
EASY-FILTER: A DESIGN, VERIFICATION, AND VALIDATION TOOL FOR

FINITE IMPULSE RESPONSE (FIR) FILTER

by

Anshu Kumari, B. Tech

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering

December 2020

Committee Members:

 Semih Aslan, Chair

 Damian Valles

 Dan Tamir

 Bill Stapleton

COPYRIGHT

by

Anshu Kumari

2020

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. The use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work, I, Anshu Kumari, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

DEDICATION

My Family

v

ACKNOWLEDGEMENTS

Firstly, I would like to thank my thesis advisor, Dr. Semih Aslan of the Ingram

School of Engineering, at Texas State University, for giving me the excellent opportunity

to complete my thesis under his supervision. During my master’s thesis, I experienced the

birth of my first child. Dr. Semih Aslan was very understanding, and his patience regarding

this thesis was much appreciated. His expertise in digital FIR filters and chip verification

was invaluable to my thesis. Thank you for all the advice, moral support, and patience in

guiding me through this thesis.

I would wish to express my gratitude to my thesis committee member Dr. Damian

Valles, Ingram School of Engineering, and Dr. Dan Tamir of the Computer Science

Department at Texas State University, who have read through the manuscript. Thank you

for your suggestions, which have significantly contributed to the improvement of this

thesis. I would like to thank Dr. Bill Stapleton, Ingram School of Engineering at Texas

State University, to support this thesis.

I would also like to thank Dr. Vishu Viswanathan, a Graduate Advisor at the Ingram

School of Engineering at Texas State University. He was always accessible for all my

degree process related questions and enabled me to maintain focus at schoolwork.

The most significant person with an indirect contribution to this work is my father,

Mr. Karnail Singh, who has taught me the love of learning. I want to thank him and my

mother for constant encouragement. Your devotion, unconditional love, support, patience,

optimism, and advice were more valuable than you could ever imagine.

vi

Special thanks to my husband, Arun Singh Kanwar, for continuous support and

understanding and for providing valuable input about earlier versions of the thesis and the

final preparation of the manuscript. Finally, I would like to thank my wonderful daughter

Saanvi Kanwar. Whenever I felt low during this thesis, thinking of Saanvi would always

give me the extra bit of inspiration to press on.

vii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

ABSTRACT ... xiv

CHAPTER

1. INTRODUCTION .. 1

1.1 Problem targeted ... 4

1.2 Proposed solution .. 4

1.3 Hypothesis... 4

1.4 Research contribution ... 4

1.5 Outline... 5

2. BACKGROUND .. 7

2.1 Verification vs. validation ... 7

2.2 IC implementation flow .. 8

2.3 Verification ... 13

2.4 Functional verification .. 16

2.5 Filters .. 19

2.5.1 Classification of Filters ... 19

2.6 FIR Filters ... 21

2.6.1 FIR filter’s properties .. 21

2.6.2 Parameters of FIR filters ... 22

2.6.3 Types of FIR filters ... 23

2.6.4 Z-transform ... 25

2.6.5 Transform function of discrete-time systems 25

2.6.6 Ideal filter approximation ... 27

2.7 Window functions ... 30

2.7.1 Rectangular window ... 31

2.7.2 Hanning window ... 33

2.7.3 Hamming window ... 33

viii

2.7.4 Blackman window .. 34

2.7.5 Kaiser window .. 35

2.8 FIR filter design using window functions ... 37

2.9 FIR filter realization .. 39

2.9.1 Direct realization ... 40

2.9.2 Direct transpose realization... 40

2.10 Graphical user interface .. 41

2.11 Hardware description language... 41

2.11.1 Importance of HDLs ... 42

2.11.2 Basics of Verilog .. 43

2.12 Automating the generation .. 44

2.12.1 Python ... 44

2.12.2 Perl .. 45

3. LITERATURE REVIEW ... 46

3.1 Functional verification .. 46

3.1.1 Design automation .. 47

3.1.2 Testbench automation ... 47

3.1.3 Testcase automation .. 49

3.2 FIR filter automation... 49

3.3 GUI for FIR filter .. 51

4. PROPOSED SYSTEM ... 52

4.1 Design methodology ... 52

4.2 Verification methodology ... 55

4.3 Validation methodology.. 56

4.4 Experiment .. 57

4.4.1 FIR filter generation .. 58

4.4.2 FIR filter verification .. 58

4.4.3 FIR filter validation... 58

5. EXPERIMENTAL SETUP ... 59

5.1 Experiment set-up ... 59

6. DESIGN IMPLEMENTATION ... 70

6.1 Filter design .. 70

6.1.1 Low-pass filter design ... 70

ix

6.1.2 High-pass filter design .. 71

6.1.3 Band-pass filter design .. 72

6.1.4 Band-stop filter design .. 73

7. DESIGN SIMULATION & VALIDATION .. 75

7.1 Design simulation ... 75

7.1.1 Testbench .. 76

7.1.2 Floating-point .. 76

7.1.3 Converting to floating-point ... 78

7.2 Design validation .. 79

8. RESULT EVALUATION AND COMPARISON.. 81

8.1 Easy-filter versus MATLAB... 81

8.1.1 Low-pass filter results ... 81

8.1.2 High-pass filter results .. 85

8.1.3 Band-pass filter results .. 89

8.1.4 Band-stop filter results .. 95

9. CONCLUSION AND FURTHER RESEARCH .. 101

9.1 Further research .. 102

APPENDIX SECTION ... 103

REFERENCES ... 126

x

LIST OF TABLES

Table Page

2-1: Frequency response of four standard ideal filters.. 29

2-2: Comparison of window functions ... 31

2-3: Values of parameter 𝛽 ... 36

6-1: Low-pass filter specifications .. 71

6-2: High-pass filter specifications ... 72

6-3: Band-pass filter specifications ... 73

6-4: Band-stop filter specifications ... 74

7-1: An example of floating-point conversion .. 79

8-1: Low-pass filter’s coefficients comparison... 82

8-2: Low-pass filter’s Implementation results .. 85

8-3: High-pass filter’s coefficients comparison .. 86

8-4: High-pass filter’s Implementation results ... 89

8-5: Band-pass filter’s coefficients comparison ... 91

8-6: Band-pass filter’s Implementation results ... 95

8-7: Band-stop filter’s coefficients comparison .. 96

8-8: Band-stop filter’s Implementation results ... 100

xi

LIST OF FIGURES

Figure Page

1-1: A decreasing trend in the first silicon success rate [3] .. 1

1-2: Types of flaws resulting in silicon re-spin [3] ... 2

1-3: The root cause of logic/functional flaws [3].. 3

2-1: Verification Vs. Validation ... 7

2-2: Functional Verification Paths .. 8

2-3: Validation of System ... 8

2-4: ASIC Implementation Flow .. 9

2-5: Relative cost of bugs at different stages of the design cycle 13

2-6: Type of Verification Methods ... 15

2-7: The design behavior space... 17

2-8: Design and Verification gaps [12] ... 18

2-9: Filters classification ... 20

2-10: Filter types ... 24

2-11: Block diagram of a linear discrete-time system .. 26

2-12: Transfer functions of four standard ideal filters .. 28

2-13: Rectangular window in the time domain[23] .. 32

2-14: Hanning window in the time domain [23] ... 33

2-15: Hamming window in the time domain [23] .. 34

2-16: Blackman window in the time domain [23] .. 35

xii

2-17: Block diagram of the direct form of FIR filter .. 40

2-18: Block diagram of the direct-transpose form of FIR filter .. 41

4-1: Block diagram of filter design automation .. 54

4-2: The verification methodology ... 55

4-3: An example of .do file ... 56

4-4: The validation methodology .. 57

5-1: Basic block diagram of the experiment setup .. 59

5-2: GUI’s user input section .. 60

5-3: The proposed system’s graphical user interface .. 62

5-4: FIR filter’s coefficients window in text and impulse form 64

5-5: Input signal window .. 65

5-6: Verilog options and Verilog code window .. 66

5-7: MATLAB options and MATLAB code .. 67

5-8: ModelSim simulation window .. 68

5-9: Comparison: GUI versus MATLAB coefficients.. 69

7-1: The FIR filter’s simulation waveforms ... 75

7-2: The testbench set up of the FIR filter .. 76

7-3: Single precision floating point... 77

8-1: The low-pass filter’s coefficient’s simulation waveform .. 83

8-2: The low-pass filter’s frequency response .. 84

8-3: Filtered output comparison .. 84

xiii

8-4: The high-pass filter’s coefficient’s simulation waveform ... 87

8-5: The high-pass filter’s frequency response ... 87

8-6: Filtered high-pass filter’s output comparison .. 88

8-7: The band-pass filter’s coefficient’s simulation waveform .. 92

8-8: The band-pass filter’s frequency response .. 93

8-9: Filtered band-pass filter’s output comparison ... 94

8-10: The band-stop filter’s coefficient’s simulation waveform 98

8-11: The band-stop filter’s frequency response .. 99

8-12: Filtered band-stop filter’s output comparison ... 99

xiv

ABSTRACT

Due to increasing hardware design complexity and cutting-edge competition for

the short time-to-market requirement, functional verification becomes the primary

challenge in the hardware design development project. The essential parts to verify any

systems are design code and testbench code. However, it is very labor-intensive to write

these codes and prone to manual errors. The idea behind this thesis is to develop a user-

friendly graphical user interface (GUI) that helps Verification Engineers to generate

design and testbench code. GUI also validate these codes by comparing with MATLAB

results more efficiently and in less time. Often, it is challenging to finish the debugging in

due time because of obvious reasons such as coming across several design changes at any

time. It means that they must rewrite their design and test benches. These changes

become a significant issue if they happen right before tape out. The proposed system

automates the design implementation of the FIR filter, which engineers can easily modify

in less time. The first step is to generate the design and testbench code of the FIR filter

and simulate using Modelsim. The second step is to validate this design by comparing its

results against already existing well established MATLAB's results. Filters of some sorts

are essential to the operation of most electronic circuits. Our proposed system can save a

significant amount of time for engineers because it can generate design code, testbench

code, and validate it, all in one system. The GUI generated Verilog codes are

synthesizable. The simulation results show that GUI based FIR filter’s design is fast,

convenient, flexible, and error-free.

1

1. INTRODUCTION

Functional verification (FV) is a significant step in the development of today’s complex

digital designs. In the latest Integrated Circuits (IC) designs, the deep-submicron feature

sizes have shifted the emphasis from design to verification [1]. Designers must design

ICs with an excess of 50 million equivalent gates and still meet cost and time-to-market

constraints. So, verification is the main topic for research and development in the

Electronics Design Automation (EDA) industry.

With the continuous increase in design complexity, the probability of Integrated

Circuits (IC) failure increases [2]. A study by Wilson Research Group in 2018 shows the

rate at which a given IC function satisfactory in first silicon spin is dropping. Figure 1-1

shows that achieving first silicon success is getting worse while achieving second silicon

success has improved [3].

Figure 1-1: A decreasing trend in the first silicon success rate [3]

The same studies also described the sources of errors in chip design. Chips fail for

many reasons like clocking, timing-path issues, power issues, and logic/functional flaws.

2

As shown in Figure 1-2, logic/functional defects are the most significant cause of flawed

silicon that required re-spin.

Figure 1-2: Types of flaws resulting in silicon re-spin [3]

Since the logic/functional errors were more common than the others, the same research

examines the root cause of logic/functional flaws. Design errors were the main reason for

functional flaws. The flaws due to changing, incorrect, and incomplete specifications are

also typical. According to Figure 1-3, flaws fall in three main categories:

➢ Design errors: About 82% of designs with re-spins resulting from

logic/functional flaws had design errors. It means that particular corner cases did

not cover during the verification process, and bugs remained hidden in the design

flow through tape-out.

➢ Specification errors: About 47% of designs with re-spins resulting from

logic/functional flaws had incorrect/incomplete specifications. Moreover, 32% of

3

designs with re-spins resulting from logic/functional defects had changes in

specifications.

Figure 1-3: The root cause of logic/functional flaws [3]

➢ Reused modules and imported IP: About 14% of all chips that failed had bugs

in reused components or imported IP (Intellectual Property).

So, this data shows that silicon re-spin is very common. Chip re-spin is extremely

expensive, and it also requires additional development time [4]. Thus, companies that can

control this trend have a considerable advantage over their competitors, both in terms of

the subsequent reduction in engineering costs and the business advantage of being to

market sooner and with high-quality products. The key to time-to-market success, for

many projects, is verification.

4

1.1 Problem targeted

The problem targeted in this thesis is achieving low cost, reducing manual errors,

and reducing project time spent in the design and verification of the FIR filter.

1.2 Proposed solution

The proposed solution is to develop a system that generates the FIR filter's design

and testbench, then verifying using ModelSim and validate it against MATLAB results.

FIR filters are of four types: low-pass, high-pass, band-pass, and band-stop. For this, we

propose to conduct a set of experiments, each of which includes the design, testbench,

verification, and validation. The system uses a Graphical User Interface (GUI) for

easiness. This interface is suitable for teaching purposes, either at undergraduate or

graduate levels.

1.3 Hypothesis

Using the proposed system reduces chip cost and time to market.

1.4 Research contribution

In this thesis, FIR filter designs using Perl and Python languages. Main

contributions are summarized as follows:

1. Any user can generate a design and testbench of FIR filter of any type (low-pass,

high-pass, band-pass, band-stop) and any order in seconds using easy to use GUI.

Along with design and testbench, it verifies and validates the FIR filter that saves

time and cost.

2. Easy-filter can design four types of digital filters using the same specifications

and GUI in two different languages: Verilog and MATLAB. It reduces human

5

errors, especially for FIR filters with a large number of coefficients.

3. Easy-filter designed filter is reconfigurable, which means that the filter can be

reconfigured anytime by data that are input to the GUI. GUI generated design and

testbench Verilog codes run on ModelSim that opens directly from GUI. The

filter design was verified by comparing the Python generated coefficients to the

MATLAB generated coefficients.

4. Easy-filter catches floating-point to decimal conversion error in two different

formats: total average error percentage, the plot of the absolute error in each

coefficient

5. Easy to use GUI that does not require any prior knowledge of any programming

language, so it is suitable for teaching purposes. GUI can run the FIR filter design

automatically on ModelSim and MATLAB software.

6. GUI can compare Python generated coefficients with MATLAB generated

coefficients and shows the total average error percentage.

7. Easy-filter design the FIR filter, simulate using ModelSim and validate Python

generated coefficients with MATLAB generated coefficients, using a single GUI.

1.5 Outline

This thesis is divided into nine chapters. Following the introduction in Chapter 1,

we have Chapter 2, which provides background information about function verification

importance and challenges, FIR filter, and graphical user interface. Chapter 3 includes the

literature review, which provides information about similar works performed by other

people. Chapter 4 gives information about the methodology used in this thesis for design,

verification, and validation, and experiments performed as a part of this thesis. Chapter 5

6

explains the experimental setup, and Chapter 6 explains the design implementation.

Chapter 7 adds the design simulation and validation process, and Chapter 8 compares the

results of the experiments performed against MATLAB; it also includes synthesis results.

Chapter 9 includes conclusions and future work recommendations.

7

2. BACKGROUND

The chapter provides background related to functional verification and FIR filter. The

chapter starts with a difference in verification and validation; then, it provides general

details about functional verification and FIR filter.

2.1 Verification vs. validation

The difference between verification and validation is always confusing.

Verification is a test of a system to prove that it meets all its specified requirements at a

particular stage of its development. On the other hand, validation is an activity that

ensures that an end product meets stakeholder’s true needs and expectations. Figure 2-1

shows the difference between verification and validation [5].

Figure 2-1: Verification Vs. Validation

Verification is a process to demonstrate the functional correctness of the design.

The primary purpose of “functional” verification is to ensure that a design meets its

functional intent. The convergent path model, as shown in Figure 2-2, functional

verification, reconciles a design with its specifications [6].

8

Figure 2-2: Functional Verification Paths

The desired behavior of the system must be known for system validation. The

desired behavior description is in specifications. Specifications describe what a system

must do; it does not explain how to do it. A system that is supposed to implement the

desired behavior is called an implementation. So, validation checks whether an

implementation complies with its specification, as shown in Figure 2-3 [6].

Figure 2-3: Validation of System

2.2 IC implementation flow

IC development process involves many steps to produce a final circuit. IC

development flow depends on the technology used and circuit type (digital, analog, or

mixed-signal). The flow also differs if a re-programmable device such as a Field-

Programmable Gate Array (FPGA) is used. Figure 2-4 shows a generic flow for a digital

Application Specific Integrated Circuit (ASIC). This flow based on standard cell libraries

methodology, widely used for developing digital circuits [7]. These circuits usually have

enormous complexity, high design, and production cost and benefit from Functional

9

Verification (FV). Fixing a logical error on these types of circuits is very costly.

Figure 2-4: ASIC Implementation Flow

Design goes through some form of transformation on each step shown in Figure

2-4. The process of designing an ASIC (Application Specific Integrated Circuit) is very

complex, and it involves many steps. Although the end product is small (in nanometer),

but the process of designing is long and challenging.

ASIC design flow includes design conceptualization, chip optimization,

logical/physical implementation, and design validation and verification. The overview of

each of the steps involved in the process is as follows:

➢ Step 1. Specification: At this step, the engineer defines features,

microarchitecture, hardware/software interface, Time, Area, Power, Speed with

design guidelines of ASIC. The design specification uses natural language, which

then transforms into Register Transform Level (RTL) code. Two different teams

involved at this juncture:

• Design team: Generates RTL code

10

• Verification team: Generates test bench

➢ Step 2. RTL code: Specifications converted to synthesizable Hardware

Description Language (HDL), like Verilog or VHDL. It includes detailed logic

implementation of the entire IC. Functional verification is used to ensure the RTL

code is according to the specifications.

➢ Step 3. Logic synthesis: The hardware description (RTL) transformed into a

gate-level netlist using a synthesis tool like RTL Compiler and Design Compiler.

The synthesizer used a standard cell library, constraints, and the RTL code to

generate a gate-level netlist. Static timing analysis (STA) calculates the expected

circuit timing used to optimize the circuit's optimization.

➢ Step 4. Test insertion: The design includes Design for Testability (DFT) to

ensure no bug or fault escape to the production. It uses to determine if the chip

function correctly after manufacturing. The design includes the following DFT

structures:

• Scan path insertion: It links all registers’ elements into one long shift

register (scan path).

• Memory BIST (built-in Self-Test): It uses to check RAMs.

• ATPG (automation test pattern generation): It generates test vectors or

sequential input to check design for faults generated within various circuit

elements.

➢ Step 5. Floorplan: This is the first step in the physical design process. In this

step, the circuit is organized and structured in a layout form for the first time. It is

the process to place blocks in the chip, including block placement, design

11

portioning, pin placement, and power optimization. The power grid is used to feed

the circuit created, and some routing or placement restrictions may be applied.

The overall dimensions and aspect ratio of the chip must be defined as well. A

floorplan always takes care of the following:

• Minimize the total chip area

• Make routing phase easy (routable)

• Improve signal delays

➢ Step 6. Pad insertion: The chip pads are inserted in the layout according to the

design constraints. The pads are the communication channels that the circuit used

to communicate with the external environment. Electrostatic Discharge (ESD)

should perform at this stage.

