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OSCILLATORY BEHAVIOR FOR SECOND-ORDER DAMPED
DIFFERENTIAL EQUATION WITH NONLINEARITIES

INCLUDING RIEMANN-STIELTJES INTEGRALS

ERCAN TUNÇ, HAIDONG LIU

Abstract. In this article, we establish new oscillation criteria for forced
second-order damped differential equations with nonlinearities that include

Riemann-Stieltjes integrals. The results obtained here extend related results
reported in the literature, and can easily be extended to more general equa-

tions of the type considered here. Two examples illustrate the results obtained

here.

1. Introduction

This article concerns the oscillatory behavior of the forced second order differ-
ential equation with a nonlinear damping term,(

r(t)φα(x′(t))
)′ + p(t)φα(x′(t)) + f(t, x) = e(t), t ≥ t0 ≥ 0, (1.1)

with

f(t, x) = q(t)φα(x(t)) +
∫ b

a

g(t, s)φγ(t,s)+α−αβ(t)(x(t))dξ(s), (1.2)

where a, b ∈ R with b ∈ (a,∞), α > 0, and φ∗(u) := |u|∗ sgnu.
In the remainder of this article we assume that:

(i) r, p, q and e : [t0,∞)→ R are real valued continuous functions with r(t) > 0;
(ii) g : [t0,∞)× [a, b]→ R is a real valued continuous function;

(iii) β : [t0,∞)→ (0,∞) and γ : [t0,∞)× [a, b]→ R are real valued continuous
function such that γ(t, ·) is strictly increasing on [a, b], and

0 < γ(t, a) < αβ(t) < γ(t, b) and αβ(t) ≤ γ(t, a) + α, for t ≥ t0; (1.3)

(iv) ξ : [a, b]→ R is a real valued strictly increasing function.

Here
∫ b
a
f(s)dξ(s) denotes the Riemann-Stieltjes integral of the function f on [a, b]

with respect to ξ.
As usual, a nontrivial solution x(t) of equation (1.1) is called oscillatory if it has

arbitrary large zeros, otherwise it is called nonoscillatory. Equation (1.1) is said to
be oscillatory if all its solutions are oscillatory.
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We note that as special cases, when α = 1 and p(t) ≡ 0, equation (1.1) reduces
to the equation

(r(t)x′(t))′ + q(t)x(t) +
∫ b

a

g(t, s)φγ(t,s)+1−β(t)(x(t))dξ(s) = e(t) : (1.4)

when p(t) ≡ 0, β(t) ≡ 1, γ(t, s) = γ(s) and a = 0, equation (1.1) reduces to(
r(t)φα(x′(t))

)′ + q(t)φα(x(t)) +
∫ b

0

g(t, s)φγ(s)(x(t))dξ(s) = e(t); (1.5)

and when ξ(s) is a step function, the integral term in the equation (1.5) reduces to
a finite sum and hence equation (1.5) becomes

(r(t)φα(x′(t)))′ + q(t)φα(x(t)) +
n∑
i=1

qi(t)φαi(x(t)) = e(t). (1.6)

In recent years, differential equations and variational problems with variable
exponent growth conditions have been investigated extensively. We refer the reader
to [1, 2, 7, 8, 10, 13, 14, 16, 17, 18]. The study of such problems arise from
nonlinear elasticity theory and electrorheological fluids, see [10, 18]. At the same
time, some results on the oscillatory behavior of solutions of equations with variable
exponent growth conditions were established in [9, 19] and the references therein.
On the other hand, many authors have been interested in differential equations
with nonlinearity given by a Riemann-Stieltjes integral

∫ b
a
f(s)dξ(s). Because the

integral term becomes a finite sum when ξ(s) is a step function and a Riemann
integral when ξ(s) = s. We refer to [5, 9, 12] for more information. In particularly,
Liu and Meng [9] discussed equation (1.4), Hassan and Kong [5] studied equation
(1.5).

Motivated by the above, we will establish interval oscillation criteria for the
general equation (1.1) which involves variable exponent growth conditions. Our
work is of significance because equation (1.1) not only contains a α-Laplacian term
but also contains a damping term and allows nonlinear terms given by variable
exponents. It is our belief that the present paper will contribute significantly to
the study of oscillatory behavior of solutions of second order damped differential
equations with nonlinearities given by Riemann-Stieltjes integrals.

