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A ¢-FRACTIONAL APPROACH TO THE REGULAR
STURM-LIOUVILLE PROBLEMS
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ABSTRACT. In this article, we study the regular g-fractional Sturm-Liouville
problems that include the right-sided Caputo g-fractional derivative and the
left-sided Riemann-Liouville g-fractional derivative of the same order, a €
(0,1). We prove properties of the eigenvalues and the eigenfunctions in a
certain Hilbert space. We use a fixed point theorem for proving the existence
and uniqueness of the eigenfunctions. We also present an example involving
little g-Legendre polynomials.

1. INTRODUCTION

The g-calculus was initiated at the beginning of the 19th century. Since then,
many works have been devoted to the study of g-difference equations; see e.g.,
[T, 2, 12]. Recently many researchers have focused their attention on certain gen-
eralizations of Sturm-Liouville problems. In particular, in [6] the authors studied
a g-analogue of Sturm-Liouville eigenvalue problems and formulated a self-adjoint
g-difference operator in a Hilbert space. Their results are applied and developed
in different aspects; see for example [0 [8 [0, 14l [16]. Mansour [I5] introduced
fractional ¢-Sturm-Liouville problems containing the left-sided Caputo ¢-fractional
derivative and the right-sided Riemann-Liouville g-fractional derivative which are
adjoint operators in a certain Hilbert space.

In this paper, we formulate a regular g-fractional Sturm-Liouville problem that
contains the right-sided Caputo g-fractional derivative and the left-sided Riemann-
Liouville g-fractional derivative of the same order, o € (0,1). More precisely, our
problem is described as follows.

Let 0 < a@ < 1 and p, r, w, be given real valued functions defined on a g-linear
grid Ay , (see Section 2.) such that p(z) # 0 and w,(z) > 0 for all z. We consider
the g-Sturm-Liouville operator

Ly.ay(x) =Dy o (pDg o+ y) (x) + 7(x)y(z),
and consider the fractional differential equation

L:q,ay(x) - )\’wa(l')y(l') =0, z¢€ Az,m (11)
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that will be called a regular fractional ¢g-Sturm-Liouville problem (regular qFSLP).
This equation is complemented with the boundary conditions

B1(1, 5%9)(0) + B2(pDg 4+y)(0) = 0, (1.2)
NI, 55y)(a) + 72(pr§‘,o+y)(5) =0, (1.3)

with 37 + 42 # 0 and 73 + 43 # 0.

This article is organized as follows. In the next section, we state the ¢-definitions
and present some preliminaries of fractional g-calculus which will play an important
role in our main results. The properties of the associated eigenvalues and eigen-
functions of the regular qFSLP f are stated and proved in Section 3. In
Section 4, we apply the fixed point theorem to prove the existence and uniqueness
of the eigenfunctions and corresponding eigenvalues. In the last section, we give an
example for a regular qFSLP involving little g-Legendre polynomials.

2. PRELIMINARIES

Throughout this article, we assume that 0 < ¢ < 1 and we follow Gasper and
Rahman [I1] for the definitions of the ¢-shifted factorial, the ¢g-gamma and g¢-beta
functions, the basic hypergeometric series and Jackson g¢-integrals.

For t > 0, the sets Ag ¢, Ay, and Ay, are defined by

Agri={tqg" :neNp}, Ar,:=A,,0{0}, A, :={td" kecZ},

q;

where Ng := {0,1,2,...}. Note that if £ = 1 we write A,, A7, and A,. A function
[ defined on A7, is called g-regular at zero if it satisfies

lim f(zq") = f(0) forallz e Ay,

The g-derivative Dy f of an arbitrary function f is defined by

Duf)(w) = HH=LED 20
Note that
Do () = =Dy uf (o). (2.1)
Dy(f9)(x) = Dyf (2)g(a) + f(q2)Dyg(a). 22)

The g¢-integration by parts rule on an interval [a b] (see [7]) is

/a F(2)Dyg(x) dya = f( / Do f(x)g(qz) dyz, (2.3)

where f and g are g-regular at zero functions. Using (2.1 and (| -, we obtain the
g~ !-integration by parts rule:

/ F@D, 190 dyo = af (@)o()

If X is the set A, or A7 4,
defined on X and satlsfymg

= ([ @p )" <o

b
—a [ s@D @ de (2

then for p > 0, LL(X) is the space of all functions
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it is a normed space. Moreover, if p = 2, then Lg(X ) associated with the inner
product

(f.9) = / F(2)9(x) dyz (2.5)

is a Hilbert space. The space of all functions f defined on X such that

/ |f (z)[Pw(x) dgr < 00,
0

where w is a positive function defined on X is called a weighted space and denoted
by Lg (X, w). This space associated with the inner product

(f.g) = / F@)g(@w(z) dyr (2.6)

is a Hilbert space.

