
DASPPS - DISTRIBUTED ANSWER-SET PROGRAMMING WITH P S +

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Jason High, M.A.

San Marcos, Texas

May 2005

TABLE OF CONTENTS
LIST OF TA BLES... v
LIST OF F IG U R E S.. vi

CHAPTER Is INTRODUCTION 1

CHAPTER 2: ANSW ER SET PROGRAMMING 4

CHAPTER 3: LOGIC P S AND ITS EXTENSION PS+ 12
3.1 S y n ta x .. 12
3.2 S em an tics ... 14
3.3 Computing M o d e ls .. 15
3.4 The Logic P S + .. 16
3.5 Processing models of P S + theories ... 17
3.6 Theory Reduction............................ 18

CHAPTER 4: THE ASPPS SYSTEM 21
4.1 Data File S y n ta x ... 21
4.2 Rule F ile ... 22
4.3 Processing Theories.. 24

CHAPTER 5: EXISTING DISTRIBUTED SAT SOLVERS 28
5.1 G ridSA T.. 29
5.2 Parallel S a tz .. 32
5.3 N A G S A T ... 34

CHAPTER 6: SEARCH SPACE PARTITIONING 38

CHAPTER 7: DASPPS SYSTEM DESIGN 43
7.1 Session In itia liza tio n ... 45
7.2 Sub-theory Assignm ent... 46
7.3 Term ination .. 46
7.4 M essaging... 47

7.4.1 I N I T .. 48
7.4.2 SUBM IT.. 49
7.4.3 REQUEST .. 49
7.4.4 _ RELEA SE.. 49
7.4.5 R E P L Y .. 50

iii

CHAPTER 8: DASPPS USAGE 51
8.1 Installation and Configuration... 51
8.2 U s a g e 51

8.2.1 Running the C lie n t... 53
8.2.2 Running the Master .. 53

CHAPTER 9: TEST RESULTS 54
9.1 Results for n -q u e e n s ... 54
9.2 VLSI d e s ig n .. 56

CHAPTER 10: CONCLUSION 59

CHAPTER 11: FUTURE WORK 60
11.1 A u th en tica tio n .. 60
11.2 Client-side Involvement... 61

BIBL IO G R A PH Y ... 63

IV

LIST OF TABLES
Table 7.1 Summary of Message T y pes... 48
Table 9.1 Test results for n-queens... 55
Table 9.2 Test results for VLSI chip d e s ig n ... 58

v

LIST OF FIGURES
Figure 2.1 Graph for 3-coloring graph coloring problem..................................... 5
Figure 2.2 Data-constraint separa tion ... 10
Figure 4.1 Sample data file from the psgrnd module.. 26
Figure 4.2 Davis-Putnam-Logemann-Loveland A lg o rith m 27
Figure 6.1 Partitioning is not dependent on depth of search............................. 41
Figure 7.1 Daspps flow co n tro l.. 44

vi

CHAPTER 1

INTRODUCTION

Propositional satisfiability (SAT) is an important problem in both theoretical and

practical computer science. Practical application of the SAT formalism can be found

in testing and verification, FPGA routing, path delay analysis, and VLSI. Because

SAT is NP-complete, computational resource availability and utilization represents a

significant problem area in the design and implementation of efficient SAT solvers.

Several efforts have been made to distribute existing sequential solver heuristics to

capitalize on latent CPU cycles of available networked machines. While a noticeable

speed up has been achieved by a number of these distributed solvers, several problems

become apparent:

1. Many of the leading solver heuristics use a shared database of partial solutions.

Distributing these heuristics results in costly communication overhead between

nodes. For example, the GradSAT [Chrabakh and Wolski, 2003a] distributed

solver relies upon shared learned clauses which must be sent to all nodes as

they are produced.

2. Because the run-time is not a function of problem size, it is difficult to efficiently

partition the problem between nodes.

3. Many of the leading distributed solvers employ a communication framework

1

2

which limits scalability. Parallel Satz [Jurkowiak et al., 2001], for example, re­

lies upon the Network File System (NFS), which limits scalability to a local

area network.

Development in the area of distributed logic solvers has, with the exception of

NAGSAT [Forman and Segre, 2002], taken an existing sequential solver, such as Satz

[Li and Anbulagan, 1995] or zchaff [Moskewicz et al., 2001], and modify the sequen­

tial solver to take advantage of networked resources. Recently, a new sequential

solver, aspps [East and Truszczynski, 2001a], has been developed, based on the ex­

tended logic of propositional schemata, denoted P S + [East and Truszczynski, 2001b].

Special constructs within the logic P 5 +, such as explicit representation of cardinality

constraints, allow the aspps system to significantly reduce the problem search space.

In addition, search space partitioning results in independent sub-theories. These two

features suggest that the aspps system is a prime candidate for parallelization.

In this thesis, we seek to address the three common problems found in distributed

solvers. We design and implement a distributed solver based on the sequential aspps

solver, and call it daspps . The search algorithm of the daspps system is designed to

take advantage of the special constructs of the logic P S + and exploit these features

in a distributed framework. In chapter 9 we compare the performance of daspps with

the sequential aspps solver and show that a distributed aspps solver is a significant

development in the field of distributed SAT solvers.

This thesis is organized as follows. Chapters 2 and 3 present background material

on answer-set programming and the logic P S +. Chapter 4 discusses the aspps sequen­

3

tial solver. Chapter 5 surveys the distributed solvers currently available. Chapter 6

presents the current technique of segmentation used by the daspps system. Chapter

7 and 8 present the current implementation details of the daspps system. Chapter

9 presents the comparative runtime results between the daspps and aspps systems.

Chapter 10 gives some concluding remarks on the results of this thesis. Chapter 11

discusses the two primary issues affecting the scalability of the existing system.

CHAPTER 2

ANSWER SET PROGRAMMING

Answer-set programming (ASP) is a framework for declarative programming which

emerged from the area of logic programming with stable logic semantics

[Gelfond and Lifschitz, 1988]. In ASP, a problem is represented as a theory in some

logic so that models of the theory represents solutions to the problem

[East and Truszczynski, 2004], Finding models, rather than proofs, is the primary

task and is performed by an answer set solver, such as smodels

[Niemela and Simons, 1997] or dlv [Citrigno et ah, 1997]. Problems such as search,

planning, and diagnosis can be represented as logic programs so that stable models

represent solutions. This chapter reviews the basic tenets of the ASP formalism.

An ASP formalism is a declarative programming formalism where programs are

constructed from theories whose models represent problem solutions. A formalism

in the ASP paradigm is a formalism based on an underlying formal language with

well-defined semantics. Given a formalism F of a logic language and a program P,

the semantics of F defines a mapping to a program P of F, bound by the seman­

tics of F, to a collection of sets. These sets are the answers sets of program P

[East and Truszczynski, 2004],

The ASP framework has been shown to be well suited for search problems

[East and Truszczynski, 2004]. A search problem II is defined

4

5

[Garey and Johnson, 1979] as a set Du of finite instances such that for each instance

I € Du there exists a finite set Su(I) of solutions for I. An algorithm is said to

solve a search problem II if, given as input any instance I € Dn , it returns failure if

S u (I) is empty, otherwise it returns at least one solution s , s € Sn(/). Consider, for

example, the A;-graph coloring problem. Given an undirected graph G = (V, E) and

a set of k colors, is there a fc-color assignment to vertices such that no two vertices

of the same color are joined by an edge. The solution set consists of all satisfying

fc-color assignments.

2 # ------------------------* 3

• l 4

Figure 2.1: Graph for 3-coloring graph coloring problem.

The general principle of the ASP paradigm is that models of the theory represent

solutions to the problem instance. This principle is applicable to any logic system

where the concept of models is well-defined [East and Truszczynski, 2004], Proposi­

tional logic offers one such example, in which truth assignments correspond to models.

As an example, consider the 3-color graph coloring problem for the graph in Figure

2.1. To find solutions to the problem, we find all models which satisfy a given theory.

To construct a propositional theory we begin by populating the fact base. First, we

define the graph’s four vertices: 1,2,3, and 4

1. vertex(l)

2. vertex(2)

3. vertex(3)

4. vertex(4)

Next, we define the edges connecting the vertices of the graph

1. edge(l,2)

2. edge(2,3)

3. edge(3,4)

Finally, we define the three colors: red, blue and green.

1. color (red)

2. color(blue)

3. color (green)

Having defined the fact base, we now define the constraints of the problem. First, we

guarantee that each vertex, 1-4, is assigned at least one color

1. colored{ 1, red) V colored(1, blue) V colored{ 1, green)

2. colored(2, red) V colored(2, blue) V colored(2, green)

3. colored(3, red) V colored^3, blue) V colored(3, green)

4. colored^4, red) V colored(4, Wue) V co/ored(4, green)

Next, we ensure that each vertex is assigned at most one color

6

1. co/ored(l, blue) A colored(l,green) —» _L

7

2. colored(l, green) A colored{ 1, red) -4 X

3. colored(1, red) A co/ored(l, blue) -4 X

4. colored(2, blue) A colored(2, green) -4 X

5. colored^2, green) A colored(2, red) -4 X

6. colored{2, red) A colored(2, blue) —> _L

7. colored(3, blue) A colored(3, green) -4 X

8. colored(3, green) A colored(3: red) -4 X

9. colored(3, red) A colored(3, blue) -4 X

10. colored^4, blue) A colored(4, green) —» _L

11. colored(4, green) A colored(4, red) -4 ±

12. colored(4, red) A colored(4, blue) -4 _L

Finally, we make sure that if two vertices are connected by an edge, then the two

. vertices do not have the same color assignment.

1. co/ored(l, red) A colored^3, red) —» _L

2. colored{ 1, blue) A colored(3, blue) -4 _L

3. colored(l, green) A colored(3, green) -4 _L

4. colored(2, red) A colored(4, red) _L

5. colored(2, blue) A colored(4, blue) -4 _L

6. colored(2, green) A colored(4, green) -4 X

To find solutions to the specific theory we find all models which represent a valid

coloring scheme for the problem instance. Given below are the 24 answer sets which

yield valid color schemes.

1. coloredii, g) A colored{2, ft)

2. coZored(l, <7) A colored(2,6)
3. co/ored(l, r) A colored(2, ft)

4. colored(1, r) A colored(2,6)
5. color edil, g) A colored(2, è)

6. co/ored(l, 5) A colored(2, ft)

7. co/ored(l, r) A colored(2, ft)

8. co/ored(l, r) A colored{2, ò)

9. co/ored(l, ft) A colored{2, <7)
10. colored{ 1,6) A colored(2,5)
11. co/ored(l, r) A colored(2, g>)

12. colored{ 1, r) A colored{2, <7)
13. co/ored(l, ft) A colored{2,5)
14. co/oree?(l, ft) A colored(2, g)

15. co¿oreo£(l, r) A colored{2, g)

16. co¿ored(l, r) A colored{2,5)

17. colored(1, ft) A colored{2, r)

18. colored(1, ft) A colored(2, r)

19. colored(l,g) A colored(2,r)

20. co/ored(l, <7) A colored{2, r)

21. colored(1, ft) A colored(2, r)

22. colored(1, ft) A colored{2, r)

23. colored(l,g) A colored(2,r)

A colored(3,5) A colored(4, ft)

A colored^, g) A colored{4, r)

A colored(S, g) A colorediA, ft)

A coloreáis, g) A colorediA, r)

A coloreáis, r) A colorediA, ft)

A coloreáis, r) A colorediA, g)

A coloreáis, r) A colorediA, ft)

A coloreáis, r) A co¿ored(4, g)

A coloreáis, ft) A colorediA, g)

A coloreáis, ft) A colorediA, r)

A coloreáis, ft) A colorediA, g)

A coloreáis, ft) A colorediA, r)

A coloreáis, r) A colorediA, ft)

A coloreáis, r) A colorediA, g)

A coloreáis, r) A colorediA, ft)

A coloreáis, r) A colorediA, g)

A coloreáis, ft) A colorediA, g)

A coloreáis, ft) A colorediA, r)

A coloreáis, ft) A colorediA, g)

A coloreáis, ft) A colorediA, r)

A coloreáis, g) A colorediA, ft)

A coloreáis, g) A colorediA, r)

A coloreáis, g) A colorediA, ft)

9

24. colored^ 1, g) A colored(2, r) A colored(3, g) A colored(4, r)

The above encoding illustrates a problem in using propositional logic as an ASP

formalism. For a given search problem II, a specialized program, Pn must be created

for each instance of II. That is, the program theory is tied to each specific instance.

As such, the use of propositional logic and accompanying SAT solvers are limited in

their applicability as a general-purpose tool [East et al., 2004].

The above propositional theory may be generalized to extend the theory allowing

a representation of ¿-colorability. Let graph G = (V, E) be an undirected graph,

where V is a set of vertices and E is a set of edges. Further, let C be a set of colors,

where color E C. Let A be the set of color assignments defined as propositional

predicate colored(v, c) G A, with the meaning that vertex v is assigned the color c.

The theory has three clauses

1. T —> colored{vt, c*) V ... V colored(vt, Ck), vt G V, c, G Cf or l < i < k

2. colored(vu ct) A colored(vt, c3) —> ±, vt € V, ct, c3 G C ,i ̂j

3. co lo red ^ , c) A colored(v3:c) —)■ _L, (ua, v3) £ E ,c € C

This generalization offers the benefits that the constraints of the problem are sepa­

rated from a particular problem instance. It also show us that, in order for a for­

malism to support the separation of constraints and data, the formalism must allow

constraints to be described without respect to a specific data instance.

One such formalism which supports the separation of data and constraints is the

stable logic formalism [Gelfond and Lifschitz, 1988]. The stable logic formalism is a

declarative logic semantics which allows negation and whose concept of model is that

10

Figure 2.2: Data-constraint separation

of a minimal model, i.e. a proper subset of a stable model is not itself a stable model.

Note that this differs from the concept of model in propositional logic. Let graph

G = (V, E) be an undirected graph where V is a set of vertices and E is a set of

edges. Further, let C be a set of colors, where color c* G C. Let A be the set of color

assignments. We then define a propositional predicate colored(v,c) € A, such that

vertex v is assigned the color c. We further define diffcolored(v, c) € A.

1. color ed(X, A) d i f f color ed(X, A) A vertex(X) A color (A).

2. d i f f color ed(X, A) <— color ed(X, B) a A ^ B A vertex(X) Acolor(A) Acolor(B).

3. _L <- colored(X, C) A colored(Y, C) A edge(X, Y) A color(C).

The above three clauses express the required constraints for the /c-coloring problem

using the stable logic formalism. The first clause assigns to vertex X a color A

only if not previous assigned a different color. This clause, together with the second

clause, guarantee only one color assignment for each vertex. The third clause prevents

connected vertices from begin assigned the same color.

The separation of data and program (Figure 2.2) allows a single program to be

encoded which is capable of solving different problem instances, thus allowing for a

general solver mechanism. Fundamental to this concept of generalization through

11

separation using a given formulation is uniformly solving a search problem. A given

ASP formalism is said to uniformly solve search problems if, for a search problem II

there is

1. an effective encoding, Enn, for I € Du in the language of F and

2. a finite program defining II

which yields a one-to-one polynomial time mapping from the answer sets of Tn U

E du(I) to the solutions of II [Garey and Johnson, 1979].

This chapter discusses the basic concepts of answer-set programming. The next

chapter presents the logic P S + in the context of the answer-set programming paradigm.

CHAPTER 3

LOGIC PS AND ITS EXTENSION PS+

In chapter 2 we discussed the basic concepts of the answer-set programming paradigm.

Recently [East and Truszczynski, 2001b], the logic P S and its extension P S + have

been proposed which offers an alternative ASP formalism. The logic of P S is a

modification of the logic propositional schemata. A primary concept in the logic

P S is the data-program pair (D ,P). This concept is based upon the separation of

a problem representation and a particular instance of the problem, pursuant to the

idea of a generalized computational mechanism. This chapter provides an overview

of the logic P S and its extension P S +.

3.1 Syntax

The syntax of logic P S is a subset of first-order logic without function symbols

[East and Truszczynski, 2001b]. As such, the logic P S consists of the following

1. infinite denumerable sets R, C, and V of relation, constant, and variable sym­

bols, respectively.

2. symbols _L and T, interpreted as false and true, respectively.

3. basic logic connectives A (conjunction), V (disjunction), and —> (implication)

4. quantifiers 3 (existential) and V (universal)

12

13

5. punctuation symbols ‘(’, ') ’ and

Constants and variables are the only terms, and constants are the only ground terms.

Expressions of the form

P (h ,t2, • • • > tn)

are atoms, where p is an n-ary relation symbol from R, and t t, 1 < i < n are terms.

An atom is said to be grounded if all of terms belonging to the atom are ground.

The use of existential quantifiers is restricted in the logic P S. Consider the ex­

pression

3A}, A2, • • • j A/, p{t\, ¿25 • • • 5 tn)

where (ii, ¿2, • • •, tn) is a set of terms, and X i ,X 2, . . . , A* are distinct variables ap­

pearing in the set (ii, t2, • • •, tn) exactly once. Such an expression is an existential

atom, or e-atom. Existential quantifiers are restricted exclusively to the syntax of

e-atoms. The notation of the e-atom

3Ai, A2, • • • , A/. p(t\i ¿2; ■ ■ ■ i tn)

takes a simplified syntax of the form

P(t'i,t'2,...,t'n)

where t[= tt if tt is not within the variable set Ai, A2, . . . , A*, and U = lJ otherwise.

For example, the e-atom 3A p(A, F) is simplified to p(_, Y).

