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Minimizing pseudo-harmonic maps in manifolds ∗

Yuxin Ge

Abstract

In this work, we show some regularity and uniqueness results for gener-
alized harmonic maps on target manifolds which are graphs of real-valued
functions defined on ellipsoids. As an application, we prove a diffeomor-
phism property for such harmonic maps in two dimensions.

1 Introduction

Harmonic maps with values in a “convex” ball of a Riemannian manifold enjoy
nice properties such as the regularity of weak solutions and their uniqueness.
Such results were obtained in [7] concerning the regularity of a weakly harmonic
map and in [8] for the uniqueness, under the hypothesis that the map takes its
values in a geodesically convex ball whose radius is strictly less than π

2
√
K

,
where K is the upper bound for the sectional curvature. It turns out that these
“convexity” conditions on the target are not necessary as shown by the result
in [5] where similar conditions are obtained for maps into the upper hemisphere
of a “flattened” ellipsoid of revolution.

Here we want to show that these regularity and uniqueness results are true
also for more general targets than spheres or ellipsoids of revolution, namely for
target manifolds which are graphs of real-valued functions defined on ellipsoids
satisfying some property.

We also prove a diffeomorphism property for harmonic maps between a two-
dimensional ball and such a two-dimensional manifold under suitable boundary
conditions.

Our approach relies on a method of E. Sandier and J. Shafrir [13], which
allows simplest proofs for the uniqueness and regularity theorems.

The class of target manifolds that we consider is defined as follows. Let
(, ) be some scalar product in Rn, different from the standard Euclidean scalar
product 〈, 〉 in general. For simplicity, we assume that |y|2 = (y, y) =

∑n
i=1 aiy

2
i

with ai > 0. Denote A = {y ∈ Rn/(y, y) < 1}. Clearly, A is a convex set.
Let N be a hypersurface in Rn+1, defined by N = {(y, yn+1) ∈ Rn+1/y ∈
A, yn+1 = f(|y|2)}, where f is a function in C∞([0, 1)) ∩ C0([0, 1]) such that
f(1) = 0. Let Ω ⊂ R

N be a bounded domain and let g : ∂Ω → N be a
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prescribed C2,γ mapping with γ > 0. We consider the space H1
g (Ω,N ) = {v ∈

H1(Ω,Rn+1)/v(x) ∈ N a.e. x ∈ Ω and v|∂Ω = g}. Let 〈, 〉Rn+1 be the standard
Euclidean inner product on Rn+1. We define on H1

g (Ω,N ) the energy functional

E(u) =
1
2

∫
Ω

e(u)dx =
1
2

∫
Ω

N∑
i,j=1

aij(x)
〈 ∂u
∂xi

,
∂u

∂xj

〉
Rn+1

dx, (1)

where aij(x) satisfy the following conditions:

∃ α > 0, such that aij(x)ξiξj ≥ α| ξ |2, ∀ x ∈ Ω,∀ ξ ∈ RN ; (2)
aij(x) ∈ C1,γ(Ω̄,R), for some γ > 0 and 1 ≤ i, j ≤ N ; (3)

aij = aji, 1 ≤ i, j ≤ N. (4)

The critical points of E satisfy in the sense of distributions the Euler equation

Lu+
N∑

i,j=1

aij(x)C
(
∂u

∂xi
(x),

∂u

∂xj
(x)
)

= 0, in Ω (5)

u = g, on ∂Ω,

where L =
∑N
i,j=1

∂
∂xi

(
aij(x) ∂

∂xj

)
and C(, ) is the second fundamental form of

N . We remark that if N 6= 2, this problem is equivalent to studying harmonic
maps from (Ω, gij) on N , where (gij) = (det(aij))

1
N−2 (aij)−1. However, if

N = 2, this problem concerns a more general problem which agrees to harmonic
maps if and only if det(aij) = 1.

Our first result is a uniqueness principle. LetM be a hypersurface such that
N ⊂M. We will show the following result.

Theorem 1 Assume that g(∂Ω) ⊂ N and the following conditions are verified,

f (1) < 0 on [0, 1); (6)
f (2) ≤ 2(f (1))3 and 2(f (1)f (3) − 3(f (2))2) + f (2)f (1) − 2(f (1))4 ≥ 0 on [0, 1);(7)

ai < 1 ∀i = 1, . . . , n. (8)

Then, the minimizer of E in H1
g (Ω,N ) is unique. Moreover, if u is a critical

point of E, whose image lies in a compact subset of N , then u is a minimizer.