The paper is organized as follows. In Section 2 we establish interval oscillation
criteria of both the El-Sayed type and the Kong type for equation (1.1). In Section
3 we apply our theory to two examples.

2. Main results

In the following, we denote by Lξ[a, b] the set of Riemann-Stieltjes integrable
functions on [a, b] with respect to ξ. We further assume that for any t ∈ [t0,∞),
γ(t, ·), 1/γ(t, ·) ∈ Lξ[a, b]. To obtain our main results in this paper, we need the
following lemmas.

Lemma 2.1 ([4]). If X and Y are nonnegative and λ > 1, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,

where equality holds if and only if X = Y .

The proofs of the following lemmas are similar to those of [9, Lemmas 2.1 and
2.2] and so the proofs will be omitted.
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Lemma 2.2. Assume that (iii) and (1.3) hold. Let h = sup{s ∈ (a, b) : γ(t, s) ≤
αβ(t), t ∈ [t0,∞)}, and set

m1(t) :=
∫ b

h

αβ2(t)
γ(t, s)

(∫ b

h

dξ(s)
)−1

dξ(s), t ∈ [t0,∞),

m2(t) :=
∫ h

a

αβ2(t)
γ(t, s)

(∫ h

a

dξ(s)
)−1

dξ(s), t ∈ [t0,∞).

Then for any function θ satisfying θ(t) ∈ (m1(t),m2(t)) for t ∈ [t0,∞), there exists
a function η : [t0,∞) × [a, b] → (0,∞) satisfying, for any t ∈ [t0,∞), η(t, ·) ∈
Lξ[a, b], such that∫ b

a

γ(t, s)η(t, s)dξ(s) = αβ2(t), (t, s) ∈ [t0,∞)× [a, b], (2.1)∫ b

a

η(t, s)dξ(s) = θ(t), (t, s) ∈ [t0,∞)× [a, b]. (2.2)

Lemma 2.3. Let θ : [t0,∞)→ (0,∞) and η : [t0,∞)× [a, b]→ (0,∞) be functions
such that η(t, ·) ∈ Lξ[a, b] for any t ∈ [t0,∞) and (2.2) holds. Then, for any
function w : [t0,∞)×[a, b]→ [0,∞) satisfying, for any t ∈ [t0,∞), w(t, ·) ∈ Lξ[a, b],
we have∫ b

a

η(t, s)w(t, s)dξ(s) ≥ exp
( 1
θ(t)

∫ b

a

η(t, s) ln[θ(t)w(t, s)]dξ(s)
)
, (2.3)

where we use the convention that ln 0 = −∞ and e−∞ = 0.

Following El-Sayed [3], for c, d ∈ [t0,∞) with c < d, we define the function class
E(c, d) := {u ∈ C1[c, d] : u(c) = 0 = u(d), u 6≡ 0}. Our first main result provides an
oscillation criterion for equation (1.1) of the El-Sayed type.

Theorem 2.4. Suppose that for any T ≥ t0, there exist T ≤ a1 < b1 ≤ a2 < b2
such that for i = 1, 2,

g(t, s) ≥ 0 for (t, s) ∈ [ai, bi]× [a, b], (2.4)

(−1)ie(t) ≥ 0 for t ∈ [ai, bi]. (2.5)

Let θ be a function satisfying θ(t) ∈ (m1(t), β(t)] for t ∈ [t0,∞), and η : [t0,∞) ×
[a, b] → (0,∞) be a function such that 1/η(t, ·) ∈ Lξ[a, b] and (2.1)-(2.2) hold.
Suppose also that for i = 1, 2, there exists a function ui ∈ E(ai, bi) such that∫ bi

ai

[δ(t)Q(t)|ui(t)|α+1 − δ(t)r(t)|u′i(t)|α+1]dt > 0, (2.6)

where

δ(t) := exp
(∫ t

t0

p(s)
r(s)

ds
)
,
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and

Q(t) = q(t) +
((β2(t)− θ(t)β(t) + θ(t)

)
|e(t)|

β2(t)− θ(t)β(t)

) β2(t)−θ(t)β(t)
β2(t)−θ(t)β(t)+θ(t)

× exp
( θ(t)
β2(t)− θ(t)β(t) + θ(t)

[
ln
(
β2(t)− θ(t)β(t) + θ(t)

)
+

∫ b
a
η(t, s) ln g(t,s)

η(t,s)dξ(s)

θ(t)

])
.

(2.7)

Here we use the convention that ln 0 = −∞, e−∞ = 0, and 00 = 1 due to the fact
that limt→0+ tt = 1. Then equation (1.1) is oscillatory.

Proof. Assume that (1.1) has an extendible solution x(t) which is eventually positive
or negative. Then, without loss of generality, we may assume that there exists
t1 ∈ [t0,∞) such that x(t) > 0 for all t ≥ t1. When x(t) is an eventually negative,
the proof follows the same way except that the interval [a2, b2] instead of [a1, b1] is
used. Define the function w(t) by

w(t) = δ(t)
r(t)φα(x′(t))
φα(x(t))

, t ≥ t1. (2.8)

Then, in view of (1.1) and (2.8), we obtain

w′(t)

= δ′(t)
r(t)φα(x′(t))
φα(x(t))

+ δ(t)
[ (r(t)φα(x′(t)))′

φα(x(t))
− r(t)φα(x′(t)) (φα(x(t)))′

(φα(x(t)))2

]
= δ′(t)

r(t)φα(x′(t))
xα(t)

− δ(t)p(t)φα(x′(t))
xα(t)

− δ(t)q(t)

− δ(t)
∫ b

a

g(t, s)
(
x(t)

)γ(t,s)−αβ(t)
dξ(s) + δ(t)

e(t)
xα(t)

− αδ(t)r(t)φα(x′(t))x′(t)
xα+1(t)

= −δ(t)q(t)− δ(t)
∫ b

a

g(t, s) (x(t))γ(t,s)−αβ(t)
dξ(s) + δ(t)

e(t)
xα(t)

− αδ(t)r(t)φα(x′(t))x′(t)
xα+1(t)

= −δ(t)q(t)− δ(t)
∫ b

a

g(t, s) (x(t))γ(t,s)−αβ(t)
dξ(s) + δ(t)

e(t)
xα(t)

− αδ(t)r(t) |x
′(t)|α+1

xα+1(t)

= −δ(t)q(t)− δ(t)
∫ b

a

g(t, s) (x(t))γ(t,s)−αβ(t)
dξ(s) + δ(t)

e(t)
xα(t)

− α |w(t)|α+1
α

(δ(t)r(t))1/α
,

(2.9)

for t ≥ t1.
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From the assumption, there exists a nontrivial interval [a1, b1] ⊂ [t1,∞) such that
(2.4) and (2.5) hold with i = 1. Next, we consider two cases: case (I) θ(t) ≡ β(t),
and case (II) θ(t) ∈ (m1(t), β(t)).

Assume that case (I) holds. Then, in view of (2.4), (2.5) and (2.9), we see that,
for t ∈ [a1, b1],

w′(t) ≤ −δ(t)q(t)− δ(t)
∫ b

a

g(t, s)
(
x(t)

)γ(t,s)−αβ(t)
dξ(s)− α |w(t)|α+1

α

(δ(t)r(t))1/α
. (2.10)

Clearly, from the assumption on η, we have that∫ b

a

η(t, s) (γ(t, s)− αβ(t)) dξ(s) = 0. (2.11)

From (2.11) and Lemma 2.3, we obtain, for t ∈ [a1, b1],∫ b

a

g(t, s)
(
x(t)

)γ(t,s)−αβ(t)
dξ(s)

=
∫ b

a

η(t, s)η−1(t, s)g(t, s) (x(t))γ(t,s)−αβ(t)
dξ(s)

≥ exp
( 1
β(t)

∫ b

a

η(t, s) ln[β(t)η−1(t, s)g(t, s)
(
x(t)

)γ(t,s)−αβ(t)]dξ(s)
)

= exp
( 1
β(t)