In the logic P S, rules are also referred to as implications and are the only allowed

formulas. Each rule takes the form

14

V-Xi, X 2, ■ , X ^ A i A A 2 A . . . , Am —$■ B\ V .B2 V — V B n)

where Ai, A2, . . . , A m are atoms and B x, B 2, . . . , B n are either atoms or e-atoms, and

X x, X 2, . . •, Xk are variables in A x,A 2, . . . , A^n and B x, B 2, . . . , B n. Either m and n

may be zero. If m = 0, then the symbol T replaces the absent conjunct in the

antecedent. Likewise, if n = 0, then the symbol _L is used to replace the absent

disjunct in the consequence. A collection of rules that contain at least one constant

symbol is a theory.

3.2 Semantics

In the logic P S , a theory T is considered a representation of the Herbrand class of

models of T. This is distinct from the first-order logic interpretation of theories as

logical consequences of T. Before discussing this class of models used by logic P S,

let us review some preliminary details (these may be found in any logic text).

A sentence is said to be universal if it takes the form

VsijVafc

so that ip is a formula in the language without quantifiers and where all variables in

ip are among x x,X2, ..., x^. A set of universal sentences is a universal theory. Given

a theory T, a Herbrand universe of T is the collection of ground terms that can be

constructed from the constraints and function symbols of T. For example, consider

the following theory T

1. p(a)

15

2. p (X) ^ p (Y)

The Herbrand universe would be {a}, as ‘a’ is the only constant symbol. The Herbrand

base is the collection of ground atoms that can be constructed from the ground terms

and predicates of T. For the above theory T, the Herbrand universe is {p(a)}. The

Herbrand models of T is any subset of the Herbrand base of T. Continuing with our

example, the Herbrand model is (p(a)}.

An important feature of the logic P S is that it is nonmonotonic. For example, let

theory Ti =

1. T —»• p(a)

2. q{o) —V _L

3. p(a) ->• q(_)

and let theory T2 = Ti U {T —> p(b)}. For Ti, no Herbrand models exist because

the Herbrand universe {a} does not satisfy the third rule in Ti for the standard

interpretation of implication. T2, however, does have a Herbrand model, (p(a), p(b)},

which is unaffected by T.. For further discussion, see [East and Truszczynski, 2004].

3.3 Computing Models

Computing models in the logic P S requires two steps. Given a PS-theory T, we first

ground T to a grounded propositional theory Tgrnd. By propositional grounding, it is

meant the following. Given a theory T, for each rule r, r G T, in the form

A i A A 2 A . . . A A m P i V B 2 V . . . V B n

16

we define rd to be

A\5 A A 2S A ... A A mS —y V B 2S V ... V B nS

where all atoms A t, 1 < i < m are not e-atoms. We then define the ground theory

Tgmd t° include all rules rS, where r € T and 5 is the ground substitution containing

all variables in r [East and Truszczynski, 2004], Second, we compute models of T by

computing models for Tgrn<i.

A data-program pair is defined as the pair (D ,P), where D is a finite set of ground

atoms resenting an encoding of input data, and P is a finite collection of rules serving

as a declarative specification of the problem. This pairing of data and rules together

represents a specific problem instance. The term data predicate is used for all relation

symbols in atoms of D. Likewise, we use the term program predicate to refer to all

relation symbols appearing in P.

3.4 T he Logic PS+

From the viewpoint of a programming formalism, the logic P S is limited. To en­

hance the effectiveness of the logic P S , it has been extended to support higher-level

constraints, such as cardinality. Building upon the logic P S , this extension is called

PS+.

By a propositional cardinality atom, it is meant

m{pi,P2,-,Pk}n

where both m and n are non-negative numbers, representing the lower and upper

bound of the constraint, respectively. Either m or n, but not both, may be absent.

17

3.5 P rocessing m odels o f P S + theories

Similar to the two-step process of computing models with stable logic programming

(see chapter 2), obtaining solutions from P S +-theories is a two-step procedure. Given

a data instance and program pair T, the first step is to ground T to obtain a propo­

sitional theory, Tg r n The ground theory Tgrn(i is then used to compute models of

T.

Grounding in logic of P S + is similar to the concept of grounding in first-order

logic. Consider the following. A sentence is said to be universal if it takes the form

Vrci,Vx2, ...,Vxk(p

so that tp is a formula in the language without quantifiers and where all variables

in cp are among x i ,x 2, ..., xk. A set of universal sentences is a universal theory. The

semantics for universal theories can be obtained by lifting propositional semantics to

the general predicate case through grounding. Let (p be a universal sentence of the

form

\/xu \/x2, ...,Vxk(p

where (p is a formula without quantifiers. By propositional ground of cp, it is meant

a collection of all formulas

(p{xi/tu ...,xk/ t k),

where t i , . . . , tk range over all ground terms in the Herbrand universe and

x l/ t l

18

is the substitution of a ground term tt for variable x%. For a universal theory T, the

propositional ground of T is defined as the union of the propositional ground of all

universal sentences in T. Consider the following theory, T,

1. p(a, b) -► q(c)

2. q (X) ^ p (. ,X)

Clause (1) is already grounded. It contains no variables but does contains three

constants: a, b, and c. Clause (2) contains the variable X . For clause (2), the three

constants in clause (1) will result in three ground substitutions, S , where S\ = X/a.

¿2 = X/b. S3 = X/c. Accordingly, we have the following grounded theory, Tgrntj.

1. p(a, 6) ->• q(c)

2. q(a) —> p(a, a) V p(b, a) V p(c, a)

3. q(b) ->• p(a, b) V p(b, 6) V p(c, 6)
4. <7(c) —>• p(a, c) V p(£>, c) V p(c, c)

3.6 Theory Reduction

While the ground theory for the above theory is small, the size of a grounded theory

for any non-trivial problem can be prohibitively large in terms of computational

requirements. Reduction of the ground theory may be obtained by noting that any

propositional theory that has the same models of its grounding may be used in its place

[East and Truszczynski, 2004]. Furthermore, truth assignments of ground atoms built

upon predefined relation symbols may be evaluated during grounding. As such, theory

reduction may be obtained in the following cases:

19

1. If A appears in the consequence of the clause and is true, the clause is removed.

2. If A appears in the consequence of the clause and is false, A is removed from

the consequence.

3. If A appears in the antecedent of a clause and is true, A is removed from the

body.

4. If A appears in the body of the clause and is false, the clause is removed.

During grounding, these reductions may further yield truth assignments, and the

process is repeated. Consider the case that a rule consists of a single atom. If this

atom appears in the consequence of the rule, the atom must be assigned true and the

clause is removed. If the atom appears in the rule body, it must be assigned false and

the clause is removed. Now consider the case of a forced cardinality atom of the form

m {p1,p2, ■ ■ ■ ,Pk}n

If m atoms has been assigned true, then all remaining unassigned atoms must be as­

signed false. This process is continued while new atoms with forced tru th assignments

are found. The result of the completed process is referred to as the ground core.

Once a grounded theory is constructed, the second step in computing models is to

search for models of the theory. Models of Tgrrui are obtained by using a propositional

solver. However, the size of theories can be huge, especially in the case of cardinality.

In the logic P S +, cardinality has direct representation resulting in a comparatively

compact ground theory. These theories, however, which maintain the structure of

cardinality atoms can not be processed by ‘off-the-shelf’ propositional solvers. As

20

such, the next chapter presents the aspps system, which is designed to process P S +-

theories and which can take advantage of direct cardinality constraints.

CHAPTER 4

THE ASPPS SYSTEM

The aspps system is an answer set programming system based on the logic P S +

[East and Truszczynski, 2002]. This system consists of two modules. The psgrnd

module is used to compute theories given a rule and a set of data files. The module

aspps computes models for the grounded theory produced by psgrnd. As discussed

in chapter 3, a P S + theory consists of a data-program pair (D ,P). D is a set of

ground atoms representing an instance of the problem, and P is a set of P S + clauses

representing the constraints of the problem. This chapter gives an overview of the

aspps system.

4.1 Data File Syntax

An atom statement is terminated by a single V character. Comments may be included

by a ’%’ character delimiter, and continue until the end-of-line. Blank lines are

ignored. As an example, consider the k-coloring problem. Given a graph G and an

integer k , can we color the graph with k colors in such a way that no two vertices are

connected by an edge of the same color.For a 3-coloring problem, a possible data file

is given below (line numbers are included only to aid readibility)

1. color(red).
2. color(blue).
3. color(green).

21

22

4. vertex(1).
5. vertex(2).
6. vertex(3).
7. vertex(4).

8. edge(l,3).
9. edge(2,3).
10. edge(4,1).

Lines 1-3 defines three available colors: r (red), b (blue), and g (green). Lines 4-7

defines the four vertices of the input graph. Lastly, lines 8-10 specifies the edges of

the input graph. As a syntactic convenience, data predicates may also be defined by

unary predicates. For example, the vertex predicates in the example above may also

be written

vertex(1..4)

The aspps system also allows constants to be defined at grounding. As such, the color

data predicate may be defined

color(l..k)

where A; is a constant defined on the command-line of psgrnd . Each occurrence of

the constant k is replaced by the value specified on the command-line.

