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MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM
HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN

THERMAL EQUILIBRIUM

JIANWEI DONG

Abstract. We show the existence of solutions for mixed boundary-value prob-
lems that model quantum hydrodynamics in thermal equilibrium. Also we find

the semi-classical limit of the solutions.

1. Introduction

Models of ultra-small semiconductor devices with quantum effects include micro-
scopic and macroscopic quantum models [1]. Microscopic quantum models include
quantum kinetic equations and Schrödinger-Poisson systems [2]. Macroscopic quan-
tum models include quantum hydrodynamic and quantum drift-diffusion equations
[1]. Quantum hydrodynamic models give a fairly accurate account of the macro-
scopic behavior of ultra small semiconductor devices in terms of only macroscopic
quantities such as particle densities, current densities and electric fields. The pri-
mary application of the quantum hydrodynamic equations has been in analyzing
the flow of electrons in quantum semiconductor devices, such as resonant tunnelling
diodes [3]. The quantum hydrodynamic equations have the form

∂n

∂t
+ div J = 0,

∂J

∂t
+ div

(J
⊗

J

n

)
+∇p(n)− n∇V − δ2n∇

(∆
√

n√
n

)
= −J

τ
,

λ2∆V = n− C.

(1.1)

Here n, J, p(n), V, C denote the electron density, electron current density, pressure
function, electric potential and doping profile of the semiconductor, respectively; δ,
τ , λ denote the scaled Planck constant, the scaled relaxation time and the scaled
Debye length, respectively (see [4]). The case p(n) = n is the isothermal case and
the case p(n) = nα with α > 1 is the isentropic case. The equations of the thermal
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equilibrium states are obtained by setting J = 0 in the stationary QHD equations

δ2 ∆
√

n√
n

= h(n)− V,

λ2∆V = n− C,

where h(n) is the enthalpy function satisfying p′(n) = nh′(n) (see [4]). In the
isothermal case, h(n) = ln(n) holds; for isentropic states, we have h(n) = α

α−1nα−1.
Setting w =

√
n, we obtain

δ2∆w = w(h(w2)− V ) in Ω,

λ2∆V = w2 − C in Ω.

The existence and uniqueness of the solutions and the classical limit problem were
investigated by Gasser and Jüngel [4], with the Dirichlet boundary conditions

w = w0, V = V0 on ∂Ω,

where w0, V0 ∈ H1(Ω)
⋂

L∞(Ω), w0 ≥ 0 in Ω ⊂ Rd, 1 ≤ d ≤ 3.
In thermal non-equilibrium states, Jüngel obtained the existence and uniqueness

of solutions of stationary equations of the problem (1.1) by the truncation method
(see [5]). Jüngel, Mariani and Rial [6] obtained the local existence of solutions to
(1.1). For results on the stationary problem of (1.1) in the one-dimensional case,
see [7, 8].

In this paper, we investigate the mixed boundary-value problem

δ2∆w = w(h(w2)− V ) in Ω, w = w0 on ΓD,
∂w

∂ν
= 0 on ΓN , (1.2)

λ2∆V = w2 − C in Ω, V = V0 on ΓD,
∂V

∂ν
= 0 on ΓN , (1.3)

where w0, V0 ∈ H1(Ω) ∩ L∞(Ω), w0 ≥ 0in Ω ⊂ Rd, 1 ≤ d < +∞, ν is the unit out-
ward normal to ΓN . Note that the mixed Dirichlet-Neumann boundary conditions
are physically more realistic than the pure Dirichlet condition.

This paper is organized as follows: In section 2, we show the existence of solutions
of the problem (1.2)-(1.3). In section 3, we perform the semi-classical limit.

2. Existence of solutions

For this section we have the following assumptions:
(A1) Ω ⊂ Rd is a bounded domain with ∂Ω ∈ C1,1, ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅,

measd−1 ΓD > 0, where 1 ≤ d < +∞.
(A2) C ∈ L∞(Ω), λ, δ > 0, w0, V0 ∈ H1(Ω) ∩ L∞(Ω), w0 ≥ 0 in Ω.
(A3) h ∈ C((0,∞)) is a non-decreasing function with limx→+∞ h(x) = +∞,

−∞ < limx→0+ xh(x2) ≤ 0.
The main result of this section is the following theorem.

Theorem 2.1. Under assumptions (A1)-(A3), there exists a unique solution (w, V )
in (H1(Ω) ∩ L∞(Ω))2 of problem (1.2)-(1.3). Furthermore, w ≥ 0 a.e. in Ω.

First we regularize the problem (1.2)-(1.3) using the truncation method, then we
show the existence of solutions of the regularized problem by the Leray-Schauder
fixed point theorem. Then we show that the solutions of the regularized problem
are also solution to (1.2)-(1.3), by finding an L∞(Ω) estimate for u.