Let Cy(X) denote the space of all g-regular at zero functions defined on X with
values in R. The space of all g-absolutely continuous functions on Aj ; is denoted by
AC, (A} ;) and is defined as the space of all g-regular at zero functions f satisfying

Z |fzq’) — flzg )| < K forallz € AL,
=0

where K is a constant depending on the function f. Note that AC,(A;,) C
Col A7)

In the following we recall some definitions, roles and properties of fractional
g-calculus (for more details see [3], @]).

Let o > 0 and f € L4(A},). The left-sided Riemann-Liouville g-fractional
operator of order « is

xafl

R;(a)/a (qt/z;q)a—1f(t)dyt,

If fe Lq(A;,b), then the right-sided Riemann-Liouville g-fractional operator of
order « is

It?,aJrf(x) =

b
I8, f(x) = ! /ta‘l(qt/x;q)a_lf(t)dqt-
q

F‘](a) x
The left and right side Riemann-Liouville fractional g-derivatives are defined by
(67 m — « _1 m m _
Dfor f(a) = DY (@), Dy (@)= ()" DI ),

and the left and right sided Caputo fractional g-derivatives are defined by
c m—o ym c —1\™ m—o ym
Dy f(&) = 17D fla), “Diy-fla)i= () I Dy fla), (21)

where m = Ta” denotes the ceiling function. According to [, pp. 124, 148],
Dy .+ f(z) exists if f € Lq(A7 ;) such that I;;ff € AC,(A; ), and Dy .+ f exists
if f e AC, (A5 ,)-

We end this section by the following results from [I5], which will be needed later.

Lemma 2.1. Let o > 0. If f is a function defined on A, then

q,a’

130~ "Dgo-f(x) = f(z) = fla/q), (2.8)
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—x

“Dia-Tjo-1@) = fla) ~ (1 Ty el Dl 2N (29)

Lemma 2.2. Leta > 0. If f € Ll(A;a) and bounded, then
‘DyorIgor f(x) = f(z), I2g:f € ACY(A] ), (2.10)
T30+ D ) = £(0) = 0% 277, (211)

D3y I3y f(2) = f(@) (212)
Lemma 2.3. Let a € (0,1). If

o feLi(X) and g is a bounded function on Aqq, or
e a#1/2and f,g € L2(X),
then

/ag(x)lqo‘,wf(x) dex = /a f(x)[ia,g(m) dg. (2.13)
0 0

3. PROPERTIES OF REGULAR FRACTIONAL q—STURM—LIOUVILLE PROBLEMS

Recall that a complex number A\* is said to be an eigenvalue of problem (|1.1))—
if there is a non-trivial solution y*(-) which satisfies the problem for this A*. In
this case, we say that y*(-) is an eigenfunction of the regular gFSLP corresponding
to the eigenvalue \*.

We denote by V' the Hilbert subspace of L2(A; ,) N Cy(A% ) Which consists of
all g-regular at zero functions satisfying the boundary condltlons and .
with inner product

(u,v) := /Oa u(t)v(t) dgt.

Note that for f,g € V and a > 0, we have the following equation (see [I5, Lemma

2.4]):
| s@i50 f@yde = [ F@15, g@)dyo (3.1)
0 0
Lemma 3.1. Let a € (0,1) and f,g € V. Then
(Diar1,6) = ~1COLS9@)| |+ Dyor).

The proof of the above lemma follows directly by using (2.4), (3.1) and the
definitions of ”DO‘ _ and D o+~ We omit it. Now, we prove the following important
identity known as ¢- Lagrange s identity.

Proposition 3.2. Let u,v € V. Then
« € « € @
(Lg,att, v) = (u, Lo,av) = (I o0u) (@ )(PDq,ow)(q) (I, o80)(@ )(qu,ow)(a)]
Proof. Using the definition of £, o and applying Lemma [3.] it follows that
(Lgau,v) = (“Dy -pDy g+t + Tu,0)

x:O.

a
(D50 ) 50|+ (rusw) + (D, pDGg- )

= (I50u)(@ )(pD;0+v><§>

a €T a

= ot (@ 2)(PDgor)()

=0 z=0
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+ (u, “Dy o~ pDg o+ v + 10).
Since (u, CD;aprng + rv) = (u, L4,40), we obtained the required equality. O

By using g-Lagrange’s identity, we obtain the following properties of the operator
Ly« on the Hilbert space V.

Proposition 3.3. Let a € (0,1). Then

(I) Ly is a self-adjoint operator on V. In other words,
(Lg,au,v) = (u, Lgov) u,veV.
(II) L4« has only real eigenvalues.

Proof. First, we prove (I). Let u,v € V. Then from the boundary condition (1.2)),
we have

B1(1,55u)(0) + B2(pDg g+ u)(0) = 0,
0.

B1(I,550)(0) + B2(pDg g4 0)(0) =

1,55 u(0) 1,550(0) (61) _ (0>
(pDy o+ u)(0) (qu,Ow)(O) Ba 0/
But 3?2 + 32 # 0 which implies

150 u(0)(pD g v) (0) — I} 0+v<o><pD:;,o+u><o> 0.
Similarly, from the boundary condition , we obtain

That is,

I'52u(a ><quo+v>(q> I ><pD;io+u><§> — 0.

Hence, using ¢g-Lagrange’s identity, we conclude that L, , is a self-adjoint operator
on V.

To prove (II), we assume that A is an eigenvalue associated with an eigenfunction
y. Then

Ly,ay(x) = Awa()y(z), (3.2)
Lq,ay(x) = Awa(2)y(). (3.3)
Multiply equation by y and by y and then subtracting, we obtain
y(@)Laay(@) = y(2)Le,ay(z) = (A = Nwa(@)y(2)y(@).

Now, the g-integration over the interval [0, a], and the application of ¢-Lagrange’s
identity yield

a

0= /Oa (y(x)ﬁq,am - mﬁq,ay(x)) dgx = (5\ _ /\)/0 wa(x)|y(x)|2 dg.

But ¥ is non trivial solution and w, > 0, this implies A = \. (]

Proposition 3.4. The eigenfunctions corresponding to different eigenvalues of the

reqular ¢FSLP are orthogonal on the weighted space L? (AZ w We)-
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Proof. Let u; (i = 1,2) be eigenfunctions of the regular gFSLP (L.1)—(L.3) associ-
ated with different eigenvalues \; (i = 1,2). Then

Eq@{ui} = )\iwaui, = 1, 2
By using Proposition we obtain

(M — A2) /Oa ur(z)ug(x)we (z) dgx = 0.

Since A1 # Ag, then u; and ugy are orthogonal on Lg(A;,a, We,)- O

4. UNIQUENESS OF EIGENFUNCTIONS OF THE REGULAR QFSLP

In this section, we give a sufficient condition of A to guarantee the existence and
uniqueness of the eigenfunctions up to a multiplier constant.

Recall that the multiplicity of an eigenvalue is defined to be the number of
linearly independent eigenfunctions associated with it. In particular, an eigenvalue
is simple if and only if it has only one eigenfunction.

First, we study the solution of the g-difference equation

ca™ ¢

CDg,a*p(‘r)Dgyo-%—QbO(x) = Fq(l — Oé) (qx/a, Q)—av (41)
where c is constant. Note that
a—Ot
I'“1)= —— 1q)—a-
o (1) 0= a) (qz/a;q)

So, acting on the two sides of (4.1) by the operator Igfa,, we obtain
19, °D% - p() DE gy bol) = eI0y- 12 (1),
Using ([2.8) and (2.11)), we obtain

gf)o(l‘) =C I’ail —+ C2 I:;’O-F}ﬁ,
where 5(0)
1 = e = (PO 0()) (/) quades = =5

Thus, we have the following result.
Lemma 4.1. The general solution of the q-difference equation (4.1|) takes the form
do(x) = c12°" + cava (),

where Yo (z) = I(‘;i0+ ﬁ and c1,co are constants.
Lemma 4.2. Let a € (0,1), ¥ (z) = I(‘;‘)OJFﬁ and

Yy(@) i=r(2)y(z) — Awa(x)y(z), (4.2)

A:=Tg(a) [5172 — P + Bim (Yala) — 1/Ja(0))] (4.3)

If A # 0, then, on the space C(A27a), the regular gFSLP 7 s equivalent

to the q-integral equation

@) = =(Ios o5 700 Y0 @) + 4 (1501, 0) @)

z=0
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)

z=0

+B@) (T 555,V 0) @)+ C@) (T 5120 %0) @

r=a

where

Aw) = 2 Gutiala) + ) — 1 da(@)y(0)]

B(x) = 1 [Br (@)D (0) = 27 (10 0) + 52)].

B A(x)
B2

C(z) =

Proof. Since Y, is defined by
Yy(x) := r(@)y(z) — wa(2)y(),
equation takes the form
°D2 \p(2) D2 g1 y(x) + Yy (&) = 0.
Using , we can rewrite Y, as
a—c

C « « 1 —Q a
Yy(z) = ( Dy o-pDy o I o+ EI;Q—Yy)(x) + m(qx/a;fﬁﬂx (I;a,Yy)(E).

This implies

ca” @

(& « (0% 1 (e — .

Do p@)Dfs [80) + e S5 T Yo (@) = g — o5 (02/050) o
where ¢ = (I{;‘fYy('D (a/q). Now, set

« 1 «
b0 = (@) + 1o+ (S5 0 ¥o0)) @),
and using Lemma we obtain
1
Y(&) + Ioge — I8 V() = 1™+ exta(a). (14)

p(x)

This implies the following equalities
1 1
1 (e% _ fe%
(£1o20) @)+ (Loor Lo Yy ) (@) = 1 Tule) +ea Lgr o,
(pD2ory) (@) + 12, Yy (@) = ca. (4.6)
Using (4.5) and (4.6, we obtain
1 1
1— —
(5059) O+ (o Tya o) ) = erTole) 2 (v ) ), (47)

(pD30+9) (O + (12,-Y,) (0) = s, (4.8)
(Hatw) @+ (o 2 Iou Vo) @ = aTyle) + 2 (T2 ) (@), (49)
(qu o+ y) (a/q) = ez (4.10)

Substituting from and (| into ( and from (4.9 and ( - in ., we

obtain the system

A(BiTy(0) + 2| Bilgr o + Ba| = BLX(0) + B2

1
p(0)
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1
1 Ty(@)) + e2[MIfgs o+ ] = X (@)

where X := 1%, 11® YV, and Z = 12 - Yy(0).

7,0t pTq,a”
Since A # 0, the solution for coefficients ¢; and ¢ is unique, and is given by

o = % (B1X(0) + B22) (n¢a(a) +72) — 11X (@) (P14 (0) + 52)} :

er = P g X(0) — (3,X + 5o2)(0)]

Now, substituting the expressions of ¢; and ¢y into (4.4]), we obtain the desired
result. d

Note that by using Lemma we can verify that the regular gF'SLP (|1.1)) can be
interpreted as a fixed point for the mapping 7': C(A; ,) — C(A; ,) which defined
by

Tf(a) = = (o > T ¥7) (@) + A@) (13- Y7 ) @)

x=0

1
+ B(z) (qu S Yf) (x)

1
+C@) (qu0+ S yf) (x)

x:O.

Set
Yi(x) :=r(2)y(z) — Awa(z)y(z),
we obtain
1Yy = Yall < llg = Al Ir = Awall, g,h € C(A7,).
Now, denoting
A=|A@), B=|B@), my= if |p()l, Ms:=|¢ll, M =]l

TE€AY ,

where ¢ := 12, I, and 6= 12, it follows that

M ~ Ba -
1Ty = Tall < llg =Bl L L= fIr = dwal(—2 +46(0) + ——6(a)).

mp mp

Therefore, if

mp

My +m,Ad(0) + Bag(a)’

we conclude that there is a unique fixed point fy € C(A; ;) which satisfies the

regular qFSLP (1.1)—(1.3)). Hence we have the following result.

Theorem 4.3. Let « € (0,1). If A # 0, then unique q-regular at zero function fy
for the regular ¢qFSLP (L.1)—(1.3)) corresponding to each eigenvalue obeying (4.11)

exists, and such eigenvalue is simple.

Ir — Awe || < (4.11)

Note that if 7 and w, are L2(A} ,) functions, then we have the following version
of Theorem 3]

Theorem 4.4. Let o € (%,1). Assume that the functions r and w, are L2(A: )
functions, and p is a function satisfying infweA;,a p(z) > 0. If A # 0, then there
erists a unique g-reqular at zero function yy for the regular qFSLP f
corresponding to each eigenvalue obeying

[ = Awa |2 < ol I
Va(Bat "+ Byfaat D)

)
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where

o 1— gl—2e 1 1
oo =Tq(a)(q"1 @) 17_qa for 1 <a< 3’
and satisfying

Hao My

a® (Fq(a)ao‘*% + B(1—q)'~*)

I = Awalls <

)

where
T . 1— 2a—1 1
= L@@ Doy — g7t 1
(1—q) 2 2

Proof. As in the proof of Theorem the regular gFSLP (|1.1)) can be interpreted
as a fixed point for the mapping T": C'(A; ,) — C(A; ,) which is defined by

Tf(@) = (I 100 ¥r) @) + A (I3, 7) @)

0+
p

w0 (4.12)

1 [0
+ B(z)(Ig0r Zqua,yf) ()

We will use the estimate
Mg (Yo = Ya) ()2
1 a 1/2 (4.13)
< lg =l = Nealla s (| 20 et dit)
Fq(a) qx t
and the following inequalities (see [I5, Theorem 3.8]):

(03 1 (0%
o (o Tia (Vo =Y ) @)]

lg = hlllr — Moall2 @, L <a <12, (4.14)

my 4

20— 1
lg = hllllr = Awgll2 7225 —=, 5 <a <1,

Ty(a+ 3) [ 1—-4q (1—g) >
Ola = “oa’ 02a = .
(0% 9)ocTg(2a + 3) V1 —¢'~2 (@ @)oo /1 — g1
For the first case (3 < a < 1), we have
/ 2072 (qu [t q)o_y dgt <
qx
From (4.13) and (4.15)), we obtain

Mg (Yg = Yu)(@)ll2 < llg = hllllr = Adwa |2

1 (03
A (Lo T ¥r) @)

r=

where

zl2 (1-q)
(q*;9)% 1 —qt—22

Using (4.12)), (4.14) and (4.16]), we obtain

Ulaﬁ
T, —Tulla < llg = Al |7 — Mwg [ 1+ }
1Ty = Talla < llg = Al | = 5 e D)

= Lallg = All,

where

Ula\/a(l +
m
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Using the assumption of the theorem, we conclude that there is a unique fixed
point yy € C’(A;a) which satisfies the regular qFSLP 7. Therefore, such
eigenvalue is simple.

For the second case (% < a < 1), we have

‘ a>!  (1-4q)
27 2(qz /t; q)2 1 dgt < :
/qz / )a 1 *%q (qa; q)go 1— q2a71

-«

0'20((1 B q) oz—%
Iy(a) .

g a- (Y = Ya)(@)]l2 < llg = Rllllr — Adwalla

This implies

020" _1

T, — Thllz < Ilg — Al [Ir — A [ a3

I, = Thlla < lla = bl = Ao o [ 22 a4+ 2
:L2|‘g_h||7

where

0220% | o 1 B 1-a
Ly = lIr = Awalla| o () )]
Using the assumption of the theorem, we conclude that there is a unique fixed
point yx € C(A; ,) which satisfies the regular gFSLP (L.1)-(L.3). Therefore, such
eigenvalue is simple, The proof is complete. ([l

Theorem 4.5. Let 0 < a < 1 and kg, k1 be real numbers. Assume that the
functions p, r and wa are C(A;,a) functions such that infreas  p(x) > 0. Then,
the regular ¢FSLP (1.1] f with the initial conditions

(11 o y) (0) = ko, (pD;O+ y) (0) = ki, (4.17)
has a unique solution in C(Aj ).

Proof. Assume that y; and y» are two solutions of (1.1)) satisfying the initial con-
ditions (4.17). Then z = y; — ys is a solution of (1.1)) with the conditions

(11 oo z) (0) = (pD;fO+ z) (0) = 0. (4.18)
From Lemma we have

1
@) + (Lo oI ¥e) (@) = €127 4 cati (o),
1
1 « _ (o
(£1522) @)+ (Taoe T ¥) () = e Tofe) + ealipe o,
(pD(’iOJrz) (x) + 1 ,-Y.(7) = co.

Thus, we can verify that the regular gFSLP (L.1)) can be interpreted as a fixed point
for the mapping T : C(A; ,) — C(A; ,) which defined by

xafl

T1(e) = ~(Igor 1Y) @)+ fos (T T30 Vi) 0)

+ vala) (17, Y5) (0).

Using the inequality (see [15])

(4.19)

Oé

g o+ FIl < & T )Ilf( )|, (4.20)
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we obtain ||¢, ()| < mﬂf@)”, and using the estimate

1Yy = Yall < llg = BlllIr = Mwall,  g,h € C(A;),

we have
M a® ~
Ty Tl <l Ml (M4 250
I,y = Tl < llg =l = Ao (2 + o600
So, if
[ — Awal| ( 1
M= Al (p )M, + a®p(0 ) 1,
mprq(a+1) Q(a+ ) ptTa (b() <
then T': C(A} ) — C(A7 ,) is a contraction mapping and 2 is a unique fixed point
of (4.19). Therefore, z =0, i.e., y1 = y2 on A7 .. O

5. AN APPLICATION
The little g-Legendre polynomials p,(x|q), cf. ([I3] [I7]), are defined by
pn(@lq) =201 (a7 ", " @ q, qo)

_ z": (¢~ k(g™
= (&

7(])k kl‘k.
k(D

Recall that the little g-Legendre polynomials are the little g-Jacobi polynomials
pn(z;9%,¢%|q) with ¢® = ¢ = 1. These polynomials satisfy the orthogonality

relation
n

o0
k k k q
Zq pm(¢"1a)pn(q"lq) = mémn-
k=0
They also satisfy the second-order g-differential equation

—,((@(1 =)D y(@)) + "l + Uy i) =0,

where
n

l—gq
[n]q = 1— q )
In this section, we prove that the little ¢g-Legendre polynomials satisfy a fractional
g-Sturm-Liouville problem. Consider the g-fractional differential equation

n € R.

‘Dl (2"(qz:9) ) DYy o y(@) = Ay(x), € Ay, pe (0,1), (5.1)
subject to the boundary conditions
_ N 1
(1, 549)(0) = (2" (ga; q)qumy)(g) =0. (5.2)

We shall prove that Problem (5.1)—(5.2]) has a discrete spectrum {¢n, A, }, where
¢n is a little g-Legendre polynomials and the eigenvalues {\,,} has no finite limit
points. The main result reads as follows.

Theorem 5.1. For u € (0,1) and 8 > —1, the little ¢-Legendre polynomials
¢n(x):pn(x;1a]-‘Q)v nGNO
are eigenfunctions of the gFSLP (5.1)—(5.2]) associated to the eigenvalues

Fg(1+n+p)

An = q_nH .
Lg(1+n—p)
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To prove Theorem we need the following results from [15].

Lemma 5.2.

ly00 ((')apn(~5 q qﬁlq)) (@) =1 abon

— - 7 gpets
o(l+a+p)

P (730%™, ¢°7#q).

Lemma 5.3. If o, B and p are real numbers satisfying a« > —1, f > —1 and
b—1<pu<a+l, then
Ioa- ((qt; Q)apm(t;q“,qf’IQ)) =
mu_ LgB+m+ DI +a+m—p)ly(1+a)
F,l4+m+8+wly(l+a+mTy(l+a—p)

The following equation follows immediately from Lemma and ([2.12)),

1

D" pn(z;1,¢° ")) = ———2 *[pu(z;07",¢"|g) — 1. 5.3
q’0+p (l’, ,q ‘q) Fq(lflu)x Lp (-T,q , 4 |q) ] ( )

Also, from Lemma and (2.9) we obtain

(qt; Q) ppupm (t; 4>+, 47 Tq).

‘DY | (q750) g ppn (@ * 7, 7 H]g)

:q—mqu(l+7’L+5+H)Fq(1+a+n)rq(1+a—u) (422 @) s (2 qﬂ‘q)
T,(B+n+1)T,(1+a+n—pul,1+a) 1 q)apn(; %,

(9250)—p [ 1n ' . )
- m<1’q’17(q(')’q)ﬁpn("q 7q5|q)>(6)-

(5.4)
Proof of Theorem[5.1]. Setting 3 = p in (5.3) we obtain
D" 1,1 v’ . gPlq) — 1
q70+pn(1’7 1g) = m[pn(ﬂf,q 4" lq) — 1]. (5.5)
Using (5.2)), (5.4) and (5.5)), it follows that
Dy - (2"(q239) ) DY g4 (@3 1, 1]q)
CDM ,(qm'q)
— _elm oA comH gtla) — 1
o Tg(L+n+ )
= R (31, 1|q).
q Fq(Hn_M)(q 0)Pn( )
Now, combining ([5.1)) and (5.6) gives the required result. O

Remark 5.4. Theorem is a g-analogue of the following classical eigenvalue
problem for the Legendre polynomials (see [9])

(1—2%)y) + =0, —-1<ax<l.
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