the

conjugation properties of Sn and show that its largest conjugacy class is that of the

(n−1)-cycles.

To begin, we review a few basic facts about Sn.

Theorem A.1 ([13]). Disjoint cycles of Sn commute.

Theorem A.2 ([13]). Every permutation in Sn has a cycle decomposition that is

unique up to ordering of the cycles and up to a cyclic permutation of the elements

within each cycle.

Theorem A.3 ([13]). Suppose σ ∈ Sn, and let m1,m2, . . .mr be the distinct integers

(including 1 if applicable) in the cycle type of σ, and let there be ki cycles of order

mi in σ. (Thus ∑kimi = n.) Then σ has conjugacy class of size:

n!∏r
i=1(ki!mki

i )
.

The previous theorem tells us precisely the size of each conjugacy class in Sn.

However, its form does not make it amenable to standard analysis techniques.

Instead, we take another approach.

Lemma A.4. Let σ ∈ Sn. Then |CSn(σ)| ≥ n−1.

Proof. If σ is the identity, it has centralizer equal to Sn. Assume then that σ ∈ Sn is

a non-identity element. Then the permutation σ has a unique cycle decomposition

40
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into m cycles σ = σ1σ2 . . .σm (not including 1-cycles) where each σi is disjoint from

σj for all j 6= i. Let ki denote the cycle length of σi and κ=∑m
i=1ki. Note that

κ≤ n. Consider the elements that commute with σ: Each subgroup 〈σi〉 commutes

with σ as does each cycle disjoint from σ. Together then, we have

|CSn(σ)| ≥
(
m∑
i=1

ki−1
)

+ (n−κ) = n−m

where the summation does not count identity elements. But then σ also commutes

with

σ1σ2 . . .σm,

σ1σ2 . . .σm−1,
...

σ1σ2

which yields another m−1 elements not already counted. Thus |CSn(σ)| ≥ n−1.

Corollary A.5. The symmetric group Sn can have no conjugacy class larger than

n!/(n−1).

Theorem A.6. The largest conjugacy class in Sn is of size n!/(n−1).

Proof. Let σ ∈ Sn be an (n−1)-cycle. Its cycle type is [(n−1),1] and it has only

one cycle of each order. Then σ has class size:

n!
(1!(n−1)1)(1!11) = n!

n−1

by Theorem A.3. By Corollary A.5, this is the largest conjugacy class.
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