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Stability of strong detonation waves

and rates of convergence ∗

Tong Li

Abstract

In this article, we prove stability of strong detonation waves and find
their rate of convergence for a combustion model. Our results read as
follows: I) There exists a global solution that converges exponentially in
time to a strong detonation wave, provided that the initial data is a small
perturbation of a strong detonation wave that decays exponentially in |x|.
II) When the initial perturbation decays algebraically in |x|, the solution
converges algebraically in time. That is, the perturbation decays in t as
‘fast’ as the initial perturbation decays in |x|.

1 Introduction

Physical experimentation has shown that in a sufficiently insensitive mixture
or in a typical condensed phase, explosive detonation waves approach a steady
state as time goes by. The study of this steady state is a subject in explosive
engineering and is based on measurements of pressure, velocity and other ob-
servables of detonation waves. To learn about the structure and the behavior
of the steady state, we formulate questions such as: How does a detonation
wave respond to a perturbation? How quickly is the steady state is attained?
And what are the details of the flow as the steady solution is approached? In
particular, hydrodynamic stability of the steady detonation is very interesting
question, and has received a lot of attention. Fickett [3] studied the decay of
small planar perturbations for strong steady detonation in a simple model. His
work uses the linearization technique of hydrodynamic stability theory intro-
duced by Erpenbeck [2]. Liu and Ying [13] proved that the strong detonation
is stable for a combustion model, but did not show rates of convergence. In
the present paper, we show that a perturbation to strong detonation wave in a
combustion model decays in t as ‘fast’ as the initial perturbation decays in |x|.
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We study the dynamic combustion model

ut + (f(u) − qz)x = ǫuxx (1)

zx = kϕ(u)z , (2)

where u = u(x, t) and z = z(x, t) are scalar functions representing the veloc-
ity or the temperature of the combustible gas, and the concentration of the
unburnt gas; and the constants q, ǫ, and k > 0 represent the amount of heat
released during the chemical reaction, the viscous coefficient, and the reaction
rate, respectively. The reaction rate function has the form

ϕ(u) =







0 u ≤ ui

a smooth increasing function ui < u ≤ 2ui

1 u > 2ui ,

(3)

where ui ≥ 0 is a constant related to the ignition temperature.
Motivated by the study of shock waves for gas dynamics, and by the asymp-

totic analysis performed in [14], we require the that the flux f satisfy

f(0) = 0 , f ′(0) > 0 , f ′′(u) > 0 .

To make (1)-(2) a well-posed problem, the data are assumed to satisfy

u(x, 0) = u0(x) , (4)

z(+∞, t) = 1 . (5)

This model was derived by Rosales and Majda [14] under the assumptions of
weak nonlinearity, high activation energy, and nearly sonic speed of the det-
onation wave. It describes the one-dimensional flow of a reactive gas with a
high Mach number. It includes the two important physical mechanisms for this
type of problem: the nonlinear transport and the chemical reaction through the
energy release term.

Under appropriate conditions on the parameters q and k0 = ǫk, this model
predicted the qualitative internal structure of the strong detonation assumed by
Zeldovich-von Neumann-Doring [14]. i.e., a detonation wave traveling at speed
D has the internal structure of an ordinary precursor fluid dynamic shock wave
traveling at speed D, followed by a reaction zone. The parameter k0 measures
the ratio of the width of the analogue of the fluid dynamic shock layer and the
width of the reaction zone. The detonation wave has the form

(u(x, t), z(x, t)) = (ψ(x−Dt), Z(x−Dt)) = (ψ(ξ), Z(ξ)) ,

where ξ = x − Dt is the traveling wave variable, and the pair (ψ,Z)(ξ) is a
solution to the system

−Dψ′ + f ′(ψ)ψ′ = ǫψ′′ + qZ ′ (6)

Z ′ = kϕ(ψ)Z . (7)
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Figure 1: Traveling wave profile with O(δ) = O(q)

When the boundary conditions are

limξ→−∞(ψ,Z)(ξ) = (ul, 0) (8)

limξ→+∞(ψ,Z)(ξ) = (0, 1) , (9)

then the propagation speed D is determined by the boundary data,

D =
f(ψ(+∞)) − f(ψ(−∞)) − qZ(+∞)

ψ(+∞) − ψ(−∞)
.

We will consider only strong detonation in this paper, that is,

f ′(ψ(+∞)) < D < f ′(ψ(−∞)) . (10)

The traveling wave solution has a non-monotone spike in the u-profile, which
corresponds to a von Neumann spike. There is a maximum point ξ0 on the
profile, which separates the reaction zone and the viscous shock wave. See
Figure 1. The traveling wave solution decays exponentially to its end state, as
|ξ| → +∞.