4.2 Rule File

A rule file contains the constraints of the problem instance. Only one rule file is

permitted for each instance. Each rule file consists of two parts. The first part

is the preamble. In the preamble, program predicates and variables are declared

23

which restrict the way the program predicates are grounded. A program predicate is

declared using the pred keyword and take the following form

p re d name(typei, type2, t y p e k).

where p re d is the predicate keyword, name is the program predicate and

typez are data predicates .

Variable declaration use the var keyword and takes the form

var type namei, name2, ■ ■ ■, namen.

where var is the variable declaration keyword, type is the data predicate, and name*

is a variable name. A complete preamble for a color-ability program is (line numbers

are added for readability)

1. pred colored(vertex,color).
2. var vertex X,Y.
3. var color K,C.

where colored is a program predicates, and vertex and color are data predicates.

Following the program preamble are the clauses which define the constraints to

the problem instance. Note that conjunction is written using the disjunction with

the ‘I’, and implication with the Continuing with the graph 3-coloring example,

a possible set of constants may be

4. colored(X,red) I colored(X,green) I colored(X,blue).
5. colored(X,K), colored(X,C), K != C ->.
6 colored(X,K), colored(Y,K), edge(X,Y) ->.

Line 4 states that each vertex, X , is assigned at least one color, red, blue, or green.

Line 5 states that a contradiction is reached if a vertex, X , is assigned two different

24

colors. Finally, line 6 states that a contradiction is reached if the same color is assigned

to two vertices connected by an edge.

As defined above, the rule file, while correctly representing the problem, does not

take advantage of some of the built-in constructs of P S +. As discussed in chapter 3,

the logic of P S + introduced the notion of the existential-atom. The disjunction in

line 4, in the above example, could be written

colored(X,_).

In addition to the use of e-atoms, the modeling concept of the cardinality atom, which

has a direct representation in the aspps system, can be used to rewrite lines 5-6 as

l{colored(X,_)}l.

In addition, the aspps system allows for several predefined predicates and function.

Available predicates symbols include the equality operator = = , the arithmetic com­

parators < = , > = , < and >, and the arithmetic operations + , —, * ,/. Available func­

tion symbols include abs() (absolute value), mod(N,b), m a x(X ,Y) and m in (X ,Y).

All of these symbols are assigned their standard interpretation.

4.3 P rocessing T heories

With the data and program files, the grounded program instance is generated using

the p sg rnd module. During the grounding process, the following tasks are performed.

First, all predefined operators are evaluated. Second, all program clauses are instan­

tiated. Third, both atoms built upon predefined predicates and data predicates are

25

simplified away. The result is a grounded theory consisting of only ground atoms built

from program predicates. The output is similar to that of DIMACS CNF format, with

the following deviations

1. The output file begins with a program header.

2. Clauses are terminated by the newline character rather than a ’O’.

3. C-atoms and Horn clauses are preserved using special notation.

Cardinality atoms are directly represented in the following form

{ l u inti, inti, . intn }

where l and u represent the lower and upper bound, respectively, of the constraint

and in ti, inti, ■■■■> intn are the integer representations of constituent ground atoms.

The required input to execute p sg rnd is a single program file, one or more data

files and optional constants passed on the command line. If no errors occurs while

reading the files and during the grounding process, a machine readable file is con­

structed. An example ground file appears in figure 4.3. Line 1 is the program header,

indicating the number of atoms, cardinality atoms, and clauses, respectively. Lines

2-5 are the direct representation of the cardinality atoms representing the single color

assignment for each vertex. Lines 6-14 are clauses where the values are the numerical

representation of the grounded atoms found in lines 15-26.

Once the grounded theory has been constructed, the aspps system uses a modified

Davis-Putnam [Davis and Putnam, 1960] algorithm to perform search.

26

1. P 12 4 13
2. 9 { 1 1 1 2 3 }
3. 9 { 1 1 4 5 6 >
4. 9 { 1 1 7 8 9 >
5. 9 { 1 1 10 11 12 }
6. 1 4 ,
7. 2 5 ,
8. 3 6 ,
9. 4 7 ,
10. 5 8 ,
11. 6 9 ,
12. 7 10 9

13. 8 11 9

14. 9 12 9

15. c 1 co lo red(l,r)
16. c 2 co lored(l,b)
17. c 3 co lored(l,g)
18. c 4 colored(2,r)
19. c 5 colored(2,b)
20. c 6 colored(2,g)
21. c 7 colored(3,r)
22. c 8 colored(3,b)
23. c 9 colored(3,g)
24. c 10 colored(43r)
25. c 11 colored(4,b)
26. c 12 colored(43g)

Figure 4.1: Sample data file from the psgrnd module.

The pseudo-code for the DPLL is given in Figure 4.2. This algorithm is based

upon unit propagation and case splitting. Input to the algorithm is a theory T and

a list of partial assignments A. Each time an unassigned variable is assigned a truth

value the program is divided into two independent sub-problems. This method is

the basis of the search-space partitioning mechanism employed by the majority of

distributed solvers (see chapter 5).

An important detail of any DPLL implementation is the heuristics implemented

to select split points. The branching heuristic currently used by aspps is as follows

27

DPLL(T,A)
T J = UnitPropagate(T,A)
if Satisfied (TO then

return satisfied
else if Contradiction (TO then

return contradiction
p = ChooseUnassignedVariables(A)
k ’ = AssignTrue(p)
if DPLL(T’,AO = satisfied then

return satisfied
else

A’ = AssignFalse(p)
return DPLL(T’,AO

Figure 4.2: Davis-Putnam-Logemann-Loveland Algorithm

[East and Truszczynski, 2004]. For each rule r, a weight is defined

W(r) = km~l

where k is a constant (currently 13), m is the minimum(L,10), where L is the maxi­

mum length of a rule, and l is the length of the rule r. The weight of an atom is the

sum of the weights of all rules in which it appears. If the atom is a cardinality atom,

the weight is the sum of the weights of unassigned atoms which appear in it.

When looking for a way to branch, the system considers all propositional atoms

that are currently unassigned. It also considers c-atoms that have been forced by

earlier assignments. If there are multiple c-atoms satisfying the conditions, it will

select one with the greatest weight. It will then generate all tru th assignments to

unassigned atoms that are consistent with a true assignment, and will use these

assignments to split the search space. Otherwise, it will branch on an atom with the

greatest weight and split the search space into two parts.

28

This chapter presents the sequential aspps solver. The following chapters discuss

the details of incorporating a distributed framework using the aspps solver. The next

chapter provides a survey of currently available distributed solvers.

CHAPTER 5

EXISTING DISTRIBUTED SAT SOLVERS

Recent research into the integration of parallel/distributed paradigms with SAT

solvers has resulted in several successful systems. With few exceptions, these dis­

tributed solvers take an existing sequential SAT solver as a solver core, and incor­

porate various parallel/distributed mechanisms. This chapter concerns itself with

distributed SAT solver systems, that is, systems which aggregate independent com­

puter systems into a single process image. Additionally, it is concerned with complete

distributed solvers, i.e. those which employ core solver systems which are guaran­

teed to find an instance of satisfiability if the problem is satisfiable, or to terminate

indicating the problem is unsatisfiable. The following is a brief overview of those

complete, distributed SAT solvers, which are readily available.

In discussing the various features of existing distributed solvers it is necessary to

clarify the terminology that will be used. The term node, resource, processor all refer

to a single computer system, with the understanding that the system is accessible

over a network. The term node is used for its clarity. The term master node is used

to refer to the system which initiates a search problem. The term client node is used

to refer to a single system acting on behalf of the master node. These two terms

combined form what is referred to as the master-client paradigm, also referred to as

the master-slave paradigm. Note that while some solvers may possess properties that

29

30

resemble a peer-to-peer architecture, all communication models considered in regards

to the master-client paradigm. This is due to the fact that while these peer-to-peer

qualities may exist, the essential roles played by both master and client nodes remain

those of the traditional understanding of the master-client paradigm.

5.1 GridSAT

GridSAT [Chrabakh and Wolski, 2003b] is a complete distributed solver based on the

zChaff [Moskewicz et ah, 2001] sequential SAT solver. It is the successor of the Grad-

SAT distributed solver. GridSAT is designed and implemented for Computational

Grid environments. Source code for the GridSAT system, or that of the GradSAT

system, is not publicly available at this time.

The GridSAT system employs a master-client communication model. Communi­

cation between nodes is facilitated by the EveryWare [Wolski et ah, 1999] message

system.

The master node performs no search space processing, but rather is responsible

for the following tasks

R esource m anagem ent: The master node is responsible for selection and monitor­

ing its set of available resources. Such information is gathered from the Grid

information system (globus mds or nws).

C lien t m anagem ent: The master node is also responsible for monitoring the state

of each client node. This allows the dynamic inclusion of client nodes during

runtime.

31

R esource Scheduling: It is the responsibility of the master node to assign a given

sub-theory to a the highest ranked client node within the its resource pool.

This includes only the selection of the client node; as will be discussed below,

requests for additional resources is a task assigned to the each participating

client node.

