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ABSTRACT. This article concerns the existence of positive solutions of the non-
linear Choquard equation
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where the coefficients a and b are positive functions such that a(z) — koo and
b(z) — poo as |z| — oco. By comparing the decay rate of the coefficients a
and b, we prove the existence of positive ground and bound stat solutions of
Choquard equation.

1. INTRODUCTION

In this article studies the existence of positive solution of the nonlinear Choquard
equation

fAqua(z)u:b(:z:)(ﬁ * |u|2)u, ue H(R), (1.1)
where the coefficients a(x) and b(x) are positive functions such that lim ;| a(z) =
Koo > 0 and lim|g| o0 b(2) = plos > 0.

Equation is called the nonlinear Choquard or Choquard-Pekar equation. It
has several physical origins. Equation first appeared as early as in 1954, in a
work by Pekar describing the quantum mechanics of a polaron at rest [34]. In 1976,
Choquard used to describe an electron trapped in its own hole, in a certain
approximation to Hartree-Fock theory of one component plasma [22]. In 1996,
Penrose proposed as a model of self-gravitating matter, in a programme in
which quantum state reduction is understood as a gravitational phenomenon [31].
In this context equation of type is usually called the nonlinear Schrodinger-
Newton equation. In general, many mathematicians study the existence of the
solitary solutions of the nonlinear generalized Choquard equation

1
||

iy — A + K () — b(x)( « |¢|P) WPP~2p =0, (z,t) eRY xR, (1.2)
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where N > 1, a € (0, N), ﬁ,’;i < % < N]-Vm' To obtain the solitary solutions of

(1.2), we set ¥(t,z) = u(z)e™! (w is a constant) in (1.2)) and get the stationary
equation of the form

— A+t a(a)u = bx) (ﬁ el )2, ue H'®Y), (1.3)
where a« = K(z) — w. Obviously, if N = 3;a = 2 and p = 2 the equation
reduces to . In recent years, many papers are concerned with the existence
of solutions of (I.3). Lieb [22] proved the existence and uniqueness of the ground
state to . Lions [23] obtained the existence of a sequence of radially symmetric
solutions for by using variational methods. Papers [I],38] showed the existence
of multi-bump solutions of . Recently, papers [19, 26 [37] showed some partial
uniqueness of the positive solutions of . Papers [18] [27] showed the existence
of positive and nodal solution of . For more results on this direction one can
refer to [B, 12, 13| 14, 15, 16l 17 28], 291 B0l B32], B3] and the references therein.

It is worth to point out that in most of the papers mentioned above, the search
for the positive ground state solutions to . In the present paper we consider
a nonautonomous situation that has to be studied in a different way. We will find
the positive solution which different from positive ground state solution. Here a
solution u of is nontrivial if uw # 0. A solution of is a nontrivial bound
state solution if u is a nontrivial solution. A solution u with u > 0 is called a
positive solution. A solution is called a nontrivial ground state solution (or positive
ground state solution) if its energy is minimal among all the nontrivial solutions
(or all the positive solutions) of . Here the energy functional corresponding to

is defined by
I(u) = %/ (IVul]* + a(z)u®) — i/ b(x)p,u®, ue HY(R?). (1.4)
R3 R3
We set
a(x) = Koo + AR(2), () = oo + p(x), (1.5)
where A € RT and we assume
(A1) k € L¥2(R®), k > 0, K # 0, lim;| 0 K(z) = 0;
(A2) pe L*(R?), p >0, p# 0, limjg| o p(x) = 0.

Hence, equation can be rewritten as
— A+ (Koo + Me(@))t = (oo + (@) b (@), w e H'RD).  (1.6)

The purpose of this paper is to describe some phenomena that can occur when the
coefficients are competing. For each A € [0, 00), we prove the existence of positive
ground state solution of if k(x) decays faster than p(z). Conversely, if u(z)
decays faster than x(x), we find the threshold value A* > 0 such that has a
ground state solution if A € [0, A*), and no ground state solution for A € [A\*, 00).
Furthermore, we find the positive bound state solution of if A € [A\*,00).
Our study mainly motivated by the recent works [I1], [10], while the authors study
the existence of positive solutions of Schrodinger equation and Schrodinger-Poisson
system with competing coefficients. Comparing to the previous works [111 [10], we
encounter new difficulty in finding the positive solutions of (L.6]). Precisely, we let
ug denote the sign-changing solution of the Schédinger equation

— AU Footl = fiso|ulP?u, u e HY(RY). (1.7)
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It is easy to check that Joo(ug) > 2keo (see [I1]), where

1
koo =inf Joo and Joo(u) = 3 /N(|Vu|2 + Koott?) — % /N |ulP. (1.8)
R R

In [I11 [1I0], this fact was play an important role in recovering the compactness and
finding the bound state solution. However, the situation is totally different in our
case. In fact, consider the Choquard equation

— AU+ Kool = Pootu(T)u, u € H(RY). (1.9)

According to [I8], we know that the energy of sign-changing solution of is
strictly less than two times the least energy level of . This brings the difficulty
in recovering the compactness. We shall use the idea of [25] [36] and consider our
problem in convex set Hi (R3) to overcome this difficult, where H} (R?) := {u €
HY(R3) : u > 0}.

Now we are ready to give the main results of the paper. We first state the results
when k(z) decays faster than p(x).

Theorem 1.1. For 7 € (0,1), we assume that (A1), (A2) hold and
(A3) Timyg| oo (@)]aleT™ VA=l = 0, Ty o p(@)er VAl = oo,
Then for all A € RY, Equation (1.6) always has a positive ground state solution.

Next we study the case when p(z) decays faster than k(z).

Theorem 1.2. Assume that (A1), (A2) hold, and for some 7 € (0,1), 0 € (0, ko),
and cy,co > 0, we have

(A4) liminf); o /i(x)el%‘/aw‘ > c1 and imsup, _ u(x)ef%‘/az' < co.
Then there exist a number \* > 0, such that for all X € [0,\*), Equation (1.6
has a positive ground state solution, while if X\ € [\*,4+00), Equation (1.6) has no
positive ground state solution. Additionally, if we assume that

(A5) limsup|,| oo K(x)|z|2e2VF=1Zl < ¢ for some c3 > 0,
then for X € [\*, +00), Equation (L.6) has a positive solution.

Remark 1.3. To the best our knowledge, this is the first results on the existence
of positive solution of Choquard equation with competing coefficients. We
believe our arguments can also work on the generalized Choquard equation
and other nonlocal problems. This is an interesting issue that can be pursued in
the future.

2. PRELIMINARY RESULTS

Throughout this article we shall use the following notation.
e The scalar product in H*(R?) is defined by

(u,v) = /RS [VuVv + Keouv]

and the norm is defined by [lul| = \/(u, u), where ko, > 0 is given in (L.6));
e the norm of D"?(R?) defined by ||ul|%:.. = [gs [Vul?;
e c* or ¢, c¢; denote different positive constants;
e the norm in LP(R?) defined by |ulb = [p, |ul?.
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In this part we given some basic knowledge which will be used in the later.
Considering for all u € H'(R?), the linear functional .J,, defined in D2(R?) by

Ju(v) = /R u?v.

We infer from the Hoélder inequality that
| Ju ()] < Clullys|lvllpre (2.1)

By the Lax-Milgram theorem, we know that there exists unique ¢, € D%?(R3) such
that

V¢, Vv :/ u?v Vv € DVA(RY). (2.2)
R3 R3
So, ¢, is a weak solution of —A¢ = u? and the following formula holds
u?(y) 1
Gu(x :/ dy = — % u®. 2.3
= fo o=l Tl 23

Moreover, ¢, > 0 when u # 0.
We recall the following classical Hardy-Littlewood-Sobolev inequality (see [21]
Theorem 4.3]). Assume that f € LP(R?’) and g € LY(R?). Then one has

dxdy < c(p, ¢ )| flplglq, (2.4)
/1R3 R3 |$ - y|t re
Wherel<p,q<oo,0<t<Nandf—i—%—l—%:z By (2.4) we know that
/ / dwdy < c|u|12/5 < cfjul|*. (2.5)
R3 JR3 -

It is well-known that solutlons of 11.6)) correspond to critical points of the energy
functional

1 1
IMWZ*/(WW+Wm+M@Wﬂ—*/Um+M®WW? (26)
2 R3 4 R3
for u € HY(R?). From (2.5)), we know that I is well defined, and that
L] = / [VuVo + (Koo + M) Juv] — / (oo + (@) buuw,  (27)
R3 R3
for all v € H'(R?). We define the operator ® : H!(R3) — D?(R3) as

Dlu] = ¢y
From [I0, Proposition 2.2-2.3] we know that ® has the following properties.

Lemma 2.1. (1) @ is continuous;
(2) ® maps bounded sets into bounded sets;
(3) ®[tu] = t>®[u] for allt € R;
(4) If u, — u € HY(R3) then @[un] — ®[u] in DY2(R3). Moreover,

[ @ @it = [ pt)oufere
/ (@), (2)tind — / ),

for all € H'(R3).
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It is easy to verify that, whatever A € R is, the function I is bounded neither
from above nor from below. Hence, it is convenient to consider I restricted to a
natural constraint, the Nehari manifold. We set

M= {u e H' (R)\{0} : I} (u)u=0}. (2.8)

The next lemma contains the statement of the main properties of Aj.

Lemma 2.2. Assume that (A1), (A2) hold. Then for all A € R*, we have

(i) A4 is a C* regular manifold diffeomorphic to the sphere of H*(RY);
(1) I is bounded from below on A5\ by a positive constant;
(#i1) w is a free critical point of I if and only if u is a critical point of Iy
constrained on N5.

Proof. (i) Let u € HY(R3)\{0} be such that ||u|| = 1. We claim that there exists a
unique t € (0, +00) for which tu € A5. In fact, considering the equation

(tu)ftu) = 1| [FuP + (b 4 M@)® ~ £ [ (o + 1)) = 0. (29)
R3 R3
It is clear that it admits a unique positive solution ¢y (u) > 0 and that corresponding

point ¢y (u)u € A, the projection of w on A3, is such that
I(tx(u)u = max I (tu).
Similar to the proof of (2.5, we infer from u € 44 and (A;)-(As) that
Jul? < [ 1V + G+ Ak = [ (e + il < el (210
R3 RS

This implies that
|lu|| > ¢ > 0. (2.11)

Set G (u) := I{(u)[u]. By the regularity of I\ we know that G, € C'(H'(R?),R).
Moreover, by using (2.11]), we obtain that

()] = —Q/RS V)2 + (koo + Ne(2))u < —2¢ < 0, (2.12)

(ii) For all u € .44, one sees that
In(u) = % . IVul? 4+ (koo + Me(z))u? > i”u”2 >C > 0. (2.13)
(iii) If u # 0 is a critical point of Iy, then I} (u) = 0 and then u € A45. On the

other hand, if u is a critical point of I} constrained on .44, then there exist £ € R
such that

0= I\(u)[u] = GA(u) = (G (u)[u].