The proof of Theorem 2.1 is based on the following a priori estimate (see [4]).
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Lemma 2.2. Let (A1)-(A3) hold and let (w, V ) ∈ (H1(Ω))2 be a solution of

δ2∆w = wK(h(w2
K)− V ) in Ω, w = w0 on ΓD,

∂w

∂ν
= 0 on ΓN , (2.1)

λ2∆V = wKw − C in Ω, V = V0 on ΓD,
∂V

∂ν
= 0 on ΓN , (2.2)

where wK = max(0,min(w,K)), K > 0, w0, V0 are as in Theorem 2.1. Then there
exists K0 > 0 such that for all K ≥ K0, δ > 0 and λ > 0 the following estimate
holds

δ2‖w‖21,2,Ω + λ2‖V ‖21,2,Ω ≤ c ,

where c > 0 depends on Ω, h, w0, V0, C and λ such that c → ∞ as λ → 0+. Here,
‖ · ‖m,p,Ω denotes the norm in the Sobolev space Wm,p(Ω).

The proof of the above lemma can be found in [4].

Proof of Theorem 2.1. Let K ≥ K0 where K0 is the constant of Lemma 2.2. Let
u ∈ L2(Ω), and let V ∈ H1(Ω) be the unique solution of

λ2∆V = uKu− C in Ω, V = V0 on ΓD,
∂V

∂ν
= 0 on ΓN .

Let w ∈ H1(Ω) be the unique solution of

δ2∆w = σuK(h(u2
K)− V ) in Ω, w = σw0 on ΓD,

∂w

∂ν
= 0 on ΓN ,

with σ ∈ [0, 1]. Then the operator T : L2(Ω) × [0, 1] → L2(Ω), (u, σ) 7→ w is well
defined. It holds T (u, 0) = 0 for u ∈ L2(Ω). An estimate similarly as in the proof
of Lemma 2.2 gives the bound

‖w‖1,2,Ω ≤ c

for all w ∈ L2(Ω) with T (w, σ) = w where c > 0 is independent of w and σ. Some
standard arguments show that T is continuous and compact. Therefore, we can
apply the Leray-Schauder fixed point theorem to get a solution (w, V ) ∈ (H1(Ω))2

of (2.1)-(2.2). It remains to find an L∞(Ω) bound on w.
First use w− = min(0, w) ∈ H1(Ω) as a test function in (2.1) to obtain

δ2

∫
Ω

|∇w−|2 = −
∫

Ω

w−wKh(w2
K) +

∫
Ω

V wKw− = 0,

thus w ≥ 0 a.e. in Ω. Let U0 = supΓD
V0, U ≥ U0 and take (V − U)+ =

max(0, V − U) as a test function in (2.2) to obtain

λ2

∫
Ω

|∇(V − U)+|2 = −
∫

Ω

wKw(V − U)+ +
∫

Ω

C(V − U)+

≤
∫

Ω

C(V − U)+

≤ c‖(V − U)+‖1,2,Ω(meas(V > U))1/2.

(2.3)

Let r > 2 be such that the embedding H1(Ω) ↪→ Lr(Ω) is continuous. It is well
known that for W > U ,

(meas(V > W ))1/r(W − U) ≤ c(Ω)‖(V − U)+‖1,2,Ω,

see [9, Ch. 4]. Therefore, we get from (2.3), for W > U ≥ U0,

meas(V > W ) ≤ c

(W − U)r
(meas(V > U))r/2.
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Since r
2 > 1, we can apply Stampacchia’s Lemma (see [9, Ch. 4] or [10, Ch. 2.3])

to get

V (x) ≤ V := U0 + c(Ω, d, λ)‖C‖0,∞,Ω,

where c(Ω, d, λ) > 0. Let w ≥ ‖w0‖0,∞,ΓD
and K > w, use (w − w)+ as a test

function in (2.1) to obtain

δ2

∫
Ω

|∇(w − w)+|2 = −
∫

Ω

wK(h(w2
K)− V )(w − w)+

= −
∫

Ω

wK(h(w2
K)− h(w2))(w − w)+

+
∫

Ω

(V − h(w2))wK(w − w)+ ≤ 0.

where w satisfies

h(w2) ≥ V := U0 + c(Ω, d, λ)‖C‖0,∞,Ω.

This implies w ≤ w a.e. in Ω. Now use (−V −U)+ with U ≥ U0 = − infΓD
V0 as a

test function in (2.2) to get

λ2

∫
Ω

|∇(−V − U)+|2 ≤
∫

Ω

(wKw − C)(−V − U)+

≤ c

∫
Ω

(−V − U)+

≤ c‖(−V − U)+‖1,2,Ω(meas(−V > U))1/2,

where c > 0 depends on C and w. Using Stampacchia’s method as above allows to
conclude that

V (x) ≥ −V := −U0 − c(Ω, d, λ)(‖C‖0,∞,Ω + w2).

We get wK = w by taking K > max(K0, w). Therefore the solution of (2.1)-(2.2)
is the solution of (1.2)-(1.3). The proof of uniqueness of the solution we can see
[4]. �

3. The semi-classical limit

We need the following assumptions in this section.

(A4) w0 =
√

C, V0 = h(C) on ΓD, C ∈ H1(Ω), C(x) ≥ C > 0 on ΓD.

Theorem 3.1. Let (A1)-(A4) hold and let (wδ, Vδ) be a solution of (1.2)-(1.3).
h(x) = h1(x) = lnx (isothermal). Then there exists a subsequence, also denoted by
(wδ, Vδ), such that as δ → 0,

wδ ⇀ w, Vδ ⇀ V in H1(Ω),

where (w, V ) is a solution of

λ2∆V = w2 − C in Ω, V = V0 on ΓD,
∂V

∂ν
= 0 on ΓN , (3.1)

0 = w(h1(w2)− V ) in Ω. (3.2)
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Proof. Because of the L∞(Ω)-estimate of Vδ in Theorem 2.1 there exists a > 0 such
that h1(a2) ≤ −‖Vδ‖0,∞,Ω. Take w = min(

√
C, a) and use (wδ − w)− as a test

function in (1.2) to get

δ2

∫
Ω

|∇(wδ − w)−|2

= −
∫

Ω

(h1(w2
δ)− h1(w2))wδ(wδ − w)− +

∫
Ω

(Vδ − h1(w2))wδ(wδ − w)− ≤ 0.

This implies wδ ≥ w a.e. in Ω. Using h1(w2
δ) − Vδ as a test function in (1.2), we

obtain

−
∫

Ω

wδ(h1(w2
δ)− Vδ)2

= δ2

∫
Ω

∇wδ · ∇h1(w2
δ)− δ2

∫
Ω

∇Vδ · ∇(wδ − w0)− δ2

∫
Ω

∇Vδ · ∇w0.

Using wδ − w0 as a test function in (1.3), we obtain

−δ2

∫
Ω

∇Vδ · ∇(wδ − w0) = δ2λ−2

∫
Ω

(w2
δ − C)(wδ − w0).

Therefore,

−
∫

Ω

wδ(h1(w2
δ)− Vδ)2

= δ2

∫
Ω

∇wδ · ∇h1(w2
δ) + δ2λ−2

∫
Ω

(w2
δ − C)(wδ − w0)− δ2

∫
Ω

∇Vδ · ∇w0,

i.e. ∫
Ω

∇wδ · ∇h1(w2
δ)

= −δ−2

∫
Ω

wδ(h1(w2
δ)− Vδ)2 − λ−2

∫
Ω

(w2
δ − C)(wδ − w0) +

∫
Ω

∇Vδ · ∇w0

≤ −λ−2

∫
Ω

(w2
δ − C)(wδ − w0) +

∫
Ω

∇Vδ · ∇w0 ≤ c1,

where c1 is independent of δ. Then we have

2
∫

Ω

|∇wδ|2

wδ
≤ c1.

Hence ∫
Ω

|∇wδ|2 ≤
c1w

2
≤ c,

where c is independent of δ. By Lemma 2.2, we know
∫
Ω
|∇Vδ|2 ≤ c, where c is

independent of δ → 0. Thus there exists a subsequence, also denoted by (wδ, Vδ),
such that as δ → 0,

wδ ⇀ w, Vδ ⇀ V in H1(Ω), wδ → w, Vδ → V in L2(Ω),
wδ → w a.e. in Ω.

(3.3)

By 0 < w ≤ wδ ≤ w and (3.3), for a subsequence,

wδh1(w2
δ) ⇀ wh1(w2) in L2(Ω).
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Therefore,

−λ2

∫
Ω

∇V · ∇ϕ =
∫

Ω

(w2 − C)ϕ,

0 =
∫

Ω

w(h1(w2)− V )ϕ

for any ϕ ∈ H1
0 (Ω ∪ ΓN ), i.e. (w, V ) is a solution of (3.1)-(3.2). �

Theorem 3.2. Let (A1)-(A4) hold, d ≤ 2 and (wδ, Vδ) be a solution of (1.2)-
(1.3). Set h(x) = hα(x) = α

α−1xα−1 with α > 1 (isentropic). Then there exists a
subsequence, also denoted by (wδ, Vδ), such that, as δ → 0, we have

wδ ⇀ w, Vδ ⇀ V in H1(Ω),

where (w, V ) is a solution of

λ2∆V = w2 − C in Ω, V = V0 on ΓD,
∂V

∂ν
= 0 on ΓN , (3.4)

0 = w(hα(w2)− V ) in Ω. (3.5)

Proof. By (1.2) and [11] we know there exists p > 2 such that w ∈ W 1,p(Ω). We
suppose that there exists a set ω such that ω ⊂⊂ Ω, meas(ω) > 0 and w = 0 in ω.
Let ωn ⊂⊂ Ω be a sequence of sets such that ω ⊂ ωn and ωn → Ω as n → ∞. By
(1.2) and Harnack’s inequality (see [12, p.199]),

0 ≤ sup
ωn

w ≤ c inf
ωn

w = 0.