When the master process is invoked, it first queries the resource discovery subsystem

for a list of all available clients. Each discovered resource is initialized without data,

i.e., set to an idle state. Once initialized, each client registers with the master node

to indicate resource availability. The master node’s list of registered clients is subse­

quently prioritized according to its resource evaluation and ranking gathered from its

Grid information system, if configured, or from a pre-compiled, static index.

The first registered client is sent the entire theory by the master node. This

client will process the assigned search space until it detects that the threshold of

available resources is about to be reached. At this point, the client sends the master

node a request to split the search space. The master node, in turn, searches among

registered client pool for the highest ranked idle node. This newly selected node is

then initialized and begins direct communication with the original client node which

requested the split. These two client nodes proceed to divide the search space and

receive relevant shared clauses pertaining the the theory. Note that the master node

acts only as temporary intermediary for resource selection.

A similar exchange is performed during load-balancing, that is, the dynamic eval­

uation and balancing of resource utilization among a resource pool. If a client node

32

exceeds it allocated resources, determined by either memory usage or processing time,

it will send the master node a request to split the search space, and proceed as outlined

above.

One additional communication exchange is necessary. Because GridSAT uses

zChaff as its core solver system, it itself must handle the necessary exchange of

learned clauses among registered client nodes. The communication and exchange

of these newly learned clauses is performed by the client nodes. As learned clauses

are generated, the generating client node sends the other nodes its list. These newly

received clauses are merged into the client node’s local clause database only after the

algorithm has backtracked to the first decision level of its search space. This is a

significant necessity due to the additional communication overhead.

This process of search-space splitting and learned-clause exchange continues for

the duration of the problem processing as monitored by the master node. The fol­

lowing four cases will cause the master node to terminate:

1. All registered clients are idle. Because of the load-balancing mechanism dis­

cussed above, an idle client pool signifies that the problem instance is unsatis-

fiable.

2. A registered client finds a solution. If a registered client finds a solution within

its search space, the client will send the master node the solution. Once received,

the master will verify that the solution satisfies the problem.

3. The master node times out. A time threshold may be placed on the master

node. This mechanism is not described in detail in the available literature.

33

4. A registered client node exceeds available resources or becomes unavailable due

to a failure in network connectively, etc.

The first 3 cases are standard among distributed solvers. The last case, however, is

illustrative of GridSAT’s lack of fault-tolerance. Consequently, failure of a registered

client node results in failure of the master node.

5.2 P a ra lle l Satz

Another complete distributed SAT solver is Parallel Satz [Jurkowiak et al., 2001],

based upon the sequential solver Satz [Li and Anbulagan, 1995]. Parallel Satz is

designed for distributed problem solving within a clustered environment, i.e. a tightly

coupled pool of independent systems on a local-area network. Source code for Parallel

Satz is publicly available at h ttp ://w w w .la r ia .u -p ic a rd ie .fr /% 7 E c li/P a ra S a tz .

t a r . gz.

A simple master-slave communication model is used, employing Remote Procedure

Call (RPC) as a message passing framework. Process invocation and termination is

facilitated using the standard Unix Berkeley Remote Shell (RSH) protocol.

Working within this master-client paradigm, the master node is responsible for

the following tasks.

1. Context exchanges between slave nodes.

2. Context storage and reassignment.

3. Slave node work load evaluation.

http://www.laria.u-picardie.fr/%7Ecli/ParaSatz

34

4. Begin/Halt a problem resolution.

Likewise, tasks assigned to participating slave nodes include

1. Context exchanges with master node.

2. Search space construction from context assignment.

3. Context solicitation to master node.

4. Solution submission to master node.

All work is begun on the master node. Once all client nodes are initialized, the

master node will arbitrarily choose a slave node to begin resolution. All other client

nodes are idle. These idle client nodes will then send a work request to the master.

For each work request received, the master node evaluates the load of all client nodes

by requesting the position of their first and second remaining subtrees. The master

will send the first remaining subtree of the most heavily loaded slave to the slave

requesting work.

This form of load balancing is similar to the mechanism employed by the GridSAT

solver in that it is initiated by the client nodes. It differs from in the following

regards. Client nodes under Parallel Satz send requests when when they are idle;

such a structure insures that all well-known client nodes are actively performing a

search. It does not, however, offer load-balancing in the sense of offloading excessive

resource utilization due to problem at hand. In addition, communication is always

performed master-to-client. No communication occurs between client nodes.

The master node will halt on the following cases:

35

1. All clients are idle

2. A solution is found

Similar to the GridSAT solver, the load-balancing mechanism of Parallel Satz insures

that if all client nodes are in an idle state, then there is no more processing to

be done, indicating unsatisfiability of the theory. If a solution is found by a client

node, the master node will request all runtime information from the client nodes, and

subsequently halt all client nodes and itself. Unlike GridSAT, there is no timeout

facility available to the master node. The master will simple proceed until it is sent a

solution, halt indicating no solution is found, or is explicitly killed. Secondly, note that

client node failure does not terminate the master process, unlike GridSAT, indicating

a degree of fault-tolerance in Parallel Satz.

In fact, the matter of fault-tolerance is simplified in Parallel Satz, due to the

fact that its core solver, Satz, does not employ any look-back techniques, such as

learning. As such, the search space may be split into independent search spaces

with no common clause database. If a client node becomes inaccessible during the

processing of a search space, the master sends the failed node’s most recent search

context to an idle slave node. The search re-assignment is performed during load

balancing limiting communication overhead.

5.3 NAGSAT

Both Parallel Satz and GradSAT employ search space partitioning to facilitate dis­

tributed data process. This is not the only mechanism available to incorporate a

36

distributed framework with a sequent solver. A different approach is taken by the

distributed solver NAGSAT [Forman and Segre, 2002]. While NAGSAT is limited to

3-SAT problems, it has some unique features which makes it noteworthy.

As defined in [Segre et al., 2002] and [Paarsch and Segre, 1999], nagging is a general-

purpose, asynchronous, parallel search technique where a single master node, or pro­

cessor, performs a standard DPLL search procedure. This search process is augmented

by one or more client nodes, or naggers, each of which performs an identical search

procedures on perturbed search spaces. While NAGSAT performs a standard sequen­

tial search, unlike Parallel Satz and GradSAT, it is not based on an existing sequential

solver, but rather has its own DPLL procedure.

The process of nagging is by definition a distributed task. Nagging begins with

a single master processor alerting all available naggers to its own work on a theory.

The master node is responsible for the following tasks

1. Perform the primary DPLL search

2. Provide search state information to requesting nagger clients.

3. Incorporate search results of nagger clients into its search.

Upon invocation of its own search, the master node will initialize its client nodes

by sending the complete, original theory to each client node. Once initialized, a

nagger node will request a nag-point from the master. This begins the nagging episode

exchange. Once the nag-point is received, the nagger process transforms, using various

techniques, the search space into a perturbed, but semantically equivalent, search

37

space. This nagging process can be viewed as a race: the nagger processors try to

beat the master to a solution. This competitive cooperation between master and

nagger processes can yield the following three outcomes.

ABORT: If the master process backtracks over a previously assigned nag-point, the

master process will signal the assigned nagger to ABORT the nagging episode.

Having released the nagging episode, the nagger process enters an idle state and

subsequently requests a new nag-point from the master process.

PRUNE: Conversely, if a nagger process completes its search of its subtree, and

finds no solution, the nagger process will signal the master process to backtrack

to the nag-point, reducing the master’s search space.

SOLVE: A nagger finds a true assignment. The nagger terminates its own search

and reports the solution to the master, itself subsequently terminating the

search.

The technique of nagging has several inherent benefits that can be exploited by

a distributed framework. First, nagging does not require any explicit load balancing

mechanisms to be implemented. Second, nagging is, by its definition, fault-tolerant.

A nagger process simply performs an extension of the master processor’s search.

Consequently, a nagging process that becomes unavailable will not affect the master’s

search. This is subject, of course, to the obvious condition of failure of the master

process.

This chapter provides a survey of complete, distributed SAT solvers which are

currently available. Several problem areas become apparent in the design and imple­

38

mentation of the daspps system. First, the daspps system is to employ the technique

of search space partitioning to segment a problems search space into independent

segments. As such, an explicit load balancing system much be developed. Second,

because each sub-theory within the search space is constructed independently of the

others, fault-tolerance is an a relatively simple matter to address. However, if a client

node becomes unavailable, we do not want to lose the results of the assigned search

space. As such, a simple redundancy mechanism must be put into place. Third,

communication between nodes must be as minimal as possible. These three design

issues are addressed in the succeeding chapters.

CHAPTER 6

SEARCH SPACE PARTITIONING

The primary task of employing a distributed framework within an existing sequential

solver is the development of an efficient segmentation mechanism. The daspps system

employs a distributed search technique where the search space is partitioned into

independent sub-theories. Each of these sub-theories is then independently processed.