This result is a generalized variant of [5]. In fact, if we set f =
√

1− t, we
find that N is the upper hemisphere of the ellipsoid. In this paper, we will
adopt the same strategy as in [13]. Our approach relies on a convex inequality
for the energy functional E.

The second result is a regularity theorem. We will show the following.

Theorem 2 Under the same hypotheses as in Theorem 1, assume that u ∈
H1
g (Ω,N ), whose image belongs to a compact subset of N , and that u is a

critical point of E, i. e., u is a weak solution of (5). Then u is C2 on Ω.
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This theorem is a variant of a result of S. Hildebrandt, H. Kaul and K-
O. Widman, who have proved in [7] the same result for a harmonic map in a
geodesic ball of radius r < π

2
√
K

where K is an upper bound of the sectional
curvature of the manifold. By the uniqueness principle, we need only prove it for
the minimizing maps. So it is relatively easy to obtain the regularity property
with the help of ε-regularity due to R. Schoen and Uhlenbeck [15]. Note that if
N is a hemisphere of a flattened ellipsoid, we find again the result of [5].

In the third part, we will use these two first results to study the problem of
diffeomorphism. Let n = N = 2 and Ω = B be the unit disc in R2. Assume
that g : ∂Ω → N is a convex Jordan curve N ∩ {x3 = α > 0}. We show the
following theorem.

Theorem 3 Under the above assumptions, assume that u ∈ H1
g (Ω,N ) is a

critical point of E. Then, u is a diffeomorphism.

Here, we argue by a continuity method, due to J. Jost [9]. We connect the
critical point with a harmonic map. Using a result of Hartman and Wintner
[3], we conclude our claim. In the last section, we will treat the limit case. We
set f(t) =

√
1− t and a1 < . . . < ar < ar+1 = . . . = an = 1. In general, the

uniqueness principle fails, as E. Sandier and I. Shafrir have proved for the case
where a1 = . . . = an = 1 and aij = δij . With the same procedure as in [13], we
will establish a criterion on the boundary condition for which the uniqueness
principle holds.

2 Proof of Theorem 1

First, we give a basic inequality, which is a variant of the inequality in [13].

Lemma 1 Assume that (6) and (7) in the theorem 1 hold and that

ai ≤ 1. (8′)

Then function
G(v, w) = (w,w) + (2f ′(|v|2)(v, w))2

is convex over the set A = {(v, w) ∈ Rn × Rn/(v, v) < 1}. Moreover, we have
that for any (v0, w0), (v1, w1) ∈ A, with (v0, w0) 6= (v1, w1),

G

(
v0 + v1

2
,
w0 + w1

2

)
=

1
2

(G(v0, w0) +G(v1, w1))

holds only if for any 0 ≤ t ≤ 1 we have

i) δw + 4(f ′(|vt|2))2(vt, wt)δv = 0, (9)
ii) (δv, wt)f ′(|vt|2) + 4[f (2)(|vt|2)− f ′(|vt|2)3](vt, wt)(δv, vt) = 0

and then G(vt, wt) = G(v0, w0) for 0 ≤ t ≤ 1. Here we wrote (vt, wt) =
(1 − t)(v0, w0) + t(v1, w1) and (δv, δw) = (v0 − v1, w0 − w1). Furthermore,
if f (2) = 2(f (1))3 and f (1)f (3) = 3(f (2))2, i) and ii) are also the sufficient
conditions.
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Proof. Define F (s) = G(v0 + sδv, w0 + sδw). A calculation leads to

F ′(t) = 2(wt, δw) + 8[((δv, wt) + (vt, δw))f ′(|vt|2)
+2f (2)(|vt|2)(vt, δv)(vt, wt)]f ′(|vt|2)(vt, wt)

and

2F (2)(t) = |δw + 4f ′(|vt|2)(vt, wt)δv|2

+4[4f (2)(|vt|2)(vt, δv)(vt, wt) + ((δv, wt) + (vt, δw))f ′(|vt|2)]2

+8[f ′(|vt|2)f (2)(|vt|2)− 2(f ′(|vt|2))4](vt, wt)2(δv, δv)
+16[f ′(|vt|2)f (3)(|vt|2)− 3(f (2)(|vt|2))2](vt, wt)2(vt, δv)2.