➢ Step 7. CTS: Clock tree synthesis is a process to build the clock tree that meets

the defined area, timing, and power requirements. It provides the clock connection

to the clock pin of a sequential element in the required time and area, with low

power consumption. The clock signal of a chip needs to simultaneously reach all

the sequential elements; therefore, special optimizations are performed for clock

buffering and routing. To avoid massive transition, high power consumption, and

increase in delays following structures used for optimizing CTS structure:

• Mesh Structure

• H-Tree Structure

• X-Tree Structure

• Fishbone Structure

• Hybrid structure

12

➢ Step 8. Placement: Placement places standard cells in a row. The cells that must

be connected must keep close to each other. Elements other than proximity like

routing congestion must consider. After the placement, no cell should overlap. A

poor placement uses a large area and degrades performance. Various factors, like

the timing requirement, the net lengths, and hence the connections of cells, power

dissipation should be considered. It removes timing violations.

➢ Step 9. Routing: At this step, physical connections between all cells are

established. Furthermore, connect pads and power rings. Routing is of the

following types:

• Global Routing: It uses delays of fan-out of wire to calculate estimated

values for each net. Global routing is of two types line routing and maze

routing.

• Detailed Routing: It uses various optimization methods (timing

optimization, clock tree synthesis, etc.) to calculate actual delays of wire.

➢ Step 10. Extraction: This step extracts the resistivity and capacitance of the final

layout. The extracted data used to perform proper tuning of the previous steps and

perform electric simulation for sign-off purposes.

The chip finally becomes ready after all these transformations. Chip goes through

all these transformations, so it is not error or misinterpretation proof. So, here verification

comes into play. The role of verification is to avoid errors in the design flow. Some

verification processes require several resources due to the intensive simulation nature of

the verification method. More resources mean high costs. The high cost can also be due

to delays in deploying a design that has tight time-to-market. The high cost due to all

13

these reasons justified with the number of errors caught early in the design cycle.

Because if an error is caught late in the design cycle, it costs more to the company; as

shown in Figure 2-5, the cost of errors increases as the design cycle stage increases [8].

Different steps of the process used different verification types; some of them explored in

the next section.

Figure 2-5: Relative cost of bugs at different stages of the design cycle

2.3 Verification

The previous section explained IC implementation flow. This flow is always

executed in parallel with the verification flow. If a company can afford enough resources,

two completely different teams work on each flow [1]. So, this approach provides two

different views for the same design, which helps in error detection. Design specification

works as a communication channel between these two teams.

14

As explained in the last section, each step is prone to errors or misinterpretations.

So, it is essential to carefully execute each step and check the result of each step against

design specifications. The first step of transformation is critical from the verification

point of view, translating a written document to a hardware description language. It is

highly susceptible to errors or misinterpretations. This transformation is explored

throughout the design cycle. All other transformations are mechanical and automated, so

they are less susceptible to errors or misinterpretations. Figure 2-6 shows various

verification methods [9]. Mainly they are of three types: functional verification,

equivalence checking, and code coverage. Each verification method is explained below in

brief. Functional verification, mainly the dynamic one, is explained in detail in the next

section.

➢ Functional verification: This is the favored method of FV and its dynamic type.

It is dynamic because input patterns/stimuli are generated and applied to the

design over several clock cycles. The corresponding results were collected and

compared against a reference/golden model and check if it conforms with the

specifications. The static FV is also called formal verification, performs the same

comparison. However, it uses some sort of mathematical proof instead of

simulation.

➢ Equivalence checking: It compares and checks if the two representations of the

same design are equivalent or not. This type of checking is useful, especially after

logic synthesis, i.e., comparing gate-level netlists against the design's RTL

representation.

15

Figure 2-6: Type of Verification Methods

➢ Code coverage: It checks and reports the code lines that visited(covered) during

the simulation. It is easy to collect, and it is an indirect metric to check the overall

verification progress.

Some methods are shared with different techniques (e.g., assertions), so they can

be misleading in different literature works. This thesis uses the following convention: a

technique is a collection of methods used in conjunction. A method is an approach to

prove a particular statement or property regarding a design. So, Figure 2-6 shows only

methods classified by type.

The verification of design, in general, accomplished mainly two techniques:

16

formal and functional verification [6].FV refers to a collection of methods: assertions,

random or directed stimulus, coverage, and dynamic simulation. On the other hand,

formal verification also refers to collecting methods that include property checking,

theorem proving, formal assertion checking, etc. FV is a simulation-based technique and

is most commonly used in the chip industry. Even though new methodologies have been

proposed that can benefit from formal or semi-formal methods and even adopted in the

industry; still, these methods are limited [10].

2.4 Functional verification

The goal of functional verification is to prove that a design work as intended. The

following are the main steps to achieve this goal [6]:

• Determine the intent.

• Determine what the design does.

• Compare the two to ensure that they match.

• Estimate the level of confidence in the verification effort.

Figure 2-7 shows how design intent, design specifications, and RTL code are

related to composing space of design behavior [11]. In Figure 2-7, each circle represents

a set of behaviors. The design intent is a set that includes design requirements. The

system architect, along with the customer, defined the design requirements. It is an

abstract of architect and customer’s expectations from a particular design’s functionality.

The specification is a written document that tries to enumerate those functionalities

exhaustively. Engineers follow the specification to do coding. The implementation is the

actual intent that is coded in the RTL code. The space that is not covered by any of these

circles represents the unspecified, unintended, and unimplemented behavior. The

17

verification tries to meet these three circles and try to bring them in coincidence.

Figure 2-7: The design behavior space

When verification tries to match these circles from Figure 2-7, these three circles

usually do not coincide and generate very definite results. Region G is the best scenario

for any design as a particular intent is defined, specified, and implemented. The goal of

functional verification is to maximize this region. In region D, the desired design’s intent

was specified but could not be implemented for some reason. There may be some

functionality specified and implemented in this region, but that was not the design’s

intent. Region F represents it. So, these scenarios waste resources and time.

So, verification is a must for today’s complicated digital design development.

Verification complexity increases as hardware’s complexity increases. Figure 2-8 shows

that verification technology falls behind design and fabrication capability, which widens

18

the verification gap [12].

Figure 2-8: Design and Verification gaps [12]

So, in other words, the capability of the industry’s current processes to fill a chip with

complex logic is pretty high. However, it cannot guarantee that this logic works

appropriately. Hardware Verification Languages (HVL) like e language, the Property

Specification Language (PSL), and the SystemVerilog language are used to deal with

verification complexity. The verification process is essential for the design and very hard

to accomplish. Verification is considered complete if each possible scenario is applied to

the Design Under Verification (DUV). Each possible output shows the design intended

and specified value at every point in time [13]. Measuring verification completeness is

not easy, so verification engineers use indirect metrics to measure progress.

These indirect metrics also called coverage metrics. The verification quality is

obtained from coverage, either functional or structural coverage. Structural coverage is

19

also called code coverage because it is directly related to the RTL code. On the other

hand, functional coverage is related to design functionalities. The critical element of the

verification process is functional coverage—the number of transistors per chip increases,

decreasing validation effectiveness. The test cases used for simulation are becoming more

complex, resulting in expensive simulation and less coverage [14].

2.5 Filters

Electronics filters either separate the desirable signal frequencies from

undesirable frequencies or change the frequency content that changes the signal

waveform. Filters of some form are essential for most of the operations of the electronic

circuits. Filters are used for two purposes to separate signals and to restore signals. A

filter is used for signal separation when the signal contains interference, noise, or other

undesirable signals. On the other hand, a filter is used as signal restoration when the

signal gets distorted somehow [15]. The filter’s primary purpose is to pass signals in a

particular frequency range and reject other frequency ranges in electronic systems.

2.5.1 Classification of Filters

The broad classification of the filter is given below in Figure 2-9.

➢ Analog/Digital filters: Filters are classified as analog and digital filters based on

the incoming signal. Digital filters perform mathematical operations on the

discrete-time signal that reduce or enhance some aspects of the signal. On the

other hand, analog filters operate on continuous-time analog signals. In digital

filters, the analog signal is first processed by digital filter by digitizing and

representing a sequence of numbers, then manipulating mathematically, and

20

finally reconstructing it as a new analog signal. In analog filters, the circuit

"directly" manipulates the incoming signal [16].

Figure 2-9: Filters classification

➢ Active/Passive filters: Filters are classified as active and passive based on

components used. Active filters use active components like amplifiers and passive

components like resistors and capacitors, and it is a type of analog filter. On the

other hand, passive filters use passive components like resistors, capacitors, and

inductors [17].

➢ FIR/IIR filters: Digital filters classified as FIR and IIR based on impulse

response. FIR filters have finite impulse response, and IIR filters have infinite

impulse responses [18].

➢ Linear/Nonlinear filters: Filters are classified as linear and nonlinear based on

the output signal’s dependency on the input signal. Linear filters produce the

output signal in the time domain resulting from processing time-varying input

signal, which is subject to linearity constraint. These results are composed solely

of components that have a linear response. In contrast, nonlinear filters produce

an output signal that is not a function of its input signal [19].

21

2.6 FIR Filters

Finite Impulse Response (FIR) filter settles to zero in finite time. Hence, its

impulse response (or response for any finite duration input signal) is finite. Its filter

structure is such that that it can use to implement any sort of frequency response digitally.

The FIR filter's primary characteristics are stability, linear phase, and high filter order

(more complex circuits) [20]. To implement an FIR filter, it uses a series of delays,

adders, and multipliers. Other names of FIR filters are non-recursive or feed-forward, or

transversal filters.

2.6.1 FIR filter’s properties

The following properties are characteristics of FIR filters [21]:

• It does not need any feedback for its operation.

• FIR filter has excellent delay characteristics, so it requires more memory.

• Higher-order filters use the FIR filter for tapping.

• Magnitude shaping is flexible, convenient, and implementation is easy and

dependent on linear phase characteristics.

• All poles are located at the origin; it means they are located in the unit circle (a

requirement for stability in Z transform), which is due to no feedback

requirement; thus, it is a stable filter.

• It has only zeros (no poles), so it is also called the all-zero filter.

• To design FIR filter as a linear phase, make symmetric coefficient sequence;

linear phase; change phase proportional to frequency, which corresponds to equal

delay at all frequencies.

22

2.6.2 Parameters of FIR filters

➢ Ripple: specifies the peak to peak level in decibels. It describes the filter’s

amplitude variation within a band. A smaller ripple is always preferable as it

represents a more consistent response. Passband ripple should be as low as

possible.

➢ Bandwidth: defines the frequency width of the filter’s passband. The bandwidth

is the same as the cut-off frequency in a low-pass filter. In a band-pass filter, it

defines the difference between upper and lower frequencies at -3dB points.

➢ Attenuation: input signal acquires amplitude loss after passing through a digital

filter; it is measured in dB. It defines as a ratio of amplitudes, at a given

frequency, the filter's output signal over the filter's input signal.

➢ Passband edge frequency: defines the start of the passband, the signal fully

passed in this region without any attenuation.

➢ Stopband edge frequency: defines the start of stopband, the signal attenuated in

this region without passing any signal—minimum attenuation in the stopband

reached at stopband frequency (Fs).

➢ Filter coefficients: the set of constant or tap weights multiply with delayed signal

sample value in digital filters. Digital filter design needs to exercise to determine

its coefficients to get the desired frequency response. The coefficients for the FIR

filter, by definition, are the impulse response of the filter.

➢ Filter order: describes a number that is the highest exponent either in the

numerator or in the denominator of a digital filter's z-domain transfer function.

There is no denominator in the transfer function in FIR filters, so filter order is

23

just the number of taps used in the structure. The large filter order is preferable, as

it provides a better frequency magnitude response performance of the filter.

➢ Transition region: describes a frequency range that is between the passband and

stopband of the digital filter. It is also called the transition band.

➢ Frequency magnitude response: describes in frequency domain how a filter

interacts with the input signal. It is a curve that represents filter attenuation (in

dB) versus frequency.

2.6.3 Types of FIR filters

As mentioned earlier, the primary purpose of a filter is to differentiate between

different frequency bands, so the most common filter classification method is frequency

selectivity. Based on frequency selectivity, filters are classified as low-pass, high-pass,

band-pass, and band-stop [21]. Figure 2-10 shows the frequency response of these four

types of filters.

2.6.3.1 Low-pass filter

A low-pass filter passes signals with low frequency than the cut-off frequency and

attenuates (reduces amplitude); all signals have the frequency above the cut-off

frequency. How much a signal attenuates varies from filter to filter. There are different

applications of low-pass filters: electronic circuits (for example, hiss filter that is used in

audio), image blurring, acoustic barriers, anti-aliasing filters that condition signals before

analog-to-digital conversion, and digital filters that smooth sets of data. An ideal filter

does not have a transition band, whereas there is a transition band for practical filters

between passband and stopband.

24

Figure 2-10: Filter types

2.6.3.2 High-pass filter

A high-pass filter passes signals that have a frequency above the cut-off frequency

and attenuates (reduces amplitude) all signals that have the frequency below the cut-off

frequency. Its amplitude response increases with the frequency above the cut-off

frequency.

25

2.6.3.3 Band-pass filter

A band-pass filter passes signals that have frequencies within a specific range and

attenuates (reduces amplitude) all other frequencies outside that range.

2.6.3.4 Band-stop filter

A band-stop filter does not pass any signal that has frequencies within a specific

range and passes all other frequencies outside that range.

2.6.4 Z-transform

The Z-transform is derived from the Fourier discrete time-domain transformation,

and it is a necessary operation in the digital filter design process. It is performed upon

discrete-time signals, which convert it into frequency-domain representation, which is

very useful for analyzing discrete-time signals and systems. The Z-transform defined as

shown in equation 2-1 [22].

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛

∞

𝑛=−∞

 2-1

where,

z = complex number

2.6.5 Transform function of discrete-time systems

The Z-transform is used to find the transfer function of linear discrete-time

systems necessary for zeros and poles in the z-plane. The transfer function of the

discrete-time system is defined in equation 2-2 [22].

𝐻(𝑧) =
∑ 𝑏𝑖𝑧

−1𝑀−1
𝑖=0

∑ 𝑎𝑗𝑧−1𝑁−1
𝑗=0

= 𝐻0

∏ (1 − 𝑞𝑖𝑧
−𝑖)𝑀−1

𝑖=0

∏ (1 − 𝑝𝑗𝑧−𝑗)𝑁−1
𝑗=0

2-2

26

where,

 bi = feedforward filter coefficients (non-recursive part)

 aj = feedback filter coefficients (recursive part)

 H0 = constant

 qi = zeros of transfer function

 pj = poles of transfer function

The recursive part of transfer function is a feedback of discrete-time system. FIR filters

do not have recursive part of the transfer function, so equation 2-3 shows the simplified

form of equation 2-2.

𝐻(𝑧) = ∑ 𝑏𝑖𝑧
−𝑖 = 𝐻0 ∏(1 − 𝑞𝑖𝑧

−𝑖)

𝑀−1

𝑖=0

𝑀−1

𝑖=0

 2-3

The inverse Z-transform of the transfer function gives the impulse response of a

discrete-time system. In other words, the discrete-time system’s transfer function is the Z-

transform of the impulse response, as shown in equation 2-4.

 𝐻(𝑧) = ∑ ℎ(𝑛)𝑧−𝑛

∞

𝑛=−∞

 2-4

where,

h(n) = impulse response of discrete-time system.

Figure 2-11: Block diagram of a linear discrete-time system

27

Another representation in the time-domain of the discrete-time system shown in Figure 2-

11 is the convolution of the input signal x(n) with the system's impulse response h(n).

Equation 2-5 shows the time-domain representation of the discrete-time system. This

representation of a discrete-time system is very suitable for software implementation.

𝑦(𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

 2-5

On the other hand, in the frequency domain, the discrete-time system shown in Figure 2-

11 is the Z-transformed input signal X(z) with the transfer function H(z) the system.

Equation 2-6 shows the frequency domain representation of the discrete-time system.

𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧) 2-6

Rearrange Equation 2-6 to get transfer function H(z), as shown in equation 2-7.

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)

2-7

This representation of the discrete-time system is suitable for hardware implementation,

analysis, and synthesis.

2.6.6 Ideal filter approximation

When the FIR filter is designed using the window function, an ideal frequency

response must compute the ideal filter samples. As the FIR filter has a finite impulse

response, so ideal filter frequency sampling has a finite number of points. As we know,

the frequency response of an ideal filter is infinite, so the chances of sampling errors are

high if the filter order is small. The sampling errors decrease with an increase in filter

order. Figure 2-12 shows the transfer function of the four standard ideal filters [22].

28

Figure 2-12: Transfer functions of four standard ideal filters

Inverse Fourier transform is used to calculate the ideal frequency response. Table

2-1 shows the standard ideal filter frequency responses.

where,

n = variable ranges between 0 and N

 N = filter order

 N+1 = number of ideal frequency response samples

 M=N/2

29

Table 2-1: Frequency response of four standard ideal filters

Type of filter Frequency response hd[n]

Low-pass filter

ℎ𝑑[𝑛] = {

sin[𝜔𝑐(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
 ; 𝑛 ≠ 𝑀

𝜔𝑐

𝜋
 ; 𝑛 = 𝑀

High-pass filter

ℎ𝑑[𝑛] = {

1 −
𝜔𝑐

𝜋
 ; 𝑛 ≠ 𝑀

−
sin (𝜔𝑐(𝑛 − 𝑀)

𝜋(𝑛 − 𝑀)
 ; 𝑛 = 𝑀

Band-pass filter

ℎ𝑑[𝑛] = {

sin[𝜔𝑐2(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
−

sin [𝜔𝑐1(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
 ; 𝑛 ≠ 𝑀

𝜔𝑐2 − 𝜔𝑐1

𝜋
 ; 𝑛 = 𝑀

Band-stop filter

ℎ𝑑[𝑛] = {

sin[𝜔𝑐1(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
−

sin [𝜔𝑐2(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
 ; 𝑛 ≠ 𝑀

1 −
𝜔𝑐2 − 𝜔𝑐1

𝜋
 ; 𝑛 = 𝑀

If filter order N is even, the constant M is an integer, but this is not the case with

odd-order filters. If M is an integer (even filter order), the ideal filter frequency response

becomes symmetric around its Mth sample found via expression shown in Table 2-1 [22].

The ideal filter frequency response remains symmetric even if M is not an integer, but not

around any frequency response sample. Equation 2-8 shows the expression to calculate

the frequency response of a non-standard ideal filter for inverse Fourier transform.

30

ℎ𝑑[𝑛] =
1

𝜋
∫ 𝑒𝑗𝜔(𝑛−𝑀)𝑑𝜔

𝜋

0

 2-8

2.7 Window functions

The window function is a popular method for FIR filter design due to its

simplicity. A window, which is a finite array, consists of coefficients selected to satisfy

desired requirements. It is necessary to specify the following points when designing a

digital FIR filter using a window function:

• It uses a window function.

• The filter’s order according to specifications (stopband attenuation, selectivity).

The above requirements are interrelated. Each function uses the following two

requirements to choose a filter based on specification:

• High selectivity means a narrow transition region.

• High suppression of undesirable signals means high stopband attenuation.

Table 2-2 shows all window functions mentioned in this thesis and briefly compares their

stopband attenuation and selectivity [23].

As shown in Table 2-2, the minimum attenuation of window function and the

filter designed using that function are not the same. This difference is due to additional

attenuation added during the filter design process that uses the window function. Due to

this, stopband attenuation increases, which is desirable.

