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WEAK SOLUTIONS FOR QUASILINEAR DEGENERATE
PARABOLIC SYSTEMS

ZHENG’AN YAO, WENSHU ZHOU

ABSTRACT. This paper concerns the initial Dirichlet boundary-value problem
for a class of quasilinear degenerate parabolic systems. Due to the degenera-
cies, the problem does not have classical solutions in general. Combining the
special form of the system, a proper concept of a weak solution is presented,
then the existence and uniqueness of weak solutions are proved. Moreover, the
asymptotic behavior of weak solutions will also be discussed.

1. INTRODUCTION AND RESULTS

This paper concerns the initial Dirichlet boundary-value problem for the quasi-
linear degenerate parabolic system

up = a(u)(Au+ av)  in Qu,

vy = b(v)(Av + fu)  in Qo
w(z,t) =0, wv(z,t)=0, ondQ x (0,0c0), (L.1)
U(ZL',O) = UO(m)v U(xa O) - UO(x)a in Q,

where Q. = Q x (0,4+00),f is a bounded domain in RY with approximately
smooth boundary 9Q, a and ( are positive constants, a(-),b(-) € K = {y(s) €
C1[0,00);y(0) = 0,%'(s) > 0,Vs > 0}, and

ug,vo €S = {y(x) € C(Q) NH'(Q);y(x) > 0 on Q,y(x) =0 on IN}.

This system can be used to describe the development of two groups in the dynamics
of biological groups where u and v are the densities of the different groups. Similar
systems can be found in [4, [7, [8] 1O} [T}, [T4].

The system has been studied in a series of papers, see [3| [I5, B] and references
therein. For instance, it was proved in [3] that under the following assumption
conditions:

(H1) wg,vo € CH(Q), ug > 0, vg > 0 in Q, ug = vy = 0 on I;
(H2) % <0, % < 0 on 092, where v denotes the outward normal to 0€2;
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(H3) a,b € C[0,00) N C(0,00) such that a,b > 0 in (0,00) and a/,b > 0 in
(07 OO);
(H4) Either liminfs_, % > 0 or liminf, o % > 0 holds,

the positive solution of blows up in finite time if and only if A2 < af,
Jo- ds/(sa(s)) < oo and [ ds/(sb(s)) < oo, where A; denotes the first eigen-
value of —A in Q with the homogeneous Dirichlet boundary condition. In [I5], the
author discussed a special case of : a(u) = uP,b(u) = u? with p,q > 1, and
proved that under the conditions (H1)-(H2), the positive solutions of exist
globally if and only if A2 > aB3. For single equation (a(s) = b(s),a = B,uy =
vo),ur = a(u)(Au + au), we refer to [2] [6, 2] and references therein. In [2] [12],
for instance, the authors studied the equation with a(s) = s and obtained some
interesting results.

Since the system is degenerate at points where u = 0 or v = 0, problem
does not always have classical solutions, and we have to consider weak solutions.
Moreover, we are only interested in the nonnegative weak solutions.

We remark that, as usual, one may easily define a weak solution (which, for
instance, means a function satisfying the condition (a), (b) and (d) of the following
Definition . However, because of the special form of this system, such weak
solutions may not be uniquely determined by the initial data. In fact, for single
equation some examples showing the non-uniqueness had been constructed, see
[21 12]). So, it is natural to ask how to define a weak solution to guarantee both
uniqueness and existence. One of purposes of this paper is to give a positive answer
to the question. Moreover, the asymptotic behavior of solutions will also be dis-
cussed. This is the only work concerning the study of weak solutions to the system,
as far as we know.

Before giving a proper concept of weak solutions, we first define the support of
a nonnegative measurable function w : Q — [0, 00):

T WGNB,E)
suppw = {x € G,plirg+ W > O},

where G = {z € Q;w(z) > 0}, B,(z) = {y € |z —y| < p}, and p(E) denotes
the Lebesgue measure of a set E in RY. It is easy to see that if w € C(f), then

suppw = G.
For T > 0,p > 0 and w € S, denote Qr, Q(w) and Q°(w) by
Qr =Q x(0,7),
Qw) = {z € Q;w(z) > 0},
0 (w) = {x € Q(w); dist(z, 0Q(w)) > p}.

Definition 1.1. (u,v) is called a weak solution of (1.1, if for any T > 0 the
following conditions hold:

(a) u,v >0 a.e. in Qp, u,v € L=(Qr) N L2(0,T; H (), us, v, € L?(Qr);
(b) For any ¢, 9 € C§°(Qr), there holds

//Q ( —upy + a(u)VuVe + ' (u)|[Vul>p — aa(u)v¢> dx dt

+ // ( — vy + b(v) VoV + b (v)| V| ? — 6b(v)uw) dx dt = 0;
Qr
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(¢) suppu(t) = suppug, suppv(t) = supp vy, a.e. in (0,7), and for all p > 0
there exist positive constants ¢; = ¢1(p) and ¢y = ca(p) such that

u>cp ae in Q°(ug) x (0,7,
v>co ae. in QP(vg) x (0,7);
(d) (u(t), v(t)) — (o, vo) in [LH(Q)]2, as ¢ — 0%,
The purposes of this paper are to prove the following theorems.

Theorem 1.2. Let a,b € K,«a, 3 > 0, and assume ug,vo € S. If max{a, 8} < A,
where A1 is the same as before, then (1.1) admits a unique weak solution.

Theorem 1.3. Suppose a,b € K, and there exist positive constants o2, p2, p1, Po
and a nonnegative constant o1 such that oo > 1,09 > o1 > 0,p2 > p1, and

a(s)

sl—l>I(1;l+ 5§92 = P2 S‘ETOO 592 =L (1.2)
a(s) > oy 'sd'(s), pob(s)s”* > a(s), Vs>0, (1.3)

and let o, 3> 0,ug,v9 € S, and Ag = [, (%§+ Ovo sl;z((:))ds>dm > 0. If max{w, 3} <
ﬁ)\l, then there exists a positive constant C depending only on the known data

such that
2 v(z,t) 2/05
/ (u (z,t) +/ Sa(s)ds)dx < [ 1 /2} ’
o\ 2 0 b(s) Ct+ Ay

where (u,v) is the unique weak solution of (1.1)).

This paper is organized as follows: in next section, we prove Theorem 1.2. Sec-
tion 3 is devoted to the proof of Theorem 1.3.

2. PROOF OF THEOREM 1.2

2.1. Proof of existence. To establish the existence, we use the method of regu-
larization. For this purpose, we consider for T' > 0,

et = ae(ue)(Aue + av:)  in Qr,
Ve = be(ve)(Ave + Bue) in Qr,
ue(z,t) = ve(z,t) = on 0N x (0,T),
Ue(x,0) = ug(x) +¢&, ve(x,0) =vg(x)+¢e in€Q,

(2.1)

where ¢ € (0,1), ac,b. € C*(R) and
(s) a(s), s>e, ba(s) b(s), s>e,
ags\S) = S) = 3
I sce T {09 e

Lemma 2.1. Let max{«, 8} < A1. If (ue,ve) is a classical solution of (2.1)), then
there exists a positive constant C independent of € such that

e <ue,v: <C in Q.



4 Z. YAO, W. ZHOU EJDE-2006/70

Proof. First, it is easy to see that the maximal principle implies the left-hand side
of the above claim. It suffices to show it’s right-hand side.

It is well known that for A = (max{a, B} + A1)/2 < A1, there exists a bounded
domain © such that © O Q and X is the first eigenvalue of —A in Q with homoge-
neous Dirichlet boundary condition [I]. Denote by (,zS the associated eigenfunction.
Then ¢ € C2(Q2) N C(Q),6 > 0 in €, and hence there exists a positive constant &
such that ¢ > & on 2. Now choosing a positive constant k such that

I~€(Z~S > maxug+1 on Q.
Q

Let w = IEQNS Then we have
wy — ae(w)(Aw 4 aw)ae (w)[X — ajw >0 in Qp,
wy — be(w)(Aw 4 fw) = bo(w)[A = Blw >0 in Qp,
hence it follows from Nagumo’s lemma [I3, pp. 4697] that
Ue, Ve < w in Qp.
The proof is complete. O

By the standard theory of parabolic equations [9, pp. 596], (2.1]) admits a unique
classical solution (ue,v:) satisfying the inequalities of Lemma 2.1. Moreover, the
maximal principle implies

Uey > Uey, Vey > Ve, In€, foreg >ey. (2.2)
Thus, by Lemma 2.1, (ue,v.) solves the problem
et = a(ue)(Aue + av:) in Qp,
Ve = b(ve)(Ave + Bue)  in Qr,
ue(z,t) =ve(z,t) =¢ on IQ x (0,T),
Ug(l‘,O) ZUO(x)+E7 UE(Z’,O):’Uo(l')‘i'E in Qa

(2.3)

In view of Lemma 2.1 and (2.2)), one can derive that there exist nonnegative func-
tions u,v € L*°(Q2) such that

(te,ve) — (u,v) ae. in Qp, as € — 0. (2.4)

Next, we shall show that (u,v) is a weak solution of ([L.1)). For this, it suffices to
prove that (u,v) satisfies the conditions (a)-(d) in Definition Let us first check
the condition (a). To do this, it needs to establish some basic estimates on u. and
Ve.

Lemma 2.2. For all 7 € (0,T) and ¢ € (0,1), we have

(1)
/],
//QT szi) dedt+ /Q Vv (z,7)[2dz < C.

Here C are positive constants independent of ¢.

da:dt—i—/ Ve (2, 7)]*de < C
(2)
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Proof. Since the proof is exactly the same for (1) and (2), we will show the validity
of (1). Multiplying the first equation of (2.3)) by u.¢/a(u.) and integrating over 2
and noticing us; = 0 on 0 x (0,T"), we obtain

I, =
://Q (Aue + ave)ugy dx dt
= 7// VuVugg dxdtJr// QU Ugt dx dt

Q, Q,
= —// % |V'L2’/a|2 dwdt—i—// avga(ua)l/z} [ﬁ} dx dt
/|Vuo|2dx+// av.a(u.) /QH (“E)tw}dxdt.

By the inequality ab < 3(a® + b?), we have,

2 2 2
Uey 1 2 @ 2 1// Uey
< Z il -
//QT a(us)dﬂcdt_ 2/Q|Vuo| dx + 5 //QT vZa(ue) dz dt + 2 /o a(ue)dxdt,
ie
// dxdt</|Vuo\ dr + o // via(u.) dz dt,

and then, by Lemma (1) is proved. This completes the proof. (|

I /\

From Lemma 2.1, and Lemma one may derive that
(ue,ve) = (u,v) in [H*(Qr)]?, ase — 0, (2.5)
where — denotes the weak convergence, and
0<u,v€ L>®Qp)NL*0,T; Hy(Q)); s ve € L*(Qp).

Thus the condition (a) is satisfied. Next, let us check the condition (b). For this,
the following estimates are required.

Lemma 2.3. For any 0 € (0, 1), there exist positive constants Cy and Cs indepen-

dent of € such that
// “5 W“E' drdt < C,
Qr 5

(1)
// ”8 W”a' dedt < Cy
Qr UE

Proof. Since the proof is exactly the same for (1) and (2), we shall show the validity
of (1). Given that a’(0) > 0 and @ € (0,1), we claim that for any [ > 0, 1/a(s)? is
integrable on [0, ]. Indeed, since a’(s) > 0 for s > 0, we have M = min,¢[g a'(s) >

provided a’(0) > 0

(2)

provided V' (0) >
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0, and hence for any s € (0,], by mean value theorem and noticing a(0) = 0, there
exists & € [0, s] such that a(s) = a’(€s)s > Ms. Therefore, for 6 € (0,1), we have

/ld < gs< L
o a(s)? = )y MY = (1 —g)

This proves the above claim. Now multiplying the first equation of (2 . 2.3) by a(u.)~?

and integrating {27 and noticing % 8“5 < 0on 09 x (0,T), where v denotes the unit
outward normal to 9Q x (0,7, we "have

// Ltadxdt
Qr @

us
ue (,T) wo(z)+e 1
/ / ds dx — / / ds dx
// a(u)?t Aue + av.) dx dt
Qr

// d1v a(u) = 'Vu.) — (1 H)M—Fowg (ue)' | dx dt
Q a(ue)

T
2
/ / alu.)' 'S5 dodt — (1-9 // “E ‘v%' dz dt
o Qr 8
+a// vea(ue) =0 qx dt
—(1-0 // UE |Vu5| dx dt+a// vsa(ug)lfgdacdt,
Qr 5 Qr

and hence

// (ue W“E‘ dz dt
Qr us

uo(z)+e Lo
_1_ // dsda?+1_9//QTvsa(us) dx dt,

and then, by Lemma (1) is proved. This completes the proof. (]

Denote
¢a(3):/ a(y)dy, ¢u(s /b Ydy, Vs>0.
0

Lemma 2.4. As e — 0, we have

1) foT |V (us) — Vo (u)|? dodt — 0;
(2) [fq, IVou(ve) = Vu(v)|* da dt — 0;
(3) fouE © |Vue — Vul? de dt — 0;

(4) fovE © Vo, — V|2 dz dt — 0;

where Qq, (c) = {(z,t) € Qr;ue > ¢ >0} and Q,_(c) = {(z,t) € Qr;v. > ¢ > 0}.
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Proof. Let us first prove (1). Multiplying the first equation of (2.3)) by [¢q(ue) —
¢a(u) — ¢ (e)] and integrating over Qr, we obtain

0= / / elfalte) = 6ul) ~ 6] dr
+ / /Q (0 T [60) ~ Gu) — 602 dr
12 2 _ w) — T
+ //Q @ (112) Ve 2 [ ) — ) — bu(e)] dr it
—a / /Q (12 velba(t2) — Galu) — dale)] da di
- / /Q et () — Ba(u) — da(e)] de dt
+ / Voo (ue)V]da(te) — ¢po(u)] dx dt
Qr
+ / / 0 (112) Ve 2 [ (t12) — ) — bu(e)] e dt
—a / / a(ue)velba(ue) — da(u) — dule)] da di

Note that u. > u, ¢, (s) > 0, a’(s) > 0 for all s > 0, so the above expression is
greater than or equal to

/ / et (te) — bu(u) — da(e) e dt + / Vo (1) V[ (t1) — d(u)] dar dt
Qr Qr

— ¢al€) //Q a'(u5)|VuE|2 dr dt — o //Q a(ue)ve[pa(ue) — da(u) — ¢o(e)] dx dt
- / / tee[ba(te) — Ba(s) — Ba(e)] du dt + / V(g (uz) — da(u)]? do dt
Qr Qr

//Q Vo (1)V[da (1) — ()] da dt — pu(e // (0) V| di dt

- a// a us Ve d)a ue - ¢a(u) - Qba(g)} dz dt.
Qr
Using (2.4), (2.5), Lemma and Lemma and noticing ¢,(0) = 0, we have
J[ 190t = sutu) et
Qr

[ welut) = dutw) — u@Ndrdt ~ [[ Gouwi6utuc) - dulw)de ds
Qp Qr
+ ¢a(e) //Q a’(ug)|VuE|2 drdt + « //Q a(te)Ve[Pa(ue) — Po(u) — Pu(e)] da dt

—0 (ase—0).

Thus (1) is proved. Similarly (2) can be proved. We shall show (3). Using the
equality

a(ue)(Vue — Vu) = [Va(ue) = Voo (u)] — [a(uc) — a(w)Vu,
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the inequality (a + b)? < 2(a? +b?), ([2.4) and (1), we obtain

// a(us)?|Vue — Vu|* dx dt
Q

< 2// |V¢5a(u5)—V¢a(u)|2da:dt+2// la(u.) — a(w) 2| Vu|? dz dt
Qr Qr
—0 (ase—0),

and then, by a/(s) > 0 for all s > 0, so that (3) is proved. Similarly (4) can be
obtained. The proof is complete. ([l

Lemma 2.5. As e — 0, we have
) foT la’ (us)|Vue|? — o (u)|Vu|?| dx dt — 0;
2) foT V' (ve)| Ve |? — 8 (v)|Vo|?| dz dt — 0.

Proof. Since the proof is exactly the same for (1) and (2), we will show the validity

of (1). For p > 0, let X(p and x(?) be the characteristic functions of {(x,t) €
Qp;ue < p} and {(x,t) € Qr;u < p}, respectively. Then

JI 1o )9 )Vl de i
// ()| Ve — |Vl |dxdt+// ()| Vul? da dt
g// )/ (1) [V 2 dxdt+//Q ) (1) [Vl da dt
//Q (1= )/ () [Vt 2 — |Vul? |d:cdt+// ()| Vuf? da dt

=1, + 1y + I3+ 14.
Clearly, Iy — 0 as € — 0. Since u. > u a.e. in (Q, Xgp) < X(p) a.e. in 2. Therefore,
I < C// x| Vul?dedt — 0 (p— 0).
Qr
Next, we estimate I;. If a/(0) = 0, then

I < max d/( // |Vue|*drdt < C max a'(s) =0 (p— 0).
s€[0,p) Qr s€[0,p]

If &’(0) > 0, taking # = 1/2 in Lemma and noticing a’(s) > 0 for s > 0 and
a(0) = 0, we have
_ 1 2a/(us)‘vus|2
11*// X‘g)(s)/wdmdt

1/2ﬁ ua |VU5| de dt
1/2
Qr

< Ca(p)t? -0 (as p—0).

In any case, we obtain

I -0 (as p — 0), uniformly in €.
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Hence, for any 6 > 0, we can find a p > 0 sufficiently small such that I1 + I < §/2.
For fixed p > 0, it follows from Lemma [2.4] that

IggC’// (1 = X[V | — [Vul?| dzdt — 0 (as & — 0).
Qr

Therefore, there exists 1 € (0,1) such that Is < §/2 as € < £;. Consequently, we
obtain

L+1+13<6, Ve<e.
Thus (1) holds. The proof of Lemma [2.5]is complete. d
From Lemma it is easy to check that (u,v) satisfies the condition (b) in

Definition Finally, we shall show that (u,v) satisfies the condition (c). The
proof can be completed by combining the following two lemmas.

Lemma 2.6. (1) For any p > 0 sufficiently small, there exist positive constants
c1 = c1(p) and ca = ca(p) such that

u>c  ae inQ(ug) x (0,7),

v>cy ae in QP (vg) x (0,T);
(2) supp u(t) D supp ug, suppv(t) 2 supp vg, a.e. in (0,T).
Proof. Note that, in view of the definition of support of a nonnegative function,
the conclusion (1) implies (2). Since the proof is exactly the same for the first

conclusion and the second conclusion of (1), we will show the validity of the former.
It is easy to see that there exists a positive constant ¢ = ¢(p) such that

ug > ¢ > 01in Q7 (uyp).
Denote by A, the first eigenvalue of —A in Qr/2(ug) with the homogeneous Dirichlet
boundary condition and ¢, the associated eigenfunction with MaXe 73 ¢p = C.

Let
u=e "¢, (x,t)€ Q?(u) x (0,T),
where k = a(supg...q |te|sc)Ap + 1. Then
w, — a(u)Au = e "¢, (—k + a(u)A,) < 0 in Q% (ug) x (0,T).
Hence, u. and wu are the classical sup-solution and sub-solution of the equation
wy — a(u)Aw =0 in Q% (ug) x (0, 7).
On the other hand, obviously we have
ue >u on 0% (ug) x (0,T), wue(z,0) > u(x,0) in Q2(ug).

By the comparison principle, we obtain

ue > e "¢, > e min ¢, =ci(p) >0 in Q(ug) x (0,7).
Q° (uo)

Passing to the limit as € — 0, we have
u>ci(p) >0 ae in Q°(ug) x (0,T).
This completes the proof. ([

Lemma 2.7. suppu(t) C supp ug, suppv(t) C supp v, a.e. in (0,7T).
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Proof. Since the proof is exactly the same for the former and the latter, we will show
the validity of the former. Without loss of generahty, we may assume supp ug < €2.
For any 6 > 0, let 1(z) = vs(x) mf{ 1} where d(x) = dist(z, 9QUsupp ug).
It is well known that the distance functlons d(x) is Lipschitz with the constant
1, and hence it follows from Rademacher’s theorem [I6, pp. 49-51] that d(z) is
differentiable almost everywhere. Multiplying the first equation of by ¢ =
L) and integrating over €);, we have

s
/ / ( Ut | v — owsw) dzdr = 0.

By Lemma [2.I] and Lemma @ there exists a positive constant C' independent of

€ such that ,
/ / Ut v dr < O,
0 JQ a(Us)

ue(®:t) wo(@)+
/Q (/ %d‘g - / $d8>¢(3&)dw <c.

Noticing Yug = 0 in 2, we have

[ e)otaia o
/Q (/Eugu,t) %ds)w(gg)dm <c.

By virtue of u. > u a.e. in Qp, we obtain

u(x,t) 1
/ / ——dsdx < C.
{zeQ(z)=1} Je a(s)

Hence for any o € (0,1) and € € (0,0) and a.e. t € (0,7'), we have

(e € o €90 = (o) > o)) [ s =G

hence

therefore,

therefore,

o € (o € %o =) > o) < 0] [ sas) ™

where C is a positive constant independent of €. We claim that
[eg

lim ——ds = +o0.
e=0 /¢ a(s>

Indeed, by the mean value theorem and noticing a(0) = 0, we derive that for any
s € [0,0] there exists & € [0,s] such that a(s) = a/(&)s < Ms, where M =
maxe(o,»] @' (s) > 0. Thus

/ids / —ds— un<> In(e)],

then passing to the limit as ¢ — 0, we prove the above claim and obtain

u{x e {x e Q¢ =1hu(z,t) >0}) =0 ae. in (0,7),
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so that, since o € (0, 1) is arbitrary, we obtain
pu{z e {x e Q¢ =1} u(x,t) >0}) =0 a.e. in (0,7).
Since § > 0 is arbitrary, we conclude that
u(z,t) =0 a.e. in (2\ suppug) x (0,7).

This completes the proof of Lemma[2.7] Thus the proof of the existence is complete.
O

2.2. Proof of uniqueness. Let (uz,v2) and (u1,v1) be two weak solutions of (1.1)),
and E = supp ug Nsupp vg. It suffices to prove that for any T' > 0, ug = uy,v2 = v
a.e. in Q.

First Case: u(E) = 0. Without loss of generality, we may assume that suppug #
(). From the definition of weak solutions it follows that v = v; = 0 a.e. on supp ug.
Denote by A, the first eigenvalue of —A in Q”(ug) with homogeneous Dirichlet
boundary condition and ¢,(z) the associated eigenfunction. Substituting

o ¢psign s((ug — U2)+)’ Y =0,

a(u)

and
_ Ppsigns((ur —ug)y)

a(uz)

in the definition of weak solutions, respectively, where signs(z) = sign(z) inf { Lzl 5 1}
for § > 0, we have for any ¢ € (0,7")

// U1t¢p51gﬂégflt;1—u2)+)

+ Vu V(ur — ug) 1 ¢, signs((ug — uz)1) + Vur Vo, sign s((ur — u2)+)} dzx dr =0,
/ / U2t¢p sign 5((u1 — uz)+)
UQ)

+ VuaV(ur — ug) 1 ¢, signs((ug — u2)+) + Vua Vo, sign s((ur — u2)+)} dzx dr =0,

; w:()a

and hence
t
[ [0t = futwis s s(tun = wa)s)
+ [V (w1 — uz) 4 Py sign 5((ur — uz)4)
+ V(ur —u2)Veo,sign 5((ur — uz)+)} dx dr =0,
where

51
fa(S) = /Cl @dy, Vs > 0,

where ¢; is the same as that of Definition (note that ¢; corresponding to wu;
may be different from that corresponding to us. Here ¢ is minimal between them).
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Noticing sgnj(z) > 0, we obtain

[ [0t = futwis s s(ton = a)s)
+ V(u1 — u2)Ve, sign 5((uq — uz)+)} dzdr <0,

Passing to the limit as § — 0, we have

/ot/g [(fa(ul) = fa(u2))igpsign((ur —uz)y) + V(ur — U2)+V¢P} drdr < 0.

Integrating by parts for the second term of the above integral, we obtain

/Ot/Q [(fa(m) — fa(u2))ed,sign((ur — u2)4) + Ap(us — U2)+¢p} dxdr <0,

and then it follows from A\, > 0 and ¢, > 0 that

/ /(fa(ul) — fa(u2))ed, sign((u1 — ug)y)dzdr < 0.
o Ja

Since sign((u; — ug)4) = sign(fo(u1) — fa(uz))+ a.e. in Q°(ug) x (0,7), we have

/Q (Fat) = fulz)) (2, £) () dx < 0,

which implies (fq(u1) — fa(u2))+ = 0 a.e. in Q°(ug) x (0,T), and hence u; < us a.e.
in Q7 (ug) x (0,T), and therefore u; < ug a.e. in suppug x (0,7). By the condition
(¢) in Definition we derive that u; < ug a.e. in Qp. Similarly, u; > ug a.e. in
Qr. Thus, u; = ug a.e. in Q.

The same reasoning as those given above shows that vy = vy a.e. in Qp. This
prove the first case.

General Case: p(E) > 0. Denote by A, the first eigenvalue of —A in E, with the
homogeneous Dirichlet boundary condition and ¢,(z) the associated eigenfunction,
where E, = {z € E;dist(xz,0FE) > p > 0}. Substituting

Ppsigns((vi —v2)4)

b(v1) ’

o= ¢psigns((ur — “2)+)7 b=
a(ur)

and
_ Ppsigns((ug —ug)y) bpsigns((v1 — v2)+)
a(uz) b(v2) ’

in the definition of weak solutions, respectively, we have

/ / U100 gn s{(u1 — uz)+) + Vuy V(uy — ug) 1 ¢, signg((ur — ug)y)

U1)

A

+ Vui Vo, signs((ur — ug)4) — avid, sign s((uq — u2)+)} dx dr

b [ [l ) g0 v, )i - a))

’Ul)

+ Vo Vo, signs((v1 — v2)+) — Puid, sign s((vi — v2)+)]dx dr =0,
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/ / u2tdp Slgm ul —uz)+) + VuoV(u1 — ug) 1 ¢, signg((ur — ug)y)

+ Vua Vo, sign 5((u1 —u2)4) — auad, sign s((ur — uQ)+)} dx dr

/ / s Slgn5 vl ) + Vo V(v — v2) 4.6, signs((v1 — v2)+)

+ VuaVo, 51gn5((v1 — v2)+) — Busg, sign 5((v1 — v2)+)} drdr =0,

and hence

[ (0700 = futwis s s(tan = wa)s)
+ [ V(ur —uz) 4 [*@psign s((ur —u2)4) + V(w1 — u2) Ve, signs((ur — us)+)

— a(vy —v2)¢,signs((ur — u2)+)} dx dr

[ [t = oy sien (o1 = w2))
+ V(01 = va) 4 P, sign (w1 — ug)4) + V(01 — v2) Ve, sign s((v1 — v2)+)
— B(ur — u2)¢,signs((v1 — v2)+)]dx dr =0,

where f, is the same as before and f; is defined by
£(5) / "Ly s> o0
bls) = 7 aY, S )
C2 b(y)

and cy is the same as that of Definition Noticing signjs(z) > 0, we obtain from
the above equality

| [0t = futwis s s(tun = wa)s)
+ V(u1 — u2)Vo,sign s((u1 — uz)+) — (v — v2) @, sign s (w1 — u2)+)} dx dr
[ [t = vy sien (o1 = w2))
+ V(v1 —v2) Vo, signs((vi — v2)4) — Blur — ug)d,signs((vi — 02)+)} dx dr <0.
Passing to the limit as 6 — 0, we have
| [at) = futw)isy signtan = ua)) + Vi = u2), 90,
— vy — v2)@, sign((ur — u2)+)] dx dr
+ [ [en) = oy sign(on = wa).) + V(or =22V,

— B(u1 — u2)¢, sign((vi — v2)+)] drdr <0,
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and hence
[ (07000 = futwis sen((an = a1 + n = )i,

— a(vy —v2)¢,sign((ug — u2)+)} dx dr

+/O /Q [(fb(vl) — fo(v2))edp sign((v1 — v2) 4) + Ap(v1 — v2)1 &,

— B(u1 — ug)d, sign((v1 — ’U2>+)i|dm dr <0.

This implies
/Q[(fa(ul) — fa(u2))+ (2, 1) + (fo(v1) = fo(v2))+ (z, D)@ () da

t
<0 [ [0 = val + a ~ walydedr
0 JQ

By the same arguments as the above, we obtain

/Q[(fa(W) — fa(wr))+ (2, 1) + (fo(v2) = folv1))+ (2, 1)@ (x)da

t
< C’/ /(|vl — Ug] + |u1 — ua|)@,dx dr.
0o Jo
Thus we have
/Q[\(fa(uz) — fa(u)(z, )] + |(fo(v2) = folv1)) (@, 1)]]6 () dx
t (2.0
< C’/ /(|’U1 —vo| + |ur — us|)ppdx dr.
0o Jo
On the other hand, it follows from a’(s),b'(s) > 0 for s > 0 that
[ur — uz| < alur + uz|p ) fa(uz) = fa(ur)] a.e. in E, x (0,7),
|U1 — 1)2‘ < b(|’U1 + U2|Loo(QT))‘fb(’Uz) — fb(vl)| a.e. in Ep X (O,T)
Combining this with , we have

/Q[I(fa(W) = Ja(w)) (@, )] + [(fo(v2) = fo(01)) (, )] (2)dx

t
<c / /Q fal2) = Falun)] + | folw2) — folvn))dpde dr,
0
and then, by Gronwall’s theorem, we obtain

|fa(uz) = fa(ua)| + | fo(v2) — fo(v1)| =0 ae. in E, x (0,T).
This shows that
Ug = Uy, V2 =V, a.e. in Ep X (O,T)7

and hence us = uy, v2 = vy, a.e. in E x (0,7). Similar to the proof of the first
case, it is not difficult to prove that

us =wu; a.e. in (suppug — F) x (0,7T),
vy =wv1; a.e. in (suppvg — E) x (0,T).
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Combining the above results, we obtain

us =wup a.e. in suppug X (0,7),

vy =wv1 a.e. in suppuvy X (0,7).

This proves the general case and ends the proof of uniqueness.

3. PROOF oF THEOREM 1.1 [I.3]

First, we claim that the following inequalities hold:

a(u)u? + a(v)v? > (a(u) + a(v))uw, (3.1)
p257% > a(s) > p1s72 for s >0,
S
2

/0 a(y)'?dy > 5 o s——sa(s)"/? for s >0, (3.3)

s 9,1/2
/ a(y)2dy > “PL_g1to2/2 for s> 0. (3.4)

0 2 + g9

We shall prove (3.1). It follows from a/(s) > 0 for all s > 0 that
[sa(s)] = a(s) + sa’(s) > 0 for all s > 0.

This shows that [ua(u) — va(v)][u —v] > 0, which implies (3.1)). Let us turn to the

proof of (3.2). By virtue of (L.2)), it suffices to show that [“(9)] <0 for all s > 0.
By (1.3), we immediately obtain

[ﬁ]/ _ sa (s) — o2a(s)

) <0 forall s>0,

592

as asserted. (3.4) is an immediate consequence of (3.2]). Finally we shall show (3.3).
Let

Hs:/a 1/2q —75(151/2, s> 0.
(s) ; (y)/“dy 5T os (s) >

Simple calculation shows, by virtue of (1.3)), that
2 1
v os [isa'(s)a(s)fl/2 + a(s)l/ﬂ

:a(s)*1/2[02a(s) —d/(s)s] >0
2409 -

for all s > 0. Since H(0) = 0, we see that H(s) > 0 for all s > 0. This proves (3.3).
Thus the above claims hold.

Now taking ¢ = w and ¢ = 9, = bl(’Z)(j_)Q
we obtain

u?(x,t) V@ ga(s) u? v sa(s)
/Q( 2 t Jr/0 b(s)+gd8>dm/gz(2()+/0 b(s)—l—gds)dx

- i [(a(u>+ @vu+ LG s o

//Qva |V %de dr + /Ot/Q(aa(u)er)uvdIdT-

H'(s) =a(s)"/? -

for o > 0 as test functions in Definition
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For ¢ > 0, let

u?(x, vt sq(s
‘Pg(t):/g((Q J +/O e )(+) ds)d,
u?(z, v(@t) g
(1) = /Q (% +/0 b((s))d )dz.

Then it is easy to see that ®,(t) — ®(t), ®},(t) — ®'(t), in (0,00), as ¢ — 0T, and

o, =~ [ [iatw + auwu + WD) g2,

b(v) + o
[ a0 o Bab)y
/Q<b<>+g> Vol +/( o)+ oy 7 g )

<- /Q [a(u)|Vu|2 + b((Z; JE 2 |Vu|2} dx +/Q (aa(u) + m)uvdx_

Passing to the limit as ¢ — 0 and using (3.1}, we have
P < — / (a(u)|Vul* + a(v)|Vo|?)dz + max{a, 3} / (a(u)u® + a(v)v?)dz
Q Q

= _/Q (|v/0“a(s)1/2d8|2+|v/ova(s)1/2d8|2)dx 55)

+ max{«, 8} /Q(a(u)u2 + a(v)v?)dz.

In view of (3.3)), we obtain

“ 125020 < “ 1/24 2d S 40 / 2,
/Q|V/O a(s) ' “ds|*dx > )\1/9 (/0 a(s) s) x > 2t o) Qa(u)u x,
/ |V/U a(s)l/2d5|2dx > )\1/ (/U a(s)1/2d5)2dm > L/ a(v)vidz.

o Jo o Mo (2+02)* Jo

Combining this with (3.5)), we have
P’ < —X/ (a(u)u® + a(v)v?)dz, (3.6)
Q

max{c, 8} > 0, which, in particular, implies that ®'(¢) <

([

By Holder’s inequality and ({3.2)), we obtain

2/(2+02) 2/(2403)
/u2dx < C’(/ u2+02dw> ’ < C’(/ a(u)u2dm> “ (3.8)
Q Q Q

where A = m

0,Vt > 0, and hence

vVt > 0. (3.7)



EJDE-2006/70 QUASILINEAR DEGENERATE PARABOLIC SYSTEMS 17

By (3.2) and noticing o5 > o1 and using Holder’s inequality, we have

// Sa(s)dsdmﬁC’/v2+gldx
aJo 0(s) Q

(2401)/(2402)
< C( / v2+02dx) v (3.9)
Q

9 (2+01)/(2402)
< C(/ a(v)v dx) .
Q
Combining (3.6)) with (3.7), (3.8) and (3.9) and using the inequality a” + b" >

217"(a +b)" for a,b > 0,r > 1, we obtain
v(z, t) (2+402)/(2+01)
/ 8)) dsdm) ’ ]

o/ (t) S—C[(/QuQ(:c,t)dx
/ﬂ / “> sals) dx)<2+oz>/2}

) 2+02)/2

(

< - C[(/Q u2(3:,t)da;) e/ —|— (
u?(x, V@t g (s 2 ‘72) 2
_C(/Q<(2t)+/0 b(i))ds)df”>(+ /

_ CtI)(t)(2+"2)/2,

IA

IN

which gives
1

< -
d(t) < (Ct+A0”2/Q

)2/02, vt > 0.

This completes the proof.

Acknowledgments. The authors want to thank the anonymous referee for point-
ing out some errors of the original manuscript.
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