Hence, F (2)(t) ≥ 0 on [0, 1] since (vt, δv)2 ≤ (δv, δv)(vt, vt) ≤ (δv, δv). The
convexity of G follows. Finally, note that if F (s) = (1−s)F (0)+sF (1) for some
s ∈ (0, 1), then F (2)(t) ≡ 0 for all t ∈ [0, 1]. Hence, we achieve the proof. ♦

We will adapt the notation in [13]. So that every u ∈ N can be written
in the form u = uh + uven+1, where uh ∈ A and uv = f(|uh|2). Then for u0,
u1 ∈ H1(Ω,N ) and 0 ≤ t ≤ 1, we define the map ut(x) = (1− t)u0 ⊕ tu1 by

[(1− t)u0 ⊕ tu1]h(x) = (1− t)(u0)h(x) + t(u1)h(x),

and [(1− t)u0 ⊕ tu1]v(x) = f(|(ut)h|2).

Lemma 2 For any u0, u1 ∈ H1(B,N ), let ut = (1 − t)u0 ⊕ tu1 for 0 ≤ t ≤ 1.
Then ut ∈ H1(B,N ) and

e(ut) ≤ (1− t)e(u0) + te(u1) a. e. on Ω. (10)

Remark. Here, H1(Ω,N ) = {u ∈ H1(Ω,M) and u(x) ∈ N a. e. on Ω},
where M is a hypersurface in Rn+1 such that N ⊂M.

Proof. We will decompose e into two parts: e(v) = F1(v) + F2(v), where

F1(v)(x) =
N∑

i,j=1

aij(x)
[〈

∂vh

∂xi
,
∂vh

∂xj

〉
Rn

−
(
∂vh

∂xi
,
∂vh

∂xj

)]
and

F2(v)(x) =
N∑

i,j=1

aij(x)
[(

∂vh

∂xi
,
∂vh

∂xj

)
+
∂vv

∂xi

∂vv

∂xj

]
.

Clearly, F1(ut)(x) ≤ (1−t)F1(u0)(x)+tF1(u1)(x), for all x ∈ Ω, since 〈, 〉Rn−(, )
is a positive bilinear form on Rn. Now we fix x ∈ Ω, then there exists C(x) =
(cij(x)) ∈ GL(N,R) such that

N∑
i,j=1

aij(x)ξiξj =
N∑
i=1

( N∑
j=1

cij(x)ξj
)2

for all ξ ∈ RN .
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Let us first suppose that for some ε > 0,

|(u0)h|, |(u1)h| ≤ 1− ε.

It is clear that |(ut)h| ≤ 1− ε for 0 ≤ t ≤ 1, or that

∂(ut)v

∂xj
= 2f ′(|(ut)h|2)((ut)h, ∂(ut)h/∂xj), for j = 1, . . . , N.

Hence,

F2(ut)(x) =
N∑
i=1

G
(

(ut)h,
N∑
j=1

cij(x)∂(ut)h/∂xj
)
.

Therefore, (10) follows by lemma 1. In the general case, for getting the result,
we use an approximation argument. Define a map Pλ : N → N depending on
λ > 0 by

Pλ(uh, uv) = ((1− λ)uh, f((1− λ)2|uh|2)).

Obviously, Pλ(N ) ⊂ N ∩ {un+1 ≥ ε(λ)}, where ε(λ) is strictly positive and Pλ
converges in C1(N ,N ) norm to the identity mapping as λ goes to 0. For any
λ > 0, let u0

λ = Pλ ◦u0 and u1
λ = Pλ ◦u1. Setting utλ = (1− t)u0

λ⊕ tu1
λ, we have

that for any 0 ≤ t ≤ 1 and a.e. x in Ω,

F2(utλ)(x) ≤ (1− t)F2(u0
λ)(x) + tF2(u1

λ)(x). (11)

Now we pass to the limit as λ goes to 0. The right hand side converges in L1 to
(1− t)F2(u0) + tF2(u1). By coerciveness and (11), utλ remains bounded in H1.
After choosing a subsequence, we may assume that utλ → vt weakly in H1 for
some vt ∈ H1. But utλ → ut a.e. in B and hence ut = vt. Let K ⊂ Ω a subset
of Ω. By weak lower semi-continuity, we deduce from (11) that∫

K

F2(ut) ≤ lim inf
λ→0

∫
K

F2(utλ)

≤ lim
λ→0

∫
K

(1− t)F2(u0
λ) + tF2(u1

λ)

=
∫
K

(1− t)F2(u0) + tF2(u1).