We are concerned with the stability of the detonation waves described above.
Stability of nonlinear problems for viscous shock waves for systems of nonlinear
conservation laws have been studied by Goodman [5], Kawashima and Mat-
sumura [6], Liu [11], and Liu and Xin [12].

By restricting our attention to strong detonation waves, we avoid dealing
with the sonic point at the end of the reaction zone, which is present in the
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Chapman-Jouguet detonation, and with the unsupported case. Studies on the
stability of a Chapman-Jouguet detonation are presented in another article by
the author, [10].

We establish the stability of strong detonation waves modeled by (1)-(2).
Then, inspired by the work of Kawashima and Matsumura [6], we find rates of
convergence. Our results are stated as follows:

(I) There exits a global solution to (1)-(2), (4)-(5), which converges exponen-
tially in time to a traveling wave, provided the initial data is a small
perturbation of the traveling wave that decays exponentially in |x|.

(II) If the rate of decay of the initial perturbation in the far fields is algebraic
instead, the solution converges algebraically in time.

The weighted-energy method developed in [6] is used to obtain the rate of con-
vergence. The characteristic-energy method used in [12, 13] is employed to deal
with the difficulties arising from the non-monotonicity of the profile. Estimates
involving z will be obtained through detailed L2 and pointwise estimates.

In Section 2, we state our main results. Section 3 is a detailed stability
analysis for the exponential decay. In Section 4, we study the algebraic decay.

2 Assumptions and main results

Due to the fact that (1) is a conservation law, we choose to work with the
anti-derivative v(x, t) of the perturbation u(x, t) − ψ(x −Dt); see [5, 11]. The
function v(x, t) is defined as

v(x, t) =

∫ x

−∞

(u(x, t) − ψ(x−Dt)) dx . (11)

We make the following assumptions on the data.

1.) Zero initial integral difference:
∫ +∞

−∞

(u0(x) − ψ(x))dx = 0 . (12)

Note that (11), (12) imply
v(±∞, t) = 0 . (13)

This because (1) makes the integral v(x, t) in (11) a conserved quantity, i.e.,

d

dt

∫ +∞

−∞

(u(x, t) − ψ(x−Dt)) dx = 0 ,

and
∫ +∞

−∞

(u(x, t) − ψ(x−Dt))dx = constant

which equals zero due to our choice of data (12).
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2.) Small heat release: 0 < q ≪ ǫ≪ 1. So for ξ ≤ ξ0,

0 <
∫ ξ

−∞
f ′(ψ(ξ))ξ dξ = δ1 < Cq ≪ ǫ≪ 1 , (14)

0 < f ′(ψ(ξ))ξ < δ2 < Cq ≪ ǫ≪ 1 . (15)

These assumptions make the non-monotone spike of the strong detonation pro-
file small (see Figure 1); so that the characteristic energy estimate can be ob-
tained.

The smallness condition on the initial data and the stability analysis to be
performed imply that there exist ξ1 and ξ2, m > 0 such that ξ0 < ξ1 < ξ2 and

ϕ(ψ) = ϕ(u) = 0 , ξ > ξ2 (16)

ϕ(ψ) = ϕ(u) = 1 , ξ < ξ1 . (17)

Therefore,

−f ′(ψ(ξ))ξ > m > 0 , ξ1 < ξ < ξ2 (18)

f ′(ψ(ξ)) −D > m > 0 , ξ < ξ1 , (19)

where (19) holds because the detonation under consideration is strong (see (10)).
Again because the detonation wave is strong, we can find a ξ∗ ∈ (ξ1, ξ2) such

that
f ′(ψ(ξ∗)) = D . (20)

See Figure 1.

Now we introduce some notation. Let

L2 = {v |

∫ +∞

−∞

v2dx < +∞}

and
H2 = {v | v ∈ L2, vx ∈ L2, vxx ∈ L2}.

Let ω(x) = exp(α〈x− ξ∗〉) where 〈x〉 = (1 + x2)1/2. Then we define the space

H2
ω = {v | ve

1

2
α〈x−ξ∗〉 ∈ H2} ,

the associated norm

‖v‖H2
ω

=

(
∫ ∞

−∞

ω(v2 + v2
x + v2

xx)dx

)1/2

.

Our main result of exponential decay is:

Theorem 1 Suppose that v0 ∈ H2
ω, ‖v0‖H2

ω

≪ 1, and Assumptions 1 and 2
from the previous section hold. Then there exists a global solution, v(·, t) ∈ H2

ω,
to (1)-(2), (4)-(5) satisfying

‖v(·, t)‖H2
ω

≤ ‖v0(·)‖H2
ω

e−βt. (21)
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Consequently,

sup
−∞<x<+∞

|u(x, t) − ψ(x−Dt)| ≤ Ce−βt/2 , (22)

where β is a positive constant that depends on α, k, f, ǫ; and C depends only on
initial data.

To state the algebraic decay result, we introduce the following notation. Let

L2
α = {v | 〈x− ξ∗〉

α/2v ∈ L2} ,

with the associated norm

‖v‖α =

(
∫ +∞

−∞

〈x− ξ∗〉
α|v|2 dx

)1/2

.

Theorem 2 Assume that v0 ∈ L2
α, v0,x ∈ H1, Nα = ‖v0,x‖1 + ‖v0‖α ≪ 1, and

Assumptions 1 and 2 from the previous section hold. Then there exists a global
solution u(x, t) of problem (1)-(2), (4)-(5.) Moreover, this solution tends to a
traveling wave solution at the rate t−α/2 as t tends to infinity, in the maximum
norm. i.e.,

sup
−∞<x<+∞

|u(x, t) − ψ(x−Dt)| ≤ C(1 + t)−α/2(‖u0 − ψ‖1 + ‖v0‖α) ,

where C is some positive constant depending on the initial data only.

3 Proof of stability: Exponential decay

In this section, we prove Theorem 1 by using weighted-energy estimates and the
characteristic-energy method.

Assume a priori that

0 < sup
x,t

|vx(x, t)| = δ3 ≪ 1 . (23)

This assumption will be guaranteed by the smallness of initial data and the
stability analysis to be performed.

Let

u(x, t) = ψ(x−Dt) + vx(x, t) .

Then the anti-derivative of the perturbation is

v(x, t) =

∫ x

−∞

(u(y, t) − ψ(y −Dt)) dy .
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Subtract (6), which is satisfied by ψ(x−DCJ t), from (1), which is satisfied
by u(x, t). Then integrate from −∞ to x, and write the result in terms of the
anti-derivative v(x, t). In terms of the traveling-wave variable ξ, we have

vt −Dvξ + f(ψ + vξ) − f(ψ) − q(z − Z) = ǫvξξ.

This expression can be rewritten as

vt(ξ, t) + (f ′(ψ) −D)vξ = ǫvξξ + qw + F (vξ, ψ) , (24)

where w(ξ, t) = z(ξ, t) − Z(ξ), and for |vξ| small,

|F | = | − (f(ψ + vξ) − f(ψ) − f ′(ψ)vξ)| ≤ C|vξ|
2 .

Now, we prove a result that plays an important role in deriving weighted
energy estimates, as in [3].

Lemma 1 Let

Gα(ξ) =

{

− 1
2f

′(ψ(ξ))ξ −
α
2

(ξ−ξ∗)
〈ξ−ξ∗〉

(f ′(ψ(ξ)) −D), ξ0 < ξ < +∞

−α
2

(ξ−ξ∗)
〈ξ−ξ∗〉

(f ′(ψ(ξ)) −D), −∞ < ξ < ξ0.
(25)

Then for some positive constant β,

Gα(ξ) ≥

{

β − 1
4f

′(ψ(ξ))ξ, ξ0 < ξ < +∞
β, −∞ < ξ < ξ0 .

(26)

Proof. We consider two cases. Recall that ξ∗ satisfies (20).
Case i) When ξ is close to ξ∗, we have that Gα(ξ∗) is close to − 1

2f
′(ψ(ξ∗))ξ >

m > 0, see (18) and Figure 1. Choose β such that

0 < β < −
1

8
f ′(ψ(ξ∗))ξ .

Then

Gα(ξ) ≥ β −
1

8
f ′(ψ(ξ∗))ξ ≥ β −

1

4
f ′(ψ(ξ))ξ .

Case ii) When ξ is away from ξ∗, say, |ξ− ξ∗| > δ0, then from (19) it follows
that

Gα(ξ) ≥ αcm > 0

for −∞ < ξ < ξ0 and c > 0. For ξ0 < ξ < +∞, the convexity of f gives us

Gα(ξ) ≥ αcδ0 −
1

4
f ′(ψ(ξ))ξ ,

where c is some constant determined by the convexity of f . The desired in-
equality (26) follows by choosing β such that

0 < β < min{−
1

8
f ′(ψ(ξ∗))ξ, αcm,αcδ0}.
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Remark. The condition that the detonation is strong, (10), is the key condi-
tion in this lemma. For Chapman-Jouguet waves there is not such a result.

