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POSITIVE SOLUTIONS FOR THE BEAM EQUATION UNDER
CERTAIN BOUNDARY CONDITIONS

BO YANG

Abstract. We consider a boundary-value problem for the beam equation, in

which the boundary conditions mean that the beam is embedded at one end
and fastened with a sliding clamp at the other end. Some priori estimates

to the positive solutions for the boundary-value problem are obtained. Suffi-

cient conditions for the existence and nonexistence of positive solutions for the
boundary-value problem are established.

1. Introduction

In this paper, we consider the fourth order beam equation

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.1)

together with boundary conditions

u(0) = u′(0) = u′(1) = u′′′(1) = 0. (1.2)

Throughout this paper, we assume that
(H1) f : [0,∞) → [0,∞) is continuous
(H2) g : [0, 1] → [0,∞) is a continuous function such that

∫ 1

0
g(t) dt > 0.

Equation (1.1) and the boundary conditions (1.2) arise from the study of elasticity
and have definite physical meanings. Equation (1.1) describes the deflection or
deformation of an elastic beam under a certain force. The boundary conditions
(1.2) mean that the beam is embedded at the end t = 0, and fastened with a sliding
clamp at the end t = 1.

In 1989, Gupta [12] considered the boundary-value problem

u′′′′(t) + f(t)u(t) = e(t), 0 < t < π, (1.3)

u′(0) = u′′′(0) = u′′′(π) = u′(π) = 0, (1.4)

where (1.4) means that the beam is fastened with sliding clamps at both ends t = 0
and t = π. In 2004, Kosmatov [16] considered (1.1) together with the boundary
conditions

u(0) = u′(0) = u′(1) = u(1) = 0, (1.5)
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and obtained sufficient conditions for existence of infinitely many solutions to the
problem (1.1)-(1.5). Note that the boundary conditions (1.5) mean that the beam
is embedded at both ends t = 0 and t = 1.

In fact, (1.1) has been studied by many authors under various boundary con-
ditions and by different approaches. For some other results on boundary-value
problems of the beam equation, we refer the reader to the papers of Agarwal [1],
Bai and Wang [4], Davis and Henderson [6], Dalmasso [5], Dunninger [7], Elgindi
and Guan [8], Eloe, Henderson, and Kosmatov [9], Graef and B.Yang [11], Gupta
[13], Ma [17, 18], Ma and Wang [19], B.Yang [20], and Y. Yang [21].

In this paper, we will study the positive solutions of the problem (1.1)-(1.2).
By positive solution, we mean a solution u(t) such that u(t) > 0 for t ∈ (0, 1). A
beam can have different shapes under different boundary constraints. One of the
purposes of this paper is to make some estimates to the shape of the beam under
boundary conditions (1.2).

This paper is organized as follows. In Section 2, we give the Green’s function
for the problem (1.1)-(1.2), state the Krasnosel’skii’s fixed point theorem, and fix
some notations. In Section 3, we present some priori estimates to positive solutions
to the problem (1.1)-(1.2). In Sections 4 and 5, we establish some existence and
nonexistence results for positive solutions to the problem (1.1)-(1.2).

2. Preliminaries

The Green’s function G : [0, 1]× [0, 1] → [0,∞) for the problem (1.1)-(1.2) is

G(t, s) =

{
1
12 t2(6s− 3s2 − 2t), if 0 ≤ t ≤ s ≤ 1,

1
12s2(6t− 3t2 − 2s), if 0 ≤ s ≤ t ≤ 1.

Then problem (1.1)-(1.2) is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (2.1)

It is easy to verify that G is a continuous function, and G(t, s) > 0 if t, s ∈ (0, 1).
We will need the following fixed point theorem, which is due to Krasnosel’skii [15],
to prove some of our results.