But it is well known that

−
∫
B(x,r)

v → v(x) a.e. in B as r → 0 for any v ∈ L1,

where B(x, r) = {y ∈ RN ||y − x| < r}. Consequently, (10) holds. ♦
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Proof of Theorem 1. We assume that u0 and u1 are two distinct minimizers
with the same boundary data g. Thanks to lemma 2, we obtain

E(ut) ≤ (1− t)E(u0) + tE(u1) = E(u0),

which implies for 0 ≤ t ≤ 1,

F1(ut)(x) = (1− t)F1(u0)(x) + tF1(u1)(x) a. e. x ∈ Ω,

that is,
d(u0)h(x) = d(u1)h(x) a. e. x ∈ Ω,

since ai < 1 for 1 ≤ i ≤ n. Hence we conclude u0 = u1. This contradiction
terminates the first part of our claim. Now let u0 be the minimizer and u1 be
a critical point of E which agrees with u0 on ∂Ω. Assume that u0 and u1 lie
in a compact subset of N . Denote I(t) = E(ut) for any 0 ≤ t ≤ 1. Obviously,
I(t) ∈ C1([0, 1]) and is convex by lemma 2. But I ′(0) ≥ 0 = I ′(1). Thus, it
follows that I(t) ≡ I(0), that is, u1 is the minimizer. ♦

Remarks 1.) u ∈ H1
g (Ω,N ) is a minimizer in H1

g (Ω,N ). Thus u verifies the
Euler-Lagrange equation (5). Indeed, let C be a contraction from M onto N
such that C|N = Id. So we have E(C(v)) ≤ E(v), that is,

inf
v∈H1

g(Ω,N )
E(v) = inf

v∈H1
g(Ω,M)

E(v).

2.) The existence of a minimizer is obtained by the minimizing method.

3 Proof of Theorem 2

Now we consider a weak pseudo-harmonic map u, that is a solution of (5), whose
image lies into a compact subset of N . So there exists α0 > 0 with

un+1 ≥ α0 a.e. on Ω.

In view of theorem 1, it is sufficient to prove it for the minimizing maps. Thanks
to a result due to R. Schoen and K. Ulenbeck [15], there exists ε0 > 0 such that∫
Br(x)

e(u) ≤ ε0 for any x ∈ Ω and for all r > 0 such that Br(x) ⊂ Ω, then u is
regular on Br/2(x). Here, we will use the arguments in [7] ( see also in [6]). For
any bounded domain Ω in which the relations of coefficients (aij) are defined as
above, then we have an associate Green function G, which satisfies

∀ξ ∈ C∞c (Ω,R),∀y ∈ Ω, ξ(y) = −
∫

Ω

Lξ(x)G(x, y)dx. (12)

Fixed y ∈ Ω, there exists τ0 > 0 such that Bτ0(y) ⊂ Ω. Then we can consider

Gτ (x, y) = −
∫
Bτ (y)

G(x, z)dz, for all τ ∈ (0, τ0]. (13)
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It follows from (12) that

−
∫
Bτ (y)

ξ(z)dz = −
∫

Ω

N∑
ij=1

∂i(aij(x)∂jξ(x))Gτ (x, y)dx,

where Gτ is an approximation to the Green function in the sense that

lim
τ→0

Gτ = G(x, y) for x 6= y, x, y ∈ Ω. (14)

(see [11], [7] and [6]). Moreover, there exists strictly positive constants K1, K2

and K3 such that

0 ≤ G(x, y) ≤ K1|x− y|2−N ; (15)

G(x, y) ≥ K2|x− y|2−N if |x− y| ≤ 3
4
d(y, ∂Ω); (16)

|∇xG(x, y)| ≤ K3|x− y|1−N ; (17)

Gτ (x, y) ≤ 2N−2K1|x− y|2−N if τ <
1
2
|x− y|; (18)

if d(y, ∂Ω) > τ, x→ Gτ (x, y) ∈ H1
0 (Ω,R) ∩ L∞(Ω,R), (19)

where x and y are in Ω. Without loss of generality, assume that B(0, r) ⊂ Ω for
some r > 0. Taking the map Gτ (x, 0) as a test function in (5), we obtain∫

Ω

Gτ (x, 0)Luv(x) + λ(x)Gτ (x, 0)dx = 0, (20)

where

λ =
(
− 2f ′(|uh|2)

N∑
ij=1

aij〈∂iuh, ∂juh〉Rn

−4f (2)(|uh|2)
N∑
ij=1

aij〈uh, ∂iuh〉Rn〈uh, ∂juh〉Rn
)

÷
(

1 + 4(f ′)2(|uh|2)
n∑
i=1

a2
iu

2
i

)
.