This technique is called search-space partitioning and is used by the majority of

existing solvers. The use of search-space partitioning within the daspps system differs

significantly from its usage in other solvers (see chapter 5). Rather than initializing

a client with the complete search problem, and split upon a specified criteria, the

daspps system dynamically partitions the search space such that each client node

receives only its assigned sub-theory. Currently, due to the difficulty of determining

partition points, client nodes perform no further partitioning, i.e., the sub-theory is

treated sequentially by the client. This chapter will discuss the distributed framework

of the daspps as it pertains to search space partitioning.

As discussed in chapters 3 and 4, the aspps system benefits from the direct rep­

resentation of cardinality atoms. In the aspps system, the grounded P S + theories

maintain the structure of the cardinality atom. A grounded P S + theory T

T = (Ci A C2 A ... A Cn)

39

40

where each clause £* has the form

C« = a\ A 02 A ... A am —V b\ V ¿>2 V ... V bT(m, r > 0)

and each a} and bk is either a cardinality atom or grounded atom. A cardinality atom

is a collection of grounded atoms such that if at least p and at most q are true then

the c-atom is true. Otherwise, the c-atom is false. Therefore, a c-atom is assigned

the value of true if the collection of ground atoms making up the c-atom have been

assigned values such that the cardinality requirements cannot be satisfied than the

c-atom is assigned the value of false. Thus the value of a c-atom can be determined

by the assignment of values to the ground atoms making up the c-atom. If a c-atom

is forced during propagation its cardinality requirements must be enforced. If the

c-atom must be true then the collection of ground atoms not already assigned must

be assigned values in such a way that the cardinality requirements are met. Likewise,

if the c-atom must be false, then the collection of ground atoms must be assigned

values which do not satisfy the constraints. A forced c-atom can be used to partition

the search-space into multiple independent sub-theories.

As an example, consider the following c-atom

1{ a b c d e }1

where the set {a,b,c,d,e} are ground atoms and the partial assignment of values

consists of {a=false,b=false}. If the c-atom is forced to true, then the theory may be

split into three sub-theories

a=false,b=false,c=true,d=false,e=false

41

a=false,b=false,c=false,d=true,e=false

a=false,b=false,c=false,d=false,e=true

Similarly, if the c-atom is forced to false, then we have all assignments which evaluate

to false

a=false,b=false,c=false,d=false,e=false

a=false,b=false,c=true,d=true,e=false

a=false,b=false,c=true,d=true,e=true

a=false,b=true,c=true,d=true,e=true

a=true,b=true,c=true,d=true,e=true

This technique is used by daspps to split the theory into independent sub-theories.

Currently, we use the ratio of assigned atoms/number of atoms to determine a split. If

the ratio is 0.01 (the value determined through testing), then the current assignment

stack is sent to a pending client node. Note that sub-theory partitioning is not,

therefore, determined by the depth of the search, but by the percentage of atoms

assigned. The actual depth of the search at which sub-theories are generated may

vary greatly because atoms may be forced. Consider, for example, Figure 6.1. If

we branch on the c-atom 1{ a b }1, we have the two partial assignment lists { a =

true, b = fa lse } and { a = fa lse, b = true }. In the case of the assignment

{ a = true, b — fa lse }, the atoms c and d are forced (to satisfy the cardinality

constraints). Atoms / and g are not forced, and we only have sub-theories following

the assignments of / and g. On the other hand, in the case of the partial assignment

42

{ a = fa lse, b = true }, atoms c, d, f , and g are all forced (to satisfy the cardinality

constraints), thus producing a sub-theory.

l{ab } 1
l{ac }1
l{c d } 1

1 {b f g } 1

(^S u b -th eo ry ^) (^ S u b - th e o ^ ^)

Figure 6.1: Partitioning is not dependent on depth of search.

Because each search space partition is independent, it is a relatively simple matter

of assigning each sub-theory to an available client node for processing. Sub-theory

assigned is performed as follows. Let N be a set of available clients, S be the set

of sub-theories available to be processed, and A be the set of existing assignments.

While S is not empty, for each available client we create the pair an = (n*, s*), where

nt G N , Sk € S, and an € A. Note that multiple clients may be assigned the same

sub-theory, such that the pairs (n,, Sk) and (n3, s*) exist. Assignments continue to be

made until either a solution is returned from a client, or all sub-theories have been

processed. If all clauses are satisfied in any of the sub-theories, then the entire theory

43

is satisfied. If a contradiction is found in a sub-theory, then that sub-theory does not

contain a solution and the client can request an additional segment. Having discussed

the segmentation design of the daspps system, the next chapter discusses the overall

structure of the communication system of daspps .

CHAPTER 7

DASPPS SYSTEM DESIGN

The design of the daspps system was motivated by three primary goals. The first is

that the system must be scalable, such that resource utilization would not be limited

to a particular subset of clients or local area network. Second, the system must be

fault-tolerant, such that failure of one client node does not affect the search of other

client nodes. Third, the system must be as transparent as possible, such that details

of distribution does not introduce imnecessary complexity.

The daspps system consists of a communication sub-system and a modified sequent

version of the aspps sequential solver. The communication sub-system implements a

simple master/client communication model, using the Berkeley sockets and POSIX

threads APIs. The master node runs a modified version of the aspps solver designed

to partition the search space and assign the sub-theories to available client nodes

(Figure 7.1).

The master node is responsible for the following tasks

• Problem session initialization and termination.

• Search-space partitioning.

• Sub-theory assignment and data transfer

• Solution retrieval

44

45

Figure 7.1: Daspps flow control

Given a grounded theory T, a session consists of (1) partitioning the search space, (2)

assignment and distribution of segments, and (3) obtaining result. W ith the current

implementation of daspps , a master node may only process one session at any one

time.

Client nodes performs the follow tasks

• Sub-theory processing

• Send solution

• Request additional data

Within a session, a client node performs a complete, sequential search on the

assigned sub-theory. If a solution is found within a given assignment, the client will

notify the master node. On the other hand, if a solution is not found, the client will

request additional work from the master. As such, once initialized, a client node will

continuously work on behalf of the master until it is released.

46

Within the context of a session, interaction between master and client may be

categorized as follows: session initialization, sub-theory assignment, and session ter­

mination. Each of these categories is described below.

7.1 Session Initialization

Session initialization of daspps clients is straight-forward. For each client node, the

master node will send an INIT request, indicating the availability of a new session.

If the client node is currently idle, i.e. not processing a current session on behalf

of another master node, it will send a REPLY/OK response, indicating that the

client node is now in a PENDING state, and will accept sub-theories from the master

client. If, on the other hand, the client node is currently performing a search on

behalf of another master node, the client will send a REPLY /BUSY to the currently

requesting node, indicating that the client node is currently unavailable. The receipt

of a REPLY/BUSY message will result in the master node removing that client from

its host list.

The master node performs no search for the current problem. As such, if, after

each client node has been queried, no clients are currently available, the master node

will abort the current session. Otherwise, if at least one client node is PENDING for

the master node, it will begin the process of search space partitioning discussed in

chapter 6.

47

7.2 Sub-theory Assignment

Once the initial client pool has been initialized, the master begins the process of

partitioning the search space. Assignment of client node/segment occurs dynamically:

as each sub-theory is generated, the sub-theory is assigned to a currently PENDING

client node. If a client node is available, the assignment is made. The sub-theory data

is transfered to the client node following a SUBMIT request, after which the client

node is marked BUSY. If, on the other hand, all nodes have been previous assigned,

i.e. in a BUSY state, the sub-theory is queued until a client node issues a REQUEST.

Once all available client nodes have been assigned, the master node itself enters

a PENDING state. If a previously assigned client node issues a work REQUEST,

the master will mark the previously assigned sub-theory as PROCESSED, indicating

no solution was obtained. If another sub-theory is available, the master node will

respond to the request with another SUBMIT request followed by data.

If a client node issues a SUBMIT request, indicating that the previously assigned

sub-theory yielded a solution, the master will accept the subsequent data and the

session will be ended.

7.3 Termination

Normal termination of a session will result in the following cases.

• A client node returns a solution, indicating satisfiability.

• All client nodes have been released, indicating unsatisfiability.

48

If a client node returns a solution, the current theory is satisfiable. All remaining

BUSY client nodes are released from the current session, and the master node halts. If

all client nodes have been released, no assignment yielded a solution, and the problem

is considered unsatisfiable and the master halts.

7.4 M essaging

Communication between master and client nodes is facilitated by simple message

passing. All messages passed between nodes consist of the following fields, followed

by optional data.

ta rg e t A 32-bit buffer containing the address and port of the master node,

ty p e An 8-bit buffer containing the message type.

flags An 8-bit buffer containing optional informational flags to augment message

type.

s ta tu s An 8-bit buffer containing status information.

d a ta len A 32-bit buffer containing the length any data following the message buffer.

The ta rg e t field is used to reference the address and port number of the master

node. This field is used by a client node when issuing either SUBMIT or REQUEST

messages. The ty p e field is used to indicate the message type. The flag field is not

currently used. The s ta tu s field is used only by a REPLY message type to indicate

the status of a previous request. The d a ta len field is used to indicate the amount

of data following the message buffer. This value is zero unless the message type is

49

Message Type Sender Recipient Description

INIT Master Client Initialize a new problem session

SUBMIT Master Client Data segment submission

Client Master Problem solution submission

REQUEST Client Master Data segment request

RELEASE Master Client Resources no longer required

REPLY - - Atomic transaction result message

Table 7.1: Summary of Message Types

a SUBMIT, in which case datalen indicates the length of the submission. Currently

implemented messages types are described below and summarized in Table 7.1.