We infer from (2.12)) that ¢ = 0. O
Next we consider the limit functional I, : H}(R3) — R, defined as
1 1
Io(u) = 7/ (IVul]® + koou®) — 7/ oo ®u()u?,  u € H'(R?).
2 R3 4 R3

and the related natural constraint

Noo 1= {u € H'(R¥\{0} : ' (u)pu =0} .
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Obviously, critical points of I, are solutions of the limit problem at infinity
=AU+ Kool = foo®y(x)u, in R3,
~A¢ =u? ue H' (RY).
Clearly, the conclusions of Lemma hold for I and .A4%,. Furthermore, for any

u € HYR3)\{0}, it is easy to see that there exists unique t(u) > 0 such that
t(u)u € 5. Set

(2.14)

Moo = Inf{l(u),u € A} (2.15)
From [27] 26], we know that m, is achieved by a radially symmetric function w,

unique up to translations, and decreasing when the radial coordinate increases.
Precisely, there exists a constant ¢* > 0 such that

lim  |w(z)|z|'~¢ eVF=I*l = constant. (2.16)
|z]—+o00

In what follows, for any y € R3, we use the translation symbol

wy = w(-—y). (2.17)
Set

my = inf{I(u),u € A3} (2.18)

Then the following properties of m) and m., hold.
Lemma 2.3. Suppose that (A1), (A2) hold. Then for A > 0 we have

0<my < Meo- (2.19)
Proof. Let A > 0 be fixed. The first inequality of (2.19)) is a straight consequence
of (2.13). In order to show the second inequality we should construct a sequence
{u,} C A and lim, Iy(u,) = Meo. To this aim, let us consider (y,)n,, with

Yn € R3, |yn| — +00, as n — +oo and we set u,, = t,w,, , where w,, is defined in
(2.17) and t,, = t(wy, ) such that u, = t,w,, € A5. We observe that

I,\(un)

2 tn
_n / Vg, [? + (koo + As(z))w?, — 2 / (100 + 1(2)) b, ()0,
2 ]R3 4 ]RS

12 t
=2 o [ ome2| =2 [ Gt e+ )t s
. . (2.20)
Moreover, from t,w,, € #, it follows that
2 ||w||2—|—/\fR3 k(x + yp)w? '
" fRa Moo Pww? + fRs T + Yn) Pw (T + Y )w?
It is clear that
lim Kz + yp)w? =0,
n—oo Jps3
lim p( + yn) b (2 + yn)w? = 0.
n—oo Jp3
Thus, we infer that
t, — 1, In(up) — Moo, asmn — 4oo. (2.21)
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By apply the well-known concentration-compactness principle[24] and maximum
principle[39], we have the following results for m.

Lemma 2.4. If the strictly inequality
my < Moo (2.22)

holds, then my is achieved by a positive function. Moreover, all the minimizing
sequences are relatively compact.

Lemma 2.5. Assume that A = 0, (Al), (A2) hold. Then (L.6) has a positive
ground state solution.

Proof. Note that

o) = gl =7 [ (i + @) (@),

1

1
Fol) = 5l = [ (o

Thus, we infer that mg < my,. To complete the proof we only need to show that
mo < M. Assume, by contradiction, that w € A% and I (w) = me = my.
Then there exists ¢, > 0 such that t,w,, € A5, and ¢, — 1, as n — oo. This
implies that

Moo =M < Ip(tnwy, ) < Ioo(W) = Moo

This is impossible. ([

The next lemma analyzes the behavior of some sequences of {u,} C A3, .

Lemma 2.6. Suppose that (Al), (A2) hold. Let (A\,)n be a sequence of positive
numbers, for alln € N, and u,, € A, be such that I, (u,) < C. Then {uy}p is
bounded in H*(R3).

Proof. We infer from {u,} C A5, that

1
Iy, (uy) = —(||un||2 n )\n/ ﬁ(x)ui) <C. (2.23)
4 RS
Thus the conclusion holds. O

Lemma 2.7. Assume that (A1), (A2) hold. Let u, € A5, be such that I, (un) <
C, and A\, — 00, as n — oo. Then, for all R > 0,

Un|By, — 0, in L?(BR), )\n/ rk(x)u? < C,

R (2.24)

/ w(x)pu,uz — 0, asn — 4oo.
R3

Proof. Since {uy} satisfies the inequality , one can check that the first two
conclusions of are true. Next we prove the third one. By (Asz), we know that
for any ¢ > 0, there exists R > 0 such that for all # € R?\ Bg, u(x) < e. Thus we
infer from Lemma [2.6] that