 This method's drawback is that it has fixed minimum stopband attenuation for

each function except the Kaiser window. These windows have fixed stopband

attenuation, so the only way to affect the transition region is by increasing the filter order.

So, stopband attenuation is used to select appropriate window functions for the design

31

process. A window function with the least attenuation and fulfills the given requirement

is always preferred, which gives a narrow transition region to a designed filter. The next

step is to compute the filter order. It uses normalized cut-off frequencies of the transition

region.

Table 2-2: Comparison of window functions

2.7.1 Rectangular window

The rectangular window has low stopband attenuation, which makes it less

attractive for most of the filters. Finding rectangular window coefficients is very easy; all

coefficients between 0 and (N-1) (N-filter order) equals 1. Equation 2-9 shows the

mathematical representation of the rectangular window.

𝑤[𝑛] = 1; 0 ≤ 𝑛 ≤ 𝑁 − 1 2-9

Window

Function

Normalized

Transition width

[Hz]

Passband

Ripple [dB]

Minimum

stopband

attenuation of the

window function

Minimum

stopband

attenuation of the

designed filter

Rectangular 0.9/N 0.7416 13 dB 21 dB

Hanning 3.1/N 0.0546 31 dB 44 dB

Hamming 3.3/N 0.0194 41 dB 53 dB

Blackman 5.5/N 0.0017 58 dB 75 dB

Kaiser 4.32/N(β=6.76)

5.71/N(β=8.96)

2.93/N(β=4.54)

0.00275

0.000275

0.0274

70

90

50

32

The rectangular window only selects N samples from an input sequence, but it

does not perform sample scaling. Figure 2-13 shows a rectangular window’s coefficients

in time-domain:

Figure 2-13: Rectangular window in the time domain[23]

It is not a preferable window for digital filter design due to its reduced stopband

attenuation. The reason for its reduced attenuation is the cut-off samples within a

window. All sampled frequencies up to a zero sample (from which sampling starts) are

equal to zero. The first sample suddenly jumped to a non-zero value, which produces

relatively sharp high-frequency components and reduces the stopband attenuation.

Its attenuation increases as the cut-off sample’s sharpness decreases, which

reduces filter selectivity, which means a wide transition region. The digital filter has

predefined requirements, and as the rectangular window has low selectivity, so to get a

narrow transition region, the only way is to increase the filter order. The transition region

is inversely proportional to the filter order N, so as the filter order increases, the transition

region decreases. As the filter order increases, the filter's complexity also increases,

33

which require more time to process samples. So, it is essential to choose a window

function and filter order carefully [23].

2.7.2 Hanning window

The Hanning window minimizes the adverse effects on the final samples'

frequency characteristics of the filtered signal. The stopband attenuation of the posterior

lobes relatively increases sharply. This window has higher attenuation than a rectangular

window.

Figure 2-14: Hanning window in the time domain [23]

Figure 2-14 shows the Hanning window's coefficients in the time-domain, and

Equation 2-10 shows the Hanning window's mathematical representation.

𝑤[𝑛] =
1

2
[1 − 𝑐𝑜𝑠 (

2𝜋𝑛

𝑁 − 1
)] ; 0 ≤ 𝑛 ≤ 𝑁 − 1 2-10

2.7.3 Hamming window

The Hamming window is the most popular and commonly used. The filter that

uses a Hamming window has 53dB minimum stopband attenuation, suitable for most

34

digital filter implementation. It has a wide transition region as compare to the Hanning

and also has high stopband attenuation. With an increase in filter order, the transition

region narrows, whereas there is no effect on stopband attenuation. Figure 2-15 shows the

coefficients of the Hamming window in the time-domain. Equation 2-11 shows the

mathematical representation of the Hamming window [23].

𝑤[𝑛] = 0.54 − 0.46 [1 − 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 − 1
)] ; 0 ≤ 𝑛 ≤ 𝑁 − 1 2-11

Figure 2-15: Hamming window in the time domain [23]

2.7.4 Blackman window

The Blackman window is another popular and commonly used window. It is very

convenient for many applications due to its high attenuation and has minimum stopband

attenuation of 75dB of a designed filter. Figure 2-16 shows the coefficients of the

Blackman window in the time-domain. Equation 2-12 shows the mathematical

representation of the Blackman window.

𝑤[𝑛] = 0.42 − 0.5𝑐𝑜𝑠 [
2𝜋𝑛

𝑁 − 1
] + 0.08𝑐𝑜𝑠 [

4𝜋𝑛

𝑁 − 1
] ; 0 ≤ 𝑛 ≤ 𝑁 − 1 2-12

The Blackman window has an almost similar frequency response as a Hanning

window. The only difference is that it has a wide main lobe, and its first side lobe’s

35

attenuation is 51dB. There is additional stopband attenuation due to the side lobes

following the first one [23].

Figure 2-16: Blackman window in the time domain [23]

2.7.5 Kaiser window

There is always a compromise between a narrow transition region (high

selectivity) and high stopband attenuation in all the windows described above, so that

means these windows are not optimal. The optimal window is described as a function

with maximum attenuation per the main lobe's given width. It is also called the Kaiser

window. Equation 2-13 shows the mathematical representation of Kaiser window

coefficients.

𝑤[𝑛] =

𝐼0 [𝛽. √1 − (
𝑛 − 𝛼

𝛼)
2

]

𝐼0(𝛽)
 ; 0 ≤ 𝑛 ≤ 𝑁 − 1

2-13

where,

 𝛼 =
𝑁 − 1

2

2-14

36

 𝑁 =
𝐴 − 8

4.57 ∆𝜔
+ 1 2-15

 𝛽 = shape parameter

where,

 A = minimum required stopband attenuation

 ∆𝜔 = width of the desired normalized transition region

Multiply by 2 to get the order of band-pass and band-stop filters. Table 2-3 below provides

the value of 𝛽.

Table 2-3: Values of parameter 𝜷

A 𝜷

A < 21 0

21 ≤ A ≤ 50 0.5842(𝐴 − 21)0.4 + 0.07886(𝐴 − 21)

A > 50 0.1102(𝐴 − 8.7)

𝐼0 = modified zero-order Bessel function, which approximated as shown in equation 2-16:

𝐼0(𝑥) = 1 + lim
𝐾→∞

∑ (
𝑥2

4
)

𝑘

(𝑘!)−2

𝐾

𝑘=1

 2-16

Choose a decent value for K for accuracy. K=20 works for most of the cases.

From all the expressions mentioned above, it is clear that to design an optimal Kaiser

filter, the knowledge of normalized transition region’s width and desirable minimum

stopband attenuation is a must [23].

37

2.8 FIR filter design using window functions

The process to design an FIR filter using window function involves steps [22]:

• Define the filter specification.

• According to the filter specification, specify the window function.

• Compute the filter order required for the given specifications.

• Compute window function coefficients.

• Compute ideal filter coefficients according to filter order.

• Compute FIR filter coefficients according to the obtained window function and

ideal filter coefficients.

• If the transition region is too wide or too narrow of the resulted filter, then change

the filter order, and steps 4,5, and 6 iterated as needed.

The filter specifications define the desired transition width, normalized frequencies

(𝜔𝑐, 𝜔𝑐1, 𝜔𝑐2) and stopband attenuation. The filter order and window function computed

based on these specifications. The window function is selected such that it satisfies the

given specifications. After selecting the window function, the filter’s order is computed

according to the given set of specifications. After these steps, window function

coefficients 𝑤[𝑛] is computed using a formula based on the window function selected.

The next step is to find frequency samples of the ideal filter using formulas explained in

section 2.6.6. This step gives coefficients ℎ𝑑[𝑛]. The 𝑤[𝑛] and ℎ𝑑[𝑛] have an equal

number of elements. And then designed filter’s frequency response ℎ[𝑛] computed using

equation 2-17.

ℎ[𝑛] = 𝑤[𝑛]. ℎ𝑑[𝑛] 2-17

 The final step is to compute the designed filter’s transfer function by transforming

38

impulse response via Fourier transform, as shown in equation 2-18.

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛]. 𝑒−𝑗𝑛𝜔

𝑁

𝑛=0

2-18

Alternatively, via Z-transform, as shown in equation 2-19.

𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛

𝑁

𝑛=0

2-19

Use the following steps if the designed filter has a wide transition region than required:

• Increase filter order.

• Recompute coefficients of the window function.

• Recompute frequency samples of the ideal filter.

• Multiply them to get the desired filter’s frequency response.

• Recompute transfer function.

Follow the below steps if the designed filter has a narrow transition region than required:

• Decrease filter order to optimize hardware and software resources.

• Recompute coefficients of the window function.

• Recompute frequency samples of the ideal filter.

• Multiply them to get the desired filter’s frequency response.

• Recompute transfer function.

39

2.9 FIR filter realization

Equation 2-20 shows the FIR filter’s transfer function.

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= ∑ ℎ[𝑛]. 𝑧−𝑛

𝑁−1

𝑛=0

2-20

Equation 2-21 used to compute the FIR filter’s output samples:

 𝑦[𝑛] = ∑ ℎ[𝑘]. 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

2-21

where,

𝑥[𝑘] = FIR filter’s input samples

ℎ[𝑘] = the coefficients of FIR filter frequency response

𝑦[𝑛]= FIR filter’s output samples

FIR filter realization is of the following types:

• Direct

• Direct transpose

• Cascade

• Optimized

 For hardware implementation, direct, direct transpose, and cascade realization are

convenient. However, for software implementation, direct and optimized are good. This

thesis explained only direct and direct transpose form.

40

2.9.1 Direct realization

In block diagram representation, the real filter coefficients appear as multipliers in

a digital filter's direct structures. Direct realization directly implements equations 2-22.

𝑦[𝑛] = ∑ ℎ[𝑘]. 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

2-22

Figure 2-17: Block diagram of the direct form of FIR filter

The transversal filter is another name of direct realization. Based on the above

expression, to produce an output point, it needs the current sample along with 𝑁 − 1

previous samples. Based on Figure 2-17, which shows a block diagram of direct

realization, it needs 𝑁 multipliers for (𝑁 − 1)𝑡ℎ order FIR filter [22].

2.9.2 Direct transpose realization

In many ways, direct transpose realization is similar to direct realization. Both

structures use the same number of delay elements, the same number of multipliers, and

the same coefficients. Figure 2-18 shows the block diagram of the direct transpose form

of the FIR filter. This thesis uses the direct transpose FIR filter realization.

41

Figure 2-18: Block diagram of the direct-transpose form of FIR filter

2.10 Graphical user interface

With GUI's help, the user can easily communicate with Python code, ModelSim,

and MATLAB. GUI design instructions are easy to use by any user, even without the

knowledge of Python, ModelSim, or MATLAB coding. In GUI, input and data

modification is easy and convenient, and it has a fast and intuitive output. The advantages

of using GUI for FIR filter design are as follow:

• Reconfiguration is easy.

• Length and variable width can adjust at design-time easily.

• Coefficients are adjustable at run time.

• It generally provides the user with immediate visual feedback about the effect of

each action.

2.11 Hardware description language

The interconnected transistors are the basic blocks of any digital circuit. Digital

circuits can easily design and analyze with a hierarchical structure, which uses

interconnected diagrams to represent it. This approach has a limitation that it is

impractical to use for large circuits. Another approach to describe these circuits is a

textual language used to clearly and concisely capture the digital design’s defined

42

features. These languages are called hardware description language (HDL) [24].

Hardware description language, as the name tells, is used to describe a circuit layout or

hardware application.

HDL used for this system is Verilog, which can describe electronic circuits and

systems in textual format. It can be used for verification through simulation, provides

timing analysis, and can also use for logic synthesis. The Verilog HDL is an IEEE

standard. With the help of HDL, the circuit’s representation uses words and symbols;

then, development software converts textual description into configuration data that loads

into FPGA to implement the desired functionality [24].

2.11.1 Importance of HDLs

HDLs have the following advantages as compared to traditional schematic-based

design [25]:

• By using HDLs, the design is described at a very abstract level. Designers do not

need to choose specific fabrication technology to write RTL description. Design

can automatically convert to any fabrication technology by using logic synthesis.

There is no need to redesign a circuit if a new technology emerges. Designers

simply use RTL description as input to logic synthesis ad generate new gate-level

netlists using new fabrication technology. The logic synthesis tool automatically

optimizes the circuit’s area and timing for new technology.

• Functional verification of the design performs early in the design cycle if

designers use HDLs. Designers work at the RTL level, so they can optimize and

modify the RTL description until the design meets the desired functionality. Most

design bugs are eliminated at this point; this reduces the design cycle time

43

because it reduces the probability of finding a functional bug at a later stage in the

gate-level netlist or physical layout.

• It uses a textual description with comments, so it is easy to develop and debug

circuits. As compare to gate-level schematics, it provides a concise representation

of the design. For complex designs, gate-level schematics are almost

incomprehensible.

2.11.2 Basics of Verilog

The basics of Verilog HDL is as follow [25]:

• Verilog HDL is a general-purpose HDL which is easy to learn and easy to use. Its

syntax is similar to the C programming language.

• The same model can mix different abstraction levels to define the hardware model

in terms of switches, gates, RTL, or behavioral code. For stimulus and

hierarchical design, designers have to learn only one language.

• It is mostly the designer’s choice because it is the language that most popular

logic synthesis tools support.

• For post logic synthesis simulation, Verilog’s libraries are provided by all

fabrication vendors. So, it provides a wide choice of vendors for chip designing.

• Using the Programming Language Interface (PLI) feature, the designer can write

a custom C code that can interact with internal Verilog’s structures. With the help

of PLI, it is easy to customize a Verilog HDL simulator according to the

designer’s need.

44

2.12 Automating the generation

The tools discussed in section 3.2 are either too complicated or lack ASIC

support. Some tools can generate design but not testbench, some can generate design and

testbench, but the user must have coding knowledge. Another critical point is the tool

availability. Some tools have publications about the FIR filter generators. However, tools

do not become available freely or a license required for commercial usage. The

companies spend money carefully for a license, mainly if it is just for a simple filter, and

for any engineering change requirement, it needs permission or license. So, due to all

these reasons, this thesis considered the automation of the FIR filter as a case study. The

scripts developed for FIR filter using mainly Python language and a portion of it

developed using Perl; these languages have many advantages discussed in the following

sections. Python and Perl are used to develop scripts that can automatically generate

design and testbench code of FIR filer and simulate it using ModelSim. A brief

explanation of both is as follow:

2.12.1 Python

Python is useful for verification speed up. It is a boon for the project that has time

and resources constrained. Python is easy to learn, dynamic, object-oriented

programming language suited for large and complex projects with changing

requirements. There are many reasons to use Python script; the following are the main

reason to use it for this thesis [26]:

• Easy to use, read, and flexible.

• No compilation is necessary.

• It has an open-source license.

45

• Python is mature with much support.

• Language can run on multiple systems (for example, Mac, Linux, Windows) but

retain its similar interface. Its design does not change a lot with each operating

system.

• Program reusability with already available packages and modules with a standard

library.

• Easy to connect to other languages (like C++, Perl).

• Software like MATLAB, ModelSim can run smoothly from its script.

2.12.2 Perl

Perl is a general-purpose high level interpreted and dynamic programming

language. Perl supports both procedural and Object-Oriented programming. Perl has a

similarity to C syntactical, so it is easy to use. The following are the advantages of Perl

[27]:

• Easy to learn

• Text-processing

• Contains features of different languages

• Free and open-source

• Supports open-source modules

• Provides support for cross platforms

46

3. LITERATURE REVIEW

The literature review mainly focuses its attention on functional verification automation,

particularly design and testbench automation. The automation of FIR filter

implementation and the graphical user interface were also studied and analyzed.

3.1 Functional verification

Due to the design’s heterogeneous nature, functional complexity increases; for

example, co-existing hardware and software, analog and digital. There is a requirement of

higher system reliability, which pushes verification tasks to ensure that chip-level

functions perform satisfactorily in the system environment, especially if chip-level

defects have a multiplicative effect. As complexity continuously increases, new

verification languages are introduced to verify complicated designs at various abstraction

levels. The new tools and technologies are also created to support these new languages.

 A. Molina and O. Cadenas provided a quick survey of functional verification to

make it easy to choose the technique for the hardware’s design cycle to take full

advantage of these tools and techniques for verification projects. It is necessary to decide

on them as early as possible. They provided an overview of FV, described bottlenecks of

the verification, challenges of FV, and explained current FV technologies and trends. The

paper described functional verification as the art of combining hardware, software, and

communication skills with creative strategies to understand design and its usage to ensure

that its quality and delivery schedule are successful. Many problems associated with

today’s functional verification methodologies are due to the absence of effective

automation and growth in the design's size and complexity. Verification is primarily a

manual process. The most notorious design and verification problem is the lack of a

47

useful metric to measure its progress. These are vital points to help design and

verification engineers, verification automation, and comprehensive methodology [9].

3.1.1 Design automation

Mehdi Dehbashi et al. presented efficient automation of the debugging procedure,

which reduces the debugging time and increases the diagnosis accuracy. This procedure

used the integrated Boolean Satisfiability (SAT) based debugging with testbench based

verification. The diagnosis accuracy increased by iterating debugging and

counterexample generation that means the total number of fault candidates decreased. Its

experimental data shows that this procedure was accurate as actual formal debugging in

71% of the experiments. This paper proposed three techniques to generate diagnostic

traces for high-quality counterexamples to enhance diagnosis accuracy. Local Branch

activation (LBA) activates the local branches of each fault candidate. Minimization of

Sensitized Path Intersection (MSPI) looks for sensitized paths that include a minimum

number of fault candidates. Limited Minimization, followed by Branch Activation

(LMBA), combines the advantages of both techniques [28].

3.1.2 Testbench automation

Srikant Kumar Mohanty, Suchismita Sengupta, and S K Mohapatra proposed a

test bench automation solution that verifies the completeness and correctness of data as it

passes through interconnect fabric. It automatically creates authenticated infrastructure,

stimulus vector, and coverage model to support all exchanges between masters and slaves

within a System-On-Chip (SOC), reducing verification efforts. It uses a protocol-

independent scoreboard to check data integrity and verify different data path transactions

48

to and from each bus fabric port. The proposed solution saved 40% in the verification

cycle compared to various bus matrix testing [29].

Isaac Maia et al. generated a semi-automatic testbench tool called eTBc (Easy

Testbench Creator). Furthermore, a methodology called VeriSC (which allows testbench

simulation before RTL without writing any additional code). These resources are used

together in IC-development flow to enhance productivity in verification tasks by

automatically generating testbench prototypes. In VeriSC methodology, eTBc is used in

all functional verification steps. They created TLN (Transaction Level Netlist) using eDL

(eTBc Design Language) language and randomly generated stimuli for testbench. They

compared results with using eTBc and without using it and concluded that by using

eTBc, the production profit was 83.33% higher than the manual process. So, this tool can

speed up the functional verification process. This approach's disadvantage is that the user

must know eTL (eTBc Template Language) to use this approach. This tool's next steps to

develop a graphical user interface and a specific template for more verification

methodologies [30].

