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MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM
HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN
THERMAL EQUILIBRIUM

JIANWEI DONG

ABSTRACT. We show the existence of solutions for mixed boundary-value prob-
lems that model quantum hydrodynamics in thermal equilibrium. Also we find
the semi-classical limit of the solutions.

1. INTRODUCTION

Models of ultra-small semiconductor devices with quantum effects include micro-
scopic and macroscopic quantum models [I]. Microscopic quantum models include
quantum kinetic equations and Schrédinger-Poisson systems [2]. Macroscopic quan-
tum models include quantum hydrodynamic and quantum drift-diffusion equations
1. Quantum hydrodynamic models give a fairly accurate account of the macro-
scopic behavior of ultra small semiconductor devices in terms of only macroscopic
quantities such as particle densities, current densities and electric fields. The pri-
mary application of the quantum hydrodynamic equations has been in analyzing
the flow of electrons in quantum semiconductor devices, such as resonant tunnelling
diodes [3]. The quantum hydrodynamic equations have the form

on .

E—i—dle—O7
oJ (IR J 9 Ayny T (1.1)
E-ﬁ-dlv(T)—l—Vp(n) nVV 5nV< \/ﬁ)_ p

NAV =n—C.

Here n, J,p(n),V,C denote the electron density, electron current density, pressure
function, electric potential and doping profile of the semiconductor, respectively; 9,
7, A denote the scaled Planck constant, the scaled relaxation time and the scaled
Debye length, respectively (see [4]). The case p(n) = n is the isothermal case and
the case p(n) = n® with @ > 1 is the isentropic case. The equations of the thermal
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equilibrium states are obtained by setting J = 0 in the stationary QHD equations

A

220 oy,
Vn

MNAV =n—C,
where h(n) is the enthalpy function satisfying p’(n) = nh'(n) (see [4]). In the
isothermal case, h(n) = In(n) holds; for isentropic states, we have h(n) = —%-n®~1.
Setting w = /n, we obtain

§2Aw = w(h(w?) = V) in Q,
NAV =w? —C in Q.
The existence and uniqueness of the solutions and the classical limit problem were
investigated by Gasser and Jiingel [4], with the Dirichlet boundary conditions
w=1wy, V=V, onodf,

where wq, Vo € HY(Q) (N L®(Q), wo >0in QC R4, 1<d<3.

In thermal non-equilibrium states, Jiingel obtained the existence and uniqueness
of solutions of stationary equations of the problem by the truncation method
(see [5]). Jiingel, Mariani and Rial [6] obtained the local existence of solutions to
(1.1). For results on the stationary problem of in the one-dimensional case,
see [, [8].

In this paper, we investigate the mixed boundary-value problem

2Aw = wh(w?) —=V) inQ, w=wy onlp, g—w:() on 'y, (1.2)
14

NAV=w?—-C inQ, V=V, onlp, Z—V:O on I'y, (1.3)
14

where wg, Vo € H'(Q) N L>®(Q), wo > 0in Q € R4, 1 < d < +o0, v is the unit out-
ward normal to I'y. Note that the mixed Dirichlet-Neumann boundary conditions
are physically more realistic than the pure Dirichlet condition.

This paper is organized as follows: In section 2, we show the existence of solutions
of the problem (|1.2))-(1.3)). In section 3, we perform the semi-classical limit.

2. EXISTENCE OF SOLUTIONS

For this section we have the following assumptions:

(A1) Q C R?is a bounded domain with 9Q € C*!, 9Q =TpUl'y, TpNTx = 0,
measqg_1 I'p > 0, where 1 < d < +oc.

(A2) C € L*>®(Q), \,§ > 0, wg, Vo € HY(Q) N L>®(Q), wg > 0 in Q.

(A3) h € C((0,00)) is a non-decreasing function with lim,_, . h(z) = +o0,
—00 < lim, 4 zh(z?) <0.

The main result of this section is the following theorem.

Theorem 2.1. Under assumptions (A1)-(A8), there exists a unique solution (w, V')
in (HY(Q) N L>®(2))? of problem (1.2)-(1.3). Furthermore, w >0 a.e. in Q.

First we regularize the problem (|1.2])-(|1.3]) using the truncation method, then we
show the existence of solutions of the regularized problem by the Leray-Schauder
fixed point theorem. Then we show that the solutions of the regularized problem

are also solution to (|1.2)-(L.3)), by finding an L>°(Q2) estimate for w.