/ () pu, u < 5/ b, (v)u? < eC. (2.25)
R3\Br

R3\Br
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On the other hand, by Hardy-Littlewood-Sobolev inequality, one sees that

5
6
/ w(z) o, uz < C bu,u2 < C (/ u;52> — 0, as n — oo. (2.26)
Br Br

Br

From ([2.25)-(2.26)), we know that the conclusions hold. O

3. PROPERTIES OF THE MAP \ — m)
In this section we shall show that the monotonicity property of the map A — m).

Lemma 3.1. Assume that (A1), (A2) hold. Then the map A — my is nondecreas-
mg.
Proof. For u € HY(R®)\{0}, A € RT and t,(u)u € .45, we have
ul|2 + A [ w(z)u?
fRs» [Hoo + p(@)]duu

If A1, A2 € R such that Ay < \g, then ¢y, (u) < ty,(u). Moreover, ty, (u) = tx,(u)
if and only if [, x(x)u? = 0. So, we obtain

t2
I (i, = 52 (1l + [ awone?)
R3

t3 3.1
< Q(HUHQ —I—/ Agﬁ(x)uz) (3:-1)
4 R3
= I)\Q (t)\l u).
Therefore, by the arbitrariness of u, we obtain that my, < my,. O

Remark 3.2. We observe that if u € H'(R3)\{0}, and A\; < A2, A1, A2 € RF, then
ta, () =ty (u) = r(x)u® = 0.
R3

Next we prove some properties for my and m..

Lemma 3.3. Assume that (A1), (A2) hold. If there exists v € RT such that
My = Moo, then we have my = mqyo for all X > v. Moreover, my is not achieved.

Proof. By Lemmas [2.4] and we deduce that
Moo = My < M) < Mg
Thus, we obtain my = Mxe.

Next we shall prove that m) is not achieved. Arguing by contradiction, we
assume that there exists uy € A4 such that Iy(uy) = my = me. Let t, =
t,(uy) > 0 be such that t,uy € 4;,. By using the same arguments as in Lemma
and Remark we can get t, < 1, and thus

Moo = My S Iu(tuu)\) < I,\(U)\) = Moo-
This is a contradiction. [l

As a consequence of Lemma [3.3] we have the following results.

Corollary 3.4. Assume that (A1), (A2) hold. Then there exists at most one num-
ber v € Rt such that m, = mos and it is achieved.
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Let us define
A i=sup{A € RT i my < moo}. (3.2)
Then the following lemma states the role of \*.

Proposition 3.5. Suppose that A* < +o0o. Then
My = Moo- (3.3)

and
sup{A € R" : m) < ms} = min{\ € R : my = ms}. (3.4)

Proof. We use the contradiction method. If my« < m, then there exists u* € A3+
such that Iy« (uy+) = my+. Let (A,)n be a sequence of number such that A, \, A*.
By Lemma we know that my, = meo. Moreover, there exist t, := ty, (ux«)
such that t,ux« € 4, . By the definition of ¢,,, we obtain ¢, — 1, as n — co. So,
we obtain
1

[

o =, < I, (i) = s+ [ an(a)ad
R3

2 —|—/ N r(x)us.] = I (upe) = m* < meo.
R3

This is a contradiction. Finally, (3.4]) is easily obtain from (3.3]). O

- 1
n— —|—ooz[||u,\*

Next we show the continuity of the map A — m.

Lemma 3.6. Let (A1), (A2) be satisfied. Then the map X\ — my is continuous for
AeRF.

Proof. We divide into the following two cases to prove the results.

Case 1. \* = co. By the definition of A\*, we infer that for each A € R*, m) < mqo.
By Lemma there exists uy € A such that I(uy) = my. Let {\,} be such that
An — A, and t,, := ty, (uy) be such that t,uy € A4, . Then, by using the definition
of t,,, we obtain that t,, — 1 as n — oco. Hence, one sees that

1
ma, < I (tin,) = g sl + A [ n(e)id,]
]RS

=% 1 ol + A [ s (52)
4 s
= I(uy) = my.
This implies
limsupmy, < my. (3.6)

n

Since my, < M for all n € N, we deduce from Lemma that there exist
U € A, such that Iy, (u,) = my,. Moreover, one infers from Lemma that
the sequence {u,} is bounded in H!(R3).

Let t,, := tx(uy) be such that t,u, € A5. Since
P A o )yl A s )

f]Ra (oo + p()) Pu,, ui ’ " fRL’» (Moo + () Pu, u2

we deduce that %, — 1 and |I(f,u,) — ma, | — 0, as n — +oco. Thus, we obtain

1

my < limsup my,,. (3.7)

n

Combining (3.6) and (3.7)), we obtain the conclusion as required.
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Case 2. \* € RT. For any A € (0, \*), we can use the same arguments as Case 1
to obtain the conclusion. On the other hand, for any A € (A\*,400), A — my is a
constant map. Therefor, we just need to prove the continuity when A = \*.