M. Lajolo et al. proposed an approach for simulation-based validation that

generates input sequences for testbench. If current stimuli poorly exercise a part of the

design, then designers develop new stimuli to address that part of the design. Developing

new stimuli is a very time consuming and laborious task because the designer must

understand all the design details to generate a new input sequence. This paper proposed

an automated approach that assists designers in generating a test bench for system-level

design. It is also suitable for simulation-based validation environments and focuses on

integration rather than replacing current manual simulation. Its results show that this

49

method increased the quality of the validation process [31].

3.1.3 Testcase automation

Samuel Nascimento et al. describe a tool suite named Veasy, which contains four

modules to perform linting, simulation, coverage collection, and test case generation,

which are vital challenges of functional verification. A Graphical User Interface is used

to integrate all modules. This tool is used for test case automation based on layers,

capable of generating complex scenarios using drag and drop operations. The tool’s

capability and performance are compared with commercial and academic functional

verification tools, which shows it takes less overall simulation time than other

commercially available tools and algorithms used in this tool capable of coverage

collection with lower simulation overhead [32].

3.2 FIR filter automation

Verma and Chien developed a generator, which generates efficient decimating

filters. The optimized logic is such that there is no need to calculate those values ignored

by the decimator. It uses canonical signed digit (CSD) format to save silicon area [33].

Many FPGA projects use FIR generators by Xilinx that create a design that is a

good match for the FPGA platform, but the resulting HDL is very difficult to read and

understand. Xilinx Compiler v6.3 supports interpolators, decimators, half-band filters,

and resource sharing. It generates distributed arithmetic filters, so it supports multiple

coefficient banks [34]. Xilinx VHDL is encrypted, so it is difficult to get ideas for

implementation.

HDL Coder generates synthesizable Verilog and VHDL code from MATLAB

50

functions, Simulink models, and State flow charts. The code is suitable for FPGA

programming, ASIC prototyping, and design. It can develop and verify FIR filter designs

at a high-level of abstraction and automatically generate a synthesizable RTL code that

targets FPGA, ASIC, or SOC devices. However, they are quite complicated for simple

filters [35].

Bogdan Sbarcea and Dan Nicula developed a tool called Sim2HDL, which

automatically translate Simulink models into a hardware description language and

drastically reduce the project time. It generates VHDL or Verilog language at a

behavioral level description, and it can implement in FPGA using commercial

synthesizers. It uses a limited set of Simulink blocks from the original Simulink libraries,

and it offers support for Altera and System Generator and various ASIC technologies. It

also offers support for MATLAB variables from the workspace. It does not have any bus

limitations, unlike Altera [36].

As a part of the Master’s thesis, Kevin Camera developed a tool called SF2VHD,

which translates state machines in the Stateflow graphical language into VHDL capable

of synthesizing into hardware. Stateflow is a vibrant graphical and textual language-based

strictly on the original StateCharts language defined by Harel. First, Stateflow data types

are converted to bit-accurate VHDL data types to generate a VHDL code. Then the

Stateflow expression syntax and operators converted to VHDL equivalents on a line-by-

line basis to implement the state machine's functional behavior [37].

51

3.3 GUI for FIR filter

Myagmardorj Bayasgalan and Xiang-E Sun developed a graphical user interface

for the FIR filter. The GUI has used MATLAB’s computing power and GUI platform to

complete the GUI design and implementation of the FIR digital filter through

programming. The GUI achieved the program to design and implement various amplitude

characteristics of the FIR digital filter. By setting global shortcut keys, the user, after all,

parameters and options, confirmed that it achieved the filter design's rapid

implementation [38].

Zhang XueMin introduced a method to simulate the FIR filter-based GUI. This

method depends on the MATLAB code and uses controls to generate GUI. The

simulation results confirmed that the design based on GUI is convenient, fast, intuitive,

and flexible. This method used MATLAB for simulation [39].

Rosa et al. provide a complete optimized FIR filter’s design flow from the transfer

function to synthesizable VHDL. The generator uses common subexpression sharing

(CSE). The tool also modifies the coefficients to make the hardware implementation

simple while maintaining the filter’s desired design constraints [40].

52

4. PROPOSED SYSTEM

Automation through the graphical user interface (GUI) is the main feature of the Easy-

filter. Using GUI, the user can design and implement the FIR filter, generate Verilog

code, simulate, and validate generated code. The examples of such operations are

explained in chapter 5. Easy-filter uses ModelSim for simulation, uses MATLAB for

comparison and validation, and produces Verilog (design and testbench of FIR filter) and

MATLAB code as output. The methodology allowed automation (of design and

testbench) using Python and Perl language. This chapter explains the design, verification,

and validation methodologies.

4.1 Design methodology

Easy-filter uses Python and Perl languages to automatically generates the

following:

• Filter coefficients

− Python generated coefficients

− MATLAB generated coefficients

• Verilog code

− Filter design code

− Filter testbench code

• MATLAB code

− Filter code using Python generated coefficients

− Filter code that uses MATLAB generated coefficients

• Waveform Outputs

− Filter characteristics

53

 Impulse response

 Frequency response

 Frequency response in dB

− Time-domain representation of input signal and filtered signal

− The frequency-domain representation of the input signal and filtered

signal

The user provides inputs through GUI based on the required filter’s specifications.

The scripts written in Python and Perl use this input information to generate filter

coefficients, Verilog design, and testbench code; and generate MATLAB codes. GUI

uses different scripts to generate outputs. A Python script generates the FIR filter’s

coefficients. Perl script reads these coefficients and converts them into floating-point

binary; this floating-point binary representation of coefficients used by another Perl script

to generate Verilog design and testbench. Another Python script uses this information to

generate impulse response, frequency responses, and filter status. A different Python

script uses user input to generates MATLAB codes. One MATLAB code uses the

coefficients generated by the proposed system’s Python code, and another code uses

MATLAB generated coefficients. One Python script connects GUI to MATLAB and

shows the unfiltered and filtered output in time-domain and frequency-domain. The user

can select between MATLAB and Python generated coefficients to filter the unfiltered

signal. The user can also choose four frequencies for the input signal (unfiltered). Figure

4-1 shows the block diagram of filter design automation.

54

Figure 4-1: Block diagram of filter design automation

55

4.2 Verification methodology

Easy-filter uses GUI generated Verilog design and testbench code for filter’s

verification. The GUI’s 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button uses to launch ModelSim software. Figure 4-2

shows the verification methodology.

Figure 4-2: The verification methodology

A Python script uses user input and another script’s generated coefficients to

generate .do file and automatically opens and runs this .do file. This .do file is a script

that can execute many commands at once. To create .do file, simply type a set of

commands in a text file. In this thesis, we created a .do file that loads a design, adds

signals to the wave window, provides stimulus to those signals, and runs the simulation.

Figure 4-3 shows an example of .do file.

56

Figure 4-3: An example of .do file

ModelSim software provides a visual representation of filter coefficients, the

input signal that needs to be filtered, and filtered output. It uses the Verilog testbench to

simulates the input signal to generate the output signal.

4.3 Validation methodology

Easy-filter also automatically validates the designed filter by using well-

established MATLAB software. For proposed system validation, we provide the same

user input to MATLAB software as well. For validation, we use the following GUI’s

buttons:

• 𝐷𝑒𝑠𝑖𝑔𝑛 : It generates filter coefficients using Python script.

• 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓: It generates MATLAB code using the coefficients

generated by the proposed system’s Python script.

• 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓: It generates MATLAB code that generates filter

coefficients by MATLAB software.

• 𝑀𝐴𝑇𝐿𝐴𝐵: This button uses the above MATLAB codes and generates coefficients

and filtered outputs.

• 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒: This button uses Easy-filter’s generated coefficients and MATLAB

generated coefficients and compares and produces percentage error.

57

 For validation, we provide the same user input to MATLAB software; it generates

filter coefficients and compared them against Python script generated coefficients using

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button. Easy-filter also compares the filtered signal in time-domain and

frequency-domain. Easy-filter provides Python generated coefficients and user-input to

MATLAB software and generates time-domain and frequency-domain representation of

the input signal to compare the filtered signal. And then provides the same user-input to

MATLAB software, and it calculates its coefficients and generates time-domain and

frequency-domain representation of the input signal. A block diagram of the validation

methodology is shown in Figure 4-4.

Figure 4-4: The validation methodology

4.4 Experiment

In this thesis, Easy-filter’s GUI can create four types of filters: low-pass, high-

pass, band-pass, and band-stop. The following experiments were carried out as a part of

this thesis.

58

4.4.1 FIR filter generation

With the help of GUI, four different types of filters were created. As user inputs

vary, filter specifications also vary. The filter’s output is checked in the form of the

waveforms and checked against the filter status window.

4.4.2 FIR filter verification

To verify, it uses Python generated Verilog testbench, which simulates the inputs

and observes outputs. It is often a critical way to verify whether the design's functionality

is correct before feeding it to an FPGA. GUI has a button called 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚. By clicking

this button, the Python script automatically generates a . 𝑑𝑜 𝑓𝑖𝑙𝑒 and runs it on ModelSim

software, which shows all the filter coefficients, input, and output waveforms. The

coefficients compare against the text file generated by a Python script. ModelSim uses

testbench to generate output waveform, which contains simulation information of the

design and plotted against time to provide a graphical representation of the simulation.

4.4.3 FIR filter validation

For filter validation, the filter coefficients generated by Python script using GUI

compare against the filter coefficients generated by MATLAB software for the same

specifications. The filtered output waveforms of the generated filters are compared

against the MATLAB filtered output.

59

5. EXPERIMENTAL SETUP

This chapter explained the experimental setup used in this thesis for the FIR filter’s

design, verification, and validation automation. Figure 5-1 shows the basic block diagram

of the experiment setup.

5.1 Experiment set-up

Figure 5-1 provides the complete block diagram of the experiment setup; this

section explains each experiment setup step.

Figure 5-1: Basic block diagram of the experiment setup

➢ User input: The user provides the information for filter design according to the

requirement using the GUI’s user input section, as shown in Figure 5-2, to the

proposed system.

60

Figure 5-2: GUI’s user input section

61

The user provides the following information:

• Select filter type

• Select window type

• Enter sampling frequency

• Enter cutoff frequency

• Enter transition bandwidth

• Enter stopband attenuation for Kaiser window

• Select between quality and quantity

• Enter four frequencies for the input signal that needs to be filtered

The Python script behind Easy-filter’s GUI has been written to automatically

enable or disable the cut-off frequencies according to the filter selection. The

range of cut-off frequencies and transition width varies automatically according to

the user's sampling frequency. The stopband attenuation only enables if the user

selected the Kaiser window. The transition width disables if the user wants to

design a filter with quantity. For quantity, the user has to enter N (required filter

order), and the system automatically calculates transition width based on N

entered by the user. If the user selected quality, then transition width enables, and

the system calculates filter order and the number of coefficients automatically

based on the user input.

➢ Easy-filter: The proposed system is a graphical user interface. GUI window has

the following windows: filter settings, the filter’s impulse response, frequency

response, the frequency response in dB, filter’s coefficients, Verilog and

MATLAB code, ModelSim options, MATLAB options, and filter’s status

62

windows. It has four buttons: 𝐷𝑒𝑠𝑖𝑔𝑛, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒, 𝑀𝐴𝑇𝐿𝐴𝐵, and 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚. After

filter design, the user has options: 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑑𝑒𝑠𝑖𝑔𝑛, 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵, 𝐶𝑜𝑑𝑒 −

𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓, and 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓. Using GUI, as shown in Figure 5-

3, users enter all the information according to the required filter’s specification.

Figure 5-3: The proposed system’s graphical user interface

The user follows the following steps to enter the filter’s specifications using GUI:

• Select filter type

• Select window type

• Enter sampling frequency

• Enter cut-off frequency (or frequencies for band-pass and band-stop filter)

within the specified range

• Enter transition bandwidth within a specified range

• Enter stopband attenuation if Kaiser window is selected

63

• Choose between quality and quantity

• If quantity selected, then enter the value of 𝑁 (filter order)

• Press 𝐷𝑒𝑠𝑖𝑔𝑛 button to design filter according to entered filter’s

specifications

• Select 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 to generate filter’s Verilog design code

• Press 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 to generate filter’s Verilog testbench code

• Press 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button to launch the ModelSim simulator

• Select 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓 to generate MATLAB code that uses

Python generated coefficients

• Select 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓 to generate MATLAB code that uses

MATLAB generated coefficients

• Press 𝑀𝐴𝑇𝐿𝐴𝐵 button to launch MATLAB software to generate time-

domain and frequency-domain responses for filtered and unfiltered signals

• Press 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button to compare Python generated coefficients against

MATLAB generated coefficients and generate a percentage error if there

is any difference

The Python and Perl scripts use all the information provided by the user and

generate the following based on the above information:

• Filter coefficients

• Impulse response

• Frequency response in dB

• Verilog design and testbench code

• MATLAB code for Python generated coefficients as well as MATLAB’s

64

coefficients

• Compare the proposed system’s coefficients against MATLAB’s

coefficients for the same user input and produce a percentage error

• Floating point to a decimal conversion error

• Also, shows filter status

➢ Coefficients: The Python script generates filter coefficients based on user input,

mainly filter type, window function, and transition width. Perl script converts

these coefficients to normalized coefficients and then converts them into binary.

As shown in Figure 5-4, GUI shows these coefficients in impulse form and text

form. Figure 5-4 (a) shows FIR filter’s coefficients in text form, and Figure5-4(b)

shows them in impulse form. On the other hand, MATLAB uses the same user

inputs and generates the filter’s coefficients.

Figure 5-4: FIR filter’s coefficients window in text and impulse form

65

➢ X[n]: Input signal that the user wants to filter. GUI has four options to enter

frequencies to combine them to produce an input signal that needs to be filtered.

As shown in Figure 5-5, the input signal’s frequencies should be within the

specified range

Figure 5-5: Input signal window

The Python script calculates the range based on sampling frequency. Figure 5-5

shows the GUI’s input signal window that the user can use to change the input

signal’s frequencies.

➢ Verilog code: The proposed system generates the Verilog code of filter design

and testbench. After entering all the GUI specifications, when the user selects

𝑉𝑒𝑟𝑖𝑙𝑜𝑔 button, it generates Verilog's design code according to the specifications,

and it uses 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 to generate the Verilog testbench. 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 button uses

Perl and Python scripts. Perl script reads the coefficients file to generate Verilog

code, and Python script uses user inputs for input frequencies and generates input

signal values that Verilog testbench code uses. The user can use 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚

button to simulate a designed filter on ModelSim software and analyze the filter’s

coefficients. The Perl script generated Verilog design and testbench code

simulates the FIR filter coefficients, input, and output signal on ModelSim

software. Figure 5-6(a) shows the Verilog code options and 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚 button,

66

and Figure 5-6(b) shows the Verilog design code snippet.

Figure 5-6: Verilog options and Verilog code window

➢ MATLAB code: The proposed system can generate two types of MATLAB

codes. If the user selects 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓 button, then the Python script

automatically uses user input to generates MATLAB code by using Python script-

generated coefficients. Furthermore, if the user chooses 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓

option, then the Python script automatically generates MATLAB code with

MATLAB calculated coefficients. By pressing 𝑀𝐴𝑇𝐿𝐴𝐵 button, it runs the last

code option selected by the user using MATLAB software. It generates a time-

domain and frequency-domain representation of the input signal (unfiltered) and

the output signal(filtered). Figure 5-7(a) shows the options and MATLAB button,

and Figure 5-7(b) shows the MATLAB code window.

67

Figure 5-7: MATLAB options and MATLAB code

➢ Simulation: GUI has 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button to launch the ModelSim simulator. When

the user press 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button on GUI, it automatically creates . 𝐷𝑜 𝑓𝑖𝑙𝑒 and

runs it on ModelSim. . 𝑑𝑜 𝑓𝑖𝑙𝑒 is a script file with commands to compile the

Hardware Description Language (HDL) files, load the design, give stimulus, and

simulate your design in a single . 𝑑𝑜 𝑓𝑖𝑙𝑒. So, it saves engineers time. ModelSim

generates waveforms that are very good to analyze the filter’s signals. Figure 5-8

shows the ModelSim window that automatically opens by clicking the on

𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button and simulates the FIR filter design.

68

Figure 5-8: ModelSim simulation window

➢ Synthesis: The Verilog code generated by GUI is synthesizable. Xilinx software

is used to synthesize this FIR filter design using Artix-7. It converts HDL-based

logic of FIR filter design to low-level implementable circuits called Netlist,

consisting of a combination of transistors representing digital logic gates. The

design’s synthesis provides utilization and power report.

➢ Validation: The proposed system’s output coefficients and filtered output are

compared against well-established MATLAB’s coefficients and filtered output for

the same inputs. The GUI window shows the filter’s coefficients comparison and

percentage error, as shown in Figure 5-9 as the user presses 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button. As

the user press 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button, the Python script automatically reads GUI

generated coefficients and MATLAB generated coefficients, compares them, and

generates a total percentage difference and displays it.

69

Figure 5-9: Comparison: GUI versus MATLAB coefficients

➢ Conversion error: The proposed system catches floating-point to a decimal

conversion error. As the user presses 𝐹𝑃_2_𝐷𝐸𝐶 button, the python script

automatically reads floating-point to decimal converted binary coefficients. Then,

convert them back to floating-point binary coefficients, compare them, and

generates an absolute percentage difference and display it as a total percentage

error.

70

6. DESIGN IMPLEMENTATION

This chapter explains the different filters that we have designed using the proposed

system’s GUI. The filter’s specifications varied to design different filters. There are four

types of filters in this system, and by varying user input, users can design a different kind

of filters.

6.1 Filter design

The filter design depends on many parameters, particularly filter type, widow

type, sampling frequency, cut-off frequencies, transition bandwidth; by varying any of

these parameters, the filter design changes. Using Easy-filter’s GUI, users can design

different filters by varying any of these parameters. This thesis included one example of

each design. Here are the filter designs that this thesis included:

• Low-pass filter

• High-pass filter

• Band-pass filter

• Band-stop filter

Each of the above filters, redesign by varying sampling frequency, window type, cut-off

frequencies, transition bandwidth, and switching between quality and quantity.

6.1.1 Low-pass filter design

Although the user can consider any filter specification, this thesis considered a

quality-based low-pass filter design that uses filter specifications, as shown in Table 6-1.

71

Table 6-1: Low-pass filter specifications

As the required stopband attenuation of this filter is >70 dB, so filter order calculated

using the Blackman window. The designed filter’s coefficients provided in section 8.1.1,

converted to binary form by the Python script and used directly in Verilog code. This

Verilog code is simulated using ModelSim. For the Blackman window number of filter,

coefficients are 27. Equation 6-1 shows the formula to calculate filter coefficients for the

Blackman window.

𝑁 = 5.98 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 5.98 ∗ (

3500 𝐻𝑧

800 𝐻𝑧
) ≈ 27

6-1

6.1.2 High-pass filter design

Although the user can consider any filter specification, this thesis considered a

quality-based high-pass filter design that uses filter specifications, as described in Table

6-2. As the required stopband attenuation of this filter is >50 dB, so Hamming,

Blackman, and Kaiser window are eligible to use for this filter design, and this thesis

used the Hamming window to calculate filter order for this filter. The designed filter’s

coefficients provided in section 8.1.2, converted to binary form by the Python script and

Parameters Values

Passband edge frequency 500 Hz

Sampling frequency 3500 Hz

Transition bandwidth 800 Hz

Stopband attenuation >70 dB

72

used directly in Verilog code. This Verilog code is simulated using ModelSim. The

Hamming window’s coefficients calculated using equation 6-2.