Now establish our main estimates. Multiplying (3.1) by eα〈ξ−ξ∗〉v and inte-
grating, we obtain

1

2

d

dt

∫ +∞

−∞

eα〈ξ−ξ∗〉v2 dξ

+

∫ +∞

−∞

eα〈ξ−ξ∗〉(f ′(ψ(ξ)) −D)vvξ dξ − ǫ

∫

eα〈ξ−ξ∗〉vvξξ dξ

=

∫

eα〈ξ−ξ∗〉(qw + F (vξ, ψ))v dξ .

Integrating by parts and using Lemma 1, we arrive at our main estimate

1

2

d

dt

∫ +∞

−∞

eα〈ξ−ξ∗〉v2 dξ + β

∫ +∞

−∞

eα〈ξ−ξ∗〉v2 dξ

+
1

2

∫ ξ0

−∞

−|f ′(ψ)ξ|e
α〈ξ−ξ∗〉v2 dξ +

1

4

∫ +∞

ξ0

|f ′(ψ)ξ|e
α〈ξ−ξ∗〉v2 dξ

+ǫ

∫ +∞

−∞

eα〈ξ−ξ∗〉v2
ξ dξ +

∣

∣

∣

∣

ǫ

∫ +∞

−∞

αeα〈ξ−ξ∗〉
ξ − ξ∗

〈ξ − ξ∗〉
vvξ dξ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ +∞

−∞

eα〈ξ−ξ∗〉(qw + F (vξ, ψ))v dξ

∣

∣

∣

∣

. (27)

To estimate the last term on the left hand side of (27), we make use of
Schwarz’s inequality to obtain

∣

∣

∣

∣

ǫα

∫ +∞

−∞

ξ − ξ∗

〈ξ − ξ∗〉
ω(ξ)vvξ dξ

∣

∣

∣

∣

≤
ǫ

2

∫ +∞

−∞

ω(ξ)v2
ξ dξ +

α2ǫ

2

∫ +∞

−∞

ω(ξ)v2 dξ ,

where ω(ξ) = eα〈ξ−ξ∗〉. Choose α such that β
2 ≥ α2ǫ

2 . Then our main estimate
becomes

1

2

d

dt

∫ +∞

−∞

ω(ξ)v2 dξ +
β

2

∫ +∞

−∞

ω(ξ)v2 dξ +
1

2

∫ ξ0

−∞

−|f ′(ψ)ξ|ω(ξ)v2 dξ

+
1

4

∫ +∞

ξ0

|f ′(ψ)ξ|ω(ξ)v2 dξ +
ǫ

2

∫ +∞

−∞

ω(ξ)v2
ξ dξ

≤

∣

∣

∣

∣

∫ +∞

−∞

ω(ξ)(qw + F (vξ, ψ))v dξ

∣

∣

∣

∣

.

Now we use the characteristic-energy method to estimate the third term on
the left hand side of (27), the bad term arising from the non-monotonicity of
the profile. The idea is to integrate (24) for v along the characteristic direction
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to get v2, and then plug it in the integration. The key condition here is that
|f ′(ψ(ξ))ξ| is small due to q ≪ 1. See (15).

Let
S(ξ) = (f ′(ψ(ξ)) −D)−1 .

Then (19) implies

0 < S(ξ) <
1

m
, −∞ < ξ < ξ0 . (28)

Multiplying (24) by vS, and then integrating from −∞ to ξ, we obtain

1

2
v2(ξ, t) =

∫ ξ

−∞

S(η)(−vvt + ǫvvηη + q w v + F (vη, ψ)v) dη

=

∫ ξ

−∞

S(η)(−vvt + qwv + F (vη, ψ)v) dη + ǫ

∫ ξ

−∞

S(η)(−v2
η) dη

+ǫS(ξ)(vvξ) + ǫ

∫ ξ

−∞

S2(η)f ′(ψ)η(−vvη) dη

= ǫS(ξ)vvξ +

∫ ξ

−∞

S(η)(−vvt + qwv + F (vη, ψ)v − ǫv2
η) dη

+ǫ

∫ ξ

−∞

S2(η)f ′(ψ)η(−vvη)dη .