The proof of Theorem is based on the following a priori estimate (see [4]).
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Lemma 2.2. Let (A1)-(A3) hold and let (w,V) € (HY(Q))? be a solution of

0

2Aw = wi (h(wk) —V) inQ, w=wy onTp, 8—w:0 on Ty, (2.1)
v

NAV =wgw—C i Q, V=V, onTp, g—vzo on Ty, (2.2)
v
where wx = max(0, min(w, K)), K > 0, wy, Vy are as in Theorem m Then there
exists Ko > 0 such that for all K > Ky, > 0 and X\ > 0 the following estimate
holds
52”“’”%,2,9 + )‘2||VH?,2,Q <c,
where ¢ > 0 depends on Q, h,wg, Vo, C and X such that ¢ — oo as A — 0+. Here,
I - llm,p.2 denotes the norm in the Sobolev space W™P ().

The proof of the above lemma can be found in [4].

Proof of Theorem[2.1 Let K > K, where K is the constant of Lemma Let
u € L?(Q), and let V € H*(Q) be the unique solution of

oV

NAV =ugu—C inQ, V=V, onlp, 5:0 on I'y.
Let w € H*(Q) be the unique solution of
2Aw = oug (h(u%) —V) inQ, w=owy onlp, a—w:O on I'y,
v

with o € [0,1]. Then the operator T : L?(Q) x [0,1] — L*(Q), (u,0) — w is well
defined. It holds T'(u,0) = 0 for u € L*(Q). An estimate similarly as in the proof
of Lemma [2.2] gives the bound
[wllize <c
for all w € L*(Q) with T(w,o) = w where ¢ > 0 is independent of w and o. Some
standard arguments show that T is continuous and compact. Therefore, we can
apply the Leray-Schauder fixed point theorem to get a solution (w, V) € (H*(Q))?
of (2.1)-(2-2). It remains to find an L>(Q2) bound on w.
First use w™ = min(0,w) € H'(Q) as a test function in to obtain

52/ |Vw™|? = —/ w_th(w%()—i—/ Vwgw™ =0,
) Q Q

thus w > 0 ae. in Q. Let Uy = supp, Vo, U > Uy and take (V — U)*T =
max(0,V — U) as a test function in (2.2)) to obtain

A?/Q V(V —U)? = —/QwKw(V— Uyt +/Qc(v— )+

< C(V _ U)+ (2.3)
Q

<c||(V =U)"|12.0(meas(V > U))l/Q.

Let r > 2 be such that the embedding H!(Q) < L"(£) is continuous. It is well
known that for W > U,

(meas(V > W) (W = U) < (@) (V =U)" 120,
see [0, Ch. 4]. Therefore, we get from ([2.3)), for W > U > U,

meas(V > W) < ﬁ(meaS(V > U))'/2.
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Since § > 1, we can apply Stampacchia’s Lemma (see [9, Ch. 4] or [10, Ch. 2.3])

to get
V(z) <V :i=U+ c(,d, N)|ICllo.00.0

where ¢(Q,d,\) > 0. Let W > ||wollo.corp, and K > w, use (w —w)" as a test
function in (2.1) to obtain

2 / V(w—m)* = - / wie(h(wk) - V)(w — w)*
. / wie(h(wk) — h(@?))(w - w)*
+Awum@ﬁmﬂw—m+go

where w satisfies
hw?) >V := U + (€2, d, A)[|Cllo,00 -
This implies w < W a.e. in Q. Now use (—V —U)T with U > Uy = —infr, V) as a
test function in (2.2]) to get
v/ﬁw—v—UﬁPg/@mw—mpv—Uw
Q Q

SQAFV—UV

<c|(-V-U)*" l1,2,0(meas(—V > U))1/27

where ¢ > 0 depends on C and w. Using Stampacchia’s method as above allows to
conclude that

V(l‘) >V i=-U— C(Q7 d, )‘)(”C|

We get wxg = w by taking K > max(Ky,w). Therefore the solution of (2.1)-(2.2)
is the solution of ([1.2)-(1.3)). The proof of uniqueness of the solution we can see
[]. O

0,000 + W2).

3. THE SEMI-CLASSICAL LIMIT

We need the following assumptions in this section.
(A4) wy =C, Vo =h(C)onTp,C € HY(Q), C(x) >C >0on I'p.
Theorem 3.1. Let (A1)-(A4) hold and let (ws,Vs) be a solution of (L.2)-(L.3).

h(z) = hi(x) = Inx (isothermal). Then there exists a subsequence, also denoted by
(ws, Vi), such that as § — 0,

ws —w, Vs—V in HY(Q),
where (w, V') is a solution of

NAV =uw?-C inQ, V=V onlp, %:O on 'y, (3.1)

0 =whi(w?) —=V) inQ. (3.2)
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Proof. Because of the L>()-estimate of Vj in Theorem [2.1] there exists a > 0 such
that hy(a?) < 7”%”070079. Take w = min(y/C,a) and use (ws —w)~ as a test
function in ) to get

(52/ |V ws — |2
= /Q(hl(w6) hi(w?))ws(ws —w)™ + [ (Vs — hi(w?®))ws(ws —w)™ < 0.