𝑁 = 3.44 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 3.44 ∗ (

5000 𝐻𝑧

650 𝐻𝑧
) ≈ 27

6-2

Table 6-2: High-pass filter specifications

6.1.3 Band-pass filter design

Although the user can consider any filter specification, this thesis considered a

quality-based band-pass filter design that uses filter specifications, as described in Table

6-3. As the required stopband attenuation of this filter is 40 dB, Hanning, Hamming,

Blackman, and Kaiser's window are eligible for this filter design. This thesis used the

Kaiser window to calculate the order for this filter. The designed filter’s coefficients

provided in section 8.1.3, converted to binary form by the Python script and used directly

in Verilog code. This Verilog code is simulated using ModelSim. Equation 6-3 shows the

formula used to calculate beta for the Kaiser window:

𝑏𝑒𝑡𝑎 = 0.5842 ∗ (𝐴 − 21)
2
5 + 0.07886 ∗ (𝐴 − 21) 6-3

Parameters Values

Passband edge frequency 1500 Hz

Sampling frequency 5000 Hz

Transition Bandwidth 650 Hz

Stopband attenuation >50 dB

73

𝑏𝑒𝑡𝑎 = 0.5842 ∗ (40 − 21)
2
5 + 0.07886 ∗ (40 − 21) = 3.3953

Table 6-3: Band-pass filter specifications

The Kaiser window’s coefficients calculated using equation 6-4.

𝑁 = (
(𝐴 − 8) ∗ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1

6-4

 = (
(40 − 8) ∗ 8000

2.285 ∗ 2 ∗ 𝜋 ∗ 496
) + 1 ≈ 36

The coefficients are even in number, so to make the coefficients odd, add 1 to it, so total

coefficients equal to 36 + 1 = 37

6.1.4 Band-stop filter design

Although the user can consider any filter specification, this thesis considered a

quality-based band-stop filter design that uses filter specifications, as described in Table

6-4.

Parameters Values

Passband edge frequencies 1300 Hz, 2650 Hz

Sampling frequency 8000 Hz

Transition Bandwidth 496 Hz

Stopband attenuation 40 dB

Window Kaiser

74

Table 6-4: Band-stop filter specifications

As the required stopband attenuation of this filter is >40 dB, so Hanning,

Hamming, Blackman, and Kaiser's window are eligible to use for this filter design, and

this thesis used the Hanning window to calculate filter order for this filter. The designed

filter’s coefficients provided in section 8.1.4, converted to binary form by the Python

script and used directly in Verilog code. This Verilog code is simulated using ModelSim.

Equation 6-5 shows the formula used to calculate coefficients for the Hanning window:

𝑁 = 3.32 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 3.32 ∗ (

10000

900
) ≈ 37

6-5

Parameters Values

Passband edge frequencies 2000 Hz, 4000 Hz

Sampling frequency 10000 Hz

Transition Bandwidth 900 Hz

Stopband attenuation >40 dB

75

7. DESIGN SIMULATION & VALIDATION

This chapter provides the FIR filter design’s verification and validation. The FIR filter’s

coefficients calculated, as mentioned in Chapter 6, are used to generate Verilog design

and testbench codes automatically. The Verilog design and testbench simulate using

ModelSim; it provides a visual representation of FIR filter’s coefficients.

7.1 Design simulation

It uses ModelSim software to simulate the generated FIR filter’s design. The

proposed system generates many outputs for design simulation. After generating a

custom FIR filter, it can simulate using ModelSim software. Easy-filter uses Verilog

testbench to simulate the FIR filter design in ModelSim software. It uses . 𝑑𝑜 𝑓𝑖𝑙𝑒 to load,

simulate, add signals to the waveform, and terminate the simulation. The simulation of

the FIR filter mainly checks if the filter coefficients, input signal, and output signal

converted duly to binary form or not. APPENDIX A shows the Verilog design and

testbench code of the low-pass filter.

Figure 7-1: The FIR filter’s simulation waveforms

76

Figure 7-1 shows the snippet of coefficients, input, and output waveform automatically

generated by Easy-filter after the FIR filter simulation.

7.1.1 Testbench

In this thesis, the Verilog language is used to develop a testbench for the FIR

filter. So, the FIR filter is the design under test (DUT). The testbench is used to stimulate

the inputs to the design and observe the outputs. Its outputs are compared against the text

file that contains Python generated FIR filter’s coefficients. If the testbench generated

coefficients are equal to the text file coefficients, then its test pass; otherwise, it fails. It

checks that the coefficients do not change during floating-point to binary conversion, and

all the signals behave according to the specifications. Figure 7-2 shows the testbench

setup of the FIR filter.

Figure 7-2: The testbench set up of the FIR filter

7.1.2 Floating-point

The standard specifies the following formats for the floating-point numbers.

➢ Single precision: It uses 32-bits, as shown in Figure 7-3, and has the following

format:

• 1 bit- sign (0-positive,1-negative)

• 8 bit- exponent

77

• 23 bit- mantissa

Figure 7-3: Single precision floating point

➢ The sign bit: The first bit in the floating-point number is the sign bit. If the

number is positive, then set the sign bit to 0, and if the given number is negative,

then set it to 1.

➢ The exponent: For large numbers, the exponent is positive, and it is negative for

small numbers (fraction). The unsigned binary with 8 bits can represent numbers

0 through 255, and to represent negative numbers in floating-point, add 127 to the

exponent. With this, it can represent numbers between 128 to -127. The number

128 is reserved to represent special numbers.

Example 1:

Required exponent = 7

Floating-point exponent calculation = 7+127 = 134

Binary representation = 10000110

For exponent, if the leftmost bit is 1, then it is positive exponent means it is a

large number, and if it is 0, then it is a negative number means a small

number(fraction).

➢ The mantissa: The point move in scientific notation such that there is only a

single(non-zero) digit to the left of it. In binary representation, this digit is 1 as

78

there is no other non-zero digit. So, after converting the given number to binary

and before storing its mantissa, it drops 1 to store an extra bit in the mantissa.

Example 1:

Number to store = 100.01101110

Scientific notation = 1.0001101110

Mantissa to be stored = 0001101110

Example 2:

Number to store = 0.0001111110

Scientific notation = 1.111110

Mantissa to be stored = 111110

➢ Special cases: These cases include zero, infinity, not a number (division by zero,

or the square root of the negative number).

• Zero: set sign bit 1 or 0 and all other bits to 0

• Infinity: for positive infinity, set sign bit to 0, and for negative set it to 1,

set mantissa to all 1 and exponent to all 0

• Not a number: set sign bit either 0 or 1, set exponent to all 1, and set

mantissa to a combination of 1 and 0

7.1.3 Converting to floating-point

Follow the following steps to convert a number to floating-point [41]:

• If the given number is positive, set the sign bit to 0, and if the number is negative,

then set it to 1.

• Divide the number into two parts- the whole part and the fraction part.

• Convert these two parts into binary and then join them by a decimal point.

79

• Count how many spaces the binary point needs to move so that there is only one 1

to the left. If a binary point moves towards the left, then it is a positive number,

and if it moves to the right, then it is a negative number; add 127 to the count and

convert it to binary.

• Format the mantissa by dropping the first 1 and store the remaining 23 bits.

Table 7-1: An example of floating-point conversion

7.2 Design validation

For design validation, it uses MATLAB software. The Python script generates the

FIR filter’s coefficients and saves them in text format. Easy-filter validation has two

parts.

• The same specifications fed to Python script and MATLAB software both

generate FIR filter’s coefficients and compare these coefficients

• The text file is generated by a Python script that contains FIR filter’s coefficients

Parameters Values

Decimal number -61.6

Sign bit 1

Convert whole part to binary 111101

Convert fraction part to binary 0.1001100110011001100110

Join both parts together 111101.100110011001100110

Number of spaces to move binary point 5

Add 127 to get the exponent 132

Convert exponent to binary 10000100

Adjust the mantissa 1.11101100110011001100110

Remove leading 1 11101100110011001100110

Result in binary: 1 10000100 11101100110011001100110

80

read by MATLAB code and generates filtered output and compares this output

with the MATLAB generated filtered output with the same filter specifications.

APPENDIX-B shows the MATLAB code for the low-pass filter that used to generate

coefficients and filtered output.

81

8. RESULT EVALUATION AND COMPARISON

This chapter shows the results along with a comparative analysis of the experiment's

coefficients and filtered output. Easy-filter’s coefficients and filtered result compared

against MATLAB generated coefficients and filtered output. It also shows the simulation

results produced by ModelSim software using Easy-filter’s generated Verilog design and

testbench codes.

8.1 Easy-filter versus MATLAB

The proposed system uses its GUI to enter the user input. To enter user input for

MATLAB, one should have basic knowledge of the MATLAB coding. To modify an

existing code, one should have to understand it first to modify it according to requirement

changes. On the other hand, the proposed system uses GUI to accommodate any

specification changes; it is easy and less time-consuming. The user who does not have

any coding background can also modify and design it without any problem. The

following sections show the results of the experiments included in this thesis.

8.1.1 Low-pass filter results

Table 8-1 shows Easy-filter’s GUI generated low-pass filter’s coefficients and

MATAB’s generated low-pass filter’s coefficients. The results show that the proposed

system generates the same filter coefficients for the same user inputs. So, engineers can

rely on this system as much as they rely on the MATLAB system to generate FIR filters.

For this experiment, the input signal has 50 Hz, 200 Hz, 1000Hz, and 1500 Hz

frequencies. The designed filter’s cut-off frequency is 500 Hz, which passes only 50 Hz

and 200 Hz frequencies and rejects 1000 Hz and 1500 frequencies.

82

Table 8-1: Low-pass filter’s coefficients comparison

Coefficient No. Easy-filter GUI MATLAB %Error

h1=h27 2.6561E-19 0.0000E+00 2.6561E-21

h2=h26 -1.3873E-04 -1.3873E-04 0.0000E+00

h3=h25 -2.8516E-04 -2.8516E-04 0.0000E+00

h4=h24 7.6479E-04 7.6479E-04 0.0000E+00

h5=h23 3.7093E-03 3.7093E-03 0.0000E+00

h6=h22 5.6859E-03 5.6859E-03 0.0000E+00

h7=h21 -3.1408E-18 -3.1408E-18 0.0000E+00

h8=h20 -1.6695E-02 -1.6695E-02 0.0000E+00

h9=h19 -3.3348E-02 -3.3348E-02 0.0000E+00

h10=h18 -2.3324E-02 -2.3324E-02 0.0000E+00

h11=h17 3.7001E-02 3.7001E-02 0.0000E+00

h12=h16 1.4089E-01 1.4089E-01 0.0000E+00

h13=h15 2.4292E-01 2.4292E-01 0.0000E+00

h14 2.8565E-01 2.8565E-01 0.0000E+00

The Verilog code uses Easy-filter’s generated coefficients to create design and

testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-1 shows the

snippet of the simulation waveform generated by the ModelSim simulator that shows the

filter’s coefficients.

83

Figure 8-1: The low-pass filter’s coefficient’s simulation waveform

Figure 8-2 shows the frequency response generated by GUI and MATLAB. Both

have the same frequency response and attenuation. When a pure sinusoidal input signal

passes through a time-variant filter, then the output signal is also sinusoidal at the same

frequency, but its magnitude and phase could have changed.

In the second part of the validation, the GUI generated coefficients are stored in a

text file and fed to MATLAB code instead of generating its own coefficients.

84

Figure 8-2: The low-pass filter’s frequency response

Figure 8-3: Filtered output comparison

85

Figure 8-3 shows the comparison of MATLAB generated outputs (using

coefficients generated by MATLAB software) and MATLAB generated output with

coefficients fed from the GUI system. Easy-filter’s GUI generates the same filtered

output as MATLAB.

The Verilog design code generated by the Easy-filter GUI is used to generate the

circuit using the Xilinx synthesis tool for low-pass filter design. Table 8-2 shows

implementation results for the low-pass filter using sampling frequency 20000 Hz, cutoff

frequency 5000 Hz, and transition width 1000 Hz. Artix-7’s part number

‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 454.545

MHz is the highest frequency obtained using this device.

Rectangular Hanning Hamming Blackman Kaiser

with

A=60

Kaiser

with

A=75

Coefficients 19 67 69 121 75 95

Total On-chip

Power

1.167W 4.595W 4.607W 7.903W 5.062W 6.362W

LUT 9.34% 34.46% 35.67% 63.00% 38.84% 49.30%

FF 1.19% 4.40% 4.57% 8.03% 4.97% 6.30%

DSP 2.16% 9.19% 9.46% 16.49% 10.27% 12.97%

IO 22.81% 22.81% 22.81% 22.81% 22.81% 22.81%

8.1.2 High-pass filter results

Table 8-3 shows that Easy-filter generated high-pass filter’s coefficients, and

MATAB’s generated high-pass filter’s coefficients.

Table 8-2: Low-pass filter’s Implementation results

86

Table 8-3: High-pass filter’s coefficients comparison

Coefficient No. Easy-filter GUI MATLAB %Error

h1=h27 1.151E-03 1.151E-03 0.0000

h2=h26 1.455E-03 1.455E-03 0.0000

h3=h25 -3.650E-03 -3.650E-03 0.0000

h4=h24 -3.050E-18 -3.050E-18 0.0000

h5=h23 9.369E-03 9.369E-03 0.0000

h6=h22 -8.810E-03 -8.809E-03 0.0000

h7=h21 -1.294E-02 -1.294E-02 0.0000

h8=h20 3.003E-02 3.003E-02 0.0000

h9=h19 1.096E-17 1.096E-17 0.0000

h10=h18 -6.061E-02 -6.061E-02 0.0000

h11=h17 5.512E-02 5.512E-02 0.0000

h12=h16 8.857E-02 8.857E-02 0.0000

h13=h15 -2.985E-01 -2.985E-01 0.0000

h14 3.998E-01 3.998E-01 0.0000

The results show that Easy-filter generates the same filter coefficients for the

same user inputs. So, engineers can rely on this system as much as they rely on the

MATLAB system to generate FIR filters. For this experiment, the input signal has 500

Hz and 1000 Hz, 2000 Hz, and 2300 Hz frequencies. The designed filter’s cut-off

frequency is 1500 Hz, which passes only 2000 Hz and 2300 Hz frequencies and rejects

500 Hz and 1000 Hz frequencies.

87

Figure 8-4: The high-pass filter’s coefficient’s simulation waveform

Figure 8-5: The high-pass filter’s frequency response

88

Figure 8-6: Filtered high-pass filter’s output comparison

The Verilog code uses the GUI Easy-filter’s generated coefficients to create

design and testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-

5 shows the snippet of the simulation waveform that shows the filter’s coefficients,

frequency response generated by a Python script, and MATLAB. Both have the same

frequency response and attenuation.

In the second part of the validation, Python generated coefficients are stored in a

text file and fed to MATLAB code instead of generating its own coefficients. Figure 8-6

compares MATLAB generated outputs and MATLAB generated output with coefficients

89

fed from the GUI system. Easy-filter GUI generates the same filtered output as

MATLAB. When a pure sinusoidal input signal passes through a time-variant filter, then

the output signal is also sinusoidal at the same frequency. However, its magnitude and

phase could have changed; the same is the case with the proposed GUI filter's output.

The Verilog design code generated by Easy-filter GUI was used to generate the

circuit using the Xilinx synthesis tool for low-pass filter design. Table 8-4 shows the

high-pass filter implementation results using sampling frequency 20000 Hz, cutoff

frequency 4000 Hz, and transition width 800 Hz. Artix-7’s part number

‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 454.545

MHz is the highest frequency obtained using this device.

Rectangular Hanning Hamming Blackman Kaiser with

A=40

Coefficients 23 83 87 151 57

Total On-

chip Power

1.521W 5.396W 5.663W 9.597W 3.725W

LUT 11.72% 43.01% 45.15% 78.75% 29.39%

FF 1.52% 5.49% 5.76% 10.03% 3.77%

DSP 3.24% 11.35% 11.89% 20.54% 7.84%

IO 22.81% 22.81% 22.81% 22.81% 22.81%

8.1.3 Band-pass filter results

Table 8-5 shows Easy-filter’s GUI generated band-pass filter’s coefficients and

MATLAB generated band-pass filter’s coefficients. The results show that Easy-filter

generates the same filter coefficients for the same user inputs. So, engineers can rely on

Table 8-4: High-pass filter’s Implementation results

90

this system as much as they rely on the MATLAB system to generate FIR filters. For this

experiment, the input signal has 500 Hz,1500 Hz, 2000Hz, and 3800 Hz frequencies. The

designed filter’s cut-off frequencies are 1300 Hz and 2650 Hz, so it passes only 1500 Hz

and 2000 Hz frequencies and rejects 500 Hz and 3800 Hz frequencies as they are not in

the pass-band range.

In MATLAB code, beta 𝑁 and transition bandwidth are calculated automatically

by a 𝑓𝑖𝑟1 function, and the given stopband attenuation is 0.01. On the other hand, the

proposed Python code used a formula mentioned in section 6.1.3 to calculate beta and 𝑁.

The code used to calculate stopband attenuation for the Easy-filter is shown in equation

8-1.

𝐴 = 𝑅𝑠 ∗
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2
= 0.01 ∗

8000

2
= 40 𝑑𝐵

8-1

However, the formula shown in equation 8-2 is used to calculate transition bandwidth.

36 = (
(𝐴 − 8) ∗ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1

8-2

36 = (
(40 − 8) ∗ 8000

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑤𝑖𝑑𝑡ℎ ≈ 496

91

Table 8-5: Band-pass filter’s coefficients comparison

Coefficient No. Easy-filter GUI MATLAB %Error

h1=h37 5.7317E-04 5.7317E-04 0.00E+00

h2=h36 9.6570E-04 9.6570E-04 0.00E+00

h3=h35 7.6609E-03 7.6609E-03 0.00E+00

h4=h34 -3.7741E-03 -3.7741E-03 0.00E+00

h5=h33 -1.4642E-02 -1.4642E-02 0.00E+00

h6=h32 3.0479E-03 3.0479E-03 0.00E+00

h7=h31 2.0035E-03 2.0035E-03 0.00E+00

h8=h30 3.0263E-03 3.0263E-03 0.00E+00

h9=h29 3.2308E-02 3.2308E-02 0.00E+00

h10=h28 -8.4859E-03 -8.4859E-03 0.00E+00

h11=h27 -5.1956E-02 -5.1956E-02 0.00E+00

h12=h26 5.3487E-03 5.3487E-03 0.00E+00

h13=h25 3.4973E-03 3.4973E-03 0.00E+00

h14=h24 5.2287E-03 5.2287E-03 0.00E+00

h15=h23 1.2519E-01 1.2519E-01 0.00E+00

h16=h22 -1.1924E-02 -1.1924E-02 0.00E+00

h17=h21 -2.7084E-01 -2.7084E-01 0.00E+00

h18=h20 6.2501E-03 6.2501E-03 0.00E+00

h19 3.3522E-01 3.3522E-01 0.00E+00

92

Figure 8-7: The band-pass filter’s coefficient’s simulation waveform

The normalized cut-off frequencies calculated based on 𝑓𝑐𝑢𝑡𝑠 frequencies are 0.3250 and

0.6625. Equation 8-3 and 8-4 show the formulas used to calculate the normalized cut-off

frequencies for the Easy-filter.