Therefore, w = 0 in ωn, n ∈ N. Because W 1,p(Ω) ↪→ C0(Ω) for d ≤ 2 and p > 2,
we have w = 0 in Ω, this contradicts (A4). Then there exists a w > 0 such that
w ≥ w in Ω. Using hα(w2

δ)− Vδ as a test function in (1.2) we obtain

−
∫

Ω

wδ(hα(w2
δ)− Vδ)2

= δ2

∫
Ω

∇wδ · ∇hα(w2
δ)− δ2

∫
Ω

∇Vδ · ∇(wδ − w0)− δ2

∫
Ω

∇Vδ · ∇w0.

Using wδ − w0 as a test function in (1.3),

−δ2

∫
Ω

∇Vδ · ∇(wδ − w0) = δ2λ−2

∫
Ω

(w2
δ − C)(wδ − w0).

Hence

−
∫

Ω

wδ(hα(w2
δ)− Vδ)2

= δ2

∫
Ω

∇wδ · ∇hα(w2
δ) + δ2λ−2

∫
Ω

(w2
δ − C)(wδ − w0)− δ2

∫
Ω

∇Vδ · ∇w0,

i.e. ∫
Ω

∇wδ · ∇hα(w2
δ)

= −δ−2

∫
Ω

wδ(hα(w2
δ)− Vδ)2 − λ−2

∫
Ω

(w2
δ − C)(wδ − w0) +

∫
Ω

∇Vδ · ∇w0

≤ −λ−2

∫
Ω

(w2
δ − C)(wδ − w0) +

∫
Ω

∇Vδ · ∇w0 ≤ c1,
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where c1 is independent of δ. Therefore,

2α

∫
Ω

w2α−3
δ |∇wδ|2 ≤ c1.

If α > 3/2, then

2α

∫
Ω

w2α−3|∇wδ|2 ≤ c1.

Hence ∫
Ω

|∇wδ|2 ≤
c1

2αw2α−3
.

If α = 3/2, then

2α

∫
Ω

|∇wδ|2 ≤ c1.

Thus ∫
Ω

|∇wδ|2 ≤
c1

2α
.

If 1 < α < 3/2, then

2α

∫
Ω

w2α−3|∇wδ|2 ≤ c1.

Therefore, ∫
Ω

|∇wδ|2 ≤
c1

2αw2α−3 .

By setting

c = max(
c1

2αw2α− 3
,

c1

2α
,

c1

2αw2α−3 ),

we obtain ∫
Ω

|∇wδ|2 ≤ c,

where c is independent of δ. By Lemma 2.2 we know
∫
Ω
|∇Vδ|2 ≤ c, where c is

independent of δ → 0. Therefore, there exists a subsequence, also denoted by
(wδ, Vδ), such that as δ → 0, we have

wδ ⇀ w, Vδ ⇀ V in H1(Ω), wδ → w, Vδ → V in L2(Ω),
wδ → w a.e. in Ω.

(3.6)

By 0 < w ≤ wδ ≤ w and (3.6) we know, that for a subsequence,

wδhα(w2
δ) ⇀ whα(w2) in L2(Ω).

Hence

−λ2

∫
Ω

∇V · ∇ϕ =
∫

Ω

(w2 − C)ϕ,

0 =
∫

Ω

w(hα(w2)− V )ϕ

for any ϕ ∈ H1
0 (Ω ∪ ΓN ), i.e. (w, V ) is a solution of (3.4)-(3.5). �
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[5] A. Jüngel, A steady-state quantum Euler-Poisson system for potential flows, Commun. Math.
Phys. 194 (1998), no. 2, 463–479.
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[7] M. T. Gyi and A. Jüngel, A quantum regularization of one-dimensional hydrodynamic model

for semiconductors, Adv. Differential Equations 5 (2000), no. 4-6, 773–800.

[8] B. Zhang and J. Jerome, On a steady-state quantum hydrodynamic model for semiconductors,
Nonlinear Anal. 26 (1996), no. 4, 845–856.

[9] G. Stampacchia, ‘Equations elliptiques du second ordre à coefficients discontinus, Les Presses
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