Multiplying the above inequality by ω(ξ)f ′(ψ(ξ))ξ and integrating from −∞ to
ξ0, then using Schwarz’s inequality and Fubini’s theorem, we have

∫ ξ0

−∞

1

2
ω(ξ)v2(ξ, t)f ′(ψ(ξ))ξ dξ

≤
1

8

∫ ξ0

−∞

f ′(ψ(ξ))ξω(ξ)
v2

2
dξ + 8δ2ǫ

∫ ξ0

−∞

ω(ξ)v2
ξ dξ

+

∫ ξ0

−∞

∫ ξ0

η

f ′(ψ(ξ))ξω(ξ)S(η)(−vvt + qwv + F (vη, ψ)v) dξ dη

+

∫ ξ0

−∞

∫ ξ0

η

f ′(ψ(ξ))ξω(ξ)S2(η)f ′(ψ(η))η(−ǫvvη) dξ dη .

Now use the smallness assumptions (14), (15), and (23) to obtain

∫ ξ0

−∞

1

2
ω(ξ)v2(ξ, t)f ′(ψ(ξ))ξ dξ

≤
1

4

∫ ξ0

−∞

f ′(ψ(ξ))ξω(ξ)
v2

2
dξ + C(δ1 + δ2)ǫ

∫ ξ0

−∞

ω(ξ)v2
ξ dξ

+Cδ1
d

dt

∫ ξ0

−∞

S(η)ω(η)(−
1

2
v2(η, t)) dη + Cδ1

∫ ξ0

−∞

ω(η)qwv dη.
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Using the argument that a ≤ 1
4a+b implies a ≤ 4

3b, the above inequality implies
that

∫ ξ0

−∞

f ′(ψ(ξ))ξω(ξ)
v2(ξ, t)

2
dξ

≤ Cδ1
d

dt
−

∫ ξ0

−∞

ω(ξ)
1

2
v2(ξ, t) dξ

+C(δ1 + δ2)ǫ

∫ ξ0

−∞

ω(ξ)v2
ξ dξ + Cδ1

∫ ξ0

−∞

ω(ξ)qwv dξ .

Plugging this estimate into (27), noticing that δ1, δ2 are small, and using as-
sumption (23), we have

d

dt

∫ +∞

−∞

1

2
ω(ξ)v2 dξ +

1

2

∫ +∞

−∞

|f ′(ψ(ξ))ξ|ω(ξ)
v2(ξ, t)

2
dξ

+
β

2

∫ +∞

−∞

ω(ξ)v2 dξ + ǫ

∫ +∞

−∞

ω(ξ)
v2

ξ

2
dξ

≤ C

∣

∣

∣

∣

∫ +∞

−∞

ω(ξ)qwv dξ

∣

∣

∣

∣

.

To estimate |
∫ +∞

−∞
ω(ξ)qvw dξ|, we divide the real line into three subintervals

(−∞, ξ1), (ξ1, ξ2), (ξ2,+∞), and estimate the integral on each subinterval.

On the interval (ξ2,+∞). According to assumption (16),

ϕ(u) = ϕ(ψ) = 0 for ξ > ξ2 .

Hence

w(ξ, t) = (z − Z)(ξ, t)

= exp(k

∫ +∞

ξ

ϕ(u(η, t)) dη) − exp(k

∫ +∞

ξ

ϕ(ψ(η)) dη)

= 0 , for ξ > ξ2 .

So that
∫ +∞

ξ2

ω(ξ)qwv dξ = 0 . (29)

On the interval (ξ1, ξ2).

|w(ξ, t)| = | exp(k

∫ +∞

ξ

ϕ(u(η, t)) dη) − exp(k

∫ +∞

ξ

ϕ(ψ(η)) dη)|
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= | exp(k

∫ ξ2

ξ

ϕ(u(η, t))dη) − exp(k

∫ ξ2

ξ

ϕ(ψ(η)) dη)|

= C

∣

∣

∣

∣

∣

∫ ξ2

ξ

(ϕ(u(η, t)) − ϕ(ψ(η))) dη

∣

∣

∣

∣

∣

≤ C

∫ ξ2

ξ

|vη| dη

≤ C(

∫ ξ2

ξ1

ω(η)|vη|
2 dη)1/2 .

Using the Schwarz inequality, (18), and the above estimate for w, we have
∣

∣

∣

∣

∣

∫ ξ2

ξ1

ω(ξ)qwv dξ

∣

∣

∣

∣

∣

≤
1

2

∫ ξ2

ξ1

ω(ξ)qv2 dξ +
1

2

∫ ξ2

ξ1

ω(ξ)qw2 dξ

≤ Cq

∫ ξ2

ξ1

ω(ξ)|f ′(ψ)ξ|v
2 dξ + Cq

∫ ξ2

ξ1

ω(ξ)|vξ|
2 dξ .

Since q ≪ ǫ≪ 1, the terms on the right-hand side of (27) are under control.

On the interval (−∞, ξ1). According to (17) and the result on the above
subinterval, we have

|w(ξ, t)| = |w(ξ1, t)|e
−k(ξ1−ξ) ≤ C(

∫ ξ2

ξ1

ω(η)|vη|
2 dη)1/2.

An application of the Schwarz inequality yields
∣

∣

∣

∣

∣

∫ ξ1

−∞

ω(ξ)qwv dξ

∣

∣

∣

∣

∣

≤ Cq

∫ ξ1

−∞

ω(ξ)v2e−k|ξ| dξ + Cq

∫ ξ2

ξ1

ω(ξ)v2
ξ dξ

:= I + II.

Since q ≪ ǫ≪ 1, II is under control in (27). For I, we find characteristic-energy
estimates as we did for

∫ ξ0

−∞

ω(ξ)f ′(ψ(ξ))ξ
v2(ξ, t)

2
dξ

The result is
∫ ξ1

−∞

e−k|ξ|ω(ξ)v2(ξ, t) dξ

≤ C

∫ ξ1

−∞

ω(ξ)|f ′(ψ(ξ))ξ|v
2 dξ + C

d

dt

∫ ξ1

−∞

ω(ξ)v2(ξ, t) dξ

+C

∫ ξ1

−∞

ω(ξ)v2
ξ dξ + C

∫ ξ1

−∞

ω(ξ)qwv dξ .
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Therefore,
∣

∣

∣

∣

∣

∫ ξ1

−∞

ω(ξ)qwv dξ

∣

∣

∣

∣

∣

≤ Cq

{

C

∫ ξ2

−∞

ω(ξ)v2
ξ dξ + C

d

dt

∫ ξ1

−∞

1

2
ω(ξ)v2(ξ, t) dξ

+

∫ ξ1

−∞

ω(ξ)|f ′(ψ)ξ|v
2 dξ

}

.

Plugging the estimates of |
∫

ω(ξ)qwv dξ| over the three intervals into (27)
and noticing that q ≪ ǫ≪ 1, we have

0 ≥
1

2

d

dt

∫ +∞

−∞

ω(ξ)v2(ξ, t) dξ +
1

4

∫ +∞

−∞

|f ′(ψ(ξ))ξ|ω(ξ)v2 dξ

+
β

2

∫ +∞

−∞

ω(ξ)v2 dξ +
1

4
ǫ

∫ +∞

−∞

ω(ξ)v2
ξ dξ .

Similarly, we have estimates for the derivatives vξ and vξξ of v.

1

2

d

dt

∫ +∞

−∞

ω(ξ)v2
ξ (ξ, t) dξ +

β

2

∫ +∞

−∞

ω(ξ)v2
ξ dξ +

1

4
ǫ

∫ +∞

−∞

ω(ξ)v2
ξξ dξ ≤ 0 ,

and

1

2

d

dt

∫ +∞

−∞

ω(ξ)v2
ξξ(ξ, t) dξ +

β

2

∫ +∞

−∞

ω(ξ)v2
ξξ dξ +

1

4
ǫ

∫ +∞

−∞

ω(ξ)v2
ξξξ dξ ≤ 0 .

Combining these estimates, we have

d

dt
(

∫ +∞

−∞

ω(ξ)v2 dξ +

∫ +∞

−∞

ω(ξ)v2
ξ dξ +

∫ +∞

−∞

ω(ξ)v2
ξξ dξ)

≤ −β(

∫ +∞

−∞

ω(ξ)v2 dξ +

∫ +∞

−∞

ω(ξ)v2
ξ dξ +

∫ +∞

−∞

ω(ξ)v2
ξξ dξ) .

By Gronwall’s inequality, we have

‖v(·, t)‖H2
ω

≤ ‖v(·, 0)‖H2
ω

e−βt/2 .

Hence

|u(x, t) − ψ(x−Dt)| = |vx(x, t)| =
(

2

∫ x

−∞

vxvxx(y, t) dy
)1/2

≤
(

∫ +∞

−∞

v2
x(x, t) dx+

∫ +∞

−∞

v2
xx(x, t) dx

)1/2

≤ ‖v(·, t)‖H2
ω

≤ Ce−βt/2 ,

which completes the proof of Theorem 1.
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Remark: The above inequality guarantees that the a priori assumption (23)
is satisfied.