Let ω ∈ H1(Ω,R) be the solution of the equation

Lω = 0, in Ω
ω = uv, on ∂Ω.

Clearly, uv − ω ∈ H1
0 (Ω) and from (12) we deduce that

−
∫

Ω

Gτ (x, 0)Luv(x)dx = −
∫

Ω

Gτ (x, 0)L(uv − ω)dx = −
∫
Bτ (0)

(uv − ω)dx.
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Consequently, ∫
Ω

Gτ (x, 0)λ(x) = −
∫
Bτ (0)

(uv − ω)dx ≤ f(0).

Hence, we obtain ∫
Ω

Gτ (x, 0)|∇uh|2 ≤ Cf(0), (21)

since λ(x) ≥ α|∇uh|2(x). Using Fatou’s lemma and passing to the limit in (21)
as τ → 0, we deduce ∫

Ω

G(x, 0)|∇uh|2 ≤ Cf(0).

It follows from (16) that

lim
ε→0

∫
Bε(0)

|∇uh(x)|2|x|2−Ndx = 0.

On the other hand, remark that u belongs to a compact subset of N , which
implies

lim
ε→0

1
εN−2

∫
Bε(0)

|∇u(x)|2dx = 0.

This completes the present proof.

Remarks 1.) If f ∈ C2([0, 1]) and f ′(1) < 0, we have the same conclusion
in H1

g (Ω,N ). Moreover, replacing (8) by (8’) and (7) by f (2) ≤ 0, our result is
also right for minimizing maps.
2.) For N = 2, we will give the proof in the following section (see also [4]).

4 Proof of Theorem 3

In this part, we will use a similar strategy as in [9] (see also [4]). In order to
prove our result, we will consider the following energy functional

Et(v) =
1
2

∫
B

2∑
i,j=1

[
(1− t)δij + taij(x)

]〈 ∂v

∂xi
,
∂v

∂xj

〉
dx (22)

=
1
2

∫
B

2∑
i,j=1

aij(t, x)
〈
∂v

∂xi
,
∂v

∂xj

〉
dx.

We consider G : [0, 1]× ∂B → N to be a C2,γ map such that

G(t, .) is a diffeomorphism ; (23)
G(1, .) = g; (24)

G(t, .) = {u3 = α(t)} ∩ N , where α(0) is a number near to f(0). (25)
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Let It = infv∈H1(B,N )Et(v). Denote ut ∈ H1(B,N ) the unique minimum of Et
in H1

G(t,.)(B,N ) given by Theorem 1, then ut satisfies:

2∑
i,j=1

∂

∂xi

(
aij(t, x)

∂ut

∂xj

)
+ λtu

t = 0, in B (26)

ut = Gt, on ∂B,

where λt =
∑2
i,j=1 aij(t, x)C

〈
∂ut

∂xi
(x), ∂u

t

∂xj
(x)
〉

. First we show the following
lemma.

Lemma 3 We have ut ∈ C2,γ(B̄,R3) and

‖ut‖C2,γ ≤ C1.

Proof. We write Et as follows

Et(v) =
1
2

∫
B

2∑
i,j=1

aij(t, x)
[〈∂vh

∂xi
,
∂vh

∂xj

〉
+ (f ′(|vh|2))2

(
vh,

∂vh

∂xi

)(
vh,

∂vh

∂xj

)]
dx.

Obviously, there exists some β > 0 such that
(
(ut)h, (ut)h

)
≤ 1 − β for any

t ∈ [0, 1] and x ∈ B̄. Thanks to a result of Jost and Meier (see [10]), we deduce
that

‖ut‖W 1,q ≤ C, for some q > 2.

Recalling that ut satisfies the equations (26), it follows that

‖ut‖W 2,q ≤ C.

Consequently,
‖ut‖

W
1, 2q

4−q
≤ C‖ut‖W 2,q ≤ C, if q < 4.

Now iterating the above procedure and using Sobolev’s embedding theorem, we
obtain

‖ut‖C1,γ ≤ C.