Theorem 2.1. Let (X, ‖ · ‖) be Banach space over the reals, and let P ⊂ X be a
cone in X. Let H1 and H2 be real numbers such that H2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

If L : P ∩ (Ω2 − Ω1) → P is a completely continuous operator such that, either
(K1) ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω2, or
(K2) ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ (Ω2 − Ω1).

For the rest of this paper, we let X = C[0, 1] be with norm

‖v‖ = max
t∈[0,1]

|v(t)|, ∀v ∈ X.

Clearly X is a Banach space. We define Y = {v ∈ X | v(t) ≥ 0 for 0 ≤ t ≤ 1}, and
define the operator T : Y → X by

(Tu)(t) =
∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (2.2)
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It is clear that if (H1) and (H2) hold, then T : Y → Y is a completely continuous
operator. We also define the constants

F0 = lim sup
x→0+

f(x)
x

, f0 = lim inf
x→0+

f(x)
x

,

F∞ = lim sup
x→+∞

f(x)
x

, f∞ = lim inf
x→+∞

f(x)
x

.

These constants, which are associated with the function f , will be used in Sections
4 and 5.

3. Estimates for Positive Solutions

In this section, we shall give some estimates for positive solutions of the problem
(1.1)-(1.2). To this purpose, we define the functions a : [0, 1] → [0, 1], b : [0, 1] →
[0, 1], and c : [0, 1] → [0, 1] by

a(t) = 3t2 − 2t3, b(t) = 2t− t2, c(t) = 4t2 − 4t3 + t4.

It is easy to see that b(t) ≥ c(t) ≥ a(t) ≥ t2 for 0 ≤ t ≤ 1.

Lemma 3.1. If u ∈ C4[0, 1] satisfies the boundary conditions (1.2), and

u′′′′(t) ≥ 0 for 0 ≤ t ≤ 1, (3.1)

then
u′′′(t) ≤ 0, u′(t) ≥ 0, u(t) ≥ 0 for 0 ≤ t ≤ 1. (3.2)

Proof. Note that (3.1) implies that u′′′ is nondecreasing. Since u′′′(1) = 0, we have
u′′′(t) ≤ 0 on [0, 1], which means that u′ is concave downward on [0, 1]. Since
u′(0) = u′(1) = 0, we have u′(t) ≥ 0 on [0, 1]. Since u(0) = 0, we have u(t) ≥ 0 on
[0, 1]. The proof is complete. �

Lemma 3.2. If u ∈ C4[0, 1] satisfies (1.2) and (3.1), then

u(t) ≥ a(t)u(1) for 0 ≤ t ≤ 1. (3.3)

Proof. If u ∈ C4[0, 1] satisfies (1.2) and (3.1), then u(0) = 0, u(1) ≥ 0, and u′(t) ≥ 0
for 0 ≤ t ≤ 1. If u(1) = 0, then u(t) ≡ 0, and it is easy to see that (3.3) is true in
this case.

Now we prove (3.3) when u(1) > 0. Without loss of generality, we assume that
u(1) = 1. If we define

h(t) = u(t)− a(t)u(1) = u(t)− (3t2 − 2t3), 0 ≤ t ≤ 1,

then
h′(t) = u′(t)− (6t− 6t2), h′′(t) = u′′(t)− (6− 12t),

h′′′(t) = u′′′(t) + 12,

h′′′′(t) = u′′′′(t) ≥ 0, 0 ≤ t ≤ 1. (3.4)
To prove the lemma, it suffices to show that h(t) ≥ 0 on [0, 1]. It is easy to see
that h(0) = h(1) = 0. By mean value theorem, there exists r1 ∈ (0, 1) such that
h′(r1) = 0. It is also easy to see that h′(0) = h′(1) = 0. Since h′(0) = h′(r1) =
h′(1) = 0, there exist r2 ∈ (0, r1) and t2 ∈ (r1, 1) such that h′′(r2) = h′′(t2) = 0.