7.4.1 IN IT

The INIT message type is sent by a master node to a client node indication the

availability of a new problem session. Replies to an INIT message are

R E P L Y / O K The client has successfully been initialized for the requesting master

node. The client is now in a PENDING state.

R E P L Y /B U S Y The client is currently working on a session for another master

node.

R E P L Y /D U P The client node has already been initialized by the requesting master

node.

50

7.4.2 S U B M IT

The SUBMIT message type may be sent by both the master and client nodes. If sent

by a master node and received by a client node, the message is used to indicate that

the following sub-theory has been assigned to the recipient node.

If received by the master node, and sent by a cached client node, the message

represents a solution submission.

7.4.3 R E Q U E S T

A REQUEST message type is sent by a client node to the master node. REQUEST

is used to indicate that the previously assigned sub-theory did not yield a solution.

As such, the master node will remove the sub-theory from the its queue. If additional

sub-theories are available for processing, the requesting client node is sent the new

assignment. Otherwise, the master node will release the client node from the current

problem session.

SU B M IT Additional data segment is available.

R E L E A SE All sub-theories have been processed. The client node is released from

the current session

7.4.4 R E L E A SE

A RELEASE message type is sent by the master node to client node. Receipt of a

RELEASE indicates that the client node is no longer needed with the current session.

51

7.4.5 R E P L Y

A REPLY message type is an auxiliary type used with atomic transactions.

This chapter has discussed the communication mechanism used in the daspps

system. The next chapter provides information on daspps usage. We then present

the results of the current implementation of the daspps system.

CHAPTER 8

DASPPS USAGE

8.1 Installation and Configuration

The DASPPS system uses the autoconf/automake build system, allowing for easily

tailored configuration and installation. To build the system, the only required soft­

ware is the Berkeley sockets API and the POSIX threads (or compatible) API. Source

code for the current implementation is

h ttp ://w w w .cs .tx s ta te .ed u /~ jh 3 8 1 0 7 /d asp p s/cu rren t. To build the package,

simply type the command ‘configure followed by ‘m ake’ in the daspps source direc­

tory. When the source is built, you can install the software by typing ‘m ake in s ta ll’.

The default location for installation is /usr/local, but this may be changed by running

‘configure’ with the -prefix=/some/other/place option. For example, to build and

install the package in the /opt directory

[jh38107@hawks dasppsO.1-src]$./configure — prefix=/opt
[jh38107@hawks dasppsO.1-src] $ make
[jh38107@hawks dasppsO.1-src]$ make install

Note that during each step, output will be displayed on the console.

8.2 Usage

Computing models with the daspps system is similar to computing models with the

aspps system. To compute models of a P S + theory (D, P), the theory must first be

52

http://www.cs.txstate.edu/~jh38107/daspps/current

53

grounded. To ground a theory, we use the program psgrnd . The required input to

p sg rn d is a single program file, one or more data files and optional constants. If no

errors are found while reading the files and during the grounding process, an output

file is constructed. The output file is a machine readable file which is the program

file used by the daspps solver.

Once a program file has been generated, it is processed by the daspps master node.

To invoke the daspps master, two arguments must be passed to it of the form

daspps -N < c lie n tf i le > - f <programfile>

The -N command-line flag is used to indicate the file to use to gather client infor­

mation. This file is an ASCII text file. Each line contains the information used to

connect to a particular client. The form of each line is

<clientname> <port>

where <clientname> is either a hostname, such as myhost.txstate.edu, or an address

string, such as 111.222.333.444. Note that the address string is IPv4. The current

implementation of daspps does not support IPv6. An optional < port> value may be

given following the <clientname>, separated by whitespace. This value may omitted

if the default port, 15321, is used. A place-holder string may also be used in

place of the port, in which case the default is used. Empty lines or lines whose first

character is are ignored. For example, the file

An example host f i l e fo r daspps
o w ls .c s .tx s ta te .e d u
hawks.c s .t x s t a t e . edu
e a g le s .c s .tx s ta te .e d u —
c o n d o rs .c s .tx s ta te .e d u 13231

54

includes a comment on the first line, followed by four entries. The first three hosts

use the default port. The fourth host entry is configured to use port 13231.

The daspps system uses this client file to construct its initial pool of available

clients. It is necessary that the daspps client process is running on systems provided in

the client file. During initialization, the daspps master node will attempt to initialize

each of the clients from this pool. Consequently, the client must be running prior to

invoking the master. If a client is not available, it is removed from the pool.

8.2.1 Running the Client

The client process is actually the solver process running in the background on the

client, i.e. the sequential aspps process. To invoke the client process, the daspps

executable is passed the single argument:

[jh38107@eagles /opt/bin]$ daspps — client

8.2.2 Running the Master

The master node is the node on which the problem instance is begun. Required input

for the master process is the client file and the grounded theory file. For example,

the command

[jh38107@eagles /opt/bin]$ daspps -N hostfile.daspps -f nql28.aspps

would invoke the daspps master with the client file hostfile.daspps and the grounded

theory file nql28.aspps.

CHAPTER 9

TEST RESULTS

The performance of the daspps system was measured against the sequential aspps

system. Two problems were used to evaluate the performance of the daspps system.

The first problem is the n-queens problem. The second problem comes from VLSI

design. The test cases for both daspps and aspps were performed on a small testbed

consisting of four Sun Blade 2000 UltraSPARC III+ workstations running at 900

MHz with 1GB of RAM. For all of the daspps executions four nodes were initialized

and the actual number used is given in each table.

9.1 Results for n-queens

The n-queens problem consists of determining the position of n queens on an n x n

chess board such that no queen is attacking another queen. In other words, we cannot

have more than one queen on a row, or on a column or on the same diagonal. The

n-queens program in the language of P S + follows:

1: pred queen(number, number).
2: var number C, R, I.

3: l{queen(_,C)}l.
4: l{queen(R,_)}i.

5: fqueen(R+I-l,I)[I]}1 .
6: {queen(I,C+I-l)[I]}1 .
7: {queen(R-I+l,I)[I]>1 .
8: {queen(q - I + 1,R+I-1)[I]>1 .

55

56

Problem aspps daspps Speed up Number

secs secs ratio of nodes

32-queens 0.06 0.51 0.12 3

64-queens 6.24 0.76 8.21 2

128-queens **** 1.88 - 4

**** denotes timeout after 10 minutes

Table 9.1: Test results for n-queens

Line 1 defines queen as a program predicate with arity of two. Both arguments

must be of type number where number is a data predicate. The second line declares

program variables C ,R ,I of type number. The following lines are clauses where

each clause contains one cardinality atom. Because there is no implication symbol

in the clauses the cardinality atom is assumed by the psgrnd module to be the

consequent and thus must be true. Line 3 clause maintains row restrictions and

line 4 clause maintains column restrictions. Lines 5-8 contain clauses which provide

diagonal restrictions.

We tested daspps on the n-queens problem using 32, 64, and 128 queens. We

show results from executing the program sequentially, distributed, and the speedup

in table 9.1. Rims which exceeded the alloted time of 10 minutes were terminated

and are marked ****.

As can be seen from Table 9.1 for the smallest theory, 32-queens, the overhead

resulting for daspps distributing the theory causes an increase in time rather than a

speed up. This is to be expected, for the communication overhead required by daspps

57

is greater than the actual time required to find a solution. For larger theories, 64 and

128 queens the speed up is dramatic.

9.2 VLSI design

VLSI design has several steps. In this thesis we are only looking at the physical layout

of components on the chip and in particular the placement of components without

partitioning. Traditionally, specifications are given as a mesh or hyper graph and

the first step in layout is to partition each mesh, the next step is to determine a

configuration for the graph, layout is the next step and the last step is connecting

the components through wire routing. Here we are modeling the layout without

performing partitioning thus we can require all the components in a mesh to be near

one another. We believe this will reduce total distance during wire routing and help

prevent skews where the distance between components in a mesh can vary enough to

cause timing problems. This is a simplification of VLSI layout and is used to illustrate

the speedup of daspps .

1: pred placement(component,xcoord,ycoord).

2: var xcoord I,J.
3: var ycoord M,P.
4: var component A,B,C.
5: var mesh X.

6: {placement(_,I,M)}1.

7: 1{placement(A,

8: meshsize(X,C), inmesh(X,A), inmesh(X,B),
A < B, (abs(I-J) + abs(M-P)) > C ,
placement(A ,I,M), placement(B,J,P) ->.

58

The program or problem definition for component placement is given above. The

line numbers are not part of the program but are added for explanation purposes.