Hence, using Schauder’s estimates, we complete the proof. ♦

Lemma 4 With the above notation, we have rank(∇ut(x)) = 2, for any t ∈
[0, 1] and x ∈ ∂B.

Proof. Denote Lt =
∑2
i,j=1 ∂i(aij(t, x)∂j). Using (26), we state Lt((ut)3) ≤ 0,

and the strong maximum principle implies

(ut)3(x) > α(t) ∀x ∈ B, or (ut)3 ≡ α(t).

The latter is incompatible with Lt((ut)3) < 0 on ∂B. Hence, the claim follows
from Hopf’s maximum principle. ♦
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Lemma 5 ([17]) Assume that U and V are smooth, bounded domains in R2,
diffeomorphic to B. Let ϕ : Ū → V̄ be a C1 map such that

det(∇ϕ(x)) > 0, ∀x ∈ U.

Moreover, suppose that ϕ|∂U is a diffeomorphism from ∂U to ∂V . Then ϕ is a
diffeomorphism.

Lemma 6 ([9, theorem 5.1.1]) We have rank(∇u0(x)) = 2, for all x ∈ B̄,
and u0 is a diffeomorphism.

Lemma 7 ([4]) the mapping F∗ : [0, 1] → C1,β(B̄,N ) ∩ H1(B,N ) such that
t 7→ ut is continuous.

The proof of this lemma is a consequence of Theorem 1 and lemma 3.
Now, we define the set

T1 = {t ∈ [0, 1], ut is a diffeomorphism }. (27)

It suffices to prove that T1 is open, closed and not empty.
Step 0. 0 ∈ T1. This is just the statement of lemma 6.
Step 1. T1 is open. It follows from lemma 5 and 7.
Step 2. T1 is also closed. Let {tn}n∈N be a sequence converging to t. Assume

that utn are diffeomorphic, for all n ∈ N. We assume that

∃ x0 ∈ B̄, such that Rank(∇(ut)(x0)) ≤ 1.

We shall use geodesic parallel coordinates based on a geodesic arc c through
q = ut(x0) as in [9]. In these coordinates (v1, v2), for v2 ≡ 0, v1 is the ar-
clength parameter of c, where as the curves v1 ≡ const are geodesics normal to
c parametrized by arclength v2, consequently the curves v2 ≡ const are parallel
curves of c. Moreover, we can choose the coordinates such that ∂z(v2◦ut)(q) = 0.
In these coordinates, we have for the metric tensor

g11(v1, 0) = 1, g12(v1, v2) = 0, g22(v1, v2) = 1,

therefore, the only non-vanishing Christoffel symbols are

Γ1
11 =

1
2
g11∂x1g11,

Γ1
12 = Γ1

21 =
1
2
g11∂x2g11,

Γ2
11 = −1

2
g22∂x2g11,

Hence, equations (26) for ut take the form

Ltv1 = −Γ1
11

 2∑
ij=1

aij∂xiv1∂xjv1

− Γ1
12

 2∑
ij=1

aij∂xiv1∂xjv2

 ,

Ltv2 = −Γ2
11

2∑
ij=1

aij∂xiv1∂xjv1.
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Applying a result due to Hartman and Wintner [3], we obtain that

∂z(v1 ◦ ut)(z) = a1(z − z1)m + o(|z − z1|m), for some m ≥ 1 and a ∈ C∗,

where z1 are coordinates of q. Consequently,

deg(∂z(v1 ◦ ut), B(z1, r1), 0) = m ≥ 1, for some r1 > 0,

which implies deg(∂z(v1 ◦ utn), B(z1, r1), 0) = m ≥ 1, for some sufficiently large
n. Hence, there exists z2 ∈ B(z1, r1) such that ∂z(v1 ◦ utn)(z2) = 0 by the
property of degree. This contradicts that utn is diffeomorphic. Therefore, the
assertion follows from Lemma 5.

Remark. We have a more general result, that is, our result also holds for a
convex curve in N .

5 The limit case

In this section, we consider the limit case; that is, f(t) =
√

1− t. Hence,

N =
{
x ∈ Rn+1;xn+1 ≥ 0 and x2

n+1 +
n∑
i=1

a2
ix

2
i = 1

}
is an upper hemisphere of a n-dimensional ellipsoid. Assume that for some r
with 1 ≤ r ≤ n,

a1 ≤ a2 ≤ . . . ≤ ar < 1 ar+1 = . . . = an = 1 . (28)

In general, Theorem 1 fails. We will show that uniqueness depends on the
boundary data as in [13]. Let {e1, . . . , en+1} denote a basis of Rn+1 and P
(resp. P1) the projection from R

n+1 onto Rn−r+1 (resp. Rr) defined as follows

P (x1, . . . , xn+1) = (xr+1, . . . , xn, xn+1),
P1(x1, . . . , xn+1) = (x1, . . . , xr).

For any map g with values in N , we define Rank(P ◦ g) to be the smallest
integer k with 0 ≤ k ≤ n− r+ 1 such that the image of g lies in a k-dimensional
vector subspace of Rn−r+1. With the same procedure as in [13], we will prove
the following result.

Theorem 4 Let g : ∂Ω→ N be a C2,γ map for some γ > 0. Then uniqueness
of the minimizer for the boundary data g fails if and only if
(I) k = Rank(P ◦ g) ≤ n− r − 1 and Image(g) ⊂ N ∩ {xn+1 = 0},
(II) the N k

valued minimization problem

(P kg ) inf{E(v), v ∈ H1
g (Ω,N k

)}
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has a solution u such that Rank(P ◦ u) = k + 1, where

N k
=
{
x ∈ Rr+k+1;xr+k+1 ≥ 0 and

r∑
i=1

a2
ix

2
i +

r+k+1∑
i=r+1

x2
i = 1

}
.

Moreover, when uniqueness fails, let u0 be any one of the minimizers, the set of
the minimizers is obtained by composition of u0 with any rotation of Rn+1 that
leaves the k-dimensional vector subspace containing P ◦ g(∂Ω) and P1(Rn+1)
invariant.

We divide our proof in several steps.
Step 1 consists of the following lemma.

Lemma 8 We assume that u0 and u1 are two distinct N -valued minimizers
with same boundary data g ∈ C2,γ . Then for every 0 < t < 1, ut(x) = [(1 −
t)u0 ⊕ tu1](x) is also a minimizer which is C2,γ in Ω and (ut)v > 0 in Ω.

Proof. Clearly, it follows from lemma 2 that ut is a minimizer for any 0 <
t < 1. Fix some 0 < t < 1 and so by results of R. Schoen and K. Uhlenbeck
[15] and [16], it is C2,γ near the boundary and in Ω outside of a closed set
M of Hausdorff dimension at most N − 3. We know that −4(ut)n+1 ≥ 0 and
(ut)n+1 ≥ 0 in Ω\M . Applying the strong maximum principle in Ω\M , we have
either (ut)n+1 > 0 in Ω \M or (ut)n+1 ≡ 0 in Ω \M . The latter would imply
u0 ≡ u1 in Ω \M since Ω \M is connect, and then in Ω, which contradicts our
assumptions. Thus, (ut)v > 0 in Ω\M . However, Ω\M contains a neighborhood
of ∂Ω. Therefore, using theorem 1, we conclude the claim. ♦

Step 2. consists of the following lemma.

Lemma 9 Under the above assumptions,

P1 ◦ u0 = P1 ◦ u1, (29)

and for 0 < t < 1 and i = 1, . . . , N ,

∂2u

∂t∂xi
= − (uh, ∂uh/∂xi)

1− |uh|2
∂u

∂t
. (30)

Proof. We fix 0 < t0 < t < t1 < 1 and denote ũ0 = (1 − t0)u0 ⊕ t0u1, ũ1 =
(1−t1)u0⊕t1u1. Then we can write ut = t1−t

t1−t0 ũ
0 ⊕ t−t0

t1−t0 ũ
1 and (ũ0)v, (ũ1)v > 0

in Ω. Obviously,
F1(ũt) = (1− t)F1(ũ0) + tF1(ũ1), (31)

and
F2(ũt) = (1− t)F2(ũ0) + tF2(ũ1), (32)

Thus, from (31), we obtain (29). Using lemma 1, we deduce that

N∑
j=1

cij(x)
∂2uh

∂t∂xj
= −

(
uh,
∑N
j=1 cij(x)∂u

h

∂xj

)
1− |uh|2

∂uh

∂t
, for 1 ≤ i ≤ N,
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that is,
∂2uh

∂t∂xj
= −

(
uh, ∂uh/∂xj

)
1− |uh|2

∂uh

∂t
.

Therefore, as the same arguments as in [13] (see also [4]), we get

∂2uv

∂t∂xj
= − (uh, ∂uh/∂xj)

1− |uh|2
∂uv

∂t

Step 3. In fact, (30) can be written as

∂

∂xj

(
∂u/∂t

uv

)
= 0, for j = 1, .., N,

which implies
∂u

∂t
(t, x) = uv(t, x)α(t), (33)

for some map α : (0, 1)→ R
n+1. On the other hand,(
∂uh

∂t
, uh
)

+ uv
∂uv

∂t
= 0,

and so we get (
αh, uh(t, x)

)
+ αvuv(t, x) = 0. (34)

Thus,
〈P ◦ u(t, x), P ◦ α(t)〉 = 0 and P1 ◦ α(t) = 0, (35)

since ∂P1◦u
∂t = 0. Or, from (34), we claim that en+1 and α(t) are not propor-

tional. Then, by considering x ∈ ∂Ω, it follows from (33) and (35) that

uv(x, t) = 0 and 〈P ◦ u(t, x), P ◦ α(
1
2

)〉 = 0 on ∂Ω.

Lemma 10 Suppose that u0 and u1 are two distinct minimizers for the same
boundary data g. Then

Rank(P ◦ u0) = Rank(P ◦ u1) ≤ n− r.

Proof. Suppose that Rank(P ◦u0) = m0 +1 and Rank(P ◦u1) = m1 +1 ≤ m0,
and that P ◦ ui ⊂ Si where Si is a mi-dimensional sub-sphere. Without loss of
generality, we can assume that S1 ⊂ S0 after a rotation. Then u0 and u1 are also
two Nm0-valued minimizers (here we will replace u0 by (u0)h + |(u0)v|em0+1 if
it is necessary). From (35), we deduce that 〈P ◦ u0, P ◦ α(0)〉 = 0, that is,
Rank(P ◦ u0) ≤ m0, a contradiction. ♦

Step 4. In the following, N k
is a submanifold of N in a natural way. In

fact, let u be a minimizer for the problem P kg . Denote gλ = Pλ ◦ g. Let uλ be
the unique pseudo-harmonic map with the boundary data gλ and in particular
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uλ(Ω) ⊂ N k
. Assume that uλ ⇀ ũ in H1 and let w be a N -minimizer for the

boundary g. Therefore, we obtain

E(ũ) ≤ lim inf
λ→0

E(uλ) ≤ lim inf
λ→0

E(Pλ ◦ w) = E(w).

This means that N k
-valued map ũ is minimizing among N -valued maps. Sup-

pose that the minimizer u of the problem P kg has rank k. Then by lemma 10
and the above result, all N -valued minimizers have rank k. If the N -valued
minimization problem has two solutions, then so does the N k

-valued problem.
But this means Rank(P ◦ g) ≤ k − 1 which is false. Therefore P ◦ u has rank
k + 1. So we complete the part of necessity.

Step 5. Let u be the unique minimizer of the problem P kg . Let R be a rota-
tion which leaves the vector space containing Image(P◦g) and P1(Rn+1)invariant.
So R◦u is another minimizer. Hence, this terminate the part of sufficiency. The
rest of the theorem is evident.

Acknowledgments. The author thanks Professor F. Hélein for his constant
support.
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[8] W. Jäger and H. Kaul, Uniqueness and stability of harmonic maps and
their Jacobi fields, Manuscripta. Math. 28 (1979) 269-291.



EJDE–2001/37 Yuxin Ge 15

[9] J. Jost, Two-dimensional geometric variational problems, Wiley (1991).

[10] J. Jost and M. Meier, Boundary regularity for minima of certain quadratic
functionals, Math. Ann. 262 (1983) 549-561.

[11] W. Littman, G. Stampacchia, H.F. Weinberger, Regular points for elliptic
equations with discontinuous coefficients, Ann. Scuela Norm. Pisa, Sci. Fis.
Mat. III ser 17 (1963) 43-77.

[12] C. B. Morrey, Multiple integrals in the calculus of variations, Springer,
Grundlehren. 130, New York (1966).

[13] E. Sandier and I. Shafrir, On the uniqueness of minimizing harmonic maps
to a closed hemisphere, Calc. Var. 2 (1994) 113-122.

[14] M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York-
Tokyo (1990).

[15] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J.
Differ. Geome., 17 (1982) 307-336.

[16] R. Schoen and K. Uhlenbeck, Boundary regularity and miscellaneous results
on harmonic maps, J. Differ. Geome., 18 (1983) 253-268.
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