4 Proof of stability: Algebraic decay

To prove Theorem 2, we use the iteration introduced by Kawashima and Mat-
sumura [6], and weighted energy estimates. First we state a lemma similar to
Lemma 1.

Lemma 2 Let ξ∗ be defined by (20), and

Aβ(ξ) =

{

1
2 (β (ξ−ξ∗)

〈ξ−ξ∗〉
(D − f ′(ψ(ξ))) − 〈ξ − ξ∗〉f

′(ψ(ξ))ξ) , ξ0 < ξ < +∞
1
2β

(ξ−ξ∗)
〈ξ−ξ∗〉

(D − f ′(ψ(ξ))) , −∞ < ξ < ξ0 .

(30)
Then there exists a positive constant β such that

Aβ(ξ) ≥

{

β − 1
4f

′(ψ(ξ))ξ , ξ0 < ξ < +∞
β , −∞ < ξ < ξ0 .

(31)

The proof of this lemma is similar the proof of Lemma 1.

From the (24) it follows that the anti-derivative v of the perturbation u−ψ

satisfies
vt(ξ, t) + (f ′(ψ) −D)vξ = ǫvξξ + qw + F (vξ, ψ), (32)

where w(ξ, t) = z(ξ, t) − Z(ξ) and |F (vξ, ψ)| ≤ C|vξ|
2 for small values of |vξ|.

Let

|v(·, t)|2β =

∫ +∞

−∞

〈ξ − ξ∗〉
βv2(ξ, t) dξ .

Multiplying (32) by (1+t)γ〈ξ−ξ∗〉
βv, integrating by parts, and using Lemma 2,

we obtain our main estimate,

1

2
(1 + t)γ |v(·, t)|2β + β

∫ t

0

(1 + τ)γ |v(·, t)|2β−1 dτ (33)

+
1

4

∫ t

0

∫ +∞

ξ0

(1 + τ)γ |f ′(ψ(ξ))ξ|v
2〈ξ − ξ∗〉

βdξ dτ

−
1

2

∫ t

0

∫ ξ0

−∞

(1 + τ)γ |f ′(ψ(ξ))ξ|v
2〈ξ − ξ∗〉

βdξ dτ + ǫ

∫ t

0

(1 + τ)γ |vξ(·, τ)|
2
β dτ

≤ c|v0|
2
β + cγ

∫ t

0

(1 + τ)γ−1|v(·, τ)|2β dτ

+cβ

∫ t

0

∫ +∞

−∞

(1 + τ)γ〈ξ − ξ∗〉
β−2ξ|vvξ| dξ dτ

+c

∫ t

0

∫ +∞

−∞

(1 + τ)γ〈ξ − ξ∗〉
βv(qw + F (vξ, ψ)) dξ dτ .
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The third term on the right hand side of (33) can be estimated using twice the
Schwarz inequality. Notice that

β

∫ +∞

−∞

〈ξ − ξ∗〉
β−1(ξ)|vvξ| dξ

≤
β

2

∫ +∞

−∞

〈ξ − ξ∗〉
β−1v2 dξ + βc

∫ +∞

−∞

〈ξ − ξ∗〉
β−1v2

ξ dξ

≤
β

2

∫ +∞

−∞

〈ξ − ξ∗〉
β−1v2 dξ +

ǫ

2

∫ +∞

−∞

〈ξ − ξ∗〉
βv2

ξ dξ + βc

∫ +∞

−∞

v2
ξ dξ .

To estimate the fourth term the left-hand side of (33), we use the character-
istic energy method again. Since the non-monotonicity spike is small under our
assumption q ≪ ǫ ≪ 1, we use the method as in the previous section, with the
weight function 〈ξ − ξ∗〉

β instead of exp(α〈ξ − ξ∗〉).

Since the term

∫ t

0

∫ ξ0

−∞

qwv〈ξ − ξ∗〉
β(1 + τ)γdξ dτ ,

with q ≪ ǫ≪ 1, can be treated similarly as in the previous section, we omit the
details of the calculations and just give the result here.

Combining the estimates for the term in (33) we obtain

1

2
(1 + t)γ |v(·, t)|2β +

β

2

∫ t

0

(1 + τ)γ |v(·, t)|2β−1 dτ (34)

+
1

8

∫ t

0

∫ +∞

ξ0

(1 + τ)γ |f ′(ψ(ξ))ξ|v
2〈ξ − ξ∗〉

β dξ dτ

+
ǫ

4

∫ t

0

(1 + τ)γ |vξ(·, τ)|
2
β dτ

≤ c|v0|
2
β + cγ

∫ t

0

(1 + τ)γ−1|v(·, τ)|2β dτ + cβ

∫ t

0

(1 + τ)γ‖vξ(τ)‖
2 dτ .

Observing that the process for obtaining the above inequality also applies for
β = 0, we have

1

2
(1 + t)γ |v(·, t)|2 +

1

4

∫ t

0

∫ +∞

ξ0

(1 + τ)γ |f ′(ψ(ξ))ξ|v
2 dξ dτ

+
ǫ

2

∫ t

0

(1 + τ)γ |vξ(·, τ)|
2 dτ (35)

≤ c

(

‖v0‖
2 + γ

∫ t

0

(1 + τ)γ−1‖v(·, τ)‖2 dτ

)

.
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Using the condition Nα = |v0|α + ‖v0,ξ‖1 ≪ 1, in the case of β = 0, γ = 0 we
have that

‖v(t)‖2
2 + ǫ

∫ t

0

‖vξ(τ)‖
2
2dτ ≤ cN2

α . (36)

Now, we prove the iteration lemma.

Lemma 3 For γ in [0, α], we have

(1 + t)γ |v(t)|2α−γ + (α− γ)

∫ t

0

(1 + τ)γ |v(τ)|2α−γ−1 dτ +

∫ t

0

(1 + τ)γ |vξ(τ)|
2
α−γ dτ

≤ cN2
α . (37)

Furthermore,

(1 + t)γ‖v(t)‖2 + ǫ

∫ t

0

(1 + τ)γ‖vξ(τ)‖
2dτ ≤ cN2

α. (38)

Proof. First, we prove this lemma for γ integer in [0, [α]], by using the follow-
ing steps.

Step 1. Let β = 0, γ = 0 in (34) and use (36) to get (37) with γ = 0. Therefore,
the lemma is proved for α < 1.

Step 2. If α ≥ 1, we use that (37) holds for γ = 0.

Let β = 0, γ = 1 in (34) and use (37) with γ = 0 to get (38) with γ = 1.

Let β = α− 1, γ = 1 in (34) and use (37) with γ = 0 and (38) with γ = 1 to
get (37) with γ = 1.

Therefore, the lemma is proved for α < 2.

Step 3. α ≥ 2. Let β = 0, γ = 2 in (34) and use (35) with γ = 1 to get (38)
with γ = 2.

Let β = α− 2, γ = 1 in (34) and use (37) with γ = 1 and (38) with γ = 2 to
get (37) with γ = 2.

The lemma is proved for α < 3. And by an inductive argument we can prove
this lemma for any α.

Similarly, for l = 0, 1, 2 we have

(1 + t)γ‖∂l
xv(t)‖

2 + ǫ

∫ t

0

(1 + τ)γ‖∂l+1
x v(τ)‖2 dτ ≤ cN2

α

Hence

(1 + t)γ‖v(t)‖2
2 + ǫ

∫ t

0

(1 + τ)γ‖vx(τ)‖2
2dτ ≤ cN2

α ,

which concludes the proof for γ integer in [0, [α]].



16 Stability of strong detonation waves EJDE–1998/09

For γ ∈ ([α], α], from (34) with β = 0 it follows that

(1 + t)γ‖v(·, t)‖2 + ǫ

∫ t

0

(1 + τ)γ‖vξ(·, τ)‖
2 dτ

≤ c‖v0‖
2 + cγ

∫ t

0

(1 + τ)γ−1‖v(·, τ)‖2 dτ

≤ c‖v0‖
2 + cγ

∫ t

0

(1 + τ)[γ]‖v(·, τ)‖2 dτ .

Combining the above results on integer exponents, we arrive at our conclusion
for any γ ∈ ([α], α]. 2

Finally, we obtain the estimate

v2
x(x, t) = 2

∫ x

−∞

vxvxx(y, t) dy

≤ 2
(

∫ +∞

−∞

v2
x(y, t)dy

)1/2(
∫ +∞

−∞

v2
xx(y, t) dy

)1/2

≤

∫ +∞

−∞

v2
x(y, t) dy +

∫ +∞

−∞

v2
xx(y, t) dy

≤ cN2
α(1 + t)−γ .

Hence,

sup
x

|u(x, t) − ψ(x−Dt)| = sup
x

|vx(x, t)| ≤ CNα(1 + t)−γ/2 ,

which is the statement in Theorem 2.
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