Note that (3.4) implies that h′′ is concave upward. Since h′′(r2) = h′′(t2) = 0,
we have

h′′(t) ≥ 0 on (0, r2), h′′(t) ≤ 0 on (r2, t2), and h′′(t) ≥ 0 on (t2, 1).
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These inequalities, together with the fact that h′(0) = h′(r1) = h′(1) = 0, imply
that

h′(t) ≥ 0 on (0, r1), h′(t) ≤ 0 on (r1, 1).
Since h(0) = h(1) = 0, we have h(t) ≥ 0 on (0, 1). The proof is complete. �

Lemma 3.3. If u ∈ C4[0, 1] satisfies (1.2) and (3.1), then

u(t) ≤ u(1)b(t) for t ∈ [0, 1]. (3.5)

Proof. Without loss of generality, we assume that u(1) = 1. If we define

h(t) = b(t)u(1)− u(t) = 2t− t2 − u(t), 0 ≤ t ≤ 1,

then
h′(t) = 2− 2t− u′(t), h′′(t) = −2− u′′(t),

h′′′(t) = −u′′′(t), 0 ≤ t ≤ 1. (3.6)
It is easy to see that h(0) = h(1) = h′(1) = 0. By mean value theorem, because
h(0) = h(1) = 0, there exists r1 ∈ (0, 1) such that h′(r1) = 0. We see from (3.6)
and (3.2) that h′′′(t) ≥ 0 on [0, 1], which implies that h′ is concave upward on [0, 1].
Since h′(r1) = h′(1) = 0, we have

h′(t) ≥ 0 on (0, r1), h′(t) ≤ 0 on (r1, 1).

Since h(0) = h(1) = 0, we have h(t) ≥ 0 on (0, 1). The proof is complete. �

Lemma 3.4. If u ∈ C4[0, 1] satisfies (1.2) and (3.1), and u′′′′(t) is nondecreasing
on [0, 1], then

u(t) ≤ u(1)c(t) for t ∈ [0, 1]. (3.7)

Proof. Without loss of generality, we assume that u(1) = 1. If we define

h(t) = c(t)u(1)− u(t) = 4t2 − 4t3 + t4 − u(t), 0 ≤ t ≤ 1,

then
h′(t) = 8t− 12t2 + 4t3 − u′(t), h′′(t) = 8− 24t + 12t2 − u′′(t),

h′′′(t) = −24 + 24t− u′′′(t),

h′′′′(t) = 24− u′′′′(t), 0 ≤ t ≤ 1. (3.8)
It is easily seen that h(0) = h(1) = h′(0) = h′(1) = 0. By the mean value theorem,
because h(0) = h(1) = 0, there exists r1 ∈ (0, 1) such that h′(r1) = 0. Since
h′(0) = h′(r1) = h′(1) = 0, there exist r2 ∈ (0, r1) and t2 ∈ (r1, 1) such that
h′′(r2) = h′′(t2) = 0. As a consequence, there exists r3 ∈ (r2, t2) such that h′′′(r3) =
0.

Note that u′′′′ is nondecreasing by assumption. It follows from (3.8) that h′′′(t) is
concave downward. It is easy to see that h′′′(1) = 0. Because h′′′(r3) = h′′′(1) = 0,
we have

h′′′(t) ≤ 0 on (0, r3), and h′′′(t) ≥ 0 on (r3, 1).
Since h′′(r2) = h′′(t2) = 0, we have

h′′(t) ≥ 0 on (0, r2), h′′(t) ≤ 0 on (r2, t2), h′′(t) ≥ 0 on (t2, 1).

Because h′(0) = h′(r1) = h′(1) = 0, we have

h′(t) ≥ 0 for t ∈ (0, r1), h′(t) ≤ 0 for t ∈ (r1, 1).

Hence, h(t) ≥ 0 for 0 ≤ t ≤ 1. The proof is complete. �
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Theorem 3.5. Suppose that (H1) and (H2) hold. If u(t) is a nonnegative solution
to the problem (1.1)-(1.2), then u(t) satisfies (3.2), (3.3), and (3.5).

Proof. If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then u(t) satisfies
the boundary conditions (1.2), and

u′′′′(t) = g(t)f(u(t)) ≥ 0, 0 ≤ t ≤ 1.

Now Theorem 3.5 follows directly from Lemmas 3.1, 3.2, and 3.3. The proof is
complete. �

Theorem 3.6. Suppose that (H1), (H2), and the following condition hold.
(H3) Both f and g are nondecreasing functions.

If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then u(t) satisfies (3.2),
(3.3), and (3.7).

Proof. By Theorem 3.5, u(t) satisfies (3.2) and (3.3). Therefore u(t) is nondecreas-
ing on [0, 1]. It is obvious that u′′′′(t) = g(t)f(u(t)) ≥ 0. By (H3), we have that
u′′′′(t) = g(t)f(u(t)) is nondecreasing on the interval [0, 1]. It follows directly from
Lemma 3.4 that u(t) satisfies (3.7). The proof is complete. �

4. Existence and Nonexistence Results

First, we define some important constants:

A =
∫ 1

0

G(1, s)g(s)a(s) ds, B =
∫ 1

0

G(1, s)g(s)b(s) ds.

We also define

P =
{
v ∈ X : v(1) ≥ 0, v(t) is nondecreasing on [0, 1],

a(t)v(1) ≤ v(t) ≤ b(t)v(1) on [0, 1]
}
.

Clearly P is a positive cone in X. It is obvious that if u ∈ P , then u(1) = ‖u‖.
We see from Theorem 3.5 that if u(t) is a nonnegative solution to the problem
(1.1)-(1.2), then u ∈ P . In a similar fashion to Theorem 3.5, we can show that
T (P ) ⊂ P . To find a positive solution to the problem (1.1)-(1.2), we need only to
find a fixed point u of T such that u ∈ P and u(1) = ‖u‖ > 0.

The next two theorems provide sufficient conditions for the existence of at least
one positive solution for the problem (1.1)-(1.2).

Theorem 4.1. Suppose that (H1) and (H2) hold. If BF0 < 1 < Af∞, then problem
(1.1)-(1.2) has at least one positive solution.

Proof. First, we choose ε > 0 such that (F0 + ε)B ≤ 1. By the definition of F0,
there exists H1 > 0 such that f(x) ≤ (F0 + ε)x for 0 < x ≤ H1. Now for each
u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =
∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤
∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖
∫ 1

0

G(1, s)g(s)b(s) ds

= (F0 + ε)‖u‖B ≤ ‖u‖,
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which means ‖Tu‖ ≤ ‖u‖. Thus, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ > 0 and τ ∈ (0, 1/4) such that∫ 1

τ

G(1, s)g(s)a(s) ds · (f∞ − δ) ≥ 1.

There exists H3 > 2H1 such that f(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 = H3/τ2.
If u ∈ P such that ‖u‖ = H2, then for each t ∈ [τ, 1], we have

u(t) ≥ H2a(t) ≥ H2t
2 ≥ H2τ

2 ≥ H3.

Therefore, for each u ∈ P with ‖u‖ = H2, we have

(Tu)(1) =
∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥
∫ 1

τ

G(1, s)g(s)f(u(s)) ds

≥
∫ 1

τ

G(1, s)g(s)(f∞ − δ)u(s) ds

≥
∫ 1

τ

G(1, s)g(s)a(s) ds · (f∞ − δ)‖u‖ ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. Thus, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2,
and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now that the condition (K1) of Theorem 2.1 is satisfied, there exists a fixed point
of T in P ∩ (Ω2 − Ω1). The proof is now complete. �

Theorem 4.2. Suppose that (H1) and (H2) hold. If BF∞ < 1 < Af0, then the
problem (1.1)-(1.2) has at least one positive solution.

The proof of Theorem 4.2 is very similar to that of Theorem 4.1 and therefore
omitted. The next two theorems provide sufficient conditions for the nonexistence
of positive solutions to the problem (1.1)-(1.2).

Theorem 4.3. Suppose (H1) and (H2) hold. If Bf(x) < x for all x > 0, then the
problem (1.1)-(1.2) has no positive solutions.

Proof. Assume the contrary that u(t) is a positive solution of the problem (1.1)-
(1.2). Then u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =
∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1

∫ 1

0

G(1, s)g(s)b(s) ds · u(1)

= B−1Bu(1) = u(1),

which is a contradiction. The proof is complete. �



EJDE-2005/78 POSITIVE SOLUTIONS FOR BEAM EQUATION 7

Theorem 4.4. Suppose (H1) and (H2) hold. If Af(x) > x for all x > 0, then the
problem (1.1)-(1.2) has no positive solutions.

5. More Existence and Nonexistence Results

In this section, we define a new constant

C =
∫ 1

0

G(1, s)g(s)c(s) ds,

and define the positive cone Q of X by

Q =
{
v ∈ X : v(1) ≥ 0, v(t) is nondecreasing on [0, 1],

a(t)v(1) ≤ v(t) ≤ c(t)v(1) on [0, 1]
}
.

It is obvious that if u ∈ Q, then u(1) = ‖u‖. We see from Theorem 3.6 that if (H1),
(H2), and (H3) hold, and u(t) is a nonnegative solution to the problem (1.1)-(1.2),
then u ∈ Q. In a similar fashion to Theorem 3.6, we can show that if (H1), (H2),
and (H3) hold, then T (Q) ⊂ Q.

Theorem 5.1. Suppose that (H1), (H2), and (H3) hold. If either CF0 < 1 < Af∞
or CF∞ < 1 < Af0, then problem (1.1)-(1.2) has at least one positive solution.

The proof of the above theorem is omitted, because it is very similar to that of
Theorem 4.1. The only difference is that we use the positive cone Q, instead of P ,
in the proof of Theorem 5.1.

Theorem 5.2. Suppose (H1), (H2), and (H3) hold. If Cf(x) < x for all x > 0,
then problem (1.1)-(1.2) has no positive solutions.

The proof of the above theorem is quite similar to that of Theorem 4.3 and
therefore omitted.

Example 5.3. Consider the beam equation

u′′′′(t) = λ(t + 2t2)u(t)(1 + 2u(t))/(1 + u(t)), 0 ≤ t ≤ 1, (5.1)

where λ > 0 is a parameter, together with the boundary conditions (1.2). In this
example, g(t) = t + 2t2 and f(u) = λu(1 + 2u)/(1 + u). It is easy to see that
f0 = F0 = λ, f∞ = F∞ = 2λ, and

λx < f(x) < 2λx for x > 0.

Calculations indicate that A = 47/756, B = 43/630, and C = 1937/30240. By
Theorem 4.1, if

8.04 ≈ 1/(2A) < λ < 1/B ≈ 14.56,

then the problem (5.1)-(1.2) has at least one positive solution. From Theorems 4.3
and 4.4 we see that if

λ ≤ 1/(2B) ≈ 7.326 or λ ≥ 1/A ≈ 16.085,

then the problem (5.1)-(1.2) has no positive solutions.
Note that g(t) is increasing on [0, 1], and f(u) is increasing on [0,+∞). Therefore

Theorems 5.1 and 5.2 apply. From Theorem 5.1 we see that if

8.04 ≈ 1/(2A) < λ < 1/C ≈ 15.612,
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then the problem (5.1)-(1.2) has at least one positive solution. From Theorem 5.2
we see that if

λ ≤ 1/(2C) ≈ 7.806,

then the problem (5.1)-(1.2) has no positive solutions. This example shows that
our existence and nonexistence results are quite sharp indeed.

Acknowledgment. The author is grateful to the anonymous referee for his/her
valuable comments and suggestions.
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