93

𝑓𝐿(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = 𝑓𝐿 ∗
(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

2
= 1300 ∗

2

8000
= 0.3250 𝐻𝑧 8-3

And,

𝑓𝐻(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = 𝑓𝐻 ∗
(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

2
= 2650 ∗

2

8000
= 0.6625 𝐻𝑧

8-4

The Verilog code uses Python generated coefficients to create design and

testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-7 shows the

snippet of the simulation waveform that shows the filter’s coefficients.

Figure 8-8 shows the frequency response generated by GUI and MATLAB. Both

have the same frequency response and attenuation.

In the second part of the validation, the Python generated coefficients are stored in

a text file and fed to MATLAB code instead of generating its own coefficients.

Figure 8-8: The band-pass filter’s frequency response

94

Figure 8-9: Filtered band-pass filter’s output comparison

Figure 8-9 compares MATLAB generated outputs and MATLAB generated

output with Python generated coefficients. Easy-filter generates the same filtered output

as MATLAB. When a pure sinusoidal input signal passes through a time-variant filter,

then the output signal is also sinusoidal at the same frequency. However, its magnitude

and phase could have changed; the same is the case with the proposed GUI filter's output.

The Verilog design code generated by Easy-filter was used to generate the circuit

using the Xilinx synthesis tool for low-pass filter design. Table 8-6 shows

implementation results for the band-pass filter using sampling frequency 20000 Hz,

95

cutoff frequencies 2500 Hz and 8000 Hz, and transition width 900 Hz. Artix-7’s part

number ‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and

454.545 MHz is the highest frequency obtained using this device.

Rectangular Hanning Hamming Blackman Kaiser with

A=68

Coefficients 21 75 77 133 187

Total On-chip

Power

1.439 W 4.869 W 4.991 W 8.373 W 12.121 W

LUT 10.69% 38.83% 39.91% 69.28% 95.58%

FF 1.38% 4.96% 5.10% 8.82% 12.39%

DSP 2.97% 10.27% 10.54% 18.11% 25.14%

IO 22.81% 22.81% 22.81% 22.81% 22.81%

8.1.4 Band-stop filter results

Table 8-7 shows Easy-filter’s GUI generated band-stop filter’s coefficients and

MATAB’s generated band-stop filter’s coefficients. The results show that the Easy-filter

generates the same filter coefficients for the same user inputs. So, engineers can rely on

this system as much as they rely on the MATLAB system to generate FIR filters. For this

experiment, the input signal has 500 Hz,2500 Hz, 3200Hz, and 4500 Hz frequencies.

Table 8-6: Band-pass filter’s Implementation results

96

Table 8-7: Band-stop filter’s coefficients comparison

Coefficient No. Easy-filter GUI MATLAB %Error

h1=h37 0.0000E+00 0.0000E+00 0.0000

h2=h36 2.1889E-04 2.1892E-04 0.0000

h3=h35 2.1806E-04 2.1798E-04 0.0000

h4=h34 1.0442E-18 8.7082E-18 0.0000

h5=h33 -9.6679E-04 -9.6642E-04 0.0000

h6=h32 -6.7303E-03 -6.7314E-03 0.0000

h7=h31 1.0206E-02 1.0207E-02 0.0000

h8=h30 3.4606E-03 3.4592E-03 0.0000

h9=h29 6.4409E-18 -9.6662E-18 0.0000

h10=h28 -6.4281E-03 -6.4256E-03 0.0000

h11=h27 -3.5933E-02 -3.5939E-02 0.0000

h12=h26 4.6958E-02 4.6966E-02 0.0000

h13=h25 1.4463E-02 1.4458E-02 0.0000

h14=h24 1.2804E-17 4.4838E-17 0.0000

h15=h23 -2.5543E-02 -2.5533E-02 0.0000

h16=h22 -1.5235E-01 -1.5238E-01 0.0000

h17=h21 2.3755E-01 2.3759E-01 0.0000

h18=h20 1.1483E-01 1.1478E-01 0.0000

h19 6.0010E-01 6.0015E-01 0.0000

The designed filter’s cut-off frequencies are 2000 Hz and 4000 Hz, so it passes

only 500 Hz and 4500 Hz frequencies and rejects 2500 Hz and 3200 Hz frequencies as

they are in the band-stop range.

Easy-filter used a formula mentioned in section 6.1.3 to calculate 𝑁. The

normalized cut-off frequencies calculated using equations 8-5 and 8-6.

97

𝑓𝐿 = 2000 ∗
2

(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
= 2000 ∗

2

10000
= 0.4 𝐻𝑧 8-5

And,

𝑓𝐻 = 4000 ∗
2

(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
= 4000 ∗

2

10000
= 0.8 𝐻𝑧

8-6

The Verilog code uses the GUI system’s generated coefficients to create design

and testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-10

shows the snippet of the simulation waveform that shows the filter’s coefficients.

Figure 8-11 shows the frequency response generated by Python script and

MATLAB. Both have the same frequency response and attenuation. In the second part of

the validation, the GUI generated coefficients are stored in a text file and fed to

MATLAB code instead of generating its own coefficients. Figure 8-12 compares

MATLAB generated outputs and MATLAB generated output with coefficients fed from

the GUI system. Easy-filter generates the same filtered output as MATLAB.

98

Figure 8-10: The band-stop filter’s coefficient’s simulation waveform

The Verilog design code generated by easy-filter was used to generate the circuit

using the Xilinx synthesis tool for low-pass filter design. Table 8-8 shows

implementation results for the band-stop filter using sampling frequency 20000 Hz,

cutoff frequencies 3000 Hz and 7000 Hz, and transition width 1100 Hz. Artix-7’s part

number ‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and

454.545 MHz is the highest frequency obtained using this device.

99

Figure 8-11: The band-stop filter’s frequency response

Figure 8-12: Filtered band-stop filter’s output comparison

100

Rectangular Hanning Hamming Blackman Kaiser with

A=55

Coefficients 17 61 63 109 121

Total On-chip

Power

1.208 W 3.886 W 3.975 W 7.189 W 7.632 W

LUT 8.57% 31.50% 32.58% 56.68% 62.92%

FF 1.12% 4.03% 4.17% 7.23% 8%

DSP 2.43% 8.38% 8.65% 14.86% 16.22%

IO 22.81% 22.81% 22.81% 22.81% 22.81%

Table 8-8: Band-stop filter’s Implementation results

101

9. CONCLUSION AND FURTHER RESEARCH

Easy-filter automatically generates Verilog and MATLAB code for the FIR filter with

user-defined specifications. It shortens the development time, increases the efficiency of

Verilog coding, and decrease the staff-hour. This method helps even those users who do

not know Verilog or MATLAB coding. Additionally, GUI makes it convenient, fast,

intuitive, and flexible.

This thesis presented an automated generation, verification, and validation of the

most used electronics component, the FIR filters. According to some experienced

designers, it takes approximately two days to design and verify a filter. This automated

flow reduces the design time to a few minutes. A complete chip project usually has

dozens of filters so that this flow can save many hours at the project level.

This flow guarantees the design's timing closure, as it saves time in design and

verification and reduces the back-end team’s work. It requires less effort in

documentation to describe a filter and saves the time that it takes to study, develop, and

documentation.

This system can fulfill the original filter’s requirements without depending on

high-level synthesis tools, which keeps complexity and license costs low. The user can

freely choose the filter length and coefficients.

The code quality and coefficients generated by Easy-filter are checked with both

ModelSim and MATLAB software.

However, it still needs some improvements.

102

9.1 Further research

Below is the list of recommendations for further research on Python script-

controlled GUI used for automation:

• GUI for IIR filter

• Verilog design and testbench automation of other essential electronics

components like CPU (Central Processing Unit)

• Accessing Xilinx from GUI

• The optimization of the design

• Replacing multiplier with shift and add

103

APPENDIX SECTION

APPENDIX A.1 Verilog design: Low-pass filter

// FIR filter order = 26

module fir_27tap(

 input Clk,

 input signed [31:0] Xin,

 output reg signed [31:0] Yout);

//internal variables

wire signed[31:0]

H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21,

H22,H23,H24,H25,H26;

wire

signed[31:0]MCM0,MCM1,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,MCM8,MCM9,MCM10,MCM

11,

MCM12,MCM13,MCM14,MCM15,MCM16,MCM17,MCM18,MCM19,MCM20,MCM21,MCM22,MCM

23,MCM24, MCM25,MCM26;

wire signed [31:0]add_out1,add_out2,add_out3,add_out4,add_out5,add_out6,

add_out7,add_out8,add_out9,add_out10,add_out11,add_out12,add_out13,add_out14,add_out15,add_out16

,add_out17,add_out18,add_out19,add_out20,add_out21,add_out22,add_out23,add_out24,add_out25,add_o

ut26;

wire signed [31:0]Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15,Q16,Q17,

Q18,Q19,Q20,Q21,Q22,Q23,Q24,Q25,Q26;

// filter coefficient initializations

assign H0 = 32'b00100000100111001100101000110100; // 2.656123646688299902e-19

assign H1 = 32'b10111001000100010100000000000000; // -1.387284829302638301e-04

assign H2 = 32'b10111001100101011000000000000000; // -2.851629516083550408e-04

104

assign H3 = 32'b00111010010010000111000000000000; // 7.647929107363890056e-04

assign H4 = 32'b00111011011100110001100000000000; // 3.709346677506889216e-03

assign H5 = 32'b00111011101110100101000000000000; // 5.685874479165271313e-03

assign H6 = 32'b10100010011001111011111110010001; // -3.140775377194302274e-18

assign H7 = 32'b10111100100010001100001110000000; // -1.669499760510593719e-02

assign H8 = 32'b10111101000010001001100001000000; // -3.334846494083928276e-02

assign H9 = 32'b10111100101111110001000110000000; // -2.332396573602673120e-02

assign H10 = 32'b00111101000101111000111000000000; // 3.700083096764832102e-02

assign H11 = 32'b00111110000100000100010010000000; // 1.408865162512743796e-01

assign H12 = 32'b00111110011110001011111100110000; // 2.429170367675183018e-01

assign H13 = 32'b00111110100100100100000100111000; // 2.856538433253219544e-01

assign H14 = 32'b00111110011110001011111100110000; // 2.429170367675183295e-01

assign H15 = 32'b00111110000100000100010010000000; // 1.408865162512743796e-01

assign H16 = 32'b00111101000101111000111000000000; // 3.700083096764832796e-02

assign H17 = 32'b10111100101111110001000110000000; // -2.332396573602673120e-02

assign H18 = 32'b10111101000010001001100001000000; // -3.334846494083929663e-02

assign H19 = 32'b10111100100010001100001110000000; // -1.669499760510594760e-02

assign H20 = 32'b10100010011001111011111110010001; // -3.140775377194304585e-18

assign H21 = 32'b00111011101110100101000000000000; // 5.685874479165271313e-03

assign H22 = 32'b00111011011100110001100000000000; // 3.709346677506889216e-03

assign H23 = 32'b00111010010010000111000000000000; // 7.647929107363904151e-04

assign H24 = 32'b10111001100101011000000000000000; // -2.851629516083556371e-04

assign H25 = 32'b10111001000100010100000000000000; // -1.387284829302649143e-04

assign H26 = 32'b00100000100111001100101000110100; // 2.656123646688299902e-19

//Multiple constant multiplications

multiplier fp1 (.a_1(H26),.b_1(Xin),.out_1(MCM26));

multiplier fp2 (.a_1(H25),.b_1(Xin),.out_1(MCM25));

multiplier fp3 (.a_1(H24),.b_1(Xin),.out_1(MCM24));

105

multiplier fp4 (.a_1(H23),.b_1(Xin),.out_1(MCM23));

multiplier fp5 (.a_1(H22),.b_1(Xin),.out_1(MCM22));

multiplier fp6 (.a_1(H21),.b_1(Xin),.out_1(MCM21));

multiplier fp7 (.a_1(H20),.b_1(Xin),.out_1(MCM20));

multiplier fp8 (.a_1(H19),.b_1(Xin),.out_1(MCM19));

multiplier fp9 (.a_1(H18),.b_1(Xin),.out_1(MCM18));

multiplier fp10 (.a_1(H17),.b_1(Xin),.out_1(MCM17));

multiplier fp12 (.a_1(H16),.b_1(Xin),.out_1(MCM16));

multiplier fp12 (.a_1(H15),.b_1(Xin),.out_1(MCM15));

multiplier fp13 (.a_1(H14),.b_1(Xin),.out_1(MCM14));

multiplier fp14 (.a_1(H13),.b_1(Xin),.out_1(MCM13));

multiplier fp15 (.a_1(H12),.b_1(Xin),.out_1(MCM12));

multiplier fp16 (.a_1(H11),.b_1(Xin),.out_1(MCM11));

multiplier fp17 (.a_1(H10),.b_1(Xin),.out_1(MCM10));

multiplier fp18 (.a_1(H9),.b_1(Xin),.out_1(MCM9));

multiplier fp19 (.a_1(H8),.b_1(Xin),.out_1(MCM8));

multiplier fp20 (.a_1(H7),.b_1(Xin),.out_1(MCM7));

multiplier fp21 (.a_1(H6),.b_1(Xin),.out_1(MCM6));

multiplier fp22 (.a_1(H5),.b_1(Xin),.out_1(MCM5));

multiplier fp23 (.a_1(H4),.b_1(Xin),.out_1(MCM4));

multiplier fp24 (.a_1(H3),.b_1(Xin),.out_1(MCM3));

multiplier fp25 (.a_1(H2),.b_1(Xin),.out_1(MCM2));

multiplier fp26 (.a_1(H1),.b_1(Xin),.out_1(MCM1));

multiplier fp27 (.a_1(H0),.b_1(Xin),.out_1(MCM0));

//adders

adder fadd1 (.a(Q1),.b(MCM25),.out(add_out1));

adder fadd2 (.a(Q2),.b(MCM24),.out(add_out2));

106

adder fadd3 (.a(Q3),.b(MCM23),.out(add_out3));

adder fadd4 (.a(Q4),.b(MCM22),.out(add_out4));

adder fadd5 (.a(Q5),.b(MCM21),.out(add_out5));

adder fadd6 (.a(Q6),.b(MCM20),.out(add_out6));

adder fadd7 (.a(Q7),.b(MCM19),.out(add_out7));

adder fadd8 (.a(Q8),.b(MCM18),.out(add_out8));

adder fadd9 (.a(Q9),.b(MCM17),.out(add_out9));

adder fadd10 (.a(Q10),.b(MCM16),.out(add_out10));

adder fadd11 (.a(Q11),.b(MCM15),.out(add_out11));

adder fadd12 (.a(Q12),.b(MCM14),.out(add_out12));

adder fadd13 (.a(Q13),.b(MCM13),.out(add_out13));

adder fadd14 (.a(Q14),.b(MCM12),.out(add_out14));

adder fadd15 (.a(Q15),.b(MCM11),.out(add_out15));

adder fadd16 (.a(Q16),.b(MCM10),.out(add_out16));

adder fadd17 (.a(Q17),.b(MCM9),.out(add_out17));

adder fadd18 (.a(Q18),.b(MCM8),.out(add_out18));

adder fadd19 (.a(Q19),.b(MCM7),.out(add_out19));

adder fadd20 (.a(Q20),.b(MCM6),.out(add_out20));

adder fadd21 (.a(Q21),.b(MCM5),.out(add_out21));

adder fadd22 (.a(Q22),.b(MCM4),.out(add_out22));

adder fadd23 (.a(Q23),.b(MCM3),.out(add_out23));

adder fadd24 (.a(Q24),.b(MCM2),.out(add_out24));

adder fadd25 (.a(Q25),.b(MCM1),.out(add_out25));

adder fadd26 (.a(Q26),.b(MCM0),.out(add_out26));

//Flipflop instantiation (for introducing delay)

DFF dff1 (.Clk(Clk),.D(MCM26),.Q(Q1));

DFF dff2(.Clk(Clk),.D(add_out1),.Q(Q2));

107

DFF dff3(.Clk(Clk),.D(add_out2),.Q(Q3));

DFF dff4(.Clk(Clk),.D(add_out3),.Q(Q4));

DFF dff5(.Clk(Clk),.D(add_out4),.Q(Q5));

DFF dff6(.Clk(Clk),.D(add_out5),.Q(Q6));

DFF dff7(.Clk(Clk),.D(add_out6),.Q(Q7));

DFF dff8(.Clk(Clk),.D(add_out7),.Q(Q8));

DFF dff9(.Clk(Clk),.D(add_out8),.Q(Q9));

DFF dff10(.Clk(Clk),.D(add_out9),.Q(Q10));

DFF dff11(.Clk(Clk),.D(add_out10),.Q(Q11));

DFF dff12(.Clk(Clk),.D(add_out11),.Q(Q12));

DFF dff13(.Clk(Clk),.D(add_out12),.Q(Q13));

DFF dff14(.Clk(Clk),.D(add_out13),.Q(Q14));

DFF dff15(.Clk(Clk),.D(add_out14),.Q(Q15));

DFF dff16(.Clk(Clk),.D(add_out15),.Q(Q16));

DFF dff17(.Clk(Clk),.D(add_out16),.Q(Q17));

DFF dff18(.Clk(Clk),.D(add_out17),.Q(Q18));

DFF dff19(.Clk(Clk),.D(add_out18),.Q(Q19));

DFF dff20(.Clk(Clk),.D(add_out19),.Q(Q20));

DFF dff21(.Clk(Clk),.D(add_out20),.Q(Q21));

DFF dff22(.Clk(Clk),.D(add_out21),.Q(Q22));

DFF dff23(.Clk(Clk),.D(add_out22),.Q(Q23));

DFF dff24(.Clk(Clk),.D(add_out23),.Q(Q24));

DFF dff25(.Clk(Clk),.D(add_out24),.Q(Q25));

DFF dff26(.Clk(Clk),.D(add_out25),.Q(Q26));

//Assign the last adder output to the final output

always@ (posedge Clk)

 Yout <= add_out26;

108

endmodule

APPENDIX A.2 Verilog testbench: Low-pass filter

// ################ Testbench for the FIR filter: #########################

module tb_fir;

 // Inputs

 reg Clk;

 reg signed [31:0] Xin;

 // Outputs

 wire signed [31:0] Yout;

 // Instantiate the Unit Under Test (UUT)

 fir_27tap uut (

 .Clk(Clk),

 .Xin(Xin),

 .Yout(Yout));

 // Generate a clock with a 10ns clock period

 initial Clk =0;

 always #5 Clk =~Clk;

