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ABSTRACT 

Air pollution has been among the biggest environmental risks to human health. 

Exposure assessment to air pollution is essentially a procedure to quantify the degree to 

which people get exposed to hazardous air pollution. Exposure assessment is also a critical 

step in health-related studies exploring the relationship between personal exposure to 

environmental stressors and adverse health outcomes. Given the critical role of exposure 

assessment, it is important to accurately quantify and characterize personal exposure in 

geographic space and time.  

For years numerous exposure assessment methods have been developed with 

respect to a wide spectrum of air pollutants. Of all the methods, the most commonly used 

one is to use a representative geographic unit as the surrogate location to estimate the 

potential impact from hazardous air pollution from differing sources on that location. The 

representative unit is one person’s home location in most cases. Such studies, however, 

have failed to recognize the significance of both the dynamics of human activities and the 

variation of air pollution in geographic space and time.  

It is believed that personal exposure is essentially a function of space and time as 

an individual’s time-activity patterns and intensities of air pollutant in question vary over 

space and time. It is therefore imperative to account for the spatiotemporal dynamics of 

both in exposure assessment. To this end, the goal of this study is to account for the 

spatiotemporal dynamics of both human time-activity patterns and air pollution for 
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assessing personal exposure. More specifically this dissertation aims to achieve three 

objectives as summarized below.  

First, in light of the deficiency of existing home-based exposure assessment 

methods, this study proposes an innovative trajectory-based model for assessing personal 

exposure to ambient air pollution. This model provides a computational framework for 

assessing personal exposure when trajectories, documenting human spatiotemporal 

activities, are modeled into a series of tours, microenvironments (MEs), and visits. A set 

of individual-level trajectories was simulated to test the performance of the proposed 

model, in conjunction with one-day air pollution (PM2.5) data in Beijing, China. The results 

from the test demonstrated that the trajectory-based model is capable of capturing the 

spatiotemporal variation of personal exposure, thus providing more accurate, detailed and 

enriched information to better understand personal exposure. The findings indicate that 

there is considerable variation in intra-microenvironment and inter-microenvironment 

exposure, which identified the importance of distinguishing between different MEs. 

Moreover, this study tested the proposed model using an empirical dataset.  

Second, little is known about the difference between the estimated exposure based 

on home locations only and that considering the locations of all human activities. To fill 

this gap, this study aims to test whether the exposure calculated from the home-based 

method is statistically significantly different from the exposure estimated by the newly 

developed trajectory-based model. A Dataset containing 4,000 individual-level one-day 

trajectories (Dataset 1) was simulated to test the aforementioned hypothesis. The exposure 
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estimates in comparison are the average hourly exposure over a 24-hour period from two 

exposure assessment methods. The 4,000 trajectories were split into another two subsets 

(Datasets 2, 3) according to the difference between home-based exposure estimates and 

trajectory-based exposure estimates. The Wilcoxon Signed-rank test was used to evaluate 

whether the difference between the two models is significant. The results show that the 

statistically significant difference was found only in Dataset 3. The same test was also 

applied to a set of empirical trajectories. The significant difference exists in the results from 

the empirical data. The mixed results suggest that additional research is needed to verify 

the difference between the two exposure assessment methods.  

Third, little research has taken into consideration of hourly traffic variation and 

human activities simultaneously in a model for assessing personal exposure to traffic 

emissions. To fill this gap, this study develops a new trajectory-based model to quantify 

personal exposure to traffic emissions. The hourly share of daily traffic volume of each 

roadway in the study area was estimated by calculating the traffic allocation factors (TAFs) 

of each roadway. Next, the hourly traffic emission surfaces were built using the hourly 

shares and a kernel density algorithm. A 3-D cube representing the spatiotemporal 

distribution of traffic emission was constructed, which overlaid the simulated individual-

level trajectory data for assessing personal exposure to traffic emissions. The results 

showed that people’s time-activity patterns (e.g., where an individual lives/works, where 

an individual travels) were significant factors in exposure assessment. This study suggests 
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that people’s time activities and hourly variation of traffic emission should be 

simultaneously addressed when assessing personal exposure to traffic emissions.  

To sum up, this study has devoted a large effort in quantifying and characterizing 

personal exposure in geographic space and time. A few of contributions to the knowledge 

of exposure science are listed as follows. First, this study contributes two exposure 

assessment models in characterizing personal spatiotemporal exposure using trajectory 

data. One is developed for assessing personal exposure to ambient air pollution, and the 

other one is for assessing personal exposure to traffic emissions. Second, this study 

demonstrates the intra- and inter-microenvironment variation of personal exposure and 

reveals the significance of people’s time-activity patterns in exposure assessment. Third, 

this study investigates the difference in exposure estimates between conventional home-

based methods considering home locations only and trajectory-based methods accounting 

for the locations of all activities. The mixed findings from Wilcoxon Signed-rank tests 

suggest more research is needed to explore how personal exposure varies with time-activity 

patterns. All these contributions will have important implications in exposure science, 

environment science, and epidemiology.  
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1. INTRODUCTION 

 Background 

According to a World Health Organization (WHO)’s report, 92% of the world 

population lived and got exposed to unsafe polluted air in 2014 (World Health Organization 

2017). Ambient and indoor air pollution were estimated to have caused 6.5 million deaths 

worldwide in 2012, which accounted for 11.6% of all deaths (World Health Organization 

2017). In addition to mortality, numerous epidemiological studies have demonstrated that 

air pollution is associated with a series of adverse health effects including cardiovascular 

illness (Fiordelisi et al. 2017; Luben et al. 2017), respiratory symptoms (Zhang et al. 2015), 

and impaired neurological function (Heusinkveld et al. 2016; Lee et al. 2017). 

One key aspect of studying the health effect of air pollution is human exposure 

assessment. There has been a myriad of methods developed for exposure assessment, either 

by measuring, known as direct exposure assessment methods, or modeling, known as 

indirect exposure assessment methods. Given the prohibitive cost and being hard to apply 

to a large population study of direct methods, most health-related studies go with modeling 

techniques for assessing exposure. Of all the indirect methods, a widely used method is to 

employ a person’s home location to estimate the exposure to any air pollutant of interest. 

For instance, Leal and Chaix (2011) found that 90% of investigated papers solely used 

study participants’ home addresses to evaluate exposure in cardiometabolic studies. 

Personal exposure, however, is essentially a phenomenon varying over space and time. In 

other words, in reality, people go to different places and come into contact with varying air 

pollutants when going about their daily activities. The mere consideration of the home 

location, therefore, appears not to reflect the true scenarios of personal exposure, thus 
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introducing a considerable amount of error into the exposure estimates. The introduced 

error ultimately biases the reliability of the subsequent epidemiological findings.  

Given the deficiency of home-based exposure assessment methods, a currently 

emerging need is to simultaneously consider personal time-activity patterns and the 

spatiotemporal variation of air pollution in the development of appropriate exposure 

assessment models. Moreover, it is imperative to characterize how personal exposure 

varies in geographic space and time for better understanding the health impact of the 

hazardous air pollutant in question. To this end, this study aims to develop models to 

integrate the spatiotemporal dynamics of both human activities and air pollution into the 

process of exposure assessment. In addition, this study seeks to investigate whether the 

consideration of these two dynamics would result in a statistically significant difference in 

exposure estimates. 

 Problem Statement 

Exposure assessment modeling has been extensively studied. However, there are 

several limitations in the literature. First, there is a tendency among health practitioners to 

utilize home-based methods to quantify personal exposure. Second, most studies 

considering the spatiotemporal dynamics of both human activities and air pollution heavily 

rely on expensive equipment to measure personal exposure instead of through modeling 

techniques, which limits the application of exposure assessment in subsequent 

epidemiological studies (e.g., a large population cohort study). Third, little research 

concentrates on developing models to integrate trajectory data and air pollution data for 

exposure assessment. Fourth, few studies have investigated the difference between home-
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based exposure assessment methods and dynamics-resolved models regardings how 

estimated exposure varies in geographic space and time.  

It is imperative to account for the human time-activity patterns and spatiotemporal 

dynamics of air pollutant in question in exposure assessment modeling, which can 

introduce many beneficial effects in understanding the associated health effect as well as 

the exposure itself. For instance, some studies reveal that the development of models that 

can capture personal time-activity patterns and spatiotemporally varying air pollution is an 

urgent and significant research challenge in exposure science, public health, and 

epidemiology field (Gerharz, Kruger, and Klemm 2009). Moreover, the spatiotemporal 

portrait of personal exposure can be beneficial for designing an effective intervention and 

control strategy (Adams, Riggs, and Volckens 2009). This study suggests that where, when, 

how long, and how much of the air pollutant appears are crucial factors in assessing 

personal exposure. 

 Objective and Specific Aims 

The overarching objective of this study is twofold. The first is to develop trajectory-

based models for assessing personal exposure by taking account of spatiotemporal 

dynamics of both human activities and air pollution. The second focus is to characterize 

and understand how personal exposure varies over space and time. This study is comprised 

of 3 core sections. The first section focuses on the development of a new exposure 

assessment model for ambient air pollution using individual-level trajectory data. The 

second section aims to develop a personal exposure assessment model for quantifying 

personal exposure to the traffic emission using individual-level trajectory data. Unlike the 

first two sections that concentrate on the modeling, the third section is to explore whether 
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a trajectory-based exposure assessment approach would produce significantly different 

exposure results when compared to a home-based approach.  

The specific aims are listed as follows:  

Aim 1: To develop a trajectory-based model for assessing personal exposure 

to ambient air pollution. The air pollution data collected by a ground monitoring network 

is commonly used in environmental science to study the phenomena related to ambient air 

pollution. Given the widespread presence and use of this type of data, this study builds up 

an innovative exposure assessment model integrating individual-level human trajectory 

data and the ambient air pollution data. Instead of using home location alone, this newly 

proposed exposure assessment model analyzes the human time-activity patterns from 

trajectory data and characterizes the spatiotemporally varying air pollutant in question from 

the acquired ambient air pollution data. As a result, the proposed model is tested using the 

simulated trajectory data and obtained air pollution data.   

Aim 2: To evaluate whether the consideration of spatiotemporal dynamics of 

human activities and air pollution creates significantly different exposure results 

when compared to home-based approaches. It is believed that models considering these 

two dynamics mentioned above outplay the home-based methods, but few studies 

investigated the difference between the two approaches. This study simulates a large 

number of individual-level trajectory data with differing time-activity patterns. For each 

trajectory, it is associated with two exposure estimates quantified from the aforementioned 

two methods. The difference between the two estimates of each trajectory is statistically 

examined. This examination is important to understand how human activities and the 

variation of air pollutant in question affect the assessment of personal exposure. 
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Aim 3: To develop a trajectory-based model for assessing personal exposure 

to traffic emissions. Traffic emissions are primary sources of air pollution in an urban 

setting. It is imperative to quantify how many traffic emissions people get exposed to when 

they go about their daily activities. This newly built model simultaneously considers both 

hourly variation of traffic emission and individual-level human trajectory in assessing 

personal traffic exposure to traffic. This model is helpful in investigating how personal 

traffic exposure varies in geographic space and time.  

 Significance 

First, it is believed that our newly developed models can greatly improve exposure 

assessment as the models incorporate human time-activity patterns and spatiotemporal 

variation of air pollutant in question. For instance, several studies have revealed that the 

spatiotemporal time-activity pattern is a significant determinant of personal exposure 

(Dons, Int Panis, et al. 2011; Setton et al. 2011; Park and Kwan 2017).  

Second, this study will help mitigate uncertain geographic context problem 

(UGCoP) and exposure misclassification to some extent. UGCoP is the problem in 

geography field that the spatial configuration of appropriate contextual influence is not 

fully understood and the timing and duration of personal exposure to these contextual 

stressors is uncertain (Kwan 2012). Exposure misclassification, in exposure science, refers 

to a situation in which the estimated exposure is not the correct one (Savitz 2003). Both 

problems introduce bias or uncertainty to the subsequent epidemiological studies since 

estimated exposure is not representative of the actual exposure. This study captures the full 

course of human activities and spatiotemporal variation of air pollution when assessing 

personal exposure, thus offering a more accurate, reliable estimate of exposure.  
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Finally, this study responds to the calling of National Research Council (NRC) 

about the development of mixed models to link Global Positioning System (GPS) data with 

environmental exposure (National Research Council 2012; Dias and Tchepel 2014). To 

this end, this study contributes two personal exposure assessment models linking different 

sources of air pollution data with individual-level trajectory data. The proposed models 

have important implications for many exposure- and health-related applications. 
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2. LITERATURE REVIEW 

 Literature Review of Air Pollution Exposure Assessment 

This section presents the literature review of air pollution exposure assessment. 

This review is beneficial to understand the current status and trends of air pollution 

exposure assessment. The advantages and disadvantages of the different exposure 

assessment methods are also discussed in this section.   

 Bibliometrics of Air Pollution Exposure Assessment 

This study conducted two bibliometric analysis to understand the trend of the 

exposure assessment research focused on air pollution. The literature search was conducted 

in the database of Web of Science in August 2017. The targeted research was articles 

written in the English language that were published from 1970 to 2016. The first search 

focused on the research of air pollution exposure assessment, whereas the second search 

concentrated on time-activity involved study related to air pollution exposure assessment. 

The search strategy and search keywords used in both queries are listed in Table 2.1. 
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Table 2.1 Database search strategies (Web of Science, 1970 - 2017). 

No. Search terms - 1 Search terms - 2 

1 exposure exposure 

2 air* air* 

3 assess* assess* 

4 quantif* quantif* 

5 estimat* estimat* 

6  time-activity 

7  time 

 
8  activit* 

 
9  mobility 

10  microenvironment* 

11  micro-environment* 

12 #1 AND #2 AND (#3 OR 

#4 OR #5) 

#1 AND #2 AND (#3 OR #4 OR #5) AND (#6 OR (#7 AND #8) 

OR #9 OR # 10 OR #11) 

 

Figure 2.1 illustrates the number of papers per year for both searches. Both searches 

took place on August 10, 2017. A total of 19,980 records were returned for the first search, 

which covers all studies involving air pollution exposure assessment. However, only 1,872 

records, were retrieved from the second search, which focuses on the time-activity related 

study of air pollution exposure assessment. As can be seen, both areas had a growing trend 

of literature regardless of the differences in the speed of growth. Before 1990, studies about 

air pollution exposure assessment were almost nonexistent. There were only 20 

publications on air pollution exposure assessment studies. However, after 1991, the 

research of air pollution exposure assessment proliferates greatly. This rapid development 

coincided with the significant report, Human Exposure Assessment for Airborne Pollutants 

(National Research Council 1991a), published by the National Research Council in 1991. 

This report has laid the foundation for exposure assessment and motivated more research 
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to be devoted to this scientific discipline. One notable difference between the two trends is 

that, unlike the rapid development of air pollution exposure assessment discipline, the 

proportion of time-activity related study in exposure assessment field is steadily low, 

comprising only 10% of the total air pollution exposure assessment studies on average. 

This indicates that air pollution exposure assessment studies have paid insufficient 

attention to the significance of the time-activity information.  

 

Figure 2.1 Publication records per year from Web of Science. (Search 1 covers all air 

pollution exposure assessment studies, whereas search 2 focuses on time-activity related 

air pollution exposure assessment studies) 

Figure 2.2 depicts the global geographical distribution of air pollution exposure 

assessment research along with the time-activity related studies. In total, 126 countries 

have contributed to the air pollution exposure assessment research. It is notable that 

publications in this field were not evenly spatially distributed across the world. The top 

twenty countries accounted for up to 85% of the whole literature for both searches in terms 
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of publication records. Most of the studies are located in North America (e.g., U.S.A, 

Canada) and European countries (e.g., Germany, Italy). Very few studies come from South 

Asia whereby air pollution has been a significant issue for a long time. 

 

Figure 2.2 Geographic distribution of retrieved study related to air pollution exposure 

assessment from Web of Science. (Each chart is comprised of time-activity related and 

non-time-activity research in the air pollution exposure assessment field. The size of a 

graph is proportional to the publication records of air pollution exposure assessment 

studies.) 

 Categories of Air Pollution Exposure Assessment 

The definition of human exposure was first presented in the 1980s as “the event 

that a person comes in contact with the pollutant” (Ott 1982). It can be simply thought of 

as a study of stressors, receptors, and their contacts. In the recent years, there has been an 

increasing focus on the field of exposure assessment, as illustrated in Figure 2.1. The 

principal goal of an exposure assessment is to obtain an accurate, precise estimate of the 

actual exposure that a person experienced. 

Exposure assessment methods can be classified into different tracks. The most 

straightforward and cost-effective way to quantify personal exposure is to sort exposure 
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estimates into a set of nominal groups. For example, the groups can be yes and no, or high, 

medium and low based on experts’ suggestion. In contrast, the costliest way to quantify 

personal exposure is to directly measure it using various sets of equipment, known as direct 

methods. For instance, a personal biological monitoring device can be utilized to measure 

the response of an organism to infer how much of a specific toxic substance enters it. 

Alternatively, when measurement methods are not available or cost-prohibitive, personal 

exposure can be indirectly estimated through exposure modeling, also known as direct 

methods.    

A detailed comparison is illustrated in Table 2.2. Each method has its advantages 

and disadvantages. It is believed that accuracy increases along with the cost of exposure 

assessment. Nevertheless, in many cases, the choice of exposure assessment method is a 

balancing act that considers feasibility (Armstrong 1996). 

 



 

 

1
2
 

Table 2.2 Comparison of exposure assessment methods 

Categories Methods Examples Advantages Disadvantages 

 

Direct 

methods 

 

 

 

 

 

Indirect 

methods 

 

 

 

 

 

Personal 

monitoring 

• Mobile/portable monitoring 

devices 

• Most accurate estimation 

• used as a benchmark to validate other 

models 

• Labor intensive 

• Costly 

• hard to carry out 

• small sampling size 

Biomonitoring • Biomarkers • Considers all routes of exposure 

• Can measure internal dose and 

effective dose 

• It can reflect a long-time exposure in 

a retrospective way 

• Data collection is expensive 

• Analytical methods are elaborate and 

difficult to reproduce 

• Not all biomarkers have reference 

values. 

Interpolation 

models 

• Deterministic: IDW 

• Stochastic: Kriging, Spline 

• Allow the use of real pollution 

measurements instead of surrogates 

• Create a distance-weighting 

continuous surface 

• The interpolation method is mechanistic 

• Algorithms fall apart at the edge due to 

the lack of monitoring data 

• Variability might be exaggerated. 

Dispersion 

models 

• AERMOD modeling system 

• CALPUFF modeling system 

• Can integrate various atmospheric 

conditions and the atmospheric 

motion 

• Dynamic modeling capabilities 

• Represent complex pollutant 

pathways that lead to secondary 

pollutants 

• Intensive data requirement 

• High need for the knowledge of 

meteorology and climatology 

• Extensive computational resources 

• Spatial resolution is low. 

Hybrid models • Combination of personal 

monitoring and regional 

monitoring 

• Combination of models at 

regional, urban and local scales 

• Combine the strengths of different 

models/data 

• Personal data is not always accessible. 

• The integration of multiple models 

involving different scales is hard to 

surmount. 
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2.1.2.1 Direct Methods 

Direct personal exposure assessment methods are comprised of personal 

monitoring and biomonitoring. Both methods can produce personal exposure 

measurements or estimates best without any prior assumptions. The exposure assessed by 

these methods is referred to as the “gold standard.” 

Personal monitoring methods usually ask participants to wear or carry mobile 

monitoring devices to record the “actual exposure” rather than “potential exposure” in a 

direct, explicit and continuous way. Usually personal monitoring methods also consider 

obtaining time-activity information from either diaries/surveys (Gauvin et al. 2001; 

Dennekamp et al. 2002; Lai et al. 2004; Piechocki-Minguy et al. 2006) or GPS-enabled 

devices (Elgethun et al. 2002; Greaves, Issarayangyun, and Liu 2008; Nethery et al. 2014; 

Fang 2012; Fang and Lu 2012) . Diary-based personal monitoring studies not only require 

participants to wear electronic monitoring equipment but also request them to record their 

24-h time-activities during the study period.  For instance, participants need to record their 

location when in different microenvironments (home, work, in-transit, other, etc.) and also 

the time spent in each microenvironment (Nethery, Teschke, and Brauer 2008). GPS-

enabled studies record participants’ movements continuously over a short time interval, 

usually in units of a few seconds, at a high accuracy.  

Biomonitoring method is the use of various biomarkers to assess the actual air 

pollution concentration inhaled by an individual instead of the concentration to which an 

individual is exposed.  Besides measuring exposure events and doses, biomonitoring 

methods can also accurately quantify individual metabolite(s) in biological media (e.g., 

urine, breath, blood, heart, lung), which better clarify the linkage in exposure-to-effect and 
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reduce the associated uncertainties (Hubal et al. 2000; Sobus et al. 2011). For instance, a 

positive association was found between daily exposure to PM10 (atmospheric particulate 

matter having less than 10 micrometers in diameter) and oxidative stress and impaired 

cardiovascular (Liu et al. 2007).  

2.1.2.2 Indirect Methods 

Indirect personal exposure methods utilize various exposure models to quantify 

exposure. The data commonly used for modeling is the ambient air pollution data, which 

is collected by an air pollution monitoring network. Some other auxiliary data (e.g., land 

use data, temperature data, etc.) can also be utilized in the modeling. Some researchers 

have reviewed and classified the existing models into different categories (Klepeis et al. 

2001; Jerrett et al. 2005; Zou et al. 2009). 

When compared to direct methods, indirect methods offer many tangible benefits. 

First, it allows researchers to model the dynamics of human activities and air pollution 

separately (Fang and Lu 2012). Second, it saves experimental cost to a large extent, 

especially when dealing with a large population. It’s not always possible to request all 

participants to carry a monitoring device. Third, with the aid of GIS, the indirect methods 

can easily incorporate other types of environmental data in modeling.  

Of all the indirect methods, the microenvironment model is the one that is 

commonly used for modeling human time activities in exposure assessment. This model 

treats personal total exposure as a list of distinct exposure scenarios (Duan 1982; Klepeis 

et al. 2001). The typical microenvironments include home, school, workplace, and in-

transit (Adgate et al. 2004; Lee et al. 2012; Wu et al. 2005; Zhang and Batterman 2009; 

Lazenby et al. 2012). Some studies have used finer microenvironment types such as kitchen 
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room, living room, shopping, restaurant, or various transportation modes (Harrison et al. 

2002; Rojas-Bracho et al. 2002; Briggs et al. 2003; Saksena et al. 2003; Shimada and 

Matsuoka 2011; Wheeler et al. 2011). Instead of solely considering the home location, 

microenvironment models can incorporate a number of significant places in modeling 

personal exposure.  

2.1.2.3 Limitations and Critical Needs 

Direct exposure assessment is believed to be the most accurate estimate of actual 

exposure. Nevertheless, it cannot be applied to any large cohort study or longitudinal 

studies due to the following limitations: (a) the cost of a large-population or longterm study 

is prohibitively high;  (b) monitoring devices or biomarkers are highly intrusive and may 

bring in substantial burdens to participants’ daily activities, especially for the elderly and 

children (Bricka et al. 2012); (c) The diary-based direct exposure methods heavily rely on 

the participants’ subjective inputs.   

Another challenge is that many health-related studies that took place before resulted 

in a large variety of data, some of which may be the diary data containing massive time-

activity information or the air pollution data collected by a field monitoring campaign. 

Therefore, how to combine different sources of data is an emerging problem that needs to 

be solved in exposure science disciplines. Meanwhile, the National Research Council 

(NRC) has called for the development of models to link human GPS data with 

environmental data to seek a better way to characterize personal exposure (National 

Research Council 2012).  

The limitations of direct methods, the challenge of data fusion, and the realization 

of imperativeness of spatiotemporal dynamics of personal exposure have encouraged this 
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study to develop models to integrate human trajectory data with spatiotemporally varying 

environmental data in a unified platform. GIS provides a powerful means of joining diverse 

data in one georeferenced coordinate system. This study makes the full use of GIS 

techniques in developing integrative models, as well as characterizing personal exposure 

in a spatiotemporal manner.  

 Literature Review of Time-activity Integrated Exposure Assessment Study 

This section provides a review of air exposure assessment research that incorporates 

the human time-activity information in modeling personal exposure. The importance of 

spatiotemporal dynamics of personal exposure is discussed. The two methods of collecting 

human time-activity information, diary-based methods, GPS-enabled methods are 

reviewed and evaluated.  

 The Spatiotemporal Essence of Exposure 

Exposure was defined as “an event that occurs when there is contact at a boundary 

between a human and the environment with a contaminant of a specific concentration for 

an interval of time” (National Research Council 1991b). Air pollution is an ever-present 

phenomenon in which different pollutants interact and create heterogeneous concentration 

at different microenvironments; human activities also change over the course of a 24-hour 

period (Steinle, Reis, and Sabel 2013). The spatiotemporal dynamics of both air pollution 

and human activities lead the exposure to be a continuously changing process.  

Numerous epidemiologic and toxicological studies have linked various air 

pollutants to adverse health outcomes to investigate the association. A conventional means 

of estimating personal exposure is to use participants’ residential locations as spatial 

surrogates. This is problematic since it ignores the impact of human activities. The 
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exposure estimates result in a significant difference in actual exposure. This difference 

increases when a person spends a greater proportion of time away from home.  

Some studies have found that apart from the home places, other places also have a 

significant impact on personal exposure. In a meta-analysis, Avery et al. (2010) found that 

the median within-person residential outdoor–personal PM2.5 correlation coefficient is 0.53 

with a range of 0.25-0.79. In addition, the standard derivation of the correlation coefficient 

varies widely. Setton et al. (2008) conducted a simulation study to investigate census tract-

specific exposure distributions for people in Metro Vancouver. This study found the time 

spent at workplaces contributes most to the within-census tract variability. Setton et al. 

(2011) suggested that ignoring daily mobility patterns could contribute to the null 

hypothesis in epidemiological studies by 1%, 16%, 30%, and 34% for different groups of 

people. de Nazelle et al. (2013) found that compared to home-based exposure, accounting 

for the spatiotemporal activity patterns increased personal exposure to NO2 by 24%. These 

studies have provided evidence that that the lack of human time-activity patterns in 

exposure assessment would eventually bring in a bias to epidemiology research.  

This study found that there were two principle methods to collect human time-

activity information for exposure assessment in the literature. The first method oftentimes 

asks participants to carry over a diary to write down the detailed information about human 

activities. The second method relies on various GPS-enabled devices to automatically 

collect a string of trajectory points, which can be used to derive time-activity patterns. 

These two methods are briefly discussed as follows.  
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 Diary-based Methods 

Studies on human time-activities were first extensively investigated in the field of 

sociology whereby the term “time budget” was frequently used to represent the amount of 

time an individual spends in different activities/places (Klepeis et al. 2001). One way of 

obtaining time budget information from the participants is to ask the respondents to 

maintain a diary over a required period. The tool to record the time activities and the 

complementary information is commonly known as a time-activity diary (TAD) or time-

location diary (TLD) (Hazlehurst et al. 2017). Participants are usually instructed to fill in 

the information on where and how they spent time. Some studies also require participants 

to detail transportation modes (e.g., on foot, train, bus, car driver, car passenger, etc.) 

whenever they go on a trip (Dons et al. 2013).  

Starting from the 1980s, researchers in environmental health fields started 

collecting human time-activity information to support exposure assessment studies. 

Johnson (1984) and Akland et al. (1985) conducted a personal exposure project including 

454 participants in Denver and Washington, DC. Over the data collection, each participant 

was required to carry a personal exposure monitor (PEM) to measure carbon monoxide 

(CO) and to fill out an activity diary on a 24-h basis. The participants had to fill in all 

detailed time-activity information on a certain page whenever they changed places or 

activities. Quackenboss et al. (1986) conducted an exposure study to measure nitrogen 

dioxides (NO2) for approximately 350 individuals in Portage, Wisconsin. Participants were 

asked to record the time they spent in each of the five predefined activity categories. A 

more thorough review can be found in Ott (1989).  
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Since 1990, a few large-scale population studies, designed to collect exposure-

relevant information on human activity patterns have emerged (Klepeis et al. 2001). Wiley 

et al. (1991) conducted a diary-based activity study for residents, including both adults and 

children, in California from 1987 to 1990. Following this, the national human activity 

pattern survey (NHAPS) took place and was patterned after Wiley’s study. NHAPS is the 

first national-scope exposure-relevant study on human time-activity patterns, which began 

in September 1992 and ended on October 1994 (Klepeis et al. 2001). In addition to the 

national coverage, NHAPS study has a refined spectrum of microenvironments. The time 

spent at microenvironments (e.g., kitchens, restaurants, etc.) with an elevated air pollution 

level was required to be logged in the diary. Another national survey study of human 

activity focused on human exposure to soil, took place from 1994 to 1995 (Robinson and 

Silvers 2000). Unlike the NHAPS study that emphasizes the phenomenon of air quality, 

this study asked participants to answer some questions about the extent of contact with soil 

they had experienced. The Canadian Human Activity Pattern Survey (CHAPS) is another 

large-scale population survey study to collect Canadian activity pattern information for 

exposure modeling (Leech et al. 1996). Currently, a large cohort study, the Multi-Ethnic 

Study of Atherosclerosis and Air Pollution (MESA AIR), is proceeding to evaluate the 

association between long-term air pollution exposure and the progression of subclinical 

atherosclerosis and the incidence of cardiovascular disease (Kaufman et al. 2012). This 

study recruited more than 7,000 participants in six US cities and obtained the typical time-

location pattern of each participant via questionnaire. The MESA AIR study requires 

participants to record the time spent at home, work, in-transit and other locations when 

they visit.  
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It is noted that all the survey studies primarily used a diary or questionnaire to 

acquire the time activity information. A diary can take place in real time. That is, the 

participants detail all relevant information whenever an activity starts or ends. 

Alternatively, the diary can be filled out through a subsequent interview in which 

respondents have to recall all the activities in the past 24 hours (Leech et al. 2002).  

The real-time data collection can be intrusive to participants’ daily life. A diary can 

detail more entries of activities to some extent. In contrast, the retrospective methods result 

in a lower burden to participants but suffer from a recalling issue. Meanwhile, the 

introspective methods introduce uncertainties to further epidemiological studies.  

 GPS-enabled Methods 

With the advent of GPS and GIS, the tools to collect time-activity patterns have 

expanded from TAD/TLD to the use of GPS-enabled devices (e.g., smartphones). The time, 

locations, and movements of whoever carries a GPS are automatically logged.  In some 

cases, with the assistance of the accelerometer sensor, the related equipment can also record 

the energy expenditure data associated with physical activity (de Nazelle et al. 2013). The 

spatiotemporally logged points, over a certain period, constitute a string of trajectory. Each 

point along a trajectory contains information about location, time, and speed or acceleration 

attributes.  

The first study that integrated GPS devices in the environmental exposure 

assessment field is the Oklahoma Urban Air Toxics Study (OUATS) (Phillips et al. 2001). 

This study asked each participant to wear a GPS recorder along with a personal monitoring 

device. The monitoring device collected volatile organic compounds (VOCs) near the 

breathing zone. Additionally, this study asked each participant to maintain a diary to detail 
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his or her locations and activities. This study found that GPS data could confirm all travel 

events that were reported in diaries. Moreover, GPS data also detected additional activities 

that were not recorded in the diaries. As a result, Phillips et al. (2001), suggested that GPS 

techniques would be a promising tool to track people’s time-activity information in 

exposure assessment related studies.  All the select individual-level GPS-enabled exposure 

assessment studies are summarized and illustrated in Table 2.3. 
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Table 2.3 A review of GPS-enabled exposure assessment studies 

Author & Year Category Pollutant Sample Size Data Collection 

Phillips et al. (2001) Direct VOC NA GPS & Diary 

Lee et al. (2005) Direct Noise 1 GPS 

Greaves, Issarayangyun, and Liu (2008) Direct PM2.5 1 GPS & Voice Recorder 

(Nethery et al. 2008) Direct & Indirect NO & NO2 & PM2.5 62 GPS & Diary 

Adams, Riggs, and Volckens (2009) Direct Fine PM 1 GPS 

Gerharz, Kruger, and Klemm (2009) Indirect PM2.5 6 GPS & Diary 

Morabia et al. (2009) Direct PM2.5 20 GPS & Diary 

Morabia et al. (2010) Direct PM2.5 21 GPS & Diary 

Broich, Gerharz, and Klemm (2011) Direct PM1 & PM2.5 & PM10 16 GPS & Video Recorder & Diary 

Dons, Panis, et al. (2011) Direct BC 16 GPS & Diary 

Houston et al. (2011) Indirect AADT 47 GPS & Diary 

Lonati et al. (2011) Direct PM 1 GPS  

Buonanno et al. (2012) Direct PM 103 GPS & Diary 

Wu et al. (2012) Direct PB-PAH 28 GPS & Questionnaire 

Buonanno et al. (2013) Direct UFP & BC 103 GPS & Diary 

de Nazelle et al. (2013) Indirect NO2 36 Smartphone & Diary 

Dons et al. (2013) Direct BC 62 GPS & Diary 

Gerharz et al. (2013) Indirect PM10 & PM2.5 10 GPS & Diary & Video Recorder 

Houston et al. (2013) Direct PB-PAH 24 GPS 

Buonanno, Stabile, and Morawska (2014) Direct UFP 48 GPS & Diary 

Dias and Tchepel (2014) Indirect PM2.5 5 GPS 

Moller et al. (2014) Direct UFP 30 GPS 

Nethery et al. (2014) Direct PM2.5 54 GPS 

Nyhan, McNabola, and Misstear (2014) Direct PM10 60 GPS 



  

 

2
3  

Author & Year Category Pollutants Sample Size Location-wise Acquisition 

Tchepel et al. (2014) Direct Benzene 10 GPS  

Arku et al. (2015) Direct PM2.5 56 GPS 

Beko et al. (2015) Direct UFP 59 GPS 

Lu and Fang (2015) Indirect O3 1 GPS 

Nieuwenhuijsen et al. (2015) Direct & Indirect BC 54 Smartphone 

Ouidir et al. (2015) Direct & Indirect NO2 & PM2.5 40 GPS & Diary 

Pilla and Broderick (2015) Direct & Indirect PM10 NA GPS & Diary 

Ryan et al. (2015) Direct UFP 20 GPS & Diary 

Steinle et al. (2015) Direct PM2.5 17 GPS & Diary & Interview 

Su et al. (2015) Indirect NOx 1 Smartphone & WIFI 

Yoo et al. (2015) Indirect PM2.5 43 Smartphone & Diary 

Adams, Yiannakoulias, and Kanaroglou (2016) Indirect PM2.5 NA Simulated Trajectory 

Dewulf, Neutens, Lefebvre, et al. (2016) Indirect NO2 180 GPS 

Lei et al. (2016) Direct PM2.5 & BC 51 GPS & Diary 

Rabinovitch et al. (2016) Direct PM 30 GPS 

Sloan, Philipp, et al. (2016) Direct PM2.5 10 GPS 

Sloan, Weber, et al. (2016) Direct Elements of PM 21 GPS 

Williams and Knibbs (2016) Direct BC 1 GPS & Diary 

Zhu, Marshall, and Levinson (2016) Indirect UFP 144 GPS  

Huck et al. (2017) Direct NO2 NA GPS 

Moller et al. (2017) Direct UFP 69,175 GPS 

Panella et al. (2017) Direct UFP & BC 100 Smartphone  

(Note: NA: not applicable; VOC: volatile organic compound; PM: particle matter; UFP: ultrafine particle; BC: black carbon; O3: ozone;  

NO: nitrogen oxides; PB–PAH: particle-bound polycyclic aromatic hydrocarbon; AADT: annual average daily traffic)
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Most of the aforementioned studies are grouped within the track of direct methods. 

Only few studies attempted to develop approaches for estimating personal exposure using 

GPS data (Gerharz, Kruger, and Klemm 2009; Lu and Fang 2015; Gerharz et al. 2013). 

For instance, Gerharz, Kruger, and Klemm (2009) applied a dispersion model for outdoor 

PM2.5 and a mass balance model for indoor concentration to model personal exposure with 

the assistance of GPS tracks and diary data. In addition, considering that the application of 

GPS is still at an early stage in environmental exposure assessment field, most of the 

reviewed studies merely use GPS generated data as a secondary data to complement diary 

data.  

The only notable exceptions are the few studies that utilized GPS data as the main 

source for deriving human time-activity patterns (Adams, Riggs, and Volckens 2009; Wu 

et al. 2011; Wu et al. 2012; de Nazelle et al. 2013; Dias and Tchepel 2014; Breen et al. 

2014).  

Adams, Riggs, and Volckens (2009) developed a classification algorithm to 

apportion GPS trajectory data into a set of microenvironments. This algorithm considered 

the circular distances to the physical footprints of residential structures. Additionally, this 

study took advantage of the temperature sensor to distinguish between indoor and outdoor 

activities. The accuracy of activity classification was reported to be up to 97%. 

Nevertheless, this study had only one single participant under examination, and that 

subject’s home and workplace location were known beforehand. Therefore, technically the 

apportionment algorithm was not driven by trajectory data.  

Wu et al. (2011) developed two automated approaches to classify GPS trajectory 

data into a set of predetermined activities. Unlike Adams, Riggs, and Volckens (2009), Wu 
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et al. (2011) did not know participants’ home and workplace locations ahead of time. This 

study systematically evaluated the two proposed approaches, that is, a rule-based 

classification method, and a random forest classification method. The study suggested that 

automated classification models would be a promising means to identify human time-

activity information in air pollution health studies. In another study, Wu et al. (2012) 

deployed the proposed automated classification models to process GPS trajectory data for 

investigating personal exposure to particle-bound polycyclic aromatic hydrocarbon (PB-

PAH).  

Rather than using GPS instruments, de Nazelle et al. (2013) innovatively used 

smartphones with a designated application to collect people’s trajectories and energy 

intensities. A map of NO2 concentration was overlaid with participants’ trajectories to 

evaluate personal exposure. One of the biggest benefits of using smartphones is that, when 

a GPS signal is absent, assisted GPS technique and WI-FI positioning system (e.g., 

Skyhook1) will be operable to improve the accuracy of location (Glasgow et al. 2016).  

These trajectory-based methods provide tremendous opportunities for investigating 

human time-activity patterns. The trajectory data generated from the use of the GPS-

enabled devices will ultimately enhance the understanding of personal exposure to 

environmental hazardous air pollution and the association between health outcomes and 

exposure. 

                                                 

 

1 https://www.skyhookwireless.com/ 
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 Limitations and Critical Needs 

It is apparent that the principal means of collecting human time-activity information 

is reliant on diaries or interviews. For a retrospective interview, one of the biggest problems 

is the issue of recalling in which participants cannot remember what they did at a specific 

moment. Similarly, for a diary-based study, participants may just forget to write down the 

ongoing activities at some point.  

Many types of studies have made efforts to pinpoint the deficiency of diaries or 

questionnaires in collecting human time-activity information. Houston et al. (2011) did a 

comparison study regarding the performances of diaries and GPS logging. This study found 

that, overall, nearly 49% of the locations and trips identified by GPS trajectories were 

ignored by diary logs. Bricka and Bhat (2006) investigated the GPS trajectory dataset of 

377 drivers In Kansas City and found that 29% had at least one instance of a trip that was 

not reported in the self-reported diaries. Elgethun et al. (2007) compared the GPS trajectory 

data and diary data in Seattle, Washington. Consistent with other studies, this study found 

about 48% time on diary was misreported. Furthermore, the missing diary logs problem 

became severe for Spanish-speaking groups.  

Besides the recalling issue, a diary or interview is burdensome and intrusive to 

study participants. de Nazelle et al. (2013) reported that most participants complained 

about the nuisance of maintaining a travel log. Another problem is that a diary may not 

reliably reflect a person’s short-term activity (Hazlehurst et al. 2017).  

To sum up, the diary-based study is limited regarding the accuracy of recall, reliability, and 

compliance (Wu et al. 2011). 
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The benefits of using GPS-based techniques are primarily attributed to high and 

reliable spatiotemporal resolution and minimal burden to participants (Rainham et al. 2010). 

Compared to a diary-based study, a GPS-enabled study can provide objective logging data 

regarding a person’s time-activity information with fewer burdens. Another promising 

feature is the pervasiveness of GPS-enabled devices, that is, smartphones, smartwatches, 

etc. All such devices offer an extraordinary opportunity to collect spatiotemporal data for 

deriving human time-activity information for exposure assessment purposes. Moreover, 

smartphones can offer improved locating solutions when not enough satellites are available. 

These enhanced locating solutions make a longitudinal time-activity-integrated exposure 

study possible. All the opportunities necessitate a greater focus on GPS-enabled exposure 

assessment studies. However, as can be seen in Table 2.3, this field is surprisingly under 

studied. Very few studies systematically discussed how to integrate and analyze trajectory 

data with various environmental models in the track of direct exposure assessment methods.  

To sum up, personal exposure to air pollution is essentially a function of space and 

time as humans, and air pollution vary over space and time. Recent literature has realized 

the significance of the variation of the air pollution in estimating personal exposure (Setton 

et al. 2011). However, very few studies have paid adequate attention to the human time-

activity patterns in the environmental exposure assessment discipline. To fix this gap, this 

study aims to construct trajectory-based approaches for assessing personal exposure to air 

pollution, as well as to explore how personal exposure varies over space and time.  
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3. A MODEL FOR ASSESSING PERSONAL EXPOSURE TO AMBIENT AIR 

POLLUTION USING TRAJECTORY DATA 

 Introduction 

This chapter presents a new model for assessing personal exposure to ambient air 

pollution using trajectory data recording human time-activity patterns in geographic space 

and time. 

 Method 

 A Conceptualization of Trajectories Documenting Human Activities in 

Geographic Space and Time 

The key of trajectory-based exposure assessment is to determine the specific 

location of a person at any given time, the duration the person spends at that location and 

the estimated intensity of the air pollutant in question at that location for the specific 

duration of time associated with the person in question. We follow the established 

terminology in network analysis in this discussion. A tour refers to a trip starting at location 

(e.g., a person’s home), traveling along paths connecting different locations, stopping at 

several other locations, and ending at the starting location. Human activities in geographic 

space and time can be documented by GPS-recorded trajectories consisting of a sequence 

of points associated with one or more tours on a daily basis.  

A tour can be decomposed into different microenvironments (MEs) representing 

different locations where activities of distinctively different nature are carried out (Duan, 

1981, 1982). A microenvironment is either one location or a set of locations in close 

proximity where activities of the same nature are carried out by an individual. Figure 3.1 

illustrates four distinctively different types of MEs associated with a tour. We distinguish 
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the home ME, workplace ME, travel ME, and other MEs in this discussion. MEs associated 

with home and workplace locations are easy to understand. In some environmental analyses, 

it is important to distinguish between the home ME and workplace ME. This is why the 

home and workplace MEs are used in the model. Any path collecting two neighboring MEs 

is called the “travel” ME. All activities that are covered by these three MEs are collectively 

called the “other MEs.” Without losing generality of the model, travel mode may be either 

walking, cycling, driving, or taking transit. As will be discussed in the next section, a key 

step in the development of the model is to classify points on a trajectory associated with a 

person’s activities into these four MEs.  

 

Figure 3.1 Four different microenvironments (MEs) and different modes of travel 

associated with a person’s activity patterns in geographic space and time  

 

 Model Development 

The model consists of three components: (1) trajectory data processing, (2) 

representation of air pollution in geographic space and time, (3) exposure assessment. First, 

the model uses trajectory data processing techniques to classify trajectory data into a set of 

MEs as defined above and determine the time that person spends at the ME in question. 

Second, the model represents the geographic distribution of estimated intensities of an air 
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pollutant in question over time using a specific model. The model then links the processed 

trajectory data and the adequately represented air pollution data in geographic space and 

time. Third, the model calculates a person’s exposure to the pollutant in question using a 

set of newly developed procedures. The workflow of this innovative model is illustrated in 

Figure 3.2. The three components are described in detail in the next section. 

 

Figure 3.2 The workflow of the proposed trajectory-based exposure assessment model 

(Note: ME-Microenvironment) 

 

3.2.2.1 Trajectory Data Processing 

To classify points of a given trajectory into the four MEs, a series of data processing 

algorithms were developed and implemented in combination with some predefined rules 

determining the time windows of typical activities during a working day. For instance, for 

an average person, the time window in a workplace is typically from 9:00 am to 5:00 pm. 

A trajectory dataset typically consists of a series of data points. Each data point may contain 
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at least three variables: a pair of geographic coordinates, time stamp, and movement speed. 

We developed a 3-step procedure to classify the data points. 

First, the procedure classifies the points into either stationary or moving points 

based on a speed profile suggested in the literature (Table 3.1) (Reddy et al. 2010; Dewulf, 

Neutens, Van Dyck, et al. 2016). All points with speed slower than 1.5 km/h were classified 

as stationary points. These stationary points are potential candidate points belonging to 

either the home ME, workplace ME, or other MEs. The rest of the points with speed equal 

to or faster than 1.5 km/h were considered to be in the travel ME.  

 

Table 3.1 Descriptive information of the speed profile 

# Travel mode Speed (km/h) 

1 Sedentary state  0 ~ 1.5 

2 Walking 1.5 ~ 8 

3 Cycling 8 ~ 25 

4 Driving 25 ~ maximum allowable speed  

(Note: In the case study discussed in this chapter, the maximum driving speed is limited to 80 

km/h based on the typical speed limit of National Highways in China.) 

 

Second, the classified points in close proximity are grouped into the same ME based 

on a given distance threshold. For example, a person may move a lot in his or her home 

ME. These movements result in a lot of stationary data points. All these data points belong 

to a single home ME. This grouping is achieved through a density-based spatial clustering 

algorithm DBSCAN (Ester et al. 1996). DBSCAN is a highly efficient spatial clustering 

algorithm, which can discover clusters of any arbitrary shapes and effectively handle noise 

points. Another advantage of DBSCAN over other spatial clustering techniques is that it 

does not require a prior number of clusters. Two important parameters of DBCSAN are the 

search distance, MinDist, and the minimum number of points, MinPts, for forming a cluster. 
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The DBSCAN algorithm consists of four steps. First, DBSCAN checks the 

neighborhood (defined by the radius of MinDist) of each point. If the neighborhood of 

center point X contains more than MinPts points, a new cluster is created. The center point 

X is called a core point. Second, DBSCAN iteratively checks whether some of the clusters 

are density-connected or density-reachable to ensure that all the points that should be in 

the same cluster are included in that cluster. Any two adjacent clusters sharing one or more 

points are considered to be density-connected, and any cluster in a sequence of density-

connected clusters is defined as density-reachable with respect to any other cluster in this 

sequence of clusters. Third, the algorithm merges clusters that are density-connected or 

density-reachable, creating unified clusters with arbitrary shapes. Fourth, the algorithm 

terminates when no points can be included into a cluster, and there are no connected or 

reachable clusters.  

Whether a stationary data point belongs to the home ME or workplace ME can be 

determined based on a set of predefined temporal filtering rules (Yuan, Raubal, and Liu 

2012). The workplace ME is typically defined as the largest cluster of stationary points 

recorded during 8:00 am – 5:00 pm on weekdays, and the home ME is typically considered 

to include the largest cluster of stationary points during other hours on weekdays. All 

remaining stationary data points that are not categorized into either the home ME or 

workplace ME are placed into the other MEs. As a result, for each trajectory corresponding 

to the daily activities of an individual, the two steps described above discover one home 

ME, one workplace ME, one travel ME, and multiple other MEs when the trajectory is 

complete in a 24-hour period.   
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The third step of the procedure is to derive time-related information associated with 

all points in a single ME in any time window during which the individual in question 

remains in the same ME. The time-related information is important because we need it to 

link location data in each ME to the air pollution data in the subsequent exposure 

assessment procedure. For the convenience of discussion, each stay in an ME without a 

time lapse is called a visit. An individual may visit a single ME during a day several times. 

A single visit is defined as a chain of line segments connecting points with sequential time 

stamps in the same ME. This study implemented a line detection algorithm to identify the 

chain of line segments associated with each visit. For each ME, the line detection algorithm 

starts from the first point in the point cluster and keeps adding the next point to the existing 

chain if the time difference between two consecutive points is less than a predefined time 

interval. The line detection algorithm continues expanding the chain of line segments by 

adding a line segment to the chain until no points can be found within the predefined time 

difference. Next, a new chain is created and initialized by the first point in the remaining 

point sets. The algorithm terminates when it exhausts all points in a cluster. 

3.2.2.2 Representation of Air Pollution in Geographic Space and Time 

The intensity of a specific air pollutant in a given location at a particular time can 

be determined through air pollution modeling. Many air pollution models have been 

developed in the last few decades. Because the development of air pollution models is not 

the focus of this study, this topic is not discussed further in this discussion. Once the 

distribution of the estimated intensity of an air pollutant in geographic space and time is 

determined, the spatiotemporal variations of the intensities can be represented by a 3D 

space-time cube model (Fang and Lu 2011) as shown in Figure 3.3. In this 3D cube, the 
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geographic distribution of the estimated intensities of the air pollutant in question at each 

time step is represented as a single map layer as shown in Figure 3.3. The representation 

of the intensities in geographic space and time is achieved by a stack of map layers in the 

cube. An example trajectory documenting the movements of an individual’s activity 

patterns in geographic space and time relative to the 3D cube is shown in Figure 3.3. The 

linkage of the 3D cube and the trajectory can be achieved using the location and time stamp 

information obtained during trajectory data processing.  

 

Figure 3.3 Linking trajectory data with estimated air pollution data represented by a 3D 

space-time cube. The trajectory in red contains a sequence of red square points 

representing logged points with both location and time stamp information. The black dots 

mark the locations of monitoring sites where hourly air pollution data are recorded. 

 

3.2.2.3 Exposure Assessment 

We are ready to calculate an individual’s exposure to a pollutant based on the 

activity patterns documented by a trajectory. Recall that a person’s daily activities may 

include one or more tours. The travel patterns of a tour or tours recorded by trajectories can 

be decomposed into a set of MEs. Each ME, in turn, may consist of a number of visits. 
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This hierarchy of tour-ME-visit related to an individual's spatiotemporal activity patterns 

can be summarized by four vectors shown in Equation 3.1 below.  

𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = {𝑇𝑜𝑢𝑟1, 𝑇𝑜𝑢𝑟2, 𝑇𝑜𝑢𝑟3, … … , 𝑇𝑜𝑢𝑟𝑞} 

𝑇𝑜𝑢𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = {𝑀𝐸1, 𝑀𝐸2, 𝑀𝐸3 … … , 𝑀𝐸𝑛} 

𝑀𝐸 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = {𝑉𝑖𝑠𝑖𝑡1, 𝑉𝑖𝑠𝑖𝑡2, 𝑉𝑖𝑠𝑖𝑡3, … … , 𝑉𝑖𝑠𝑖𝑡𝑚} 

𝑉𝑖𝑠𝑖𝑡 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = {𝑃𝑜𝑖𝑛𝑡1, 𝑃𝑜𝑖𝑛𝑡2, 𝑃𝑜𝑖𝑛𝑡3, … … , 𝑃𝑜𝑖𝑛𝑡𝑤}  (3.1) 

 

Based on discussions in the last subsection, each visit consists of a chain of consecutive 

line segments connecting points recorded sequentially in time. The duration associated 

with each visit is the time difference between the time associated with the last and first data 

points of the visit in question. An individual’s exposure to the pollutant in question during 

a visit then can be easily determined by multiplying the average estimated intensity of the 

pollutant at the locations associated with the visit and the duration of the visit. For each 

visit, the total exposure (TE) and average hourly exposure (AHE) are distinguished. 

Formulas for calculating TE and AHE are given in Equation 3.2.  

 

𝑉𝑖𝑠𝑖𝑡 𝑇𝐸 = ∑ (𝑐𝑖𝑗 × ∆𝑡𝑖𝑗)𝑚
𝑖=1 , 𝑉𝑖𝑠𝑖𝑡 𝐴𝐻𝐸 =

∑ (𝑐𝑖𝑗×∆𝑡𝑖𝑗)
𝑚
𝑖=1

∑ ∆𝑡𝑖𝑗
𝑚
𝑖=1

 (3.2) 

 

where cij is the average intensity of the air pollutant in question at the locations of data 

points i and j, and Δtij is the time difference (duration) associated with trajectory points i 

and j. Once the exposure associated with a visit is determined, it is straightforward to 

calculate the exposure associated with an ME, a tour, and an individual over a given period 
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of several days through simple summations of the relevant estimated exposure at different 

levels of the hierarchy. 

 Experiments based on Simulated Data 

 Data 

3.3.1.1 Air Pollution Data 

This study collected the hourly readings of PM2.5 from thirty monitoring sites over 

a 24-hour period on February 28, 2016, in Beijing, China. There were a total of 750 

readings. The geographic distribution of the monitoring sites is illustrated in Figure 3.4.  

The data were obtained from AQICN.org which is a third-party air quality data source that 

is published by the World Air Quality Index project. All air quality data available on 

AQICN.org are compiled from ground air quality monitoring sites operated by different 

levels of government in the respective countries. 

 

Figure 3.4 Geographical distribution of monitoring sites in the Beijing area 
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3.3.1.2 Simulated Trajectory Data 

Because of the lack of public domain individual-level trajectory data in the study 

area - Beijing - where large-scale air quality monitoring data were available, this study 

developed a trajectory simulation platform to generate a set of trajectories mimicking the 

movement patterns of an adult in geographic space and time on weekdays. The simulated 

trajectory data have the three attributes mentioned above that a GPS device commonly 

recorded, that is, location, timestamp, and speed. Therefore, the simulated trajectory data 

have all the necessary characteristics of real data, and the simulated trajectories were used 

to test the performance of the model.  

It is necessary to make a few assumptions when generating the simulated trajectory 

data. First, an individual’s daily activities are assumed to include only the home ME, 

workplace ME, travel ME, and other MEs as discussed in Section 2 of this chapter. Second, 

people are assumed to use the fastest route when traveling between two locations using a 

randomly assigned travel mode from the options shown in Table 3.1. Third, it is assumed 

that people can move freely within a confined 50-m circular area centered at a predefined 

location in a single sedentary ME (i.e., home, workplace and other MEs) (Beko et al. 2015). 

Fourth, people’s activities are constrained by a series of time allocation rules as explained 

below.  

The time allocation to different MEs is assumed to resemble a typical adult’s 

spatiotemporal activity patterns on a weekday: (1) a day has 24 hours, (2) a person stays at 

a workplace from 9:00 a.m. to 5:00 p.m., (3) the time spent in the travel ME connecting 

the home ME and the workplace ME is assumed to be less than 4 hours, (4) the time 

consumed in the travel ME from the workplace ME to other MEs is also less than 4 hours, 
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(5) the time spent in other MEs ranges from 0.5 to 2 hours. Information about the time 

allocation is provided in Table 3.2.  

Table 3.2 Descriptive information of time allocation in simulation 

# Criteria Value (hours) 

1 Total time 24 

2 Time spent at workplace ME 8 (i.e. 9:00 a.m.-5:00 p.m.) 

3 Travel time from home to workplace ME {x | 0 < x < 4} 

4 Travel time from workplace to other MEs {x | 0 < x < 4} 

5 Time spent at other MEs {x | 0.5 < x < 2} 

 

The trajectory dataset was generated based on the road network in Beijing, China, 

which was obtained from OpenStreetMap (OSM). Given that the network dataset did not 

have speed limit information, we randomly assigned a speed limit to each road segment. 

The speed attribute of a roadway was used in the subsequent analysis to distinguish points 

of travel ME from stationary MEs (i.e., home ME, workplace ME, and other MEs). The 

data points in the simulated trajectory data were assigned a logged location and time stamp 

every 5 seconds. 

This study followed two procedures described below when generating the 

simulated trajectory data. The first procedure was to obtain 100 sets of three nodes that met 

all the predefined time allocation rules. The three nodes were used for the center locations 

of the home ME, workplace ME, and one other ME when simulating trajectories. The 

second procedure was to generate a series of trajectory points based on the assumptions, 

the time allocation rules, and adequate algorithms mentioned below. 

In selecting 100 sets of three qualified nodes, first, we randomly selected three 

nodes from the network dataset as candidate locations for the home ME, workplace ME, 

and the other ME. Second, we computed the fastest path between any pairs of locations 
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among the three notes using the Dijkstra’s algorithm (Dijkstra 1959) on the Beijing 

network. Third, during each selection, we made sure that the two nodes of the home ME 

and the workplace ME can be reached within four hours as defined by the rules shown in 

Table 3.2. Also, the two nodes of the workplace ME and other ME can be reached within 

four hours. Last, the steps described above were repeated until we obtained 100 sets, each 

containing three nodes representing different locations.  

Once the 100 sets of nodes were determined, we started to generate the point 

locations on a trajectory. For points in the travel ME, a linear interpolation algorithm was 

applied to each link on the determined routes. The sedentary points that were within the 

home ME, workplace ME and other MEs were generated following a random walk 

algorithm (Marsh and Jones 1988) within the specified 50-m radius of the three selected 

nodes. The time stamp associated with each point on a trajectory was assigned based on a 

data logging frequency of one point every 5 seconds, the time allocation rules, and the 

travel speeds. 

The simulation was implemented in PostgreSQL database bundled with PostGIS 

(version 2.3.0) and pgRouting (version 2.2.0). We simulated the trajectories of activity 

patterns of 100 hypothetical individuals over a 24-hour period based on the road network 

data in Beijing. Figure 3.5 shows one of the simulated daily trajectories. 
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Figure 3.5 An example simulated trajectory documenting an individual’s movement 

patterns in one day. 

 

 Experimental Results 

3.3.2.1 Results of Trajectory Data Processing 

Recall that this part of the analysis of the model is to detect the different MEs and 

the visits within each ME. Figure 3.6 presents the result of trajectory data processing for 

the simulated trajectory of Person 1. In processing the data, all data points with speed faster 

than 1.5 km/h were classified to belong to the travel ME first. Next, all remaining data 

points were treated as stationary points and became the input points of the clustering 

analysis algorithm. After different clusters were detected, the home, workplace, and other 

MEs were determined. The line segment detection algorithm was applied to detect different 

visits within each ME.  
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In Figure 3.6, the home ME (Figure 3.6(a)), workplace ME (Figure 3.6(b)), and the 

other ME (Figure 3.6(c)) are displayed to illustrate the results of clustering analysis. As is 

shown in the figure, the points in the home ME are rendered in two different colors, 

indicating that two distinctively different visits were detected in the home ME from the 

simulated trajectory of Person 1. The travel ME contained three visits and the workplace 

and other MEs each contained only one visit. For demonstration purposes, we present the 

results associated with four out of the 100 simulated trajectories below. Information about 

the MEs, visits in each ME, and the duration associated with each visit in the respective 

MEs corresponding to the simulated trajectory of each of the four individuals are provided 

in Table 3.3. 

 

Figure 3.6 The results of trajectory data processing for the trajectory of Person 1. 
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Table 3.3 Time spent on visits of all MEs by four individuals 

Person 

Home ME Workplace ME Travel ME Other ME 

H-1 H-2 W-1 T-1 T-2 T-3 O-1 

1 7.83 3.78 8.00 1.17 0.72 0.58 1.92 

2 7.02 3.43 8.00 1.98 0.95 1.97 0.65 

3 6.93 2.42 8.00 2.07 0.53 2.11 1.94 

4 7.47 2.11 8.00 1.53 0.79 2.32 1.78 

(Unit: hours) 

3.3.2.2 Representation of Air Pollution in Geographic Space and Time in Beijing 

The key in this part of the analysis is to build a 3D space-time cube to represent the 

geographic distribution of estimated intensities of PM2.5 and link the location points in each 

trajectory to their corresponding points in the 3D cube. The construction of the 3D cube 

contains two steps. The first step is to model the spatial variation of PM2.5 at any given 

time based on ground monitoring data. This study used three spatial interpolation methods, 

the inverse distance weighting (IDW), the radial basis functions (RBF), and the ordinary 

kriging method, to model the spatial variations of PM2.5 at each hour of the day based on 

the hourly ground monitoring data in Beijing. We used a 10-fold cross-validation method 

(Stone 1974) to evaluate the accuracy of the estimated intensities at each hour from these 

three methods and selected the results of the method with the smallest error to represent 

the spatial variation of PM2.5 at that specific hour. The results from this modeling and cross-

validation process is a set of twenty-five map layers representing the geographic 

distribution of PM2.5 at each hour during the 24-hour period (Figure 3.7).  

Based on the hourly map layers, we then used a simple linear interpolation approach 

to obtain the estimated intensity for any given time between the two adjacent hours with 

estimated intensity. Equation 3.3 illustrates the linear interpolation approach.  
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𝐶ℎ~𝑚~𝑠 = 𝐶ℎ~𝑚 = 𝐶ℎ +
𝑚

60
× (𝐶ℎ+1 − 𝐶ℎ)  (3.3) 

Where Ch~m~s is the estimated intensity of the air pollutant in question at hour h, minute m, 

and second s. For ease of computation, this study simply assumes there is no transitional 

change of intensity within one minute. Theoretically, the overall approach described above 

generates a seamless 3D space-time cube representing the estimated intensity of an air 

pollutant in question in every location at any given time.   
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Figure 3.7 Map layers showing the geographic distribution of the estimated intensity of 

PM2.5 at each hour in Beijing over the 24-hour period. 

As is shown in Figure 3.7, higher intensities were observed before 9:00 am with a peak 

value of 82.62 μg/m3. From 9:00 to 15:00, the intensity decreased sharply. After 15:00, the 

intensity stayed at a low level with a mean value of 11.65 μg/m3.  The density of PM2.5 in 

areas surrounding monitoring site 19 (see Figure 3.5) had much higher intensities than 

those at other monitoring sites. For instance, at 13:00, the difference of intensities between 



  

45 

 

site 19 and other sites was as high as 162.07 μg/m3. This significant variation of intensity 

between areas surrounding site 19 and areas surrounding other sites was evident for most 

of the day before 19:00. It was expected that a person who traveled through areas around 

site 19 would have received a much higher exposure.  

3.3.2.3 Results of Exposure Assessment 

Table 3.4 is a summary of the AHE for the four people. As shown in the table, 

significant variation exists among the level of exposure associated with different visits 

within one ME. For all four people, the first visit to the home ME happened in the morning 

before 9:00 am when the areal PM2.5 intensity was higher than 50 μg/m3 on average. The 

second visit to the home ME happened after work while the average areal PM2.5 intensity 

dropped to around 10 μg/m3. The travel ME consisted of three distinct visits. In the 

experiment, the first travel visit occurred when the four people moved from home MEs to 

workplace MEs; the second visit took place when people moved from workplace MEs to 

other MEs; the third visit happened on the way back home MEs. It was evident that even 

for the same ME, people experienced differing levels of exposure while visiting the ME at 

a different time. This result confirms the observation that the time of visiting a specific ME 

is indeed a key factor in affecting exposure due to the variations of the intensity of an air 

pollutant in geographic space and time.  

Table 3.4 Average hourly exposure (AHE) associated with each VISIT 

Person 

Home Workplace Travel Other 

H-1 H-2 W-1 T-1 T-2 T-3 O-1 

1 52.90 9.14 22.43 68.20 8.13 10.53 10.47 

2 56.38 11.66 25.59 75.12 11.73 10.94 13.49 

3 68.10 13.84 25.43 75.01 12.51 10.68 11.78 

4 63.28 12.02 46.52 93.18 20.15 13.80 17.65 

(Unit: μg/m3) 
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Table 3.5 shows the personal total exposure and the AHE and TE of each ME for each 

person in a 24-hour period. A few observations can be made from the results shown in 

Table 3.5. First, it is clear from the results that there are considerable variations in the 

exposures associated with different MEs. For the simulated trajectories of the four people, 

the personal total exposures are 740.04, 830.65, 916.12, and 1092.09 μg*h/m3, respectively, 

giving a personal average hourly exposure of 30.84 μg/m3 for Person 1, 34.61 for Person 

2, 38.17 for Person 3, and 45.50 μg/m3 for Person 4 over the 24-hour period. 

 

Table 3.5 Average hourly exposure (AHE) and total exposure (TE) associated with each 

ME 

Person 

(total) 

Home Workplace Travel Other 

TE AHE TE AHE TE AHE TE AHE 

1 (899.42) 448.9 38.70 179.44 22.43 91.64 37.11 179.44 10.47 

2 (830.65) 435.82 41.72 204.73 25.59 181.22 37.04 8.88 13.49 

3 (916.13) 505.60 54.04 203.46 25.43 184.22 39.16 22.85 11.78 

4 (1092.09) 498.20 51.99 372.21 46.52 190.17 41.07 31.51 17.65 

(Unit: TE - μg*h/m3 ; AHE –μg/m3) 

To gain some insights about the variation associated with each ME and their contributions 

to the overall exposure of each individual, the mean, median, first quartile, third quartile, 

minimum and maximum values of exposure associate with each ME for the four 

individuals are illustrated in Figure 3.8. For persons 1, 2 and 3, the exposure associated 

with the home ME had the highest mean and median, followed by traffic ME, workplace 

ME, and other MEs. The exception is Person 4 whose workplace ME is in close proximity 

to the site 19 which had much higher intensities than other sites did.  

These results are echoed by the results of 100 simulated trajectories with randomly 

selected home, workplace and other locations. Table 3.6 and Figure 3.9 provide some 

summary statistics of the estimated exposures associated with these 100 trajectories. The 
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exposure associated with the Home ME in the 100 trajectories had the highest mean and 

median values, followed by the Workplace ME, and then the Travel ME.  

 

Figure 3.8 Descriptive statistics of personal exposure for 4 hypothetical people in Beijing 

during a day (Notes: the central rectangle spans the first quartile and the third quartile; 

the red line shows the median; the red dot is the average for that exposure; the top and 

bottom bar show the maximum and minimum exposures.) 

Table 3.6 Summary statistic of estimated exposures in different MEs associated with 100 

simulated trajectories 

 TE over 24 hours  AHE over 24 hours 

 Home 

ME 

Workplace 

ME 

Travel 

ME 

Other 

ME 

 Home 

ME 

Workplace 

ME 

Travel 

ME 

Other 

ME 

Max 534.60 372.21 347.11 31.51  57.52 46.52 44.67 17.65 

Min 205.92 137.54 86.56 4.32  30.99 17.19 19.98 6.40 

Median 423.78 210.36 162.64 12.85  42.66 26.29 35.67 10.30 

Mean 411.78 215.75 178.94 12.66  43.01 26.96 35.27 10.28 

SD 75.07 32.19 70.28 5.12  4.37 4.02 3.84 1.74 
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Figure 3.9 Summary statistic of estimated exposures in different MEs associated with 100 

simulated trajectories in Beijing over a 24-hour period. (Notes: the central rectangle 

spans the first quartile and the third quartile; the red line shows the median; the red dot is 

the average for that exposure; the top and bottom bar show the maximum and minimum 

exposures.) 

The home ME was found to have the highest TE and HAE out of these 100 simulated 

trajectories for all descriptive statistics. This peak can be explained by the high intensity in 

the morning hours, before 9 a.m., when hypothetical people were programmed to stay at 

home ME. Another factor controlling the total exposure is the duration. In our experiment, 

it was assumed that hypothetical people spend a majority of time staying at home. 

Therefore, the total exposure of the home ME appears higher than the workplace, travel, 

and other MEs.  

The workplace ME is the second highest boxplot in Figure 3.9 (a), while it becomes 

slightly lower than Travel ME in Figure 3.9 (b). This discrepancy is caused by the differing 

duration among different MEs. We can tell that, in this experiment, people have a tendency 

of staying longer in the workplace ME than in travel ME, thus leading to a lower average 

hourly exposure in workplace ME. The other ME is the opposite of the home ME in terms 
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of intensity of air pollutant in question and the duration. The home ME has a high level of 

exposure and long duration, whereas the other ME has a situation whereby a low level of 

exposure and a short duration appear, which makes the other ME have the lowest total 

exposure and average hourly exposure.  

3.3.2.4 Difference between Estimated Exposures based on Home Locations Only and 

Locations of All Activities 

As discussed in the literature review chapter, one long-standing problem in 

environmental exposure assessment is that most studies reported in the literature used 

people’s residence locations as the sole place for exposure assessment. The limitation of 

that approach is obvious because exposure in other locations related to a person’s activities 

is not accounted for. The trade-off, of course, is that home-based exposure assessment is 

much simpler and less costly to implement. The trajectory-based exposure assessment 

method presented in this chapter is far more complicated and costlier to implement. 

Therefore, it is important to understand weather the differences between home-based 

exposures and trajectory-based exposures are indeed significantly different.  

To address this concern, we simulated 4,000 trajectories using the simulation 

platform described in this chapter first. We estimated the trajectory-based exposure 

associated with each of these 4,000 trajectories and then calculated the home-based 

exposures associated with the Home MEs of the 4,000 trajectories. The average hourly 

exposure over a 24-hour period was calculated in both cases when calculating the home-

based exposures; we used the average estimated hourly intensity of PM2.5 in the center of 

each Home ME associated with each of the 4,000 trajectories.  
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We compiled Dataset 1 consisting of the 4,000 trajectory-based exposures and the 

4,000 home-based exposures. We also generated two additional datasets, Dataset 2 and 3. 

Dataset 2 contained 100 trajectories selected from Dataset 1 such that the difference 

between the home-based exposures and trajectory-based exposures are the smallest. 

Dataset 3 is composed of the 100 trajectories with the largest differences. 

Wilcoxon Signed-rank Test was used on the three datasets. The results of the tests 

are summarized in Table 3.7. The results in Table 3.7 show that only the differences in the 

exposures from the two types of the method in Dataset 3 are statistically significant with a 

Z score of -2.060 and a p-value of 0.04. The differences in Datasets 1 and 2 are not 

statistically significant. These mixed results suggest that additional research is needed to 

verify the results.  

 

Table 3.7 Wilcoxon Signed-rank test of three trajectory datasets 

Dataset  

Trajectory-based AHEa 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

Home-based AHEa, 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

Wilcoxon Signed-

rank test 

z score (p-value) 

Trajectories 

(N = 4,000) 
33.92/2.62 (22.90-72.94) 

33.81 (32.72/35.03) 

33.99/4.98 (18.37-85.20) 

34.17 (32.40/35.64) 
-0.36 (0.74) 

Trajectories 

with smallest 

differences 

(N = 100) 

33.83/1.20 (20.15-38.40) 

33.61 (33.20/34.24) 

33.83/1.19 (30.20-38.37) 

33.67 (33.19/34.24) 
-1.15 (0.25) 

Trajectories 

with largest 

differences 

(N = 100) 

36.52/10.07 (25.74-72.94) 

36.15 (28.87/40.53) 

41.41/21.48 (18.37-85.20) 

42.85 (20.52/49.82) 
-2.06 (0.04) 

aAHE: the average hourly exposure over the period of 24 hours, μg/m3 
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 Experiments based on Empirical Data  

 Pre-processing of Trajectory Data 

This study used the Geolife GPS trajectory dataset (Zheng et al. 2011) to test the 

exposure assessment model. The Geolife GPS trajectory dataset was collected by the 

Microsoft Research Asia Geolife project, which covers 178 users over a period of four 

years from April 2007 to October 2011. Most (91%) of the trajectories were logged at either 

a time interval of 1~5 seconds or a distance interval of every 5~10 meters.  

After a preliminary examination of the Geolife dataset, we selected a sample of 100 

trajectories in the Beijing area that contain sufficient data points. Each selected trajectory 

includes more than 10,000 trajectory points. It is noted some trajectories span more than 

one day. To ensure all the trajectories used in the analysis are within a 24-hour period 

(hours 1-24), this study first determined the day in each trajectory that contained the most 

data points and used those data points to represent that trajectory within the 24-hour time 

window. Some characteristics of these 100 trajectories are summarized in Table 3.8.  

 

Table 3.8 Characteristics of 100 trajectories 

Geolife 

Dataset 

 

Number of Data Points 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

Cumulative Time (hours) 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

 

Trajectories 

(N = 100) 

 

9192/3739 (2222-19739) 

9456 (6706/11104) 

 

5.88/3.05 (0.81-15.44) 

5.66 (3.95/7.98) 

 

  Model Implementation Process 

 Remember that the model consists of three core components, that is, trajectory data 

processing, representation of air pollution in geographic space and time, and exposure 
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assessment (Figure 3.2). Some challenging issues of working with empirical data are that 

the logged trajectories often have missing data points in some time intervals and a person 

may visit an ME multiple times at any time windows during a day.  

 We added two additional steps in the workflow of the model to enhance the model 

to process empirical data.  In the first added step, all trajectory data points that are logged 

out of the predefined time windows of home ME but fall within in the enclosed convex 

boundary of home ME points are also classified as data points in the Home ME. This step 

helps find the home visits that take place out of the typical time windows for a person to 

be home.  The second added step detects whether the convex boundary of data points in 

the home ME overlaps with the boundary of data points in the workplace ME. If the 

workplace ME overlaps the home ME, then the workplace ME labels are removed from 

the trajectory. The second step is added to ease the activity misclassification issues for 

home dwellers who mainly stay at home during typical work hours.  

 It is important to have a procedure in the model to differentiate between different 

visits within an ME when processing the trajectory data. Recall that a segment is defined 

as a stay in an ME without any time lapse in Section 3.2.2.1. This study follows this 

definition when working with empirical data. The time lapse, however, was extended to a 

longer period to overcome the problem of missing data for a short time interval. A segment 

is redefined as a series of consecutive data points in an ME without a time lapse of one 

minute or more in that ME.  

 Figure 3.10 shows the trajectory data processing results for one of the 100 

trajectories. One biggest difference, when compared to the results of simulated data (Figure 

3.6), is the number of segments. In the simulated dataset, the home and workplace MEs 
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have only two and one segments, respectively. However, due to the data missing issues and 

the complexity of human time-activity patterns, an individual may visit an ME multiple 

times during a day, which results in multiple segments in an ME. For instance, this 

trajectory shown in Figure 3.10 contains thirty-nine segments in the home ME and seven 

segments in the workplace ME.  

 

Figure 3.10 The results of trajectory data processing of one empirical trajectory 

 

 Results of Exposure Assessment on Empirical Data 

Table 3.9 presents the summary of the AHE of all segments of each ME for four 

randomly selected trajectories. This study reports the descriptive statistics of segments in 

an ME if the ME has more than three segments. As shown in Table 3.9, the segments in 

different MEs feature differing characteristics regarding AHE. For instance, the standard 
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deviation of segment AHEs within an ME is as small as 0.1 μg/m3 (for Person 3) whereas 

it is up to 23.85 μg/m3 for Person 2.  Regarding the extent of personal exposure, the 

segment AHEs range from 63.41 to 66.40 μg/m3 for Person 4 in workplace ME while 

Person 1 has a wide range of 58.93 μg/m3 (from 9.22 to 68.15 μg/m3). The heterogeneity 

of segment AHE in an ME suggests that people experience differing levels of exposure at 

different visits, even within the same ME, which is consistent with the findings of Table 

3.4. 

Table 3.9 Average hourly exposure (AHE) associated with all VISITs 

 

Home Workplace Travel Other 

Mean/SD (minimum-

maximum) 

Median (25th/75th 

percentiles) 

Mean/SD (minimum-

maximum) 

Median (25th/75th 

percentiles) 

Mean/SD (minimum-

maximum) 

Median (25th/75th 

percentiles) 

Mean/SD (minimum-

maximum) 

Median (25th/75th 

percentiles) 

1 

29.81/2.84 (10.00-

55.94) 

12.05 (11.19/53.93) 

40.32/3.03 (9.22-

68.15) 

51.21 (10.81/62.44) 

31.82/2.24 (8.95-

68.15) 

12.76 (10.68/54.67) 

32.70/3.88 (8.92-

65.79) 

32.82 (10.50/52.86) 

2 57.02 

51.83/7.75 (11.14-

66.66) 

64.65 (53.36/64.99) 

44.68/2.81 (9.58-

71.68) 

50.17 (38.96/55.63) 

40.95/23.85 (9.37-

65.70) 

49.60 (11.26/64.19) 

3 

10.57/0.10 (9.10-

12.84) 

10.52 (9.87/11.02) 

62.81 

23.61/2.18 (9.18-

72.04) 

10.97 (10.06/36.95) 

36.79/2.87 (9.23-

65.51) 

39.59 (11.90/62.22) 

4 67.79, 68.41 

65.30/0.95 (63.41-

66.40) 

66.09 (64.75/66.24) 

59.91/1.15 (48.06-

68.12) 

58.88 (56.66/65.32) 

59.15/1.31 (48.02-

68.07) 

58.75 (53.70/65.06) 

(Unit: μg/m3) (Notes: If there are less than three segments in an ME, we choose to report the AHEs of all 

segments) 
 

Table 3.10 shows personal total exposure and the AHE and TE of each ME for these four 

persons. It is noted that TE may not reflect the true scenarios of personal cumulative 

exposure due to the incompleteness issue. It is, therefore, more reasonable to analyze 

exposure profiles via AHE. A few observations can be made based on the results shown in 

Table 3.10. First, the AHEs are not uniform throughout all MEs, meaning that exposure 

differences exist between MEs. Second, there is not a consistent pattern suggesting that the 



  

55 

 

AHE estimates associated with one particular ME are higher/lower than those associated 

with other MEs.    

 

Table 3.10 Average hourly exposure (AHE) and total exposure (TE) associated with each 

ME 

Person (total) 

Home Workplace Travel Other 

TE AHE TE AHE TE AHE TE AHE 

1 (634.91) 90.10 35.82 160.74 44.02 371.69 35.62 12.38 18.14 

2 (488.75) 105.81 57.02 131.32 36.87 67.80 36.53 183.82 47.79 

3 (395.62) 42.54 10.37 10.90 62.81 280.81 27.75 61.37 36.88 

4 (287.63) 13.58 67.80 13.23 65.69 139.22 59.84 121.60 59.40 

(Unit: TE - μg*h/m3 ; AHE –μg/m3) 

Figure 3.11 reports the mean, median, first quartile, third quartile, minimum and maximum 

values of the estimated exposures associated with each ME for the four trajectories.  

 

Figure 3.11 Descriptive statistics of personal exposure for four people in Beijing during a 

day (Notes: the central rectangle spans the first quartile and the third quartile; the red line 

shows the median; the dot is the average for that exposure; the top and bottom bar show 

the maximum and minimum exposures.) 
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To gain additional insights about the variations of the estimated exposures associated with 

different MEs among these 100 trajectories, Table 3.11 and Figure 3.12 show the 

descriptive statistics of the exposures. Speaking of the distribution of values of TE in 

different MEs, there is no consistent pattern observed. The travel ME is found to have the 

highest TE for all statistics. TE is the product of PM2.5 intensity and duration.  As mentioned 

earlier, the empirical dataset has missing data points that happened mainly in sedentary 

MEs (i.e., home, workplace and other MEs). As a result, most trajectories have more 

logged points in travel ME than in the home, workplace and other MEs. In terms of the 

distribution of AHE, different MEs tend to have largely similar patterns.  

 One of the findings from simulated data suggested that home ME have the highest 

TE and HAE. However, this finding does not hold in the empirical data.  

 

Table 3.11 Summary statistic of estimated exposures in different MEs associated with 

100 trajectories 

 TE over 24 hours  AHE over 24 hours 

 Home 

ME 

Workplace 

ME 

Travel 

ME 

Other 

ME 

 Home 

ME 

Workplace 

ME 

Travel 

ME 

Other 

ME 

Max 341.07 185.71 521.64 255.06  69.35 72.18 71.42 71.57 

Min 2.62 2.68 22.92 0.34  7.41 10.14 9.66 8.75 

Median 48.92 16.29 158.80 17.62  16.79 37.67 37.31 46.76 

Mean 68.74 39.96 169.83 38.52  29.00 40.31 37.33 41.18 

SD 62.25 53.21 106.50 51.13  21.10 20.44 17.56 18.08 

(Unit: TE - μg*h/m3 ; AHE –μg/m3) 
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Figure 3.12 Summary information of estimated exposures in different MEs based on an 

analysis of 100 trajectories in Beijing over a 24-hour period. (Notes: the central rectangle 

spans the first quartile and the third quartile; the red line shows the median; the dot is the 

average for that exposure; the top and bottom bar show the maximum and minimum 

exposures.) 

 Difference between Estimated Exposures based on Home Locations Only and 

Locations of All Activities on Empirical data 

 This study also replicated the experiment we did in Section 3.5 which explored the 

statistical difference between estimated exposures based on home locations only and 

locations of all activities. The same statistical test, Wilcoxon Signed-rank Test, was utilized 

for seeking the difference, but the data were changed to the empirical dataset. This study 

selected thirty-one trajectories that have classified home ME points, and have at least ten 

hours recorded on trajectories. The selection is to ensure that the home location can be 

inferred from the trajectory and have sufficient points.  

 When calculating the trajectory-based average hourly exposure for a person, this 

study used the TWAE of PM2.5 of the trajectory at a person level. The home-based exposure 

of a person is calculated by using the average of hourly intensities of PM2.5 at the center of 

home ME. It is noted that due to the incompleteness of trajectory, this study only counts 



  

58 

 

the hours recorded in the trajectory instead of 24 hours when calculating a person’s home-

based exposure.  

 The results of the Wilcoxon Signed-rank Test are summarized in Table 3.12. The 

findings show that a statistically significant difference, with a Z score of -4.00 and a p-

value of 0.000, was found between two exposure measures.  

Table 3.12 Wilcoxon Signed-rank test of three trajectory datasets 

Dataset  

Trajectory-based AHEa 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

Home-based AHEa, 

Mean/SD (minimum-maximum) 

Median (25th/75th percentiles) 

Wilcoxon 

Signed-rank test 

z score (p-

value) 

Trajectories  

(N = 31) 
26.86/10.45 (10.40-51.57) 

24.82 (17.79/34.02) 

29.67/9.00 (11.86-51.69) 

30.04(22.86/35.69) of 
-4.00 (0.000) 

aAHE: the average hourly exposure over the period of 24 hours, μg/m3 

 

 Conclusion and Discussions 

This study developed a new model for assessing personal exposure to air pollution 

based on trajectory data. When the geographic distribution of an air pollutant over a given 

period of time is known, and when the trajectories of an individual’s movement patterns 

are recorded with both the location and time stamp attributes, this new model can be used 

to fully assess this individual’s exposure to a certain air pollutant. This model, therefore, 

contributes to the literature of environmental exposure assessment.   

The spatiotemporal patterns of human activities in geographic space and time can 

be conceptualized as a hierarchy that consists of a series of tours starting from a person’s 

home, traveling to other locations such as the workplace and places for other purposes such 

as recreation, staying at these locations for some time, and coming back to this person’s 

home. A tour can be decomposed into a number of microenvironments (MEs). Typical 

MEs include the home ME, the workplace ME, the travel ME, and other MEs. The travel 
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ME refers to travel from one location to another location. The home ME, workplace ME, 

and other MEs are usually places or locations where a person stays for a few hours or less 

and moves slowly within an ME. A person may stay at an ME for some time, leave it for a 

while, and come back and stay in that ME for another while. Each stay of this nature is 

called a visit to the ME. Therefore, a person may visit an ME a number of times during a 

day of 24 hours. In other words, an ME may contain one or more than one visit. It is worth 

noting that it is important and necessary to distinguish the home ME, workplace ME, and 

travel ME in environmental exposure assessment because many research projects have 

been and will be designed to test hypotheses aiming to verify how environmental 

conditions at home, in workplaces, and exposure to traffic emissions would affect human 

health.  

The contribution of this study was the development of a computational procedure 

that determines the MEs and visits in a tour documented by a trajectory consisting of a 

sequence of points with locations and time stamps. After each visit in an ME is determined, 

the exposure to the air pollutant in question associated with that visit then can be calculated. 

In turn, the exposure for each ME and tour then can be easily computed. For any given 

period of time, an individual’s exposure to the air pollutant for any given period of time 

can be assessed as long as we have access to the trajectory data documenting the movement 

and activity patterns in geographic space and time for that period of time.  

An experiment was carried out to demonstrate the computational power of the 

model. The experiment used ground monitoring data of PM2.5 in Beijing, China and 

simulated trajectories of the activity patterns of 100 people during a 24-hour period in 

Beijing. In simulating the trajectories, this study used randomly assigned home and 
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workplace locations on the Beijing road network with randomly assigned speed limit to 

each link. The results from the experiment demonstrate that the model works well. Another 

experiment took place using a real GPS trajectory dataset data to test the model and refine 

the algorithms used to process the trajectory data.  

An additional experiment was conducted to test whether the estimated exposure 

based on home locations only is statistically significantly different from the exposure 

considering the locations of all activities. We simulated 4,000 trajectories and created three 

datasets from the 4,000 trajectories. A Wilcoxon Signed-rank test was used to analyze each 

of the three datasets. The results of the analysis suggest that only the difference is 

statistically significant when we selected the 100 trajectories where the differences between 

home-based exposure and trajectory-based exposure are the largest among the 4,000 

trajectories. Moreover, the same test was applied to an empirical dataset containing thirty-

one distinctive trajectories. The results from the experiment on the empirical dataset 

showed a significant difference between the exposure estimates from two exposure 

assessment methods.  
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4. QUANTIFYING PERSONAL EXPOSURE TO TRAFFIC EMISSION WHEN 

HUMAN TRAJECTORY AND HOURLY TRAFFIC VARIATION ARE 

CONSIDERED 

 Introduction 

Air pollution has been among the biggest environmental risks to human health. In 

2012, 11.11% of deaths worldwide were attributable to air pollution-related conditions 

(World Health Organization 2016). Numerous epidemiological studies have suggested that 

air pollution is a contributing factor in causing morbidity, mortality and various health 

problems such as respiratory symptoms (Zhang et al. 2015), neurological disorders 

(Heusinkveld et al. 2016; Lee et al. 2017), and cardiovascular diseases (Luben et al. 2017; 

Fiordelisi et al. 2017).  

People come in contact with different air pollutants in a large variety of places (e.g., 

home, workplace, roadways, among other sources) during the course of their daily 

activities. Most people in developed countries live near roadways and spend a significant 

amount of time driving on roadways. Moreover, the concentration of traffic-related air 

pollutants (e.g., nitrogen dioxide (NO2), particle matter (PM*)) on roadways is 

disproportionately high compared to that of other places. Traffic emissions from vehicles 

on highways accounted for 47%, 33%, and 20% of total CO, NOx, and VOC emissions 

(Health Effects Institute 2010). The percentage of contribution is even greater in 

metropolitan areas (Health Effects Institute 2010). Therefore, exposure to traffic emissions 

constitutes a significant portion of personal total exposure to air pollutants.  To more 

completely assess personal exposure to air pollutants, it is important to quantify personal 

exposure to traffic emissions.  
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The most commonly used approach to assess an individual’s exposure to air 

pollutants from traffic emissions is to employ a stationary geographic location (e.g., a 

person’s residence location) and use the estimated exposure to traffic emissions at that 

location as a proxy to represent the exposure of the individual in question. Other 

approaches used census tracts and zipcode polygons as the area units as the locations. These 

approaches have obvious limitations because the dynamics of both human activities and 

the variations of traffic emissions in geographic space and time are not fully accounted for 

in these exposure assessment methods (Kwan 2004; Elgethun et al. 2007) 

To overcome these limitations, this study develops an innovative approach to 

quantifying personal exposure to traffic emissions based on trajectory data documenting 

the movement patterns of individuals in geographic space and time and estimated hourly 

traffic emissions based on a newly developed model.  

The remainder of this paper is structured as follows. Section 2 presents the study 

area, traffic count data, and simulated trajectory data. Section 3 describes the development 

of a model that can be used to estimate hourly traffic emissions based on traffic count data 

and procedures that can be used to assess personal exposure based on the estimated hourly 

traffic emissions and trajectory data. Section 4 analyzes the results of hourly traffic 

emission model, personal exposure estimates, and the disagreement between two traffic 

emission models. The final section concludes the chapter and discusses topics for future 

studies.  
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 Study Area and Data 

 Study Area 

Minneapolis-Saint Paul was chosen for this study because the Minnesota 

Department of Transportation (MnDOT) had good traffic count data in the city. The twin-

city is a metropolitan area in east-central Minnesota. It is comprised of seven counties. It 

is the 16th largest urban area in the United States according to the 2010 census, with a 

population of 2,650,890.  Figure 4.1 shows the geographic location of the city in the United 

States and road networks covering the area.  

 

Figure 4.1 Study area:  Minneapolis-Saint Paul 

 Traffic Count Data 

This study used three types of traffic count datasets to estimate the annual hourly 

traffic emissions. These three datasets are annual average daily traffic (AADT) data, annual 

average daily traffic of heavy commercial cars data (HCAADT), and hourly continuous 

traffic count data in 2016. The AADT is a measure of average daily traffic volume of a 

roadway calculated by dividing the total annual volume of that roadway by 365 days. The 

HCAADT is the average daily count of heavy commercial vehicles, which is calculated 

similarly. The continuous traffic count data were collected from a campaign of Weigh-in-



  

64 

 

Motion (WIM), and Automatic Traffic Recorder (ATR) sites located on or next to 

roadways. There were a total of 35 recorder stations located in the study area. Figure 4.2 

illustrates the geographic distribution of traffic recorder stations, as well as the roadways.  

All three traffic count datasets were obtained from MnDOT. The AADT and 

HCAADT datasets were in a GIS shapefile format, and hourly continuous traffic count data 

were organized in a set of text files. When preprocessing the AADT and HCAAT datasets, 

if there was a record missing for any roadway segment, the records in the preceding year 

was used to replace the missing value. For continuous traffic data, this study developed a 

script to extract the traffic counts by hours across all workdays in 2016 for each traffic 

record station.  

 

Figure 4.2 Geographic distribution of traffic recorder stations and roadway system 
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 Simulated Individual Trajectory Data 

This study used a set of simulated individual-level one-day trajectories. The 

trajectories were used to overlay traffic emission fields for assessing personal exposure to 

traffic emissions. Given the importance of on-road travel behaviors, two assumptions were 

made when generating the simulated trajectory data. First, a person must travel along a 

series of roadways to get to a destination when he or she travels. Second, the amount of 

time spent in travel microenvironments and the corresponding transportation modes are 

significant determinants of personal traffic exposure (Dons, Panis, et al. 2011). In this study, 

simulated trajectories of 100 persons were constrained to travel along roadways determined 

by the road network data (source: MnDOT). Four transportation modes, stationary state, 

walking, cycling, and driving, were modeled in the simulation (Dewulf, Neutens, Van 

Dyck, et al. 2016), which allows the simulated trajectories of 100 persons to mimic 

different time-activity patterns. Additional implementation specifications related to the 

simulation can be found in Chapter 3. Figure 4.3 illustrates one person’s one-day trajectory, 

which is comprised of a string of points.  
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Figure 4.3 Simulated trajectory of one person’s activity patterns in the Minneapolis-Saint 

Paul metropolitan area in one day 

 

 Methods 

 Determination of Hourly Temporal Allocation Factors  

Temporal allocation factors (TAFs) provide a simple means to apportion annual 

average traffic volume to hourly estimates. Multiplying the annual average traffic count 

(e.g., AADT, HCAADT) by hourly TAFs results in hourly estimates.  Unlike studies that 

utilize a single national or local TAFs profile across the whole region (Dons et al. 2013; 

Batterman, Cook, and Justin 2015), this study presents a new method to calculate hourly 

TAFs. This method considers the spatiotemporal characteristics of traffic activities based 



  

67 

 

on the continuous measurements of traffic counts from the campaign of traffic monitors in 

the study area.  

Traffic activity patterns differ on workdays, Saturdays, Sundays and holidays 

(Batterman, Ganguly, and Harbin 2015). This study focuses only on traffic patterns on 

workdays. Traffic patterns during other days can be processed in similar ways. For this 

purpose, only hourly records from the recorder stations on workdays were used for the 

estimation of hourly TAFs. Another reason for focusing on workday traffic patterns is that 

the simulated trajectories mimic the behaviors of “9-to-5” office workers on a workday as 

described in Chapter 3.  

For each traffic recorder station, the total annual daily traffic volume in all 

workdays throughout the year of 2016 was aggregated first regardless of traffic directions. 

Then, for each hour, the total annual hourly traffic volume recorded at each recorder site 

was aggregated throughout the year of 2016. Finally, the ratios of the traffic volume of 

each recorder station by hours were determined using the following equation: 

 𝑇𝐴𝐹𝑖,ℎ =
𝑉𝑖,ℎ

𝑉𝑖
                       (4.1) 

Where 𝑇𝐴𝐹𝑖,ℎ = estimated ratio of traffic volume in a particular hour h at site i;  𝑉𝑖,ℎ = total 

annual traffic volume in a particular hour h at site i; 𝑉𝑖 = total annual daily traffic volume 

at site i.  

 Construction of an Annual Hourly Traffic Emission Model  

The construction of the annual hourly traffic emission model was based on a study 

by Pratt et al. (2014) that developed an innovative traffic emission model using traffic count 

data. The modeled traffic density was validated in correspondence to the intensity of the 
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traffic-related pollutant NO2. This study, therefore, uses the terms traffic emission and 

traffic density interchangeably for ease of discussion in the rest of this chapter.  

First, the TAFs of each roadway was determined. It is assumed that the traffic 

activities of a roadway are spatiotemporally affected by nearby roadways. Hence, this study 

utilized a spatial interpolation algorithm, inverse distance weighting (IDW), to capture the 

spatial variation of traffic activities in a particular hour. This study considered three nearest 

stations when running the IDW algorithm for estimating the traffic TAFs at unknown 

locations.  This procedure resulted in twenty-four traffic TAFs raster surfaces. The value 

in a cell of a raster layer represents the ratio of hourly traffic share to daily total traffic 

volume during a specific hour. 

Second, a toxicity-weighted traffic count layer was generated by combining the 

AADT and HCAADT data (Pratt et al. 2014). The toxicity-weighted traffic count layer was 

then converted into a point layer that is at a resolution of 100 meters. This point layer 

overlaid each traffic TAFs surface for calculating the hourly share of traffic volume. Within 

the overlay analysis, the hourly traffic count of a point of a particular roadway was 

determined by multiplying the weighted traffic count by the corresponding hour-specific 

ratio. This procedure resulted in twenty-four layers that represent the respective hourly 

traffic volume of all roadways.  

Third, for each layer of hourly traffic volume, a kernel density estimation algorithm 

was applied to all roadway points. The parameters to run the algorithm were set up with a 

scaling factor of 1,000,000, the kernel set to bivariate normal, and a smoothing factor of 

300 meters (Pratt et al. 2014). This step resulted in twenty-four raster surfaces at a 
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resolution of fifty meters. Each cell on a raster layer represents the value of the estimated 

traffic density in a particular hour. The unit of the traffic density was traffic counts/m2.  

 Linking of the Hourly Traffic Emission Model and Trajectories  

The simulated individual-level trajectories were superimposed to the twenty-four 

traffic density surfaces. The 24-hour surfaces constituted a 3-D spatiotemporal cube 

carrying the assumption that there is no transitional change regarding traffic counts within 

one hour. The linking procedure was implemented in the PostgreSQL (version 9.5) with 

the PostGIS (version 2.3.5) extension. Each point of a trajectory was assigned a traffic 

density estimate after the linking procedure.  

  Exposure Assessment 

This study used the average exposure over 24 hours to represent personal exposure 

to traffic emission. Specifically, the summation of the traffic density estimates of all points 

of a particular trajectory divided by the total number of points equals to the average 

exposure. 

 Results and Discussions 

 Results of TAFs 

Figure 4.4 shows the traffic allocation factors of all recorder stations across all 

workdays in 2016 by hours. The overall distribution appears to be a bimodal shape with 

one peek at 7-8 am and another one at 4-5 pm. It is noted that there is a considerable amount 

of the variation across all stations by hours. Specifically, on an hourly basis, the range of 

traffic allocation factors was up to 6.14%. Also, Site 464 and site 402 does not follow the 

common bimodal trend. These findings suggested that the utilization of one single TAFs 
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profile across the whole area may not reflect the spatiotemporal variation of traffic 

activities well. 

 

Figure 4.4 Hourly TAFs across thirty-five traffic recorder stations on workdays in 2016 

 

Within each hour there were thirty-five station-specific values of traffic allocation factors 

across the study area. The thirty-five factors served as model inputs for the spatial 

interpolation algorithm. This interpolation procedure resulted in thirty-five raster layers at 

a resolution of fifty meters. Each raster layer represented the geographic distribution of 

traffic allocation factors in a particular hour. A cell on a particular raster surface stored the 

value of allocation factor at its location for a certain hour. Figure 4.5 shows the interpolated 

TAFs maps in 24 hours. As can be seen clearly, most layers do not have a uniform 

distribution except for hours 2, 3 and 4. The uniform distribution from these hours was due 

to a lack of traffic across the majority of the study area. The non-uniform distribution 
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suggested that a single TAFs profile across the whole area may not reflect the spatial and 

temporal dynamics of traffic activity patterns well.  

 

Figure 4.5 Interpolated maps of TAFs in twenty-four hours in the study area 

 

 Results of the Annual Average Hourly Traffic Emission Model 

Figure 4.6 shows the annual hourly traffic density layers for 24 hours. The traffic 

density layers indicated that people within the study area largely began commuting around 

5 a.m. Light traffic activity was observed between 1 a.m. to 5 a.m., and traffic activities 

occurred only on some highways (e.g., I-94, I-494, I-694, and I-35). After 5 a.m., traffic 

activities took place on a majority of the non-highway roads within the metropolitan area.  
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Figure 4.6 Hourly traffic density maps in twenty-four hours 

 

A close-up view of the traffic density surface for hour 8 is illustrated in Figure 4.7. The 

zones with heavy traffic loads are highlighted by rectangles. Areas 1, 5, and 6 appear to be 

the most crowded roadways in hour 8. Area 1 is located at the intersection of I-35 and I-

494. Areas 5 and 6 were the regions close to the downtown areas of Minneapolis and St 

Paul, respectively. 
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Figure 4.7 A close-up view of the traffic density map in hour 8 along with highlighted 

traffic density hotspots 

 

A close-up view of traffic density in hour 17 is illustrated in Figure 4.8, which shows the 

second peek of daily traffic activities. When compared to hour 8, one noticeable difference 

is that hour 17 has slightly higher traffic densities, thus leading to a more severe traffic 

emission scenario.  



  

74 

 

 

Figure 4.8 Traffic density map in hour 17 along with highlighted traffic density hotspots 

 

Between hour 18 and hour 23, a few roadways are found to be highly congested. That is, 

the roads between areas 5 and 6 (i.e., the downtown areas), the roads between areas 5 and 

1, the roads between areas 9 and 1, and the roads between areas 10 and 2. After hour 23, 

only the two downtown areas have relatively more vehicles passing, and there is no obvious 

difference between major highways concerning traffic densities.  

 Results of Personal Exposure to Traffic Emissions by Hours 

Table 4.1 shows the maximum, minimum, median, mean and standard deviation of 

the personal exposure associated with 100 simulated trajectories. 

Table 4.1 The descriptive statistics of personal exposures of 100 trajectories 

 Maximum Minimum Median Mean Standard deviation 

Trajectories  

(N=100) 
1.088 0.044 0.188 0.238 0.159 

(Unit: traffic counts/m2) 
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Trajectories 56, 49 and 45 were found to have the maximum, median and minimum 

exposure respectively among the 100 trajectories. Figure 4.9 shows the three trajectories 

over the course of 24 hours. The home locations of these three trajectories are highlighted 

using exaggerated dotted circles.  

 

Figure 4.9 Trajectories 56, 49 and 45 along with traffic density hotspots (Note: the home 

locations of these three persons are marked by exaggerated dotted circles) 

 

Trajectory 56, which was observed to have the highest exposure, began the commute at 6 

a.m. The home was located within the traffic hotspot 5, which was in the downtown 

Minneapolis area. The person of trajectory 56 passed through hotspot 6 in the morning 

rush-hour while on route to the workplace that was in hotspot 8. After 5 p.m., this person 

went northwest and stayed at a location between hotspots 7 and 8. Then, this person 
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returned to the home location. All routes of person 56 were along congested roadways and 

near traffic hotspots. 

Trajectory 49, which had the median average exposure, began the commute from 

the home location that was far away from the downtown areas. This person did not 

commute on a heavily congested roadway for most of the time. However, this person 

experienced relatively high exposure while traveling toward and staying in the workplace. 

Trajectory 45, which had the least exposure, did not travel on major highways or 

stay in close proximity to the two downtown areas. Person 45’s time-activity patterns 

featured a suburban residential place, a workplace outside of downtown, and “local” 

commute routes. This resulted in person 45 being exposed to the least traffic emissions.  

Figure 4.10 shows the detailed exposure profiles of these three trajectories over the 

course of 24 hours. Before 6 a.m., all three persons were exposed to low traffic emissions 

because there was very little traffic during these time periods. Person 56 had relatively 

higher exposure than persons 49 and 45 though. This was in part due to person 56’s home 

location being close to the Minneapolis downtown area (see Figure 4.9). The first exposure 

peaks for these three persons were observed between hours 6 and 9. These exposure peaks 

coincided with a peak in traffic activities. From hours 9 to 17, the exposure magnitudes of 

all persons decreased significantly because all persons were programmed to stay at their 

workplace instead of traveling on roadways. The exception was that person 56 still got 

exposed to an elevated level of traffic emission. The reason is that its workplace is located 

in a traffic hotspot (i.e., area 8). After hour 17, all simulated trajectories of 100 persons 

began their commute home, which caused the second exposure peak. After hour 21, all 

persons’ profiles decreased to a low level.  
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Figure 4.10 Exposure profiles of persons 56, 49 and 45 over the course of 24 hours   

 

The highest “instantaneous” exposure out of the three select persons was observed on 

person 49. Person 49’s home and workplace are not close to highways or traffic hotspots. 

But, this person commuted through traffic hotspot 5 during the morning rush hours. A 

similar pattern occurred during the afternoon rush hours. In conclusion, person 49 always 

travel through areas having the most elevated emissions at rush hours. This finding 

suggests that personal exposure to traffic emissions is indeed a complex spatiotemporal 

function. The finding also evidences that using single location (e.g., residential place) to 

assess personal exposure to traffic emissions cannot represent the actual exposure that a 

person is confronted to.  
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 Conclusions 

The objective of this part of the research was to develop a new approach to 

quantifying personal exposure to traffic emissions by accounting for a person’s individual-

level trajectory and spatiotemporal variations of traffic activities. Moreover, this study also 

investigated how personal traffic emissions varied across geographic space and time. This 

study used continuous traffic count data from traffic recorder stations to derive 

spatiotemporally resolved TAFs. Then, this study built up an hourly traffic emission model 

to assign hourly traffic emission estimates to a set of individual-level human trajectories. 

For demonstration purposes, this study selected three trajectories to explore how personal 

exposure was affected by personal time-activity patterns and spatiotemporally varying 

traffic emissions. The findings of this study are summarized as follows.  

First, this study derived station-specific TAFs by hours using the continuous traffic 

count data from a campaign of traffic recorder stations. It was found that the hourly TAFs 

did not show a spatially homogeneous pattern. This finding supports our initiative to apply 

the spatial interpolation analysis to capture the spatial variations of traffic activities.  A set 

of hourly TAFs surfaces were then generated.  

Second, this study produced 24-hour traffic emission surfaces in the study area. A 

total of 100 simulated one-day trajectories were superimposed onto each hourly emission 

surface for calculating exposure estimates of all trajectory points. The three trajectories 

were selected to examine the exposure profiles. This study found that a person’s time-

activity pattern (e.g., the location of a person’s home and workplace, the commute routes) 

were important factors in determining personal exposure to traffic emissions. Another 

finding was that personal exposure to traffic emissions varied greatly in geographic space 



  

79 

 

and time. Using single location to estimate personal exposure to traffic emissions may lead 

to exposure misclassification due to spatiotemporal variation.  

This model developed in this chapter has a few implications in exposure science, 

public health, and epidemiology. First, it is believed that it will improve the accuracy of 

exposure estimates by capturing more “activity space” instead of using only one location. 

Second, this model can provide enriched information about how personal exposure to 

traffic emissions varies across space and time. This information may ultimately promote 

the understanding of the association between traffic emissions and health effects in 

epidemiological studies, as well as help reduce the exposure risk. 

Several limitations can be observed. First, traffic activity variations between daily, 

weekly and seasonal patterns were not accounted for. This could be overcome by using 

hierarchical temporal TAFs accurately (Batterman, Cook, and Justin 2015). Second, when 

producing the spatial distribution maps of hourly TAFs, this study assumed nearby 

roadways were more related regarding traffic activities. However, accidents, congestions, 

meteorological influences, natural hazards (e.g., flooding or storms), and other events that 

affect traffic activity were not addressed in this study.  
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5. CONCLUSIONS 

This chapter provides a summary of major findings and their corresponding 

discussion for this study. It also discusses some limitations of this study, and some topics 

for future research. 

 Summary of Findings and Discussion 

The overarching objective of this study is twofold. The first is to model both human 

activities and spatiotemporally varying air pollution in geographic space and time for 

assessing personal exposure. The second objective of this study is to characterize how 

personal exposure varies over space and time. To achieve these objectives, this study 

attempted to achieve three specific research aims listed below.   

• To develop a trajectory-based model for assessing personal exposure to 

ambient air pollution. 

• To evaluate if the consideration of the spatiotemporal dynamics of both 

human activities and air pollution will bring in a significant difference to 

exposure assessment.  

• To develop a trajectory-based model for assessing personal exposure to 

traffic emission. 

The first specific research aim is addressed in Chapter 3. This chapter proposes an 

innovative model to assess personal exposure to ambient air pollution. This model couples 

two types of data, individual-level human trajectory data and hourly air pollution data 

collected by a ground monitoring network. Without foreknowledge of the locations of 

significant places (e.g., home, workplace), this model takes advantage of spatiotemporal 

trajectory mining techniques to apportion trajectory points into a set of significant places 
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(called microenvironments (MEs)). Next, we construct a 3D spatiotemporal cube to 

represent the spatiotemporal distribution of PM2.5 in geographic space and time. The 

constructed 3D cube is then overlaid with processed trajectory data, using the matched 

geographic coordinates and timestamp attributes, in a GIS environment. This newly 

proposed model is evaluated using both simulated and empirical trajectories to demonstrate 

the computational power of the model.  

The findings from Chapter 3 show that the developed model works well. The model 

that considers human activities and spatiotemporal variation of air pollution can offer more 

accurate, detailed, and enriched information to exposure assessment. This chapter also 

confirms the inter- and intra-microenvironmental variation with respect to personal 

exposure to ambient air pollution. Another finding is that time-activity patterns of a person 

are significant factors for personal exposure. Therefore, a model that considers the home 

location of a person only may not fully reflect the true exposure of an individual.  

The second specific research aim is achieved by the work described in the last part 

of Chapter 3. At the end of Chapter 3, an exploratory endeavor was conducted to answer 

the question of whether the estimated exposure accounting for home location only is 

statistically significantly different from that considering the locations of all activities. We 

used both simulated (organized in three datasets) and empirical trajectories with differing 

time-activity patterns to test the methods. For both methods, the average hourly average 

exposure was calculated for comparison purposes.  

The findings regarding the second aim are that there is no consistent evidence that 

a trajectory-based method can produce statistically significantly different results than a 

home-based method with respect to personal exposure. The inconsistence is attributed to 
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many factors, such as the differing characteristics of human activities, the spatiotemporal 

variation of the air pollutant in question, and the low statistical power. The mixed results, 

therefore, suggest more studies are needed to verify how the two exposure results differ 

when confronted with different groups of people and differing spatiotemporal distribution 

patterns of air pollutants.  

Chapter 4 illustrates a new model to quantify traffic emission when human 

activities are accounted for. The key question in Chapter 4 is how to model the 

spatiotemporal variation of traffic emissions on an hourly basis prior to exposure 

assessment. First, this study derived station-specific traffic allocation factors using the 

traffic count data recorded by a number of traffic recorder stations in the study area. This 

study utilized a spatial interpolation algorithm to capture the spatial variation of traffic 

activities. The average hourly count of each roadway was determined by multiplying the 

average daily count by its corresponding TAF at a specific hour. A traffic emission model 

is then applied to each roadway for representing the traffic emission at each hour of the 

day. By assuming there are no transitional changes of traffic emissions in consecutive 

hours, a 3D spatiotemporal cube is built using the twenty-four hourly traffic emission 

layers. Finally, the traffic emission cube was overlaid with simulated individual-level 

trajectory data for assessing personal exposure to traffic emissions.  

 Limitations 

The first limitation is that this study assumes that simulated individual-level 

trajectory data follows certain spatiotemporal constraints from standard groups of “9-to-5” 

people. This study utilizes the simulated trajectory data complying with these assumed 

spatiotemporal constraints. In reality, many groups of people may not conform to these 
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standard constraints. However, this study does not seek to develop an advanced trajectory 

classification algorithm to apportion trajectory points into the appropriate 

microenvironments. Nor does this study aim to explain how specific characteristics of 

human activities influence the assessment of personal exposure.  

The second limitation is that, in the process of modeling ambient air pollution, due 

to data availability, this study does not lean on advanced algorithms (e.g., dispersion 

models, land-use regression models) that usually have demanding requirements on data 

inputs. Alternatively, this study compares a row of spatial interpolation algorithms and 

accepts the one with the least error in different temporal instances. In addition, the 

Wilcoxon Signed-rank test in Chapter 3 is impacted by the performance of the air pollution 

modeling also to some extent.  

Third, in deriving the TAFs of traffic activities, this study assumes that, at a 

particular hour, the traffic activity of any location is affected by only its three nearest traffic 

recorder stations. This assumption seems to have an impact on the quantification of hourly 

traffic emissions, thus affecting personal exposure assessment.  

Finally, the quality of the road network data may have some influences on the 

quantification of traffic emissions, as well as the simulated trajectory data. For example, 

the topology of the road network data might affect the route choices in the trajectory 

simulation.  

 Future Research Direction 

This study has certain implications for exposure- and health-related studies. As 

noted throughout the study, one of the main motivations is to mitigate exposure 

misclassification by offering better and more accurate exposure estimates. Compared to 
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the commonly used methods that solely use home locations for exposure assessment, this 

study considers the dynamics of both human activities and air pollution in geographic space 

and time for assessing personal exposure to ambient air pollution and traffic emission. The 

models developed in this study and the findings would greatly benefit epidemiological 

studies. Some important topics for future research are highlighted below.  

 First, the trajectory simulation procedures this study developed can turn the 

existing time-activity data (e.g., diary data) into geographic trajectories for exposure 

assessment purposes. In most cases, the endeavor of collecting time-activity information 

was not designated for exposure assessment. Time-activity focused study, and exposure-

centered study is usually carried out in separate experiments and for differing research 

purposes. The pre-existing data (e.g., California Activity Pattern Survey (CAPS), 

Consolidated Human Activity Database (CHAD), Multinational Time Use Study (MTUS), 

etc.) will create tremendous opportunities for the application of this research. Future 

research can use the developed trajectory simulation platform to generate human’s 

trajectory following the realistic patterns for some region. Then, the simulated trajectory 

data can be coupled with different sources of environmental air pollution data to assess 

individual- or population-level exposure. This research will improve the understanding of 

human exposure to various air pollutants in a region when human activities are well 

represented in the modeling.  

Another potential research direction is to investigate how human time-activity 

patterns affect the assessment of personal exposure through sensitivity analysis. Human 

time-activity patterns feature the visited places, the duration of staying at some places, the 

travel distances, and some other relevant characteristics. All of these characteristics, treated 
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as parameters of some defined distribution, can be modeled in Monte Carlo analysis. Then, 

the permutations of different settings of parameters will generate as diverse trajectories as 

possible. This research can help better understand the relationship between human 

activities and personal exposure assessment, as well as how personal exposure varies over 

geographic space and time for different groups.  

In addition, this study can be used to evaluate the evidence of the association 

between air pollutant in question and its related health outcomes in epidemiology. As noted 

in the literature review section, many epidemiology studies only use home-based exposure 

to understand the association between the air pollutant in question and its related human 

health outcomes. Future research will replicate some epidemiological studies in certain 

areas using the method presented in this study. The exposure estimates for a certain area or 

a group of people will be quantified by trajectory-based models rather than the home-based 

methods. The improved exposure estimates will be used to seek the association between 

human exposure to the air pollutant in question and adverse health outcomes.  

Given that more and more people intend to choose an environmentally-friendly 

mode of transportation (e.g., cycling, running), this future research expanding on Chapter 

4 will develop a web-based route planning tool for the public in Minneapolis–Saint Paul 

area to plan routes regarding personal exposure to traffic emissions. This tool expected to 

allow users to specify the origins, destinations, preferred transportation mode, and the 

travel start time using an interactive web map. Based on the users’ inputs, that tool will 

return users the optimal routes having the lowest exposure to traffic emissions.  
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