∫ b

a

η(t, s) ln[β(t)η−1(t, s)g(t, s)]dξ(s)

+
1
β(t)

∫ b

a

η(t, s) ln[
(
x(t)

)γ(t,s)−αβ(t)]dξ(s)
)

= exp
( 1
β(t)

∫ b

a

η(t, s) ln[β(t)η−1(t, s)g(t, s)]dξ(s)

+
lnx(t)
β(t)

∫ b

a

η(t, s) (γ(t, s)− αβ(t)) dξ(s)
)

= exp
( 1
β(t)

∫ b

a

η(t, s) ln
[
β(t)η−1(t, s)g(t, s)

]
dξ(s)

)
= exp

(
ln[β(t)] +

1
β(t)

∫ b

a

η(t, s) ln
[
η−1(t, s)g(t, s)

]
dξ(s)

)
.

Using this in (2.10), we see that, for t ∈ [a1, b1],

w′(t) ≤ −δ(t)q(t)− δ(t) exp
(

ln[β(t)]

+
1
β(t)

∫ b

a

η(t, s) ln[η−1(t, s)g(t, s)]dξ(s)
)
− α |w(t)|α+1

α

(δ(t)r(t))1/α

= −δ(t)Q(t)− α |w(t)|α+1
α

(δ(t)r(t))1/α
,

(2.12)

where Q(t) is defined by (2.7) with θ(t) ≡ β(t).
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Multiplying both sides of (2.12) by |u1(t)|α+1, integrating from a1 to b1, and
using integration by parts, we obtain∫ b1

a1

δ(t)Q(t)|u1(t)|α+1dt

≤ −
∫ b1

a1

|u1(t)|α+1w′(t)dt− α
∫ b1

a1

|u1(t)|α+1 |w(t)|α+1
α

(δ(t)r(t))1/α
dt

= (α+ 1)
∫ b1

a1

φα(u1(t))u′1(t)w(t)dt− α
∫ b1

a1

|u1(t)|α+1 |w(t)|α+1
α

(δ(t)r(t))1/α
dt

≤
∫ b1

a1

[
(α+ 1)|u1(t)|α|u′1(t)||w(t)| − α|u1(t)|α+1 |w(t)|α+1

α

(δ(t)r(t))1/α

]
dt.

(2.13)

Applying Lemma 2.1 with

X =
(
α
|u1(t)|α+1

(δ(t)r(t))1/α
|w(t)|

α+1
α

)1/λ

, λ =
α+ 1
α

, Y =
(α(δ(t)r(t))

1
α+1

α
α
α+1

|u′1(t)|
)α
,

we see that

(α+ 1)|u1(t)|α|u′1(t)||w(t)| − α|u1(t)|α+1 |w(t)|α+1
α

(δ(t)r(t))1/α
≤ δ(t)r(t)|u′1(t)|α+1,

substituting this into (2.13) gives∫ b1

a1

[δ(t)Q(t)|u1(t)|α+1 − δ(t)r(t)|u′1(t)|α+1]dt ≤ 0,

which contradicts (2.6) for i = 1.
Next, assume that case (II) holds. From (2.2) and (2.5), we have

δ(t)
∫ b

a

g(t, s)[x(t)]γ(t,s)−αβ(t)dξ(s)− δ(t) e(t)
xα(t)

= δ(t)
∫ b

a

[
g(t, s)[x(t)]γ(t,s)−αβ(t) − e(t)

xα(t)
η(t, s)
θ(t)

]
dξ(s)

= δ(t)
∫ b

a

[
g(t, s)[x(t)]γ(t,s)−αβ(t) +

|e(t)|
xα(t)

η(t, s)
θ(t)

]
dξ(s)

= δ(t)
∫ b

a

η(t, s)
θ(t)

[ θ(t)
η(t, s)

g(t, s)[x(t)]γ(t,s)−αβ(t) +
|e(t)|
xα(t)

]
dξ(s).