 //Initialize and apply the inputs

 initial begin

 Xin =32'b10100110101100111100100110111011; #270;//-1.24753e-15

 Xin =32'b00111110001001101010110001100000; #10;// 0.162767

 Xin =32'b00111110101001011001100011100000; #10;// 0.323432

 Xin =32'b00111110111101011010100111001000; #10;// 0.479811

 Xin =32'b00111111001000010011100101100100; #10;// 0.629782

 Xin =32'b00111111010001010111010100000100; #10;// 0.771317

 Xin =32'b00111111011001110000101100010100; #10;// 0.902513

 Xin =32'b00111111100000101100010001110000; #10;// 1.02162

109

 Xin =32'b00111111100100000100001100101100; #10;// 1.12705

 Xin =32'b00111111100110111101010100010010; #10;// 1.21744

 Xin =32'b00111111101001010101010000100000; #10;// 1.29163

 Xin =32'b00111111101011001010000100110110; #10;// 1.34867

 Xin =32'b00111111101100011010011010110100; #10;// 1.3879

 Xin =32'b00111111101101000101011010000000; #10;// 1.40889

 Xin =32'b00111111101101001010101001100100; #10;// 1.41145

 Xin =32'b00111111101100101010011001001100; #10;// 1.3957

 Xin =32'b00111111101011100101010010110100; #10;// 1.36196

 Xin =32'b00111111101001111100100111101110; #10;// 1.31085

 Xin =32'b00111111100111110010000010000100; #10;// 1.24318

 Xin =32'b00111111100101000111101110001000; #10;// 1.16002

 Xin =32'b00111111100010000000010010010110; #10;// 1.06264

 Xin =32'b00111111011100111101010100100000; #10;// 0.952471

 Xin =32'b00111111010101001100010100000000; #10;// 0.831131

 Xin =32'b00111111001100110100101011101100; #10;// 0.700362

 Xin =32'b00111111000011111110000000000100; #10;// 0.562012

 Xin =32'b00111110110101100000010101101000; #10;// 0.41801

 Xin =32'b00111110100010100110100010110000; #10;// 0.27033

 Xin =32'b00111101111101111011100111100000; #10;// 0.12096

 Xin =32'b10111100111001100110100110000000; #10;// -0.0281265

 Xin =32'b10111110001100110011001110110000; #10;// -0.175002

 Xin =32'b10111110101000101011100010100000; #10;// -0.317815

 Xin =32'b10111110111010001101111001101000; #10;// -0.454822

 Xin =32'b10111111000101011001101110100000; #10;// -0.584406

 Xin =32'b10111111001101001000001000010100; #10;// -0.70511

 Xin =32'b10111111010100001100111010110000; #10;// -0.815654

 Xin =32'b10111111011010100011101001001000; #10;// -0.914952

110

 Xin =32'b10111111100000000100010111001010; #10;// -1.00213

 Xin =32'b10111111100010011100110001100010; #10;// -1.07655

 Xin =32'b10111111100100011010001011000110; #10;// -1.13778

 Xin =32'b10111111100101111100001101100000; #10;// -1.18565

 Xin =32'b10111111100111000011000001111110; #10;// -1.22023

 Xin =32'b10111111100111101111001011111000; #10;// -1.24179

 Xin =32'b10111111101000000001110000101110; #10;// -1.25086

 Xin =32'b10111111100111111100010010110000; #10;// -1.24819

 Xin =32'b10111111100111100000101011111010; #10;// -1.23471

 Xin =32'b10111111100110110001001110111110; #10;// -1.21154

 Xin =32'b10111111100101110000100110010100; #10;// -1.17998

 Xin =32'b10111111100100100001101100001000; #10;// -1.14145

 Xin =32'b10111111100011000111101110001000; #10;// -1.09752

 Xin =32'b10111111100001100101111111011000; #10;// -1.0498

 Xin =32'b10111111100000000000000000000000; #10;// -1

 Xin =32'b10111111011100110010100100011000; #10;// -0.949846

 Xin =32'b10111111011001101010110000010000; #10;// -0.901063

 Xin =32'b10111111010110101111100000010100; #10;// -0.855348

 Xin =32'b10111111010100000111100010000100; #10;// -0.814339

 Xin =32'b10111111010001111001001011010000; #10;// -0.779584

 Xin =32'b10111111010000001010010011100000; #10;// -0.752516

 Xin =32'b10111111001111000000001101000100; #10;// -0.734425

 Xin =32'b10111111001110011111011111101000; #10;// -0.726439

 Xin =32'b10111111001110101100000010010000; #10;// -0.729501

 Xin =32'b10111111001111101000110110100100; #10;// -0.744349

 Xin =32'b10111111010001011000000110001100; #10;// -0.771508

 Xin =32'b10111111010011111010111110010100; #10;// -0.811273

 Xin =32'b10111111010111010001101111010100; #10;// -0.863706

111

 Xin =32'b10111111011011011011101011000000; #10;// -0.928631

 Xin =32'b10111111100000001011100011001110; #10;// -1.00564

 Xin =32'b10111111100011000000101011010000; #10;// -1.09408

 Xin =32'b10111111100110001011011011011000; #10;// -1.19308

 Xin =32'b10111111101001101001101000101100; #10;// -1.30158

 Xin =32'b10111111101101011000101000110010; #10;// -1.41828

 Xin =32'b10111111110001010101011110111100; #10;// -1.54174

 Xin =32'b10111111110101011100110110110010; #10;// -1.67034

 Xin =32'b10111111111001101011001110111010; #10;// -1.80236

 Xin =32'b10111111111101111100110010001100; #10;// -1.93593

 Xin =32'b11000000000001000110110011001010; #10;// -2.06914

 Xin =32'b11000000000011001100110100100000; #10;// -2.20002

 Xin =32'b11000000000101001110011011011001; #10;// -2.32659

 Xin =32'b11000000000111001001100111011000; #10;// -2.44689

 Xin =32'b11000000001000111100011001010100; #10;// -2.55898

 Xin =32'b11000000001010100100111001010000; #10;// -2.66103

 Xin =32'b11000000001100000001010100100010; #10;// -2.75129

 Xin =32'b11000000001101010000000011100110; #10;// -2.82818

 Xin =32'b11000000001110001111100111011011; #10;// -2.89025

 Xin =32'b11000000001110111110101101011011; #10;// -2.93624

 Xin =32'b11000000001111011100010000110010; #10;// -2.9651

 Xin =32'b11000000001111100111011011110010; #10;// -2.97601

 Xin =32'b11000000001111011111100111110000; #10;// -2.96838

 Xin =32'b11000000001111000100011110011001; #10;// -2.94187

 Xin =32'b11000000001110010101111011001000; #10;// -2.89641

 Xin =32'b11000000001101010100001000011100; #10;// -2.83216

 Xin =32'b11000000001011111111100011001010; #10;// -2.74956

 Xin =32'b11000000001010011000111001110101; #10;// -2.64932

112

 Xin =32'b11000000001000100001001000000101; #10;// -2.53235

 Xin =32'b11000000000110011001011100100100; #10;// -2.39985

 Xin =32'b11000000000100000011010000011001; #10;// -2.25318

 Xin =32'b11000000000001100000001100011100; #10;// -2.09394

 Xin =32'b10111111111101100100001000000110; #10;// -1.92389

 Xin =32'b10111111110111110101101010000100; #10;// -1.74495

 Xin =32'b10111111110001111001001000111010; #10;// -1.55915

 Xin =32'b10111111101011110010111101000100; #10;// -1.36863

 Xin =32'b10111111100101100111100100010010; #10;// -1.17557

 Xin =32'b10111111011110110111001001001100; #10;// -0.982213

 Xin =32'b10111111010010100111000011000000; #10;// -0.790783

 Xin =32'b10111111000110100111110101010100; #10;// -0.603475

 Xin =32'b10111110110110000100011110110000; #10;// -0.422422

 Xin =32'b10111110011111111010011110100000; #10;// -0.249663

 Xin =32'b10111101101100100110011110000000; #10;// -0.0871116

 Xin =32'b00111101100000011111101111000000; #10;// 0.0634686

 Xin =32'b00111110010011010100110101000000; #10;// 0.20049

 Xin =32'b00111110101001010010011011111000; #10;// 0.322563

 Xin =32'b00111110110110110110011001010000; #10;// 0.428515

 Xin =32'b00111111000001000111010011101000; #10;// 0.517409

 Xin =32'b00111111000101101010101100110100; #10;// 0.58855

 Xin =32'b00111111001001000011100101011000; #10;// 0.6415

 Xin =32'b00111111001011010001001110010100; #10;// 0.67608

 Xin =32'b00111111001100010011111011110100; #10;// 0.692367

 Xin =32'b00111111001100001101000110010100; #10;// 0.690698

 Xin =32'b00111111001010111111000111000100; #10;// 0.671658

 Xin =32'b00111111001000101101010101111000; #10;// 0.63607

 Xin =32'b00111111000101011100000100101100; #10;// 0.584979

113

 Xin =32'b00111111000001010000011100001100; #10;// 0.519639

 Xin =32'b00111110111000100000101001010000; #10;// 0.441485

 Xin =32'b00111110101101000100100010001000; #10;// 0.352116

 Xin =32'b00111110100000011010101111110000; #10;// 0.253265

 Xin =32'b00111110000101100100101011010000; #10;// 0.14677

 Xin =32'b00111101000011011000001010000000; #10;// 0.0345485

 Xin =32'b10111101101001101100011111100000; #10;// -0.081436

 Xin =32'b10111110010010111111110001100000; #10;// -0.199205

 Xin =32'b10111110101000100011001011110000; #10;// -0.316795

 Xin =32'b10111110110111010101010011111000; #10;// -0.432289

 Xin =32'b10111111000010110011100110001100; #10;// -0.543847

 Xin =32'b10111111001001100101010011100100; #10;// -0.649733

 Xin =32'b10111111001111111001001101101000; #10;// -0.748343

 Xin =32'b10111111010101101001011000011100; #10;// -0.838228

 Xin =32'b10111111011010110000100110110100; #10;// -0.918117

 Xin =32'b10111111011111001010011111000100; #10;// -0.986935

 Xin =32'b10111111100001011001101111100100; #10;// -1.04382

 Xin =32'b10111111100010110100011111011000; #10;// -1.08813

 Xin =32'b10111111100011110100101011001010; #10;// -1.11947

 Xin =32'b10111111100100011001111011010110; #10;// -1.13766

 Xin =32'b10111111100100100100011001001000; #10;// -1.14277

 Xin =32'b10111111100100010100101011110100; #10;// -1.1351

 Xin =32'b10111111100011101011111000110110; #10;// -1.11518

 Xin =32'b10111111100010101011100010100100; #10;// -1.08376

 Xin =32'b10111111100001010101100101011110; #10;// -1.04179

 Xin =32'b10111111011111011000101011111100; #10;// -0.990402

 Xin =32'b10111111011011100100111100010000; #10;// -0.930894

 Xin =32'b10111111010111010101110101011100; #10;// -0.864706

114

 Xin =32'b10111111010010110001101111101100; #10;// -0.793395

 Xin =32'b10111111001101111111011001111100; #10;// -0.718605

 Xin =32'b10111111001001000101110010111000; #10;// -0.64204

 Xin =32'b10111111000100001100000001001000; #10;// -0.565434

 Xin =32'b10111110111110110010010110110000; #10;// -0.490522

 Xin =32'b10111110110101101000100001011000; #10;// -0.419009

 Xin =32'b10111110101101000111111111111000; #10;// -0.352539

 Xin =32'b10111110100101011101100001110000; #10;// -0.292667

 Xin =32'b10111110011101101001110100110000; #10;// -0.240834

 Xin =32'b10111110010010110001100011010000; #10;// -0.198337

 Xin =32'b10111110001010100100110101100000; #10;// -0.166311

 Xin =32'b10111110000101010011001101100000; #10;// -0.145704

 Xin =32'b10111110000011001000111001100000; #10;// -0.137262

 Xin =32'b10111110000100001110100110010000; #10;// -0.141516

 Xin =32'b10111110001000101001001111010000; #10;// -0.158767

 Xin =32'b10111110010000011001111010110000; #10;// -0.189082

 Xin =32'b10111110011011011101111000110000; #10;// -0.232293

 Xin =32'b10111110100100110111001110101000; #10;// -0.287992

 Xin =32'b10111110101101100000100100110000; #10;// -0.355539

 Xin =32'b10111110110111100011111011010000; #10;// -0.434073

 Xin =32'b10111111000001011100001110101100; #10;// -0.522517

 Xin =32'b10111111000111101001111000011000; #10;// -0.6196

 Xin =32'b10111111001110010100111111001100; #10;// -0.723874

 Xin =32'b10111111010101010110111110000100; #10;// -0.833733

 Xin =32'b10111111011100101000101101101100; #10;// -0.94744

 Xin =32'b10111111100010000001010110100000; #10;// -1.06316

 Xin =32'b10111111100101101110100000101000; #10;// -1.17896

 Xin =32'b10111111101001010111110101101010; #10;// -1.29289

115

 Xin =32'b10111111101100111001010010000100; #10;// -1.40297

 Xin =32'b10111111110000001110110011101000; #10;// -1.50723

 Xin =32'b10111111110011010100100000000000; #10;// -1.60376

 Xin =32'b10111111110110000110100100101110; #10;// -1.69071

 Xin =32'b10111111111000100001100000010100; #10;// -1.76636

 Xin =32'b10111111111010100001111110011110; #10;// -1.82909

 Xin =32'b10111111111100000101000101000010; #10;// -1.87748

 Xin =32'b10111111111101001000010000001110; #10;// -1.91028

 Xin =32'b10111111111101101001010101000010; #10;// -1.92643

 Xin =32'b10111111111101100110101000000000; #10;// -1.92511

 Xin =32'b10111111111100111110111011110100; #10;// -1.90573

 Xin =32'b10111111111011110001100110100100; #10;// -1.86797

 Xin =32'b10111111111001111110011011000100; #10;// -1.81173

 Xin =32'b10111111110111100101110010010000; #10;// -1.7372

 Xin =32'b10111111110100101000100101110110; #10;// -1.64482

 Xin =32'b10111111110001001000010000001110; #10;// -1.53528

 Xin =32'b10111111101101000110101011010010; #10;// -1.40951

 Xin =32'b10111111101000100110010001101110; #10;// -1.26869

 Xin =32'b10111111100011101001111000011010; #10;// -1.1142

 Xin =32'b10111111011100101001011111110000; #10;// -0.947631

 Xin =32'b10111111010001010100111110111100; #10;// -0.770748

 Xin =32'b10111111000101011110000011010100; #10;// -0.585462

 Xin =32'b10111110110010011010000110011000; #10;// -0.393811

 Xin =32'b10111110010010101010110011010000; #10;// -0.197925

 Xin =32'b10100111010110111100100110110100; #10;//-3.05017e-15

 Xin =32'b00111110010010100111101110010000; #10;// 0.197737

 Xin =32'b00111110110010010011111100101000; #10;// 0.39306

 Xin =32'b00111111000101010111001000100100; #10;// 0.583773

116

 Xin =32'b00111111010001001000101100000000; #10;// 0.767746

 Xin =32'b00111111011100010110010010110100; #10;// 0.942943

 Xin =32'b00111111100011011100000011101010; #10;// 1.10745

 Xin =32'b00111111101000010011011110011110; #10;// 1.25951

 Xin =32'b00111111101100101110001001000010; #10;// 1.39753

 Xin =32'b00111111110000101001001101001010; #10;// 1.52012

 Xin =32'b00111111110100000010010100000110; #10;// 1.62613

 Xin =32'b00111111110110110111100001010110; #10;// 1.71461

 Xin =32'b00111111111001000111011010011110; #10;// 1.78487

 Xin =32'b00111111111010110001000101110010; #10;// 1.83647

 Xin =32'b00111111111011110100001110010100; #10;// 1.86925

 Xin =32'b00111111111100010000111011111100; #10;// 1.88327

 Xin =32'b00111111111100000111111101110110; #10;// 1.87889

 Xin =32'b00111111111011011010100000000100; #10;// 1.85669

 Xin =32'b00111111111010001010001111010110; #10;// 1.8175

 Xin =32'b00111111111000011001010100000010; #10;// 1.76236

 Xin =32'b00111111110110001010010100100110; #10;// 1.69254

 Xin =32'b00111111110011100000001100011100; #10;// 1.60947

 Xin =32'b00111111110000011110001111111010; #10;// 1.51477

 Xin =32'b00111111101101000111111111001010; #10;// 1.41015

 Xin =32'b00111111101001100001001111010010; #10;// 1.29748

 Xin =32'b00111111100101101101111010101000; #10;// 1.17867

 Xin =32'b00111111100001110010000011011000; #10;// 1.05569

 Xin =32'b00111111011011100011011011100000; #10;// 0.930525

 Xin =32'b00111111010011100001110111001000; #10;// 0.805142

 Xin =32'b00111111001011100111010010001100; #10;// 0.681466

 Xin =32'b00111111000011111011010000001000; #10;// 0.561341

 Xin =32'b00111110111001001001110100010000; #10;// 0.446511

117

 Xin =32'b00111110101011010101101011100000; #10;// 0.338584

 Xin =32'b00111110011101001100000011010000; #10;// 0.239017

 Xin =32'b00111110000110001010101000000000; #10;// 0.149086

 Xin =32'b00111101100011110001100101000000; #10;// 0.0698726

 Xin =32'b00111011000100110011000000000000; #10;// 0.00224591

 Xin =32'b10111101010110011011001001000000; #10;// -0.0531486

 Xin =32'b10111101110001000110011000000000; #10;// -0.0958977

 Xin =32'b10111110000000001101100001000000; #10;// -0.125825

 Xin =32'b10111110000100100110110000110000; #10;// -0.142991

 Xin =32'b10111110000101110011110010010000; #10;// -0.147692

 Xin =32'b10111110000011111101001000010000; #10;// -0.14045

 Xin =32'b10111101111110011101110010100000; #10;// -0.122003

 Xin =32'b10111101101111110001000101000000; #10;// -0.0932948

 Xin =32'b10111101011000110001111110000000; #10;// -0.0554502

 Xin =32'b10111100000111111110101100000000; #10;// -0.00976067

 Xin =32'b00111101001011010110111001000000; #10;// 0.0423417

 Xin =32'b00111101110010110110001001100000; #10;// 0.0993089

 Xin =32'b00111110001000110101010100000000; #10;// 0.159504

 Xin =32'b00111110011000101000101010100000; #10;// 0.221232

 Xin =32'b00111110100100001100011001110000; #10;// 0.282764

 Xin =32'b00111110101011110100101111101000; #10;// 0.342376

 Xin =32'b00111110110010111111011101001000; #10;// 0.398371

 Xin =32'b00111110111001011111001000000000; #10;// 0.449112

 Xin =32'b00111110111111000111000101110000; #10;// 0.493053

 Xin =32'b00111111000001110101110011100000; #10;// 0.528761

 Xin =32'b00111111000011100001000100010000; #10;// 0.554948

 Xin =32'b00111111000100100000101101101100; #10;// 0.570487

 Xin =32'b00111111000100110000111001011100; #10;// 0.574438

118

 Xin =32'b00111111000100001110100110100000; #10;// 0.566065

 Xin =32'b00111111000010110111101011110100; #10;// 0.544845

 Xin =32'b00111111000000101010111100110100; #10;// 0.510486

 Xin =32'b00111110111011010000010011100000; #10;// 0.462928

 Xin =32'b00111110110011100000000011010000; #10;// 0.40235

 Xin =32'b00111110101010001000100010010000; #10;// 0.329167

 Xin =32'b00111110011110011110001010110000; #10;// 0.244029

 Xin =32'b00111110000101110101101000110000; #10;// 0.147805

 Xin =32'b00111101001010100101000101000000; #10;// 0.0415815

 Xin =32'b10111101100101100011111100100000; #10;// -0.0733626

 Xin =32'b10111110010010000100001100110000; #10;// -0.195569

 Xin =32'b10111110101001011001011111010000; #10;// -0.323424

 Xin =32'b10111110111010010000110110011000; #10;// -0.455182

 Xin =32'b10111111000101101100100001001100; #10;// -0.588994

 Xin =32'b10111111001110010001001000100000; #10;// -0.722933

 Xin =32'b10111111010110101110001011111000; #10;// -0.855026

 Xin =32'b10111111011110111011100010100000; #10;// -0.983286

 Xin =32'b10111111100011011000100011100010; #10;// -1.10574

 Xin =32'b10111111100111000011100000001000; #10;// -1.22046

 Xin =32'b10111111101010011010110011101110; #10;// -1.32559

 Xin =32'b10111111101101011010111100111010; #10;// -1.41941

 Xin =32'b10111111110000000000100110000000; #10;// -1.50029

 Xin =32'b10111111110010001000110010010010; #10;// -1.56679

 Xin =32'b10111111110011110000111101111010; #10;// -1.61766

 Xin =32'b10111111110100110110111011010110; #10;// -1.65182

 Xin =32'b10111111110101011001000000011000; #10;// -1.66846

 Xin =32'b10111111110101010101111110011000; #10;// -1.66698

 Xin =32'b10111111110100101101000111100000; #10;// -1.64703

119

 Xin =32'b10111111110011011110010001001110; #10;// -1.60853

 Xin =32'b10111111110001101001110000100010; #10;// -1.55164

 Xin =32'b10111111101111010000011101110100; #10;// -1.47679

 Xin =32'b10111111101100010011110100110000; #10;// -1.38468

 Xin =32'b10111111101000110101101100101100; #10;// -1.27622

 Xin =32'b10111111100100111000011110111100; #10;// -1.15258

 Xin =32'b10111111100000011111000000011010; #10;// -1.01514

 Xin =32'b10111111010111011001000001011100; #10;// -0.865484

 Xin =32'b10111111001101001001001010001000; #10;// -0.705361

 Xin =32'b10111111000010010110001110111000; #10;// -0.536678

 Xin =32'b10111110101110010001000110101000; #10;// -0.361463

 Xin =32'b10111110001110100011010010000000; #10;// -0.181841

 Xin =32'b10100111011111111110100100111110; #10;//-3.55148e-15

 Xin =32'b00111110001110100011010010000000; #10;// 0.181841

 Xin =32'b00111110101110010001000110101000; #10;// 0.361463

 Xin =32'b00111111000010010110001110111000; #10;// 0.536678

 Xin =32'b00111111001101001001001010001000; #10;// 0.705361

 Xin =32'b00111111010111011001000001011100; #10;// 0.865484

 Xin =32'b00111111100000011111000000011010; #10;// 1.01514

 Xin =32'b00111111100100111000011110111100; #10;// 1.15258

 Xin =32'b00111111101000110101101100101100; #10;// 1.27622

 Xin =32'b00111111101100010011110100110000; #10;// 1.38468

 Xin =32'b00111111101111010000011101110100; #10;// 1.47679

 Xin =32'b00111111110001101001110000100010; #10;// 1.55164

 Xin =32'b00111111110011011110010001001110; #10;// 1.60853

 Xin =32'b00111111110100101101000111100000; #10;// 1.64703

 Xin =32'b00111111110101010101111110011000; #10;// 1.66698

 Xin =32'b00111111110101011001000000011000; #10;// 1.66846

120

 Xin =32'b00111111110100110110111011010110; #10;// 1.65182

 Xin =32'b00111111110011110000111101111010; #10;// 1.61766

 Xin =32'b00111111110010001000110010010010; #10;// 1.56679

 Xin =32'b00111111110000000000100110000000; #10;// 1.50029

 Xin =32'b00111111101101011010111100111010; #10;// 1.41941

 Xin =32'b00111111101010011010110011101110; #10;// 1.32559

 Xin =32'b00111111100111000011100000001000; #10;// 1.22046

 Xin =32'b00111111100011011000100011100010; #10;// 1.10574

 Xin =32'b00111111011110111011100010100000; #10;// 0.983286

 Xin =32'b00111111010110101110001011111000; #10;// 0.855026

 Xin =32'b00111111001110010001001000100000; #10;// 0.722933

 Xin =32'b00111111000101101100100001001100; #10;// 0.588994

 Xin =32'b00111110111010010000110110011000; #10;// 0.455182

 Xin =32'b00111110101001011001011111010000; #10;// 0.323424

 Xin =32'b00111110010010000100001100110000; #10;// 0.195569

 Xin =32'b00111101100101100011111100100000; #10;// 0.0733626

 Xin =32'b10111101001010100101000101000000; #10;// -0.0415815

 Xin =32'b10111110000101110101101000110000; #10;// -0.147805

 Xin =32'b10111110011110011110001010110000; #10;// -0.244029

 Xin =32'b10111110101010001000100010010000; #10;// -0.329167

 Xin =32'b10111110110011100000000011010000; #10;// -0.40235

 Xin =32'b10111110111011010000010011100000; #10;// -0.462928

 Xin =32'b10111111000000101010111100110100; #10;// -0.510486

 Xin =32'b10111111000010110111101011110100; #10;// -0.544845

 Xin =32'b10111111000100001110100110100000; #10;// -0.566065

 Xin =32'b10111111000100110000111001011100; #10;// -0.574438

 Xin =32'b10111111000100100000101101101100; #10;// -0.570487

 Xin =32'b10111111000011100001000100010000; #10;// -0.554948

121

 Xin =32'b10111111000001110101110011100000; #10;// -0.528761

 Xin =32'b10111110111111000111000101110000; #10;// -0.493053

 Xin =32'b10111110111001011111001000000000; #10;// -0.449112

 Xin =32'b10111110110010111111011101001000; #10;// -0.398371

 Xin =32'b10111110101011110100101111101000; #10;// -0.342376

 Xin =32'b10111110100100001100011001110000; #10;// -0.282764

 Xin =32'b10111110011000101000101010100000; #10;// -0.221232

 Xin =32'b10111110001000110101010100000000; #10;// -0.159504

 Xin =32'b10111101110010110110001001100000; #10;// -0.0993089

 Xin =32'b10111101001011010110111001000000; #10;// -0.0423417

 Xin =32'b00111100000111111110101100000000; #10;// 0.00976067

 Xin =32'b00111101011000110001111110000000; #10;// 0.0554502

 Xin =32'b00111101101111110001000101000000; #10;// 0.0932948

 Xin =32'b00111101111110011101110010100000; #10;// 0.122003

 Xin =32'b00111110000011111101001000010000; #10;// 0.14045

 Xin =32'b00111110000101110011110010010000; #10;// 0.147692

 Xin =32'b00111110000100100110110000110000; #10;// 0.142991

 Xin =32'b00111110000000001101100001000000; #10;// 0.125825

 Xin =32'b00111101110001000110011000000000; #10;// 0.0958977

 Xin =32'b00111101010110011011001001000000; #10;// 0.0531486

 Xin =32'b10111011000100110011000000000000; #10;// -0.00224591

 Xin =32'b10111101100011110001100101000000; #10;// -0.0698726

 Xin =32'b10111110000110001010101000000000; #10;// -0.149086

 Xin =32'b10111110011101001100000011010000; #10;// -0.239017

 Xin =32'b10111110101011010101101011100000; #10;// -0.338584

 Xin =32'b10111110111001001001110100010000; #10;// -0.446511

 Xin =32'b10111111000011111011010000001000; #10;// -0.561341

 Xin =32'b10111111001011100111010010001100; #10;// -0.681466

122

 Xin =32'b10111111010011100001110111001000; #10;// -0.805142

 Xin =32'b10111111011011100011011011100000; #10;// -0.930525

 Xin =32'b10111111100001110010000011011000; #10;// -1.05569

 Xin =32'b10111111100101101101111010101000; #10;// -1.17867

 Xin =32'b10111111101001100001001111010010; #10;// -1.29748

 Xin =32'b10111111101101000111111111001010; #10;// -1.41015

 Xin =32'b10111111110000011110001111111010; #10;// -1.51477

 Xin =32'b10111111110011100000001100011100; #10;// -1.60947

 Xin =32'b10111111110110001010010100100110; #10;// -1.69254

 Xin =32'b10111111111000011001010100000010; #10;// -1.76236

 Xin =32'b10111111111010001010001111010110; #10;// -1.8175

 Xin =32'b10111111111011011010100000000100; #10;// -1.85669

 Xin =32'b10111111111100000111111101110110; #10;// -1.87889

 Xin =32'b10111111111100010000111011111100; #10;// -1.88327

 Xin =32'b10111111111011110100001110010100; #10;// -1.86925

 Xin =32'b10111111111010110001000101110010; #10;// -1.83647

 Xin =32'b10111111111001000111011010011110; #10;// -1.78487

 Xin =32'b10111111110110110111100001010110; #10;// -1.71461

 Xin =32'b10111111110100000010010100000110; #10;// -1.62613

 Xin =32'b10111111110000101001001101001010; #10;// -1.52012

 Xin =32'b10111111101100101110001001000010; #10;// -1.39753

 Xin =32'b10111111101000010011011110011110; #10;// -1.25951

 Xin =32'b10111111100011011100000011101010; #10;// -1.10745

 Xin =32'b10111111011100010110010010110100; #10;// -0.942943

 Xin =32'b10111111010001001000101100000000; #10;// -0.767746

 Xin =32'b10111111000101010111001000100100; #10;// -0.583773

 Xin =32'b10111110110010010011111100101000; #10;// -0.39306

 Xin =32'b10111110010010100111101110010000; #10;// -0.197737

123

 Xin =32'b10100111100111101101011101011011; #10;//-4.40873e-15

 end

endmodule

APPENDIX B.1: MATLAB Code: Low-pass filter

f1=200;

f2=300; %the frequencies of sines signal that needs filtered

f3=1000;

f4=2000;

fc=500;

TW=800;

fs=3500.0;

M=ceil(5.98*(fs/TW)); %define the window length

if rem(M, 2) == 1

M=M;

else

M=M+1;

end

N=M-1; %define the order of filter

b = fir1(N,fc/(fs/2),'low',blackman(M));

[h,f]=freqz(b,1,512);

figure(1)

plot(f*fs/(2*pi),20*log10(abs(h))) % frequency and amplitude parameters respectively

xlabel('frequency/Hz');

ylabel('gain/dB');

title('The gain response of low-pass filter');

t=(0:400)/fs; %time domain and the step length

t1=(0.002:0.00001:0.006);

124

s=sin(2*pi*f1*t)+sin(2*pi*f2*t)+sin(2*pi*f3*t)+sin(2*pi*f4*t); %unfiltered signal

s1=sin(2*f1*pi*t1)+sin(2*f2*pi*t1)+sin(2*f3*pi*t1)+sin(2*f4*pi*t1);

sf=filter(b,1,s);

figure(2)

subplot(211)

plot(t1,s1);

xlabel('time/s');

ylabel('amplitude');

title('Time-domain diagram before filtering');

subplot(212)

Fs=fft(s,512); %transform the signal to frequency domain

AFs=abs(Fs); %take the amplitude

f=(0:255)*fs/512; %frequency sampling

plot(f,AFs(1:256)); %plot the frequency domain diagram before filtering

xlabel('frequency/Hz');

ylabel('amplitude');

title('Frequency-domain diagram before filtering');

figure(3)

subplot(211)

plot(t,sf) %plot the signal graph after filtering

xlabel('time/s');

ylabel('amplitude');

title('Time-domain diagram after filtering');

axis([0.005 0.025 -4 4]);

subplot(212)

Fsf=fft(sf,512); %frequency-domain diagram after filtering

AFsf=abs(Fsf); %the amplitude

f=(0:255)*fs/512; %frequency sampling

125

plot(f,AFsf(1:256)) %plot the frequency domain diagram after filtering

xlabel('frequency/Hz');

ylabel('amplitude');

title('Frequency-domain diagram after filtering');

126

REFERENCES

[1] V. Berman, "Two approaches to standardization and language design," IEEE,

vol. 22, no. 3, pp. 283-285, 2005.

[2] M. Cheng, "Foundry Future: challenges in the 21st century," IEEE, pp. 18-23,

2007.

[3] Foster H., "The 2018 Wilson Research Group Functional Verification Study,"

Mentor Graphics Corporation, 2018.

[4] E. Tronci, "Special Section on Recent Advances in Hardware Verification:

introductory paper," International Journal on Software Tools for Technology

Transfer, vol. 8, pp. 355-358, 2006.

[5] D. Packer, "Verification vs. Validation: Do You know the Difference? " 7 April

2019. [Online]. Available: https://www.plutora.com/blog/verification-vs-

validation. [Accessed 25 March, 2020].

[6] J. Bergeron, Writing testbenches: functional verification of HDL models,

Norwell, MA: Kluwer Academic Publishers, 2000.

[7] N. H. Weste and D. M. Harris, "Cell-Based Design," in CMOS VLSI Design: a

circuits and systems perspective, USA, Addison-Wesley, 2010, pp. 632-634.

[8] D. Josephson and B. Gottlieb, "Silicon Debug," in Advances in Electronic

Testing: Challenges and Methodologies, Springer, 2006, pp. 77-79.

[9] A. Molina and O. Cadenas, "Functional Verification: approaches and

challenges," Latin American applied research, vol. 37, 2007.

127

[10] M. S. Abadir, K. L. Albin, J. Havlicek, N. Krishnamurthy, and A. K. Martin,

"Formal Verification Successes at Motorola," Formal Methods in System

Design, vol. 2, no. 22, pp. 117-123, 2003.

[11] A. Piziali, "Design Intent Diagram," in Functional Verification Coverage

Measurement and Analysis, New York, USA, Springer, 2004, pp. 16-18.

[12] B. Bailey, "A new vision of ‘scalable’ verification," 19 March 2004. [Online].

Available: https://www.eetimes.com/a-new-vision-of-scalable-verification/#.

[Accessed 14 May, 2020].

[13] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore and

F. Bruno, "Complete Formal Verification of TriCore2 and Other Processors," in

Design and Verification Conference and Exhibition, San Jose, 2007.

[14] C. Yan and K. Jones, "Efficient Simulation-Based Verification by Reordering,"

in Design and Verification Conference and Exhibition, San Jose, CA, 2010.

[15] S. W. Smith, "Filter Basics," in The Scientist and Engineer's Guide to Digital

Signal Processing, San Diego, California, California Technical Publishing,

1999, pp. 261-265.

[16] J. Heath, "Analog filters vs. digital filters," 3 October 2016. [Online]. Available:

https://www.analogictips.com/using-analog-filters-vs-digital-filters/. [Accessed

26 May, 2020].

[17] N. Davis, "An introduction to filters," 31 July 2017. [Online]. Available:

https://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/.

[Accessed 26 May, 2020].

128

[18] Siemens, "Introduction to Filters: FIR versus IIR," 6 April 2020. [Online].

Available: https://community.sw.siemens.com/s/article/introduction-to-filters-

fir-versus-iir. [Accessed 26 May, 2020].

[19] J. R. Raol, G. Gopalratnam, and B. Twala, "Dynamic System Models and Basic

Concepts," in Nonlinear Filtering Concepts and Engineering Applications, Boca

Raton, CRC Press, 2017, pp. 3-14.

[20] S. Mokhatab and W. A. Poe, "Finite Impulse Response Models," in Process

Modeling in the Natural Gas Processing Industry, Waltham, MA, Gulf

Professional Publishing, 2012, pp. 533-534.

[21] N. Kumar, "Optimal Design of FIR and IIR Filters using some Evolutionary

Algorithms," Durgapur, INDIA, 2013.

[22] Z. Milivojević, "Finite impulse response (FIR) filter design methods," in Digital

Filter Design, mikroElektronika, 2009.

[23] Z. Milivojevic, "Window functions," in Digital Filter Design, mikroElektronika,

2009.

[24] R. Keim, "What Is a Hardware Description Language (HDL)?," 11 March 2020.

[Online]. Available: https://www.allaboutcircuits.com/technical-articles/what-is-

a-hardware-description-language-hdl/. [Accessed 3 June, 2020].

[25] S. Palnitkar, "Overview of Digital Design with Verilog HDL," in Verilog HDL:

a guide to digital design and synthesis, Palo Alto, California, USA, Sun

Microsystems Press, 2003, pp. 3-8.

129

[26] J. W. Tantra, "Experiences in Building Python Automation Framework for

Verification and Data Collections," in Proceedings of PyCon Asia-Pacific,

2010.

[27] A. Aggarwal, "Introduction to Perl," [Online]. Available:

https://www.geeksforgeeks.org/introduction-to-perl/. [Accessed 7 June, 2020].

[28] M. Dehbashi, A. Sülflow, and G. Fey, "Automated Design Debugging in a

Testbench-Based," in 14th Euromicro Conference on Digital System Design,

Oulu, Finland, 2011.

[29] S. Kumar, Mohanty, S. Sengupta, and S. K. Mohapatra, "Test Bench

Automation to overcome Verification Challenge of SOC Interconnect," in 2015

International Conference on Man and Machine Interfacing (MAMI),

Bhubaneswar, 2015.

[30] I. Maia, K. R. G. d. Silva, L. Max, and R. C. P. Camara, "eTBc: A Semi-

Automatic Testbench Generation Tool," in IP SOC, French, 2007.

[31] M. Lajolo, L. Lavagno, and M. Rebaudengo, "Automatic Test Bench Generation

for Simulation-based Validation," in M. Lajolo, L. Lavagno, and M.

Rebaudengo, "Automatic test bench generProceedings of the Eighth

International Workshop on Hardware/Software Codesign, San Diego, CA,

USA, 2000.

[32] S. N. Pagliarini and F. L. Kastensmidt, VEasy: a Tool Suite for Teaching

Functional Verification, Germany: LAP LAMBERT Academic Publishing,

2012.

130

[33] V. Verma and C. Chien, "A VHDL based Functional Compiler for Optimum

Architecture Generation of FIR filters," IEEE International Symposium, vol. 4,

pp. 564-567, 1996.

[34] Xilinx Inc., "LogiCORE IP FIR Compiler v6.3," 19 October 2011. [Online].

Available:

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/

v6_3/ds795_fir_compiler.pdf. [Accessed 21 June, 2020].

[35] MathWorks Inc., "HDL Coder user's guide," March 2020. [Online]. Available:

https://ww2.mathworks.cn/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf. [Accessed

21 June, 2020].

[36] D. N. Bogdan Sbarcea, "Automatic Conversion of MatLab/Simulink Models to

HDL Models," [Online]. Available: http://fcd.co.il/doc/optim2004.pdf.

[Accessed 21 June, 2020].

[37] K. Camera, "SF2VHD: A Stateflow to VHDL Translator," 2001.

[38] M. Bayasgalan and X.-E. Sun, "Graphical User Interface Design of FIR Filter,"

Open Access Library, vol. 5, 2018.

[39] Z. XueMin, "Design and Simulation of FIR Filter Based on GUI," in 201O

International Conference on Computer Application and System Modeling

(ICCASM 2010), Taiyuan, China, 2010.

[40] V. S. Rosa, F. F. Daitx, E. Costa, and S. Bampi, "Design Flow for the

Generation of Optimized FIR Filters," in 16th IEEE International Conference,

Banff, Canada, 2009.

131

[41]

.

R. Chadwick, "Binary Tutorial - 5. Binary Fractions and Floating Point," 2020.

[Online]. Available: https://ryanstutorials.net/binary-tutorial/binary-floating-

point.php. [Accessed 11 June, 2020].