Line 1 defines the single program predicate used for placement. The arguments are

the component label and the x and y grid coordinates. The coordinates are different

allowing for a rectangular chip configuration. Lines 2 - 5 are variable declarations

using the data predicates for the problem. Line 6 is a clause with a single cardinality

constraint which restricts each coordinate position on the chip to having a most one

component. Line 7 requires that each component be placed in exactly one coordinate

position. Line 8 is a constraint which is used to ensure tha t components are near

each other.

The chip specifications are randomly generated where the size of the chip and

the number of components and meshes are input. The results reflect ten randomly

generated 8 x 8 chips with 64 components and 32 meshes.

All tests demonstrated a reduction in time for finding a solution. We consider this

as a demonstration of the benefits of adding a distributed framework to the aspps sys­

tem. Having evaluated the performance of the current version of the daspps system,

we provide some concluding remarks in the next chapter followed by a discussion of

several specific areas requiring attention to improve the overall system.

Problem aspps daspps Speed up Number

secs secs ratio of nodes

chipO 14.94 6.61 2.26 2

chipi **** 7.95 - 3

chip2 4206.20 8.88 473.67 4

chip3 7.08 - 3

chip4 6239.63 11.93 523.02 4

chip5 11.15 - 4

chipó 26.64 - 4

chip7 305.89 - 4

chip8 7.03 - 3

chip9 315.36 - 4

**** denotes timeout after 10 minutes

Table 9.2: Test results for VLSI chip design

CHAPTER 10

CONCLUSION

This thesis presents a new distributed solver based on the sequential aspps solver.

The design of a distributed framework with the aspps solver core takes advantage of

special constructs within the logic P S +. Applying a distribute framework, we are

able to minimize the affects of branching on poor choice which must be tolerated by

sequential solvers. The affects of these poor branch choices are realized only by the

client node which receives it. Other client nodes are likely to receive sub-theories

which branched on better heuristic choices. The direct representation of cardinality

constraints, rather than requiring further processing, along with independent branch­

ing, allow efficient sub-theory distribution and minimum communication overhead.

The results in chapter 9 indicate that this new system is a promising new direction

in the distributed SAT solver community.

60

CHAPTER 11

FUTURE WORK

The primary goal of this thesis was to evaluate the benefits of a distributed framework

within the aspps system. The results of our experiments, presented in chapter 9,

indicate that this is a promising new direction. A primary emphasis on the design

was scalability, such that the system would not be bound to a particular network

infrastructure. While the current version the daspps system is pursuant to this end,

there remains limitations. To fully achieve our goal, two topics must be addressed:

authentication and client-side partitioning. This chapter discusses these two topics

as they pertain to the daspps system.

11.1 Authentication

Considering the existing distributed solvers, authentication does not appear to be of

concern. There are at least two possible reasons for this. First, the scalability of

existing solvers is limited, by design, to a local network which is assumed trusted. As

such, the need for authentication is greatly reduced. The exception to this is GridSAT

[Chrabakh and Wolski, 2003b], which is designed to work within a computational

grid. This environment demands some form of authentication/authorization. This

requirement is fulfilled by its use Every Ware software [Wolski et al., 1999], which

contains the necessary mechanisms. The second possible reason is that the emphasis

61

62

of current solvers is evaluating the benefits of distributed search techniques to speed

up search. Additional requirements added by network uses is secondary.

Similar to Parallel Satz [Jurkowiak et al., 2001] and NAGSAT

[Forman and Segre, 2002], the daspps solver does not include any authentication or

authorization mechanisms. Now that the benefits of a distributed paradigm have

been evaluated, the additional requirements of authentication must be address. Cur­

rently, the true scalability of the system is limited to a trusted network. There are

a number of portable libraries available which offer authentication and authorization

mechanisms, such as SASL. The use of these services are currently being evaluated.

11.2 Client-side Involvement

The second issue that must be address is client-side participation in directing search.

Currently, a daspps client is a modified sequential aspps solver. There is no mechanism

for client-initiated partitioning or off-loading. Both these features are desirable, as

they allow the client to respond to local resource utilization, such as memory usage

or timeout threshold.

Similar to Parallel Satz, the daspps system relies upon the its fault-tolerance

to handle such events. If a client process dies during its search, due to memory

limitations, for example, the master process will detect the failure and assign the

sub-problem to another client node. In contrast, GridSAT use of Everyware software

allows it to dynamically monitor and correct client processes, possibly off-loading a

clients current assignment to another client via a peer-to-peer mechanism.

The approach to partitioning taken by the daspps system does not include any

63

mechanism to allow client-initiated partitioning. In contrast to other solvers, daspps

performs dynamic partitioning, where each independent sub-theory is assigned to and

processed by a client node. The client will continue to process the search space until

either a solution is found, or the search space is exhausted. If found, the client will

submit the solution. Otherwise, the client will simply ask for another sub-theory.

This method was chosen to minimize communication overhead.

This chapter has discussed two issues limiting the scalability of the daspps system:

authentication and client-side involvement. Addressing these two issues will dramat­

ically increase the scalability of the daspps system. Authentication will facilitate

increased scalability by allowing resource utilization which extends beyond a trusted

network. A hierarchical partitioning mechanism will further extend the scalability by

allowing a finer granularity of sub-theory distribution.

BIBLIOGRAPHY

[Chrabakh and Wolski, 2003a] Chrabakh, W. and Wolski, R. (2003a). Gradsat: A

parallel sat solver for the grid.

[Chrabakh and Wolski, 2003b] Chrabakh, W. and Wolski, R. (2003b). GridSAT: A

chaff-based distributed SAT solver for the grid.

[Citrigno et al., 1997] Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C.,

Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. (1997). The dlv system: Model

generator and advanced frontends (system description). In Workshop Logische

Programmierung.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing procedure

for quantification theory. Journal of Association for Computing Machines, 7.

[East and Truszczyhski, 2001a] East, D. and Truszczyhski, M. (2001a). aspps - An

Implementation of Answer-Set Programming with Propostional Schemata. In Proc­

eedings of 6th International Conference, LPNMR-2001). Springer Verlag.

[East and Truszczyhski, 2001b] East, D. and Truszczyhski, M. (2001b). Propositional

satisfiability in answer set programming. In Proceedings of KI-2001). Springer

Verlag.

64

65

[East and Truszczynski, 2002] East, D. and Truszczynski, M. (2002). The aspps sys­

tem.

[East and Truszczynski, 2004] East, D. and Truszczynski, M. (Accepted 2004).

Predicate-Calculus based logics for modeling and solving search problems.

[East et al., 2004] East, D., Truszczynski, M., Mikitiuk, A., and Truszczynski, M.

(2004). Tools for modeling and solving search problems.

[Forman and Segre, 2002] Forman, S. L. and Segre, A. M. (2002). Nagsat: A ran­

domized, complete, parallel solver for 3-sat.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. (1979). Computers and

Intractability: A Guide to the theory of NP-Completeness. W. H. Freeman and

Company.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model

semantics for logic programming. In Kowalski, R. A. and Bowen, K., editors,

Proceedings of the Fifth International Conference on Logic Programming, pages

1070-1080, Cambridge, Massachusetts. The MIT Press.

[Jurkowiak et al., 2001] Jurkowiak, B., Li, C.-M., and Utard, G. (2001). Parallelizing

SATZ Using Dynamic Workload Balancing.

[Li and Anbulagan, 1995] Li, C. and Anbulagan, M. (1995). Look-ahead versus look-

back for satisfiability problems. In Proceedings of the 3rd International Conference

on Principles and Practices of Constraint Programming, volume 1330, pages 342-

356.

66

[Moskewicz et al., 2001] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L.,

and Malik, S. (2001). Chaff: Engineering an Efficient SAT Solver. In Proceedings

of the 38th Design Automation Conference (DAC’01).

[Niemela and Simons, 1997] Niemela, I. and Simons, P. (1997). Smodels — an im­

plementation of the stable model and well-founded semantics for normal lp.

[Paarsch and Segre, 1999] Paarsch, H. J. and Segre, A. M. (1999). Extending the

computational horizon: Effective distributed resource-bounded computation for

intractable problems. Technical report, Society for Computational Economics.

[Segre et al., 2002] Segre, A. M., Forman, S., Resta, G., and Wildenberg, A. (2002).

Nagging: a scalable fault-tolerant paradigm for distributed search. Artif. Intell.,

140(1-2):71-106.

[Wolski et al., 1999] Wolski, R., Brevik, J., Krintz, C., Obertelli, G., Spring, N., and

Su, A. (1999). Running EveryWare on the computational grid.

VITA

Jason High was born in Nyack, New York, on March 10, 1975, the son of Joanie and

Charlie High. After completing his work at Coronado High School in El Paso, Texas,

he entered Texas State University-San Marcos. In the Fall of 1998, he received the

degree of Bachelor of Arts from Texas State University-San Marcos. In Spring 1999,

he entered the Graduate College of Texas State University-San Marcos. In Fall of

2002, he received the degree of Master of Arts from Texas State University.

Permanent Address: 6801 Morrill Road

El Paso, Texas 79932

This thesis was typeset using LaTex 1.0.7 by Jason High.