Q

This implies ws > w a.e. in . Using hl(w ) — Vs as a test function in , we
obtain

- [ wsta(ud) - v
Q
= 52/ Vws - Vhi(w?) — 52/ VVs - V(ws — wg) — 52/ VVs - Vwp.
Q Q Q
Using ws — wop as a test function in , we obtain
—62/ VVs - V(ws — wo) = A2 [ (w2 — C)(ws — wo).

Q
Therefore,

—/ﬁmmw@f%f
Q

= 52/ Vws - Vhi(w?) +52x2/(w§ — C)(ws — wp) — 52/ VVs - Vo,
Q Q Q
i.e.

/ Vws - Vhi(w?)

= /wghlw(;) Vs)? —)\2/(w§—0)(w5—w0)+/VV5-Vwo
Q Q

-\~ / ) (ws — wo) /VV5 Vuwgy < ey,
where c¢; is independent of §. Then we have
[Vws|? <
Q Ws

Hence
/ Vs < 22 < ¢,
Q 2

where c is independent of §. By Lemma we know [, [VV;s]* < ¢, where ¢ is
independent of § — 0. Thus there exists a subsequence, also denoted by (ws, Vs),
such that as & — 0,

ws —w, Vi—=V in HY(Q), ws—w, Vs—V in L*Q),
ws — w a.e. in €.
and (3.3)), for a subsequence,
wshy(w?) — why(w?) in L?(Q).

(3.3)

ByO<w<ws <w
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Therefore,

X2 [ VV . -Vp= / (w? = O)ep,
Q Q

0= /Qw(hl(w )= V)

for any p € HY(QUTy), ie. (w,V) is a solution of (3.1)-(3.2). O
Theorem 3.2. Let (A1)-(A4) hold, d < 2 and (ws,V5) be a solution of (L.2)-
[L.3). Set h(z) = ha(z) = Z%52*! with a > 1 (isentropic). Then there ezists a
subsequence, also denoted by (ws, Vs), such that, as § — 0, we have
ws —w, Vs—V inHY(Q),
where (w, V') is a solution of
ov

NAV =uw?-C inQ, V=V, onlp, E:O on I'y, (3.4)

0 = w(ha(w?) = V) in Q. (3.5)

Proof. By and [11] we know there exists p > 2 such that w € W1P(Q). We
suppose that there exists a set w such that w CC 2, meas(w) > 0 and w = 0 in w.
Let w,, CC Q be a sequence of sets such that w C w, and w, — Q as n — co. By
and Harnack’s inequality (see [12], p.199]),

0 <supw < cinfw = 0.
Wn

Wn,

Therefore, w = 0 in w,, n € N. Because WP(Q) — C°(Q) for d < 2 and p > 2,
we have w = 0 in €2, this contradicts (A4). Then there exists a w > 0 such that
w > w in Q. Using hq(w?) — Vs as a test function in (1.2]) we obtain

- / ws(ha (w2) — Vi)?

= 52/ Vws - Vhe(w3) — 52/ VVs - V(ws —wp) — 52/ VVs - V.
Q Q Q
Using ws — wq as a test function in ([1.3)),
—(52/ VVs - V(ws —wg) = 62172 / (w3 — C)(ws — wo).
Q Q

Hence

- / w5 (ho(w2) — V5)?
Q

= 52/ Vws - Vhg(w?) + 52)\72/
Q

(w? — C)(ws — wp) — 57 / Vs - Vo,
Q

Q
i.e.

Vuws - Vha(wg)
Q
_ 52 / ws(ha(wd) — Vs)? — A2 / (w? — C)(ws — wo) + / TV - Vg
Q Q Q

< —/\’2/(w§70)(w5*w0)+/ VVs - Vwg < ¢y,
Q Q
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where ¢; is independent of §. Therefore,
Qa/ w33 Vws|? < ¢
Q

If & > 3/2, then
Hence

If o = 3/2, then
Thus

If 1 < o< 3/2, then

Therefore,
2 1
/Q |[Vws|® < Som2a3"
By setting
c1 c1 c1
¢ = max( 20w2a — 3’ 2a’ 2023 )
we obtain

/ |Vw5|2 <eg¢
Q

where c is independent of §. By Lemma we know [, |[VV;]? < ¢, where ¢ is
independent of 6 — 0. Therefore, there exists a subsequence, also denoted by
(ws, Vi), such that as § — 0, we have

ws —w, Vi—V in H(Q), ws;—w, Vs—V in L*Q),

3.6
ws — w a.e. in . (36)

By 0 < w < ws <w and (3.6) we know, that for a subsequence,
wsha (w?) = whe(w?) in L?(Q).

Hence
—/\2/ VV .-V = / (w? = O)ep,
Q Q
0= / wha (w?) — V)
Q

for any p € HY(QUT ), ie. (w,V) is a solution of (3.4)-(3.5)). O
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