(2.14)

If we let

p =
θ(t)

β2(t)− θ(t)β(t) + θ(t)
, q =

β2(t)− θ(t)β(t)
β2(t)− θ(t)β(t) + θ(t)

, (2.15)

A =
β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)[x(t)]γ(t,s)−αβ(t), B =

1
q

|e(t)|
xα(t)

, (2.16)
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then from the Young inequality (pA+ qB ≥ ApBq, where p+ q = 1, p, q > 0, A ≥
0, B ≥ 0), we get

θ(t)
η(t, s)

g(t, s)[x(t)]γ(t,s)−αβ(t) +
|e(t)|
xα(t)

≥
(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)[x(t)]γ(t,s)−αβ(t)

)p(1
q

|e(t)|
xα(t)

)q
=
(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

)p( |e(t)|
q

)q
[x(t)](γ(t,s)−αβ(t))p−qα

=
(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

)p( |e(t)|
q

)q
[x(t)]

γ(t,s)θ(t)−αβ2(t)
β2(t)−θ(t)β(t)+θ(t) .

(2.17)

By (2.1) and (2.2), we get∫ b

a

η(t, s)[γ(t, s)θ(t)− αβ2(t)]dξ(s) ≡ 0, for any t ∈ [t0,∞). (2.18)

From (2.14)-(2.18) and Lemma 2.3, we see that, for t ∈ [a1, b1],

δ(t)
∫ b

a

g(t, s)[x(t)]γ(t,s)−αβ(t)dξ(s)− δ(t) e(t)
xα(t)

≥ δ(t)
∫ b

a

η(t, s)
θ(t)

(β2(t)− θ(t)β(t) + θ(t)
η(t, s)

g(t, s)
)p( |e(t)|

q

)q
× [x(t)]

γ(t,s)θ(t)−αβ2(t)
β2(t)−θ(t)β(t)+θ(t) dξ(s)

≥ δ(t) exp
( 1
θ(t)

∫ b

a

η(t, s) ln
[(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

)p
×
( |e(t)|

q

)q
[x(t)]

γ(t,s)θ(t)−αβ2(t)
β2(t)−θ(t)β(t)+θ(t)

]
dξ(s)

)
= δ(t) exp

( 1
θ(t)

∫ b

a

η(t, s) ln
[(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

)p( |e(t)|
q

)q]
dξ(s)

)
× exp

( 1
θ(t)

∫ b

a

η(t, s)
[ γ(t, s)θ(t)− αβ2(t)
β2(t)− θ(t)β(t) + θ(t)

]
lnx(t)dξ(s)

)
= δ(t) exp

( 1
θ(t)

∫ b

a

η(t, s) ln
[(β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

)p( |e(t)|
q

)q]
dξ(s)

)
× exp

( 1
θ(t)

lnx(t)
β2(t)− θ(t)β(t) + θ(t)

∫ b

a

η(t, s)
[
γ(t, s)θ(t)− αβ2(t)

]
dξ(s)

)
= δ(t) exp

( p

θ(t)

∫ b

a

η(t, s) ln
[β2(t)− θ(t)β(t) + θ(t)

η(t, s)
g(t, s)

]
dξ(s)

+
1
θ(t)

ln
( |e(t)|

q

)q ∫ b

a

η(t, s)dξ(s)
)

= δ(t) exp
( p

θ(t)

∫ b

a

η(t, s)
[

ln
(
β2(t)− θ(t)β(t) + θ(t)

)
+ ln

g(t, s)
η(t, s)

]
dξ(s)

+ ln
( |e(t)|

q

)q)
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= δ(t)
( |e(t)|

q

)q
exp

( p

θ(t)
ln
(
β2(t)− θ(t)β(t) + θ(t)

) ∫ b

a

η(t, s)dξ(s)

+
p

θ(t)

∫ b

a

η(t, s) ln
g(t, s)
η(t, s)

dξ(s)
)

= δ(t)
((β2(t)− θ(t)β(t) + θ(t)

)
|e(t)|

β2(t)− θ(t)β(t)

) β2(t)−θ(t)β(t)
β2(t)−θ(t)β(t)+θ(t)

× exp
( θ(t)
β2(t)− θ(t)β(t) + θ(t)

[
ln
(
β2(t)− θ(t)β(t) + θ(t)

)
+

1
θ(t)

∫ b

a

η(t, s) ln
g(t, s)
η(t, s)

dξ(s)
])
.

