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ABSTRACT 

Due to increasing hardware design complexity and cutting-edge competition for 

the short time-to-market requirement, functional verification becomes the primary 

challenge in the hardware design development project. The essential parts to verify any 

systems are design code and testbench code. However, it is very labor-intensive to write 

these codes and prone to manual errors. The idea behind this thesis is to develop a user-

friendly graphical user interface (GUI) that helps Verification Engineers to generate 

design and testbench code. GUI also validate these codes by comparing with MATLAB 

results more efficiently and in less time. Often, it is challenging to finish the debugging in 

due time because of obvious reasons such as coming across several design changes at any 

time. It means that they must rewrite their design and test benches. These changes 

become a significant issue if they happen right before tape out. The proposed system 

automates the design implementation of the FIR filter, which engineers can easily modify 

in less time. The first step is to generate the design and testbench code of the FIR filter 

and simulate using Modelsim. The second step is to validate this design by comparing its 

results against already existing well established MATLAB's results. Filters of some sorts 

are essential to the operation of most electronic circuits. Our proposed system can save a 

significant amount of time for engineers because it can generate design code, testbench 

code, and validate it, all in one system. The GUI generated Verilog codes are 

synthesizable. The simulation results show that GUI based FIR filter’s design is fast, 

convenient, flexible, and error-free.
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1. INTRODUCTION 

Functional verification (FV) is a significant step in the development of today’s complex 

digital designs. In the latest Integrated Circuits (IC) designs, the deep-submicron feature 

sizes have shifted the emphasis from design to verification [1]. Designers must design 

ICs with an excess of 50 million equivalent gates and still meet cost and time-to-market 

constraints. So, verification is the main topic for research and development in the 

Electronics Design Automation (EDA) industry.  

With the continuous increase in design complexity, the probability of Integrated 

Circuits (IC) failure increases [2]. A study by Wilson Research Group in 2018 shows the 

rate at which a given IC function satisfactory in first silicon spin is dropping. Figure 1-1 

shows that achieving first silicon success is getting worse while achieving second silicon 

success has improved [3]. 

 

Figure 1-1: A decreasing trend in the first silicon success rate [3] 

The same studies also described the sources of errors in chip design. Chips fail for 

many reasons like clocking, timing-path issues, power issues, and logic/functional flaws. 
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As shown in Figure 1-2, logic/functional defects are the most significant cause of flawed 

silicon that required re-spin. 

 

Figure 1-2: Types of flaws resulting in silicon re-spin [3] 

Since the logic/functional errors were more common than the others, the same research 

examines the root cause of logic/functional flaws. Design errors were the main reason for 

functional flaws. The flaws due to changing, incorrect, and incomplete specifications are 

also typical. According to Figure 1-3, flaws fall in three main categories:  

➢ Design errors: About 82% of designs with re-spins resulting from 

logic/functional flaws had design errors. It means that particular corner cases did 

not cover during the verification process, and bugs remained hidden in the design 

flow through tape-out. 

➢ Specification errors: About 47% of designs with re-spins resulting from 

logic/functional flaws had incorrect/incomplete specifications. Moreover, 32% of 
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designs with re-spins resulting from logic/functional defects had changes in 

specifications. 

 

Figure 1-3: The root cause of logic/functional flaws [3] 

➢ Reused modules and imported IP: About 14% of all chips that failed had bugs 

in reused components or imported IP (Intellectual Property). 

So, this data shows that silicon re-spin is very common. Chip re-spin is extremely 

expensive, and it also requires additional development time [4]. Thus, companies that can 

control this trend have a considerable advantage over their competitors, both in terms of 

the subsequent reduction in engineering costs and the business advantage of being to 

market sooner and with high-quality products. The key to time-to-market success, for 

many projects, is verification.  
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1.1 Problem targeted 

The problem targeted in this thesis is achieving low cost, reducing manual errors, 

and reducing project time spent in the design and verification of the FIR filter. 

 

1.2 Proposed solution 

The proposed solution is to develop a system that generates the FIR filter's design 

and testbench, then verifying using ModelSim and validate it against MATLAB results. 

FIR filters are of four types: low-pass, high-pass, band-pass, and band-stop. For this, we 

propose to conduct a set of experiments, each of which includes the design, testbench, 

verification, and validation. The system uses a Graphical User Interface (GUI) for 

easiness. This interface is suitable for teaching purposes, either at undergraduate or 

graduate levels. 

 

1.3 Hypothesis 

Using the proposed system reduces chip cost and time to market. 

 

1.4 Research contribution 

In this thesis, FIR filter designs using Perl and Python languages. Main 

contributions are summarized as follows: 

1. Any user can generate a design and testbench of FIR filter of any type (low-pass, 

high-pass, band-pass, band-stop)  and any order in seconds using easy to use GUI. 

Along with design and testbench, it verifies and validates the FIR filter that saves 

time and cost.  

2. Easy-filter can design four types of digital filters using the same specifications 

and GUI in two different languages: Verilog and MATLAB. It reduces human 
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errors, especially for FIR filters with a large number of coefficients. 

3. Easy-filter designed filter is reconfigurable, which means that the filter can be 

reconfigured anytime by data that are input to the GUI. GUI generated design and 

testbench Verilog codes run on ModelSim that opens directly from GUI. The 

filter design was verified by comparing the Python generated coefficients to the 

MATLAB generated coefficients. 

4. Easy-filter catches floating-point to decimal conversion error in two different 

formats: total average error percentage, the plot of the absolute error in each 

coefficient 

5. Easy to use GUI that does not require any prior knowledge of any programming 

language, so it is suitable for teaching purposes. GUI can run the FIR filter design 

automatically on ModelSim and MATLAB software.  

6. GUI can compare Python generated coefficients with MATLAB generated 

coefficients and shows the total average error percentage.  

7. Easy-filter design the FIR filter, simulate using ModelSim and validate Python 

generated coefficients with MATLAB generated coefficients, using a single GUI. 

 

1.5 Outline 

This thesis is divided into nine chapters. Following the introduction in Chapter 1, 

we have Chapter 2, which provides background information about function verification 

importance and challenges, FIR filter, and graphical user interface. Chapter 3 includes the 

literature review, which provides information about similar works performed by other 

people. Chapter 4 gives information about the methodology used in this thesis for design, 

verification, and validation, and experiments performed as a part of this thesis. Chapter 5 
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explains the experimental setup, and Chapter 6 explains the design implementation. 

Chapter 7 adds the design simulation and validation process, and Chapter 8 compares the 

results of the experiments performed against MATLAB; it also includes synthesis results. 

Chapter 9 includes conclusions and future work recommendations. 
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2. BACKGROUND 

The chapter provides background related to functional verification and FIR filter. The 

chapter starts with a difference in verification and validation; then, it provides general 

details about functional verification and FIR filter.  

 

2.1 Verification vs. validation 

The difference between verification and validation is always confusing. 

Verification is a test of a system to prove that it meets all its specified requirements at a 

particular stage of its development. On the other hand, validation is an activity that 

ensures that an end product meets stakeholder’s true needs and expectations. Figure 2-1 

shows the difference between verification and validation [5].  

 

Figure 2-1: Verification Vs. Validation 

Verification is a process to demonstrate the functional correctness of the design. 

The primary purpose of “functional” verification is to ensure that a design meets its 

functional intent. The convergent path model, as shown in Figure 2-2, functional 

verification, reconciles a design with its specifications [6]. 
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Figure 2-2: Functional Verification Paths 

 

The desired behavior of the system must be known for system validation. The 

desired behavior description is in specifications. Specifications describe what a system 

must do; it does not explain how to do it. A system that is supposed to implement the 

desired behavior is called an implementation. So, validation checks whether an 

implementation complies with its specification, as shