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SHARP TRUDINGER-MOSER INEQUALITIES WITH
HOMOGENEOUS WEIGHTS

NGUYEN TUAN DUY, LE TRUNG NGHIA, LE LONG PHI

Communicated by Jesus Ildefonso Diaz

ABSTRACT. We investigate sharp Trudinger-Moser type inequalities with the
homogeneous weight satisfying a natural curvature-dimension bound condi-
tion. Also we study the optimal versions of these inequalities with best con-
stants on both finite and infinite volume domains on Euclidean spaces.

1. INTRODUCTION

The main motivation for this article is the Trudinger-Moser inequality studied
by Moser in [3§].
Theorem 1.1. Let Q C RY be a bounded domain. Then for each f € C§°(2) with
Jo IVfINdz < 1, we have

1 WET | o
@/Qexp{NwN_1|f|N—l}dx§c1 (1.1)

1
where ¢ is a constant depending only on N . Moreover, the value Nwy ~} is optimal.

The above result is a sharp version, with the explicit optimal constant of the
embedding Wol’N(Q) C Ly (2), where L, (£2) is the Orlicz space associated with
the Young function o (t) = exp(B[t|N/N=1) —1 for some 8 > 0, Ithat was studied
by Pohozaev [40], Trudinger [43] and Yudovich [44]. This is widely considered as a
replacement of the well-known Sobolev embeddings in the border-line cases.

Because of their important roles in the literature, see [12, [13], Trudinger-Moser
type inequalities have been investigated intensively in many different settings. See
5, 111, [(14) (15, (16, (17, (18, 19, 211 22, 26, 27, 28, B0, 31, 32, 35, 36l 41], to name
just a few. When the volume of €2 is infinite, the Trudinger-Moser inequality
becomes trivial. In this aspect, we have the following versions of the Trudinger-
Moser type inequalities that can be found in [I} B3] 37].

1

Theorem 1.2. Let 0 < f < By = Nwy ). Then one has

o [ o3I de < (1:2)
RN

sup TV
rewry @y v six<t 1IN
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_N
sup ON(BNIfIF-T) dx < 0. (1.3)
FEWLN RN )|V FIN+FIN <1 JRY

L[ enBulfI™)

sup < 00. (1.4)
rewr N @N v fiv<t [FIN Jrv (14 |f]751)
Here
N-2
i
on(t) =€ — ZF
j=0

The constant By is sharp. Moreover, the last supremum is infinite when the power

% in the denominator of (1.4) is replaced by p < %

Another interesting problem is to study the Trudinger-Moser type inequalities
with the presence of weights w(x). For instance, when w(z) = ﬁ, the singular
Trudinger-Moser type inequalities, which are the interpolations of the Hardy in-
equality and Trudinger-Moser type inequalities, were set up in [3| [, 20] [39]. We
also mention that, motivated by an open question raised by Haim Brezis [0} [7],
Cabré and Ros-Oton studied in [§] the problem of the regularity of stable solu-
tions to reaction-diffusion problems of double revolution and then established in
[9) the Sobolev, Morrey, Trudinger and isoperimetric inequalities with monomial
weight 4. The optimal versions with best constant of the Trudinger-Moser type
inequalities with monomial densities were also investigated by Lam [24].

Motivated by the sharp Trudinger-Moser type inequalities with monomial weights
in [24], and the functional and geometric inequalities with homogeneous weights (see
[10, 25]), we will study the sharp Trudinger-Moser type inequalities with homoge-
neous weight w(x).

Let ¥ C RY be an open convex cone with vertex at the origin. Let w be a
continuous function in ¥, positive in X, w = 0 on X, and positively homogeneous
of degree A > 0. Let

NA:N—l-A

and denote
mw(E):/ w(z)Naz.
E

We also assume that w!/4 is concave in ¥ if A > 0. We note that this condition is
equivalent to the nonnegativity of the Bakry—Emery Ricci tensor in dimension Ny.
In other words, ¥ with the reference measure w(x) dx satisfies CD(0, N4). We note
that many interesting examples of the density w were provided in [10, [25].

We also use the following notation:
QO =any, WN-1w = / w(x)do.
aB>
We note that

1 1
1
/ w(x)dﬂ«“:/ / W(x)dUdTZ/ PN Ny dr = —wy 1.
BY 0 JoBg 0 Na

Our first main result in this paper is to prove the following sharp Trudinger-
Moser inequality with homogeneous density on domains of finite volume.
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Theorem 1.3. With the above notation we have

1 _Ng
su —_— exp (B ol f1 A1) = 1w(@) de < oo
o 19 51%ni(e) da<1 Mo (SUPD (D)) / [exp (Bra wl fI¥277) = 1]w(2)

where

BNaw = NA(/(’?BZ w(x) da)ﬁ

is the best constant. Here the supremum is taken over f that is Lipschitz contin-
uwous function in X, my{x € ¥ : |f(z) > t|} is finite for every positive t, and
my,(supp(f)) < oo.

When w = 1 and ¥ = R¥, we recover the classical Trudinger-Moser inequality
on bounded domains in [38]. When w(z) = 4 is the monomial weight, we obtain
the optimal Trudinger-Moser inequality in [24].

Our next goal of this article is to establish the sharp Trudinger-Moser inequalities
with homogeneous density on domain of infinite volume. Let

tk
PN, (t) = Z -
kEN:k>Na—1
Then we have the following versions of the Trudinger-Moser inequalities on the

whole domain ¥ in the spirit of [T}, 29] B0}, B3], B7]:

Theorem 1.4. Let K > 1 and 8 < Bn,w- There exist constants C(Na,w) > 0
and C(Na,w, K) > 0 such that
(i) for all f € CX(X) for which [o|V fIN4w(z)ds <1, we have

/ dna BNA,w|f|W‘31)
(1+17175*7)

The constant By, . 5 optimal. Moreover, the inequality does not hold when the
power NNA is replaced by p < NA I
(it) for all f € C°(X) for which [y, |V f|IN4w(x)dx < 1, we have

w(z) de < C(NA,W)/EmNm(x) de. (15

e C(Na,w Na
/ O (B o) dr < S / TR (1.6)

(iii) for all f € C(X) for which [ |V f|N4w(x)de < 1, we have

KNA—I w Ny
[om Ohase | )i Y o(a) da
= (K =1+ [,|Vf|Naw(x) dz) ¥~

Js [f1VAw(x) da
1-— fz [V fINaw(x)dz

() for all f € CZ(X) for which [ |Vf|INaw(x)de + [ |f|N4w(z)de < 1, we
have

(1.7)

< C(NAawaK)

/Z N2 (Bl /1757 Yo(z) dr < C(Np,w0). (1.8)

The constant By, . is sharp.
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Let us denote

1 _Na
STM() = sup o L v (B () de
feCe(D): [ IVfINAw(z) do<l fz|f|N*‘w($)d$ by N ( )

N
TM: B sup / ¢NA (/BNA7W|f|NA71)w(x)dz’
FECE(E): [5 IVfINAw(@) dot [3 [fINAw(z) de<1 /2

1-— vV f|Va d
ITMg = sup fz‘ Nf| w(z) du
FEC(S): [, IV fINAw(x) de<1 Js [fNaw(z) de
KN14171 w NA
< o Oase | | Vo) do
py (K =1+ [ |VfINaw(z)dx) ¥aT

Then we show the following relations:

Theorem 1.5. For K > 1, we have

1= (gl

K K By
ITMg = —— TM = —~—  sup A } STM(B).
K—1 K—1 BE(0,BN 4,w) (5Ni,w yNa—t

See [23] for similar results for the non-weighted case and [24] for the ones with
monomial weights.

2. SHARP TRUDINGER-MOSER INEQUALITY WITH HOMOGENEOUS WEIGHT ON A
BOUNDED DOMAIN

We first recall the following result by Adams [2]:

Lemma 2.1. Let 1 < p < 0o and a(s,t) be a non-negative measurable function on
[0,00) % [0,00) such that (a.e.)

a(s,t) <1, when0<s<t, (2.1)
o ;NP
sup (/ a(s,t)? ds) =b < o0. (2.2)
>0 \Jy
Then there is a constant co = co(p,b) such that if for ¥ >0,
Y(s)Pds < 1. (2.3)
0
Then -
/ 6_F(t)dt S Co (24)
0
where

Fiy=t( /0 h a(s,t)dz(s)ds)p/. (2.5)

Our approach to prove Theorem [I.3| relies on the classical symmetrization argu-
ment. However, since we have to deal with the nonradial densities, we now need
to set up a weighted version of the rearrangement. Actually, we have the following
version of the rearrangement argument:

Lemma 2.2. For any Lipschitz continuous function f in ¥ such that m,{x € ¥ :
|f(z) > t|} is finite for every positive t, there exists a radial rearrangement f# of

f such that
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(a) f7 is radially decreasing,
(b) mu({[f] > t}) = mu({f# > t}) for all t,

(c) for every Young function ® (that is, ® maps [0, 00) into [0,00), vanishes
at 0, and is convex and increasing):

/ BV f#)eo(z) di < / BV fl)eo(z) de
> >

(d) [5¥(flw(z)de = [ U (f#)w(z)dx for a nondecreasing function U : R* —
R+

Indeed, by [42], we have that whenever balls minimize the isoperimetric quotient
with a weight w, there exists a radial rearrangement which preserves [ ¥(f)w(z) dz
and decreases [ |V f|Pw(z) dz. Hence, by combining this fact with the results about
the isoperimetric inequalities with homogeneous weights (see [I0} 25] for example)
and the layer cake representation (see [34]), we obtain Lemma

Proof of Theorem[1.3 By applying Lemma we assume that f is radially non-
increasing with supp(f) = Bg. Hence, using polar coordinates, we obtain

R
Lt e = [0
> 0

/Z{exp (BNaw
= /OR (/8339 [eXP(BNA,w|f|%) - l}w(x)d(j)dr

f Na_
:wN—Lw/ {exp (5NA,w|f\NA*1) *@TNA*ldr.
0

and

f|%) - l}w(x)dx

Now, define a function v:
v(t) = Pf(Re™"/N)
where
1 1/Na
P = NA(FAwN_l’w) .
Then, by direct computations
1

R R
/ |f/(T)|NATNA_1dr:/ |f/(Re_t/NA)|NA (Re—t/NA)NA—lRNi
0 0 B

e tNagy
Nay, 1 /R N

= (— —_— )|V Adt
(P) Na o [v'(t)]

and

R N
[ [ow el ¥25) ]

= RNAI/OOO {exp (ﬂNiﬁA‘uw(tﬂ%) - l]eftdt.

NA PNA-1
Noting that
(&)NALU) -1
P NA N—-1lw )
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we obtain fOR |o'(t)|Nadt < 1. Now we can apply Lemma [2.1| with

1 0<s<t
0 t<s

=1, a(st)= {

to find a constant Cy = Cy(N4) such that

J\}A/OOO [exp (%w(t)m) — 1}e_tdt

Hence
[ [ex0 (Bl f755) = 1] do < CoNa) BV 1.
>

o WN—-1,w >

In other words,

[ [0 (Bl F17557) = 1]sto) do < €1 (Naym ol 1)

Now, we introduce the following Moser type sequence:

Npg—1
(L) Na 0< |x\ < e k/Na
1 1/Na Na 1N
fi(x) = <wN71,w> (Ba) log(ﬁ) e k/Na < |z| < 1 (2.6)
0 |x] > 1

to prove that the constant 8y, ., is optimal. We have that
1
[ 19 do = s [ 1RGN
b 0

! Ny 1
= WN-1,w ——dr=1.
e—k/Ng k’wN,Lw T

Hence, for all 8 > By, w,

[ el = 1]oto) do
z
e—k/Na

1 1/Na k Npy-—1 NA7 Nacil
> - _V\TN Nai-1
2 e (Bl ) M ) )

k]e_k—>oo as k — oo.

Z exp I:ﬁNA w

3. SHARP TRUDINGER-MOSER TYPE INEQUALITIES WITH HOMOGENEOUS
DENSITY ON X

Using [24], Theorem 2.1] and a simple scaling argument, we can deduce the
following Radial Sobolev inequality in the spirit of Ibrahim-Masmoudi-Nakanishi
[21].
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Theorem 3.1. There exists a constant C' > 0 such that for any radially nonnegative
nonincreasing function o satisfying f(R) > 1 and

o0
T / O gt < K
R

for some R, K > 0, then we have

Brvpgw % R S
P [KNAl—l . ( )] RN < CfR |90(t)|NAtNA71NAt
Na = Na .
(pNAa (R) KNa-1

Also, by arguments as in [24], we obtain the following lemma.

Lemma 3.2. We have

STM(3) = sup / o, (B |75 () da.

fGCfo(f):fE IVFINAw(z) dz::l:fE [fINAw(zx) dz

Proof of Theorem[1.J. We will first prove (i). By Lemma we just need to
consider smooth, nonnegative and radially nonincreasing function f. Choose R; =
R1(f) such that

Ry
/ VM w(e) dr = wy—1 / 1NN < 1 G,
BX 0

Ry
(o]

/ |V fINAw(z) de = 'U)N—l,w/ | o VarNa=tdr < 6.
E\Bﬁl Ry

Here dy € (0,1) is fixed and does not depend on f.
Applying the Holder’s inequality, for 0 < r; < ro < Ry, we obtain

F(r1) = flr) < / i

—1

< (/:2 |fr‘NATNA71dT)1/NA (ln :?)NﬁA (3.1)
N

< ( 1—50 )1/NA<IHE> 13;1
WN—-1,w 1

Similarly, for Ry < r; < ro, we obtain

Flr) = f(ra) < ( % )”NA (m ’3) R (3.2)

WN—-1,w 1

We now set Ry :=inf{r > 0: f(r) <1} € [0,00). Obviously f(s) <1 when s > Ry.
Moreover, we just need to consider the case Ry > 0.
Now, we write

/¢NA(5NA,w|{V|AW)w($)dx:/ +/ ¢NA(6NA’“|{VLW)w(x)dx.
= 14 |f|FaT By, JE\BE, 14 |f|¥aT




8 N. T. DUY, L. T. NGHIA, L. L. PHI EJDE-2019/105

Note that

/ PN, (BNA,w|{r|m)w(m) deC/ |f‘NAw(1‘)d$
S\ BE {f<1}

L+ |f|7a5
< c/E 11V w(z) da

since f <1 on ¥\ Bj . Hence, we just need to estimate

Na
¢NA (6NA,w‘f|NA71)
Na
BR, L+ [f]~a=T

w(zx) dx.

Case 1: 0 < Ry < R;. Using (3.1)), for 0 < r < Ry, we have

) <1+ (
By using the elementary inequality

(@4 b) AT < (14 6)a™xT 4+ A(8)bTasT,

1— 4o )1/NA<1 RO)W.

WN—-1,w r

where

) = (1= ammr)

we obtain

N 1-9 R
17277 (r) < (14 61) (——2) YV (Na=D 1y 20 4 4(5y).
WN—-1,w T

Thus, with §; = (1 + dg)/ N4~ — 1, we have
Na
N (BNawlf]|T2T)
N w(z
BZ <1+|f‘7NA71)
— 0 R
< / exp (Bva (1 + 51)( ©big)/Na =D I =0 4 BA() (i) d
BX}

WN —1,w

I =

< ORI (IO =d0) fun 1o )1/ (Namb (3.4)
Ry
X W w/ PNA—1=BN 4w (14+81)(1=80) /wn—1,0)/ Na™D 4
0
< C’RéVAwN—l,w

SC’/ If|Nw(z) da
)

Case 2: 0 < R; < Ry. We write

/ / ONaA 5NA,UJ|f| A ) w(z)de =: I + L.
BY,  JBE \BE, 1+|f|NA !

By (3.2), for r > Ry, we obtaln

1) = f(Ro) <

Ny-—1

)1 (1, By

WN—-1,w r




EJDE-2019/105 TRUDINGER-MOSER INEQUALITIES 9

That is,
do  \/Na Ro\ “#1
< —_— .
|f(7’)| s1+ (wal,w) (hl r )
Hence,
_Na 50 ﬁ RO
Na-1 < - .
£ @)_(1+5g(wNﬂM) In =2 4 A(5,)

Then by choosing d2 > 0 such that Ny — By, (1 + 02)(do/wn-1,w) Na T > 0, we
have the estimate

Ny
Njy—1
I :/ Pra (5NAM|{V|A . )w(m) dx
BZO\Bg1 1+|f|7NA—1

Ro 50 JE - RO Na—1
S(ij‘l“ﬂ/i eXp(ﬂNAM(1+w&)C————7)NA*1hl—f—%ﬂfﬂ5ﬁ>r A=lgy
Ry WN—-1,w r

1
w(1+02) (8 1) Na-1
< Cwal,ngN“’ (1+62)(%0/wN-1,)

1 1
Na—BN 4 .,0(14+82) (60 /wn_1,,) VA~? Na—BN 4 .,0(14+82) (60 /wn_1,,) VA~?

. B ~R]
Na = BNy w(146)(d0/wN-14) 2T
< G-t (Y4 — RY4)
Na — Bnaw(1+62)(00/wn—1,0) a1
<C w(z) dx
B%,\BE,

SC/UW%@M&
b

Njp—1
Now to estimate [} = fBE N (’BNA‘“L{L - )w(ac) dx with f(Ry) > 1, we first set
! L[ f| Fa—t

o(r) = f(r) — f(R1) on0<r<R.

Then
/ \Vv|Nw(x)dm:/ IV Nw(z)de <1 - d.
BE, 5
Also,
1T (1) < (1 8)0™aT (1) + AD) f ¥4 (Ry) for 0 < 7 < Ry
With
1 \w~a=T
- 1
0<9 (17%)
and
_ 1\

01~ (= ) -

we obtain

Il — ¢NA<5NA,w|f|%)

N w(z) dz (3.5)
BE, 1+ [f|Na—7



10 N. T. DUY, L. T. NGHIA, L. L. PHI EJDE-2019/105

Na
5 ,(‘,A(s Na-T(R _Na
o
|fI¥T(Ry) BR
eBNA,wA(a)f%(Rl) NeAT
o
|f| ™27 (Ry) BE,

Njy—1
where w = (1 +9) .
Note that supp(w) C BE, and
J,

Hence, using Theorem 1.3} we deduce that

Voo Nw(z) de = (1+5)NA—1/ VoM w(z) de < (14 6)N4=1(1—5) = 1.

po} =
Ry BR1

Nag

/ PNaww AT () do < C w(x)dr < CRYA / w(z) du. (3.8)
B, B, BY

Also, applying Theorem we obtain
Na
exp (BNa,wA0) T2 (R1))
N
7T (Ry)
BN s w pyA_
exp (AL fT ()

5y A

— o RiVA / i w(x) dx
|f[¥a=T (Ry) By

R4 / w(z) dx
BY

(3.9)

=

Na
< CoFA /E N (e) do

Ry
< C/ V() da.
b
Combining (3.5]), (3.8) and (3.9, we obtain the desired result.

To show that Sy, ., is sharp we can use the Moser type sequence as in the proof
of Theorem The fact that the power NJX 4 in the denominator of (1.5) is also
optimal can be proved as follows:

1
/ [fel V() do = wN—l,w/ | fi(r)[VarNa=tdr
¥ 0

—k/N4

e 1 L \Na—1
= wN—1,w/ ( ) (*) ! rNa=L g
0 WN—_1,w/ \Ng

1
N 1
vuvors [ (Y log (Yt ar
e—k/Na NKWN 1, r
1 1

g eikkNAil + E S, E

and

w(z)dx

/ On (Bra ol 75T
s O+ R



EJDE-2019/105 TRUDINGER-MOSER INEQUALITIES 11

B 1
>/e A b (BN (Gt 1W)N*‘“NLA) Na-1y
r
~ Ny-—1
O (G ) )
k
-5
- /e i}(\/;(f? 7ANAfl dr
~ A—1)
0 N A
> (ZSNA(k)eik > ]'
~ p(Na—-1) ~ p(Nag—1)
k Na k Ma

Hence, since we need

we deduce that

It is obvious that we can use (i) to deduce the first part of (ii) (that is, (ii) without
the exact asymptotic behavior An L ) To study the asymptotic behavior part,
A,w

welet 0 < S5 Bnawand f e CX(E fz |V#|¥4w(z) dz < 1. Then we have

JCACH e dm—/ﬂq /f>1<m BN Yw(a) d.

The first integral can be estimated as follows:

A ECEE ) () de

|<1k N

< 3 ﬂk/ YA

kNAl

< GV, ) / VA

h BNA’

Now,

[ o (3175 )ty da
[fI>1
< /|f>1exp (B Jeo(a) do

< /|f>1 exp (ﬁNA,oJLﬂ%) exp ([,8 - BNA7w]|f|%)w(x) da

< Co(Na w)/ eXp(ﬂNA,w|f\%)
B L (B — B)| AT

Scl(NA,w)/ ¢NA(6NA,W|{V|%)
Praw =B s> 4 pmats

< 02(NA7W)_

o BNA,w 7B

w(x) dx

w(x) dx
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We now prove (iii). Let f € C°(3) be such that [, [V f|¥4w(z)der < 1. Then

K-1
[ vt do < (B

we can set v = 255 f and obtain [;, [Vo|N4w(x)dz < 1. Moreover,

K™= 3y, N4
JA a7 ()
) (K71+fE|Vf\NAw(x)dx) Na—1

if

K™ By K-1 Na_
= | én, e —( )T o] V4T eo() de
/ " <(K—1+f |V fINaw(z) do) ¥a=T K )
< [ oma (sl 557 (o) o

< Co(K, Na,w) / o] V() dee
)

SC’l(K,NA,w)/ F[ V4 w(a) da.
b

On the other hand, if

1>/ IVFINAw(z) de > (Kjgl)

then we can set

/
w= 1/NL’
[fz [V fINaw(x) da:] /
KNAl_l Np—1
B = [ 9s1a) ]
(K — 1+ Jy IV fINaw(z) do) T2
We note that
K VAT K—1 .
6NA,UJ > 5 > 1 [( K )NA] NAilﬁNA,wa
(K — 14 (Egt)Na)ma=T
1 1
< CO(K,Naw .
BNaw =B~ ( A )1—fZ|Vf|NAw({E)d$

Hence, by Statement (ii), we obtain

KNAl—l N4
[on( Oase | 7 ()
2 (K =14 [V Nw(@) da) T

1 Js |f|NAw (z) dx
BNaw =B [ IVfINAw(z) do

Js [f1VAw(a) de
1— fz |V f|Naw(x) dx”

Lastly, (iv) is a direct consequence of (iii). O

S CO(NA7W)

S Cl(KvNAvw)

We now use the scaling technique to prove the equivalence of the above the
Trudinger-Moser inequalities.
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Proof of Theorem[I.5. We first claim that
B NA —1
- (5r,)

BN 4w

K
ITMg = —— sup -
K—=1pc0pn, b (52—)"7"

BN 4w

] STM(B).

Indeed, for any f € C2°(2) \ {0} for which

[ vty de = 1= [ 17

we define v(z) = pf(Ax) and obtain

Na
iy
/Z|V11|NAw(x) dx = / lo|Naw(z) = \Na

We also obtain

[ o (Bl Yty = 3% [ o, (bl 75T Yt

Hence, by choosing p and A such that
8 K37 B

N

MNAA*I (K =1+ [ |Vv[Naw(z) da) e

that is,
Na _ K-1 B\ Na K — 14N

K(ﬂNTM)NA*1 —1 BNaw K ’

Na
and fxr =1 uN4a | we deduce

o owa (8175 )ta) da

N =
e K KO s o2 () da
Lom T TN K = 14 [ Vol Vaw(e) da) 2
Na—1
< K-1 (ﬁNi,w) !
K '1_( 2 )er

BN 4w
A

I

ITM[ .

By Lemma we have

Na—1
k-1 (o)
K '1_( B )NA—l

BN 4w
A

STM(5) <

ITMp .

Also, noting that the above process can be reversed, we obtain

1= ()™

K BN 4w
ITMy = = sup [—— 5| STM(H).
L Be(0,8N,,w) (BNA w)
Similarly, we can argue as above and as in [30] to deduce
Njp—1
1- (5Ni,w)
TM= sup [ v e ] STM(B).

pepn, ) - (507)



14

N. T. DUY, L. T. NGHIA, L. L. PHI EJDE-2019/105

d

Acknowledgements. Part of this work was done when N. T. Duy was visiting the
Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to
thank the VIASM for its hospitality and support.

(1
2]
(3]
[4]
(5]
[6]

(8]
(9]
[10]
(11]

(12]

(13]

(14]
[15]

[16]

(17)
(18]
(19]
20]

21]

REFERENCES

Adachi, S.; Tanaka, K.; Trudinger type inequalities in RN and their best exponents. Proc.
Am. Math. Soc., 128 (1999), 2051-2057.

Adams, D. R.; A sharp inequality of J. Moser for higher order derivatives. Ann. of Math.,
(2) 128 (1988), no. 2, 385-398.

Adimurthi; Sandeep, K.; A singular Moser-Trudinger embedding and its applications.
NoDEA Nonlinear Differential Equations Appl., 13 (2007), no. 5-6, 585-603.

Adimurthi; Yang, Y.; An interpolation of Hardy inequality and Trundinger-Moser inequality
in RN and its applications. Int. Math. Res. Not. IMRN, 2010, no. 13, 2394-2426.

Branson, T. P.; Fontana, L.; Morpurgo, C.; Moser-Trudinger and Beckner-Onofri’s inequal-
ities on the CR sphere. Ann. of Math., (2) 177 (2013), no. 1, 1-52.

Brezis, H.; Is there failure of the inverse function theorem? Morse theory, minimax theory
and theirapplications to nonlinear differential equations, Proc. Workshop held at the Chinese
Acad. of Sciences, Beijing, 1999, 23-33, New Stud. Adv. Math., 1, Int. Press, Somerville,
MA, 2003.

Brezis, H.; Vazquez, J. L.; Blow-up solutions of some nonlinear elliptic problems, Rev. Mat.
Univ.Complut. Madrid, 10, 1997, 443-469.

Cabré, X.; Ros-Oton, X.; Regularity of stable solutions up to dimension 7 in domains of
double revolution. Comm. Partial Differential Equations, 38, 2013, 135-154.

Cabré, X.; Ros-Oton, X.; Sobolev and isoperimetric inequalities with monomial weights. J.
Differential Equations, 255 (2013), no. 11, 4312-4336.

Cabré, X.; Ros-Oton, X.; Serra, J.; Sharp isoperimetric inequalities via the ABP method. J.
Eur. Math. Soc. (JEMS), 18 (2016), no. 12, 2971-2998.

Cassani, D.; Sani, F.; Tarsi, C.; Equivalent Moser type inequalities in R? and the zero mass
case. J. Funct. Anal., 267 (2014), no. 11, 4236-4263.

Chang, S.-Y. A.; The Moser-Trudinger inequality and applications to some problems in
conformal geometry. Nonlinear partial differential equations in differential geometry (Park
City, UT, 1992), 65-125, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI,
1996.

Chang, S.-Y. A.; Yang, P. C.; The inequality of Moser and Trudinger and applications to
conformal geometry. Dedicated to the memory of Jiirgen K. Moser. Comm. Pure Appl. Math.,
56 (2003), no. 8, 1135-1150.

Cianchi, A.; Lutwak, E.; Yang, D.; Zhang, G.; Affine Moser-Trudinger and Morrey-Sobolev
inequalities. Calc. Var. Partial Differential Equations, 36 (2009), no. 3, 419-436.

Cohn, W. S.; Lu, G.; Best constants for Moser-Trudinger inequalities on the Heisenberg
group. Indiana Univ. Math. J., 50 (2001), no. 4, 1567-1591.

Dao, N. A.; Diaz, J. I.; Nguyen, Q.-H.; Generalized Gagliardo-Nirenberg inequalities using
Lorentz spaces, BMO, Hoélder spaces and fractional Sobolev spaces. Nonlinear Anal., 173
(2018), 146-153.

Dao, N. A.; Lam, N.; Lu, G.; Gagliardo-Nirenberg type inequality with Lorentz space,
Marcinkiewicz space and weak-L°° space. Preprint.

Dao, N. A.; Nguyen, Q.-H.; Brézis-Gallouet- Wainger-type inequality with critical fractional
Sobolev space and BMO. C. R. Math. Acad. Sci. Paris, 356 (2018), no. 7, 747-756.

do O, J. M.; N-Laplacian equations in RN with critical growth. Abstr. Appl. Anal., 2 (1997),
no. 3-4, 301-315.

Dong, M.; Lam, N.; Lu, G.; Sharp weighted Trudinger-Moser and Caffarelli- Kohn-Nirenberg
inequalities and their extremal functions. Nonlinear Anal., 173 (2018), 75-98.

Ibrahim, S; Masmoudi, N.; Nakanishi, K.; Trudinger-Moser inequality on the whole plane
with the exact growth condition, J. Eur. Math. Soc., 17 (2015), 819-835.



EJDE-2019/105 TRUDINGER-MOSER INEQUALITIES 15

[22] Ishiwata, M.; Nakamura, M.; Wadade, H.; On the sharp constant for the weighted Trudinger-
Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 31 (2014), no. 2, 297-314.

[23] Lam, N.; Equivalence of sharp Trudinger-Moser-Adams inequalities, Commun. Pure Appl.
Anal., 16 (2017), no. 3, 973-997.

[24] Lam, N.; Sharp Trudinger-Moser inequalities with monomial weights. NoDEA Nonlinear
Differential Equations Appl., 24 (2017), no. 4, Art. 39, 21 pp.

[25] Lam, N.; Sharp weighted isoperimetric and Caffarelli-Kohn-Nirenberg inequalities. Adv. Calc.
Var. 2017 DOI: https://doi.org/10.1515/acv-2017-0015

[26] Lam, N.; Lu, G.; Sharp Moser-Trudinger inequality on the Heisenberg group at the critical
case and applications. Adv. Math. 231 (2012), no. 6, 3259-3287.

[27] Lam, N.; Lu, G.; Sharp Adams type inequalities in Sobolev spaces WM (R™) for arbitrary
integer m. J. Differential Equations, 253 (2012), no. 4, 1143-1171.

[28] Lam, N.; Lu, G.; A new approach to sharp Moser-Trudinger and Adams type inequalities: a
rearrangement-free argument. J. Differential Equations 255 (2013), no. 3, 298-325.

[29] Lam, N.; Lu, G.; Tang, H.; Sharp affine and improved Moser-Trudinger-Adams type inequal-
ities on unbounded domains in the spirit of Lions. J. Geom. Anal., 27 (2017).

[30] Lam, N.; Lu, G.; Zhang, L.; Equivalence of critical and subcritical sharp Trudinger-Moser-
Adams inequalities. Rev. Mat. Iberoam., 33 (2017), no. 4, 1219-1246.

[31] Lam, N.; Lu, G.; Zhang, L.; Ezistence and nonezxistence of extremal functions for sharp
Trudinger-Moser inequalities. Adv. Math., 352 (2019), 1253-1298.

[32] Li, J.; Lu, G.; Yang, Q.; Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic
spaces of any even dimension. Adv. Math. 333 (2018), 350-385.

[33] Li, Y. X.; Ruf, B.; A sharp Trudinger-Moser type inequality for unbounded domains in R™.
Indiana Univ. Math. J., 57 (2008), no. 1, 451-480.

[34] Lieb, E. H.; Loss, M.; Analysis. Second edition. Graduate Studies in Mathematics, 14. Amer-
ican Mathematical Society, Providence, RI, 2001. xxii+346 pp.

[35] Lu, G.; Yang, Q.; Sharp Hardy-Adams inequalities for bi-Laplacian on hyperbolic space of
dimension four. Adv. Math., 319 (2017), 567-598.

[36] Lu, G.; Yang, Y.; Adams’ inequalities for bi-Laplacian and extremal functions in dimension
four. Adv. Math., 220 (2009), no. 4, 1135-1170.

[37] Masmoudi, N.; Sani, F.; Trudinger-Moser inequalities with the exact growth condition in RN,
Comm. Partial Differential Equations, 40 (2015), no. 8, 1408-1440.

[38] Moser, J.; A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20
(1970/71), 1077-1092.

[39] Nguyen, V. H.; Takahashi, F.; On a weighted Trudinger-Moser type inequality on the whole
space and related mazimizing problem. Differential Integral Equations, 31 (2018), no. 11-12,
785-806.

[40] Pohozaev, S. I.; On the eigenfunctions of the equation Af + Af(f) = 0. (in Russian) Dokl.
Akad. Nauk SSSR, 165 1965 36-39.

[41] Ruf, B.; A sharp Trudinger-Moser type inequality forunbounded domains in R2. J. Funct.
Anal., 219 (2005), no. 2, 340-367.

[42] Talenti, G.; A weighted version of a rearrangement inequality, Ann. Univ. Ferrara, 43 (1997)
121-133.

[43] Trudinger, N. S.; On imbeddings into Orlicz spaces and some applications. J. Math. Mech.,
17 1967 473-483.

[44] Judovig, V. 1.; Some estimates connected with integral operators and with solutions of elliptic
equations. (in Russian) Dokl. Akad. Nauk SSSR, 138 1961 805-808.

NGUYEN TUAN Duy
DEPARTMENT OF FUNDAMENTAL SCIENCES, UNIVERSITY OF FINANCE-MARKETING, 2/4 TRAN XUAN
SOAN ST., TAN THUAN TAY WARD, DisT. 7, Ho CHI MINH CITY, VIETNAM

Email address: tuanduy23120gmail.com

LE TRUNG NGHIA
FACULTY OF MATHEMATICS AND STATISTICS, TON Duc THANG UNIVERSITY, HO CHl MINH CITY,
VIETNAM

Email address: letrungnghia@tdtu.edu.vn



16 N. T. DUY, L. T. NGHIA, L. L. PHI EJDE-2019/105

LE LONG PHI (CORRESPONDING AUTHOR)
INSTITUTE OF RESEARCH AND DEVELOPMENT, DUY TAN UNIVERSITY, DA NANG 550000, VIETNAM
Email address: 1lelongphi@duytan.edu.vn



	1. Introduction
	2. Sharp Trudinger-Moser inequality with homogeneous weight on a bounded domain
	3. Sharp Trudinger-Moser type inequalities with homogeneous density on 
	Acknowledgements

	References