Let {\,} be a sequence of number and A, — A* By (3.3), if A, \, A", the result
is trivial. So, in the following we study the case A, " A*. By the definition of
N+, for fixed € > 0, there exists u. € N+ such that In«(u.) < my- +e. Let
tn,e == tx, (us) be such that ¢, .u. € A3, . On can easy to deduce that ¢, . — 1, as
n — +o00. Moreover, we have

1
ma, < I, (b ee) = 382 el 2 [ (o)
RS
1
T gl + /\*/ R(@)ud] = Ire (u2) < ma- + <.
R3

Thus, we obtain
limsupmy, < my- +¢.
n

By the arbitrariness of ¢, we can obtain
limsup my, < my-.
n
On the other hand, for all n, my, < My, we can use the same arguments as Case
1 to showing that
liminf my, < my-.
n

This completes the proof. ([

Remark 3.7. By the continuity of the map A — m) and the fact that mg < me,
we infer that A\* > 0.

4. TWO KINDS OF POSSIBLE SITUATIONS FOR \*

In this section we study the properties of \* according to the decay of the
functions k(z) and p(z). Let us first consider the case when x(x) decays faster
than p(x).

Lemma 4.1. Assume that (A1)—(A3) hold. Then we have that \* = +o0, where
A* is defined in (3.2)).

Proof. First, we infer from Lemma that my < me. So, in the following we
only need to consider the case A > 0. For fixed A > 0, we choose t,, such that
Up = tpwy, € A\, where y, and t, are chose as in the proof of Lemma
Moreover, as in , we infer that ¢, > ¢ > 0. Thus, we obtain that

2 2

ma < Iy(un) = Folt) + 2 [0 [ wta )t =% [ ot ))oun’]

< L)+ 23 [ nter et —c [ ute+)oun’]

2

= Moo + %" [)\ /RB w(z + yn))w? — C/RB w(x + yn))d)wa].
(4.1)

Hence, we obtain the conclusion if we show that, for large n,

/]R3 (2 + yn)w? — Cu(x + yn)dww?] < 0. (4.2)
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This is equivalent to prove that, for large n,

A
I := / [5/{(.’13 + yn)w2 - C[L(.’L‘ + y”)¢ww2]
R3\ B

Tlyn|

<Iy:= /B {Cu(m + Yn ) puw? — %H(m + yn)w2]

Tlyn|

To estimate I, from (2.16]) we have

I < / M&(z + yp )w?
R3\ B

Tlyn|

Al et
R?’\Bf\yn\

< ce 2TVReelynl,

nlw

}2/3 [/RS\B |w|‘3}1/3 (4.3)

Tlynl

Now we estimate the I term. By (A3), for all e > 0 and M > 0, there exists ng > 1
such that, for all n > ng and for all z € By, |,
K+ yn) <e(1—7) My “te 2 VExlnl (a4 y,) > Me™27VFxlunl - (4.4)

By [20, Lemmas 2.3 and 2.6], we know that
2
1
() :/ O gy L s o] - oo (4.5)
R |7 — Y| ||
Thus, we infer that, for n sufficiently large and for all x € B
A C
ME L) e,
pla+ya) ~ 2

T|Yynls
Coy(x) —

Hence, one sees that

AR(Z + Yn)
I / T+ n C wl\ L) — ————
o Briynl M( Y ) [ (b ( ) M(J? + yn) ]
= 7/ T+ Yp)ppw?® > O Me2TVrxlnl bopw? (4.6)
T\yn\ B

> CMe™2TVrslvnl,

Combining (4.3] . ), together with the arbitrariness of M, we can conclude that
I, < I,. This Completes the proof. (I

Next we consider the case when (z) decays slower than p(x).

Lemma 4.2. Suppose that (A1), (A2), (A4) hold. Then \* € RT, where \* is
defined in (3.2)).
Proof. We use the contradiction method. Assume that for all A € R™, my < mee.

By proposition Let {\,} be a diverging sequence. From Lemma there
exist {uy} such that for all n € N,

Up >0, up €M, Iy (un)=my, <me, I} (uy)=0.

We infer from Lemma that {u,} is bounded in H'(R3). Let 6,, = 6,,, be such
that 0,u, € 45. A direct computation show that

o lual?

ren o
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We claim that
I, (Onun) < Ino(Onun). (4.8)
Otherwise, one sees that
Moo < Too(Ontn) < In, (Onuy) < Iy, (un) = my, < Moo. (4.9)

This is impossible. So, the claim (4.8]) holds. Moreover, we deduce from the bound-
edness of ||u,|| that there exist two numbers ¢, C' > 0 such that

c<6,<C. (4.10)
From (4.8) we infer that
An
on - —/ 2)bu, (2)u2 < 0. (4.11)
2 Jas
We deduce from and - that
An
= k(x)u? — 0, asn — oo. (4.12)
2 Jos

Since u,, € A4, and 0,u, € JVOO, we deduce from ([2.5)) that

/ D (@)12) < 2 = oo / b, (2

oo (62— 1) / b, ()0, = / (@), (i — A / ()l = of1).
R3 R3 R3
These together with (2.24)) imply that
lim 0, = 1. (4.14)

Hence, one infers from and ( - ) that
Moo > Ik(un) - Ikn (enun) + O( )

(4.13)

= L) + 2 [ ez =2 [ o, o
R3 " 4 Jrs " " (4.15)
= Io(Orun) + o(1)
> Mmoo + 0o(1).
This implies
T (Onuy) — Mmoo, asn — 4oo. (4.16)