Then from (2.9) and above inequality, we have

ω′(t) ≤ −δ(t)q(t)− δ(t)
((β2(t)− θ(t)β(t) + θ(t)

)
|e(t)|

β2(t)− θ(t)β(t)

) β2(t)−θ(t)β(t)
β2(t)−θ(t)β(t)+θ(t)

× exp
( θ(t)
β2(t)− θ(t)β(t) + θ(t)

[
ln
(
β2(t)− θ(t)β(t) + θ(t)

)
+

1
θ(t)

∫ b

a

η(t, s) ln
g(t, s)
η(t, s)

dξ(s)
])
− α |w(t)|α+1

α

(δ(t)r(t))1/α

= −δ(t)Q(t)− α |w(t)|α+1
α

(δ(t)r(t))1/α
,

(2.19)

where Q(t) is defined by (2.7) with θ(t) ∈ (m1(t), β(t)). The rest of the proof
is similar to that of case (I) and hence is omitted. This completes the proof of
Theorem 2.4. �

Following Philos [11] and Kong [6], we say that for any a, b ∈ R with a < b,
a function H(t, s) belongs to a function class H(a, b), denoted by H ∈ H(a, b), if
H ∈ C(D, [0,∞)), where D = {(t, s) : b ≥ t ≥ s ≥ a}, which satisfies

H(t, t) = 0, H(b, s) > 0, H(s, a) > 0 for b > s > a,

and H(t, s) has continuous partial derivative ∂H(t, s)/∂t and ∂H(t, s)/∂s on [a, b]×
[a, b] such that

∂H

∂t
(t, s) = (α+ 1)h1(t, s)H

α
α+1 (t, s),

∂H

∂s
(t, s) = (α+ 1)h2(t, s)H

α
α+1 (t, s),

where h1, h2 ∈ Lloc(D,R).
Our next result uses the function class H(a, b) to establish an oscillation criterion

for equation (1.1) of the Kong-type.

Theorem 2.5. Suppose that for any T ≥ t0, there exist nontrivial subinterval
[a1, b1] and [a2, b2] of [T,∞) such that (2.4) and (2.5) hold for i = 1, 2. Let θ and η
be functions defined as in Theorem 2.4 such that 1/η(t, ·) ∈ Lξ[a, b] and (2.1)-(2.2)
hold. Suppose also that for i = 1, 2, there exists ci ∈ (ai, bi) and Hi ∈ H(ai, bi)
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such that
1

Hi(ci, ai)

∫ ci

ai

[δ(s)Q(s)Hi(s, ai)− δ(s)r(s)|hi1(s, ai)|α+1]ds

+
1

Hi(bi, ci)

∫ bi

ci

[δ(s)Q(s)Hi(bi, s)− δ(s)r(s)|hi2(bi, s)|α+1]ds > 0,
(2.20)

where δ(t) and Q(t) are as in Theorem 2.4. Then equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.4, we again arrive at (2.12) and
(2.19). In view of (2.12) and (2.19), we see that

w′(t) ≤ −δ(t)Q(t)− α |w(t)|α+1
α

(δ(t)r(t))1/α
, t ∈ [a1, b1]. (2.21)

Multiplying both sides of (2.21), with t replaced by s, by H1(s, a1) and integrating
from a1 to c1, we see that∫ c1

a1

δ(s)Q(s)H1(s, a1)ds ≤ −
∫ c1

a1

H1(s, a1)w′(s)ds−α
∫ c1

a1

H1(s, a1)
|w(s)|α+1

α

(δ(s)r(s))1/α
.

Integrating by parts, we obtain∫ c1

a1

δ(s)Q(s)H1(s, a1)ds

≤ −H1(c1, a1)w(c1) +
∫ c1

a1

(α+ 1)|h11(s, a1)|H
α
α+1
1 (s, a1)|w(s)|ds

− α
∫ c1

a1

H1(s, a1)
|w(s)|α+1

α

(δ(s)r(s))1/α
ds.

(2.22)

Applying Lemma 2.1 with

X =
(
α
H1(s, a1)|w(s)|λ

(δ(s)r(s))1/α

)1/λ
, λ =

α+ 1
α

, Y =
(α(δ(s)r(s))

1
α+1

α
α
α+1

|h11(s, a1)|
)α
,

we see that

(α+ 1)|h11(s, a1)|H
α
α+1
1 (s, a1)|w(s)| − αH1(s, a1)

|w(s)|α+1
α

(δ(s)r(s))1/α

≤ δ(s)r(s)|h11(s, a1)|α+1,

substituting this into (2.22), we obtain∫ c1

a1

[δ(s)Q(s)H1(s, a1)− δ(s)r(s)|h11(s, a1)|α+1]ds ≤ −H1(c1, a1)w(c1)

or
1

H1(c1, a1)

∫ c1

a1

[δ(s)Q(s)H1(s, a1)− δ(s)r(s)|h11(s, a1)|α+1]ds ≤ −w(c1). (2.23)

Similarly, multiplying both sides of (2.21), with t replaced by s, by H1(b1, s) and
integrating it from c1 to b1, and then applying Lemma 2.1, we see that

1
H1(b1, c1)

∫ b1

c1

[δ(s)Q(s)H1(b1, s)− δ(s)r(s)|h12(b1, s)|α+1]ds ≤ w(c1). (2.24)
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Combining (2.23) and (2.24), we arrive at

1
H1(c1, a1)

∫ c1

a1

[δ(s)Q(s)H1(s, a1)− δ(s)r(s)|h11(s, a1)|α+1]ds

+
1

H1(b1, c1)

∫ b1

c1

[δ(s)Q(s)H1(b1, s)− δ(s)r(s)|h12(b1, s)|α+1]ds ≤ 0

which contradicts (2.20) for i = 1, and completes the proof. �

Remark 2.6. When p(t) ≡ 0, β(t) ≡ 1, α = 1, a = 0 and γ(t, s) = γ(s), Theorems
2.4 and 2.5 reduce to [12, Theorems 2.1 and 2.2]. When p(t) ≡ 0, β(t) ≡ 1, a = 0
and γ(t, s) = γ(s), Theorems 2.4 and 2.5 reduce to [5, Theorems 2.1 and 2.2]. When
p(t) ≡ 0 and α = 1, Theorems 2.4 and 2.5 reduce to [9, Theorems 2.1 and 2.2].

3. Examples

In this section, we will work out two numerical examples to illustrate our main
results. Here we use the convention that ln 0 = −∞ and e−∞ = 0.

Example 3.1. Consider equation (1.1) with α = 2, r(t) = 1, p(t) = 0, q(t) =
λ sin 4t with λ > 0 is a constant, a = 1, b = 3, γ(t, s) = se−t, g(t, s) ≡ 1, β(t) = e−t,
ξ(s) = s, and e(t) = −f(t) cos 2t with f ∈ C[0,∞) is any nonnegative function.
For any T ≥ 0, we choose k ∈ Z large enough that 2kπ ≥ T and let a1 = 2kπ,
a2 = b1 = 2kπ + π

4 , and b2 = 2kπ + π
2 . Then, (2.5) and (2.6) hold, and we have

m1(t) = 2 ln 3
2e
−t and m2(t) = 2 ln 2e−t. With

θ(t) = δe−t, δ ∈ (2 ln(3/2), 1], p =
δ − 2 ln(3/2)
4 ln 2− 2 ln 3

,

η(t, s) =

{
2pe−t/s, (t, s) ∈ [0,∞)× [1, 2),
2(1− p)e−t/s, (t, s) ∈ [0,∞)× [2, 3],

it is easy to verify that (2.1) and (2.2) hold. Letting ui(t) = sin 4t for t ∈ [ai, bi],
i = 1, 2, and from the definition of Q(t), we see that

Q(t) = λ sin 4t+
[(

1 +
δet

1− δ
)
f(t)| cos 2t|

] 1−δ
1−δ+δet

× exp
( δet

1− δ + δet
[

ln
(
e−2t − δe−2t + δe−t

)
− et

δ

∫ 3

1

η(t, s) ln η(t, s)ds
])

=: F (λ, δ, t),

from this and δ(t) = 1, we obtain∫ b1

a1

δ(t)Q(t)|u1(t)|3dt =
∫ π/4

0

F̃ (λ, δ, t) sin3 4tdt,∫ b2

a2

δ(t)Q(t)|u2(t)|3dt = −
∫ π/2

π
4

F̃ (λ, δ, t) sin3 4tdt,

where

F̃ (λ, δ, t) = λ sin 4t+
[(

1 +
δet+2kπ

1− δ

)
f(t+ 2kπ)| cos 2t|

] 1−δ
1−δ+δet+2kπ

× exp
( δet+2kπ

1− δ + δet+2kπ

[
ln
(
e−2(t+2kπ) − δe−2(t+2kπ) + δe−(t+2kπ)

)
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− et+2kπ

δ

∫ 3

1

η(t+ 2kπ, s) ln η(t+ 2kπ, s)ds
])
,

and ∫ bi

ai

δ(t)r(t)|u′i(t)|3dt =
∫ bi

ai

64| cos3 4t|dt =
64
3
.

Thus, by Theorem 2.4 we see that (1.1) is oscillatory if
∫ π/4

0
F̃ (λ, δ, t) sin3 4tdt >

64/3 and −
∫ π/2
π/4

F̃ (λ, δ, t) sin3 4tdt > 64/3.

Example 3.2. Consider equation (1.1) with α = 3/2, r(t) = 1, p(t) = 1, q(t) =
λ sin t with λ > 0 is a constant, a = 1, b = 3, γ(t, s) = s(cos t2 + 3

2 ), g(t, s) ≡ 1,
β(t) = cos t2 + 3

2 , ξ(s) = s, and e ∈ C[0,∞) be any function satisfying (−1)ie(t) ≥ 0
on [ai, bi] for i = 1, 2. For any T ≥ 0, we choose k ∈ Z large enough that 2kπ ≥ T
and let a1 = 2kπ, a2 = b1 = 2kπ+ π

4 , b2 = 2kπ+ π
2 , c1 = 2kπ+ π

8 and c2 = 2kπ+ 3π
8 .

Then, it is easy to see that (2.5) and (2.6) hold, and m1(t) = ln 2(cos t2 + 3
2 ) and

m2(t) = 3 ln 3
2 (cos t2 + 3

2 ). With

θ(t) = δ(cos
t

2
+

3
2

), δ ∈ (ln 2, 1], p =
δ − ln 2

3 ln 3
2 − ln 2

,

η(t, s) =

{
3p(cos t2 + 3

2 )/s, (t, s) ∈ [0,∞)× [1, 3/2),
(1− p)(cos t2 + 3

2 )/s, (t, s) ∈ [0,∞)× [/3/2, 3],

we see that (2.1) and (2.2) are valid, and from the definition of Q(t), we obtain

Q(t) = λ sin t+
[(

1 +
δ

(1− δ)(cos t2 + 3
2 )

)
|e(t)|

] (1−δ)(cos t2 + 3
2 )

(1−δ)(cos t2 + 3
2 )+δ

× exp
( δ

(1− δ)(cos t2 + 3
2 ) + δ

[
ln
(
(cos

t

2
+

3
2

)2 − δ(cos
t

2
+

3
2

)2

+ δ(cos
t

2
+

3
2

)
)
− 1
δ(cos t2 + 3

2 )

∫ 3

1

η(t, s) ln η(t, s)ds
])
.

If we choose H(t, s) = (t − s)5/2, then h1(t, s) = 1, h2(t, s) = −1. Since δ(t) = et,
by Theorem 2.5, we see that (1.1) is oscillatory if∫ 2kπ+π

8

2kπ

Q(s)es(s−2kπ)5/2ds+
∫ 2kπ+π

4

2kπ+π
8

Q(s)es(2kπ+π/4−s)5/2ds > e2kπ(eπ/4−1),

and∫ 2kπ+ 3π
8

2kπ+π
4

Q(s)es(s− 2kπ − π/4)5/2ds+
∫ 2kπ+π

2

2kπ+ 3π
8

Q(s)es(2kπ + π/2− s)5/2ds

> e2kπ(eπ/2 − eπ/4).
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