By the uniqueness of the family of minimizers of I, on 4%, there exists sequence
{yn} such that y,, € R® and

Oty —wy,, — 0 in H'(R®) asn — +oo,
where w is given by (2.16). Set v,(2) = uy,(z + y,). We infer from that
v, —w in HY(R3) asn — +oo.
Since, for all n, v, is a solution of
= At (oo £ M@+ Y = (oo + o+ g)bu(@)u. (417)
By the Schauder interior(see [35]), we know that v, — w in CZ_(R?®). Moreover,
from the decay estimates (see [27]), one deduces that for some o € (0, \/koo)

lon(z)| < ce™ VoIl (4.18)
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By (4.11)), it suffices to show that for n large enough,

An 3

— K(x + yn )02 — f/ (2 + Yn) b, vz > 0. (4.19)
2 R3 8 R3
That is, we need to prove that for 7 € (0, 1),

An 3
I = /B [7/1(95 + yn)vi - g,u(x + yn)(bvnvi}
Tlyn| 5 \ (420)
<Iy:= / [7,“(37 + yn)(bvnvr% - J’%(x + y”>v72L]
R3\B,,, | O 2

Tlynl|

To estimate Iy, from (A4) we have that for all x € B, |,
Kz + yn) > cre dVelunl and wx+yn) < coe 4TV lYnl
Thus, for any C' > 0 and = € B, |, we infer that if n is large enough,
An n A
cx(z + yn) N

2 plety.) 4
Since v, — w in CE_(R?), it follows that

I > / /s(x—kyn)vi()‘" _ M)
B 2

iunl R+ yn)
> e\ k(T + yn)v2 (4.21)
Bijyn|
< CAne—znmm/ W2 > eAneimValal,
B

On the other hand, from (4.18]) one infers that

3 12\ 5/3
I < / 2+ yn), 02 < of / v ) < etV (g.99)
R*\Byy,, 8 R\ B

yn |

Hence, by the divergence of \,, for large n, we can conclude that I < I;. This

completes the proof. O
Proof of Theoren{l.] By Lemmas and we know that the conclusions of
Theorem [L.1] hold. ([l

5. PROOF OF THEOREM

As we already pointed out in the introduction, new difficulty arises here. That
is, according to [I8], we know that any sign-changing solution u of such that
Io(u) < 2myo. From this we can not prove that I satisfies the (P.S).-condition
for ¢ € (Moo, 2Ms). Motivated by [25] B6], we shall consider our problem in convex
set H} (R?) to overcome the difficult, where H}(R?) := {u € H'(R?) : u > 0}.

For any point u € H%(R?), we define

J(u) = sup (I'(uw),u — uy). (5.1)

i €HL(RY), fu—us <1
It is easy to check that J is continuous on HZ (R*). We define
M =M N HL(RY), (5.2)

d= inf I(u), d'= inf I(u).
UEN\ ue(/V;r
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Next we study the properties of the Palais-Smale sequence of (1.6) on H}(R?) at
level ¢, for ¢ € (Moo, 2Moo).

Lemma 5.1. Suppose that (A1), (A2) hold. Let {u,} C A" be a sequence such
that I\(uy,) is bounded, and J(u,) — O strongly in Hi (R3). Then, up to a sub-
sequence, there exist a solution @ of (1)), a number k € N U {0}, k functions
u', ... uF of HL(R®) and k sequence of points (y2),y € R, 0 < j < k such that,
as n — +o00o,
koo k
Uy — Zuj( —yl) = uin HL(R?), In(u,) — Zloo(uj) + I\ (a),
j=1 j=1
lynl = +oo, Iy =yl — +oo (if i # ),
and v’ are weak solutions of ([2.14).

Moreover, we notice that in the case k = 0, the above holds without u7.

Proof. We claim that I'(u,) — 0 as n — oo. To prove this we first prove that {u, }
is bounded in H!(R?). We assume that |ju,| — oo as n — oo. It is very easy to

see that
Unp

= u, + ——— € H (R?). 5.4
So, we infer from J(u,) — 0 as n — oo, that
Uy,
(I'(up)y, ————) =0 asn — oo. (5.5)
L+ [Jun||

Thus, we obtain

I(un) — % (I'(un), tn) _ iHun‘P + i fRs )"{(m)“%
1+ ”un” 1+ HunH
1 llun?
> S — 0.
1+ [Junl

as n — oo. This is contradiction. So, ||u,|| is bounded. Moreover, as in (5.4)-(5.6)
we obtain that I} (u,)u, — 0 as n — cc.

We now use an idea from [25, Theorem 7] to claim that I'(u,) — 0 as n — oc.
Since |luy,|| is bounded, without loss of generality we assume that w, — wug in
HY(R®), up — up in L} (RN)(Vp € (2,2%)), and u,(z) — ug(x) a.e., in R®, where
uo > 0. From the assumption we can infer that J(u,) = 0,(1), where 0,(1) — 0 as
n — oo. Let £, > 0 be such that lim, . &, = 0 and lim, ., 0,(1)e,;! = 0. For

any g1 € C5°(R?), we set

Ulp = Un +Eng1 + J1e, € Hi(R3)7 (57)
where g1 ., = —min{0,u,, +&e,91} > 0. By the definition of J we know that
(I'(un)y un — urn) < J(un) = o,(1). (5.8)

So,
(I'(un), 1) = =, {{I'(wn), g1e,) + € on(1). (5.9)
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By a direct computations we can show that
—{I"(un), g1.c..)

Z—/(V%Vﬂ%+UM+WM@men+Ww+M@W%%mm)
R3

= / (VurV(un +eng1) + (Koo + A&(2))tn (Un + €091))
Qn

(NOO + M(x))¢u7lun(un + Engl)

(5.10)

> En (Vuanl + (HOO + )‘H(x))ungl) - (Moo + M(x))(bunungl)

n

(oo + () du, us,

|

Zen | (VunVar + (Koo + A(2))ung1) = (foo + (1(2)) bu, ung1)

n

—ﬁ/)wm+mmw%ﬁ.

Qn
where Q,, = {z € R3 : u,(z) + £,91 < 0}. Form |Ju,|| is bounded, we infer that
| Jo, (Hoo + 11(2)) ¢u, 97| and

|/ (Vetn Vg1 + (koo + M(2))ting1) — (o0 + () tin) |
Q,

are bounded. Moreover, since [{2,,| — 0 as n — oo, we can obtain that:

— (I'(un), g1,6,) > o(en). (5.11)
By letting n — oo, we infer from (5.9) and (5.11]) that
lim (I'(u,), 1) >0, Vg1 € C3°(R?). (5.12)

Reversing the sign of g; and since C§°(R3) is dense in H!(R?), We infer that
lim, o0 (I'(un), g1) = 0, for all gy € HY(R3). So, I'(u,) — 0 as n — oo and the
claim holds.

The rest of proof is similar to [3, Theorem 4.1], and we omit the details here. O

Now we are ready to prove the compactness condition for the functional Iy.

Lemma 5.2. Assume that (A1), (A2) hold on HL(R3). If my = m, then the
functional Iy satisfies the (PS) condition at level ¢, for ¢ € (Moo, 2Meg).

Proof. Let {u,} be a Palais-Smale sequence of I constrained on 45" at level ¢, for
¢ € (Moo, 2Mso). Applying Lemma we can get that for any solution of
satisfies u > 0 and I, > ms. Moreover, any critical point 4 of (I)) is such that
In(u) > my = moo. Thus, we know that & must be zero, and the conclusion of this
lemma holds. O

Let us now recall the barycenter definition of a function v € H} (R?)\ {0}, which
has introduced in [6]. Set
1

f(u)(z) = m B () lu(y)l,
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which belongs to L>(R3) and is continuous; and set
N N 1 SN L
u(x) = |p(u)(x) — 7 max u(x)} , U e Co(R?).

We define that 8 : Hi (R?)\ {0} — R? as
Bu) = Ai/ zt(x) € R3.
[uly Jrs

Since u has compact support, § is well defined. Moreover, the following properties
hold

(a) B is continuous in H} (R?);

(b) if u is a radial function, 8(u) = 0;

(c) for all t # 0 and uw € H1 (R?)\ {0}, B(tu) = B(u);

(d) given z € R? and setting u,(x) = u(z — 2), B(u,) = B(u) + 2.
Let

By = inf{I\(u) : u € A, B(u) = 0}.

Lemma 5.3. Assume that (A1), (A2) hold. If X > 0 be fized, and let my = Mmoo
be not achieved. then

My = Moo < @8‘.
Proof. We use the contradiction method. Let {u,} C 4, be such that B(u,) =0

and Iy (up) = Moo + 0,(1). From the Ekeland variational principle(see [39] or [25]),
we can obtain there exist a sequence of functions {v,} such that

Un € Ny In(vn) =Moo +0n(1),  J(vy) — 0,
‘ﬁ(vn) - ﬁ(un)l = On(l)'

Since my is not achieved, (vy,), can not be relatively compact, by Lemma the
equality

(5.13)

Uy, =Wy, + 0o(1).

must be true with |y, | — +00, which contradicts (5.13]). O
Let £ € R3 with |¢| =1 and ¥ = 9B3(&). We define
w
w=— (5.14)
(Jas dwr?) /
and for any y € R3, w, = w(- — y). Observing that w satisfies
— AW + KW = Moy w, (5.15)

and by a direct computation we obtain that
M = 2m!/2ul/?. (5.16)
For any p > 0 and (z,s) € ¥ x [0, 1], we define
Yp(z,8) = (1 — )Wy, + sWpe.
Let ¥, : ¥ x [0,1] — A, be defined by
p(z,8) = t?,swp(z, s),

where ¢ , > 0 be such that ¢ ;1),(2, s) € A4, Then we have the following results
to describe the property of %;.
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Lemma 5.4. Assume that (A1), (A2) hold and let A > 0 be fixzed. Then for all
p > 0 we have

By < T = Jnax I\(¥,(z,s)).

Proof. Since 5(¥,(2,0)) = pz, we assert that 5o ¥,(X x {0}) is homotopically
equivalent in R3\{0} to p¥, then, we can find (z,35) € ¥ x [0,1] and satisfied
B(¥,(z,5)) =0, and, naturally,

By < I\(V,(2,5) < T).
This completes the proof. O

Lemma 5.5. Let assumptions (A1), (A2), (A4) hold. Then there exist pg > 0 such
that for p > po,
%A < 2Moo.

Proof. The idea of the proof is similar to that used in [7, [§], and we just sketch it
here for reader’s convenience. Observing that
10, (2, 9)) = L A A w00, Cr0) 32
P 4 [fRs (:U‘oo +:U’(x))¢'l/)p(z,s) (x)wg(»%s)]lﬂ

Let us first evaluate
A
A, (2,8)
= oo+ [ @i
(1= 2wl 2501 — 5) (W W)t + 57w
+ /\{(1 - 5)2/ m(m)wiz +2s(1 — 8)/ K(Z)W ), Wpe + 52/ /c(x)wif]
RS R3 R3
Since w satisfies (5.15), it follows that ||w,.[|? = ||w,¢[* = M, and
(Wpzs Wpe) 1 = M/RS Pw,. WpzWpe = :M/]RS Pw e WpeWpz-

Then, from [4, Proposition 1.2] or [2, Lemma 3.7], and (4.5)) and (As) and the facts
|z| > 1 and ¢* > 0, we infer that

€p :/ Pw,. WpzWpe = / Pw e Wpe Wz ~ [2p[*¢ ~le™ 20V,
RS R3
[ RaIWE. < clpe 2 0g orle I < clog(p)p eV = ofe ),
R

/ m(x)wzg < C‘pg‘Qc*72 log |p§|672\05\\/nm < Cp2c*72672px/ﬁloo logp = 0(8,,),
R3

/R3 K(2)WpWpe < ¢ </]R3 K(z)w?, + /}R3 ”(x)wig> = o(c,).

,/%A(z, 8)=[(1—8)* + s* M+ 2s(1 — s)Me, + o(c,).
Moreover, by [9, lemma 2.7], we obtain

P (2,5) = / (1100 + 1)) (o) ()02 (21 9)
R3

So
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> [(1—s)" + s"peo +3[(1 — 5)°s

EJDE-2018/63

+ (1 = 8)8% oot

Hence
A8 1 ([1=s) s M
(27 (2,5))1/? = W2 { (1 —s)1 + 51172 + 2y(s)Me, + o(sp)}
where

(1—3s)s (1

(1 —s)t+ 545\

v(s) = 1

352(1 — 5)?2
2(1—s)*+ 234>'

By a direct computation we obtain that «(1/2) < 0, hence, there exists J1, neigh-

borhood of 1/2, satisfied y(1/2) < ¢ < 0 for all t € 7.

Hence, for p enough

large,
N Mz, s IM 4+ 2¢Me, + o(e 1
max{ﬁrzez’sejl}g 4 + C P 0( P) < = ;01/21\/-[
ZIEERE : uil? s

On the another hand, we have

(z:8)

lim max{ (z,s)l/

2|z€Es€[0 1]\%}

p——+o00
-1/2 (1 + 57
<u Mmax{ ]1/2\86 [0, 1]\,%%}
- —1/2M
< 1 Moo
When p is large enough,
N2, 8) 1
e\ 2
Eril%ﬁ] DNz, 5)1/2 < gHeo .

By (5.16)), we have

P
This completes the proof.

1
Tr < ZQW%I/QM)Q = 2.

O

Lemma 5.6. Let the assumptions of lemma hold. Then for p > 0 sufficiently

large,

p

) = rngtxb\(\llp(z7

0)) < 5.

Proof. From ([5.14)), (5.15) and ([5.16)), we have that for sufficiently large p,

I (2,0)) = 7{

4
=Moo + 0,(1).

From lemma [5.3] the conclusion follows.

[Wooll* + X Jgs &( W;2)z }2
[I]RS (,UJoo + .U( ))¢sz

= 1 [1M - o,(1)]

172

O

Proof of Theoren{1.2. Let \* be the number which has defined in (3.2). We infer
from Proposition that A* € Rt. Then, we deduce from Proposition that if

A< AT,

then m) < me. Furthermore, m is achieved.

Next we consider the case A > A\*. From Lemma [3.3] and Proposition [3.5] one
deduces that my = mso, and my is not achieved. Thus, we can not use minimization
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to solve (1.6). However, we can prove that (1.6)) has a higher energy than m.. exists.
For any ¢ € R, we let I := {u € A" : I,(u) < c¢}. By Lemmas [5.45.6, we have
the following inequalities

Moo < ) < By < T < 2mee.

We end the proof by showing that there exists a number ¢* € [4)), Zﬁ] which is a
critical level of I,| At We use the contradiction arguments. Assume that this is

not the case. Then the Palais-Smale condition holds in (s, 2ms) by Lemmal[5.2]
We can apply usual deformation arguments(see [39]) and assert the existence of a
A

. . T B _
number 6 > 0 and a continuous function n : I, * — I/\go ? such that By —6> )

and n(u) = u for all u € 1?375. Thus, we see that

A
On the other hand, since ¥,(%,[0,1]) C If” , BonoW,(3,]0,1]) is homeomorphic
to pX in R3\{0}. So, one has

0e ﬂ ono \Ilp(g? [0’ 1])7

which contradicts ([5.17]).

Finally, because for any A € R*, we can find a solution u, of with I (uy) <
2moo. Moreover, since we find the second solution in H (R*), we conclude that it
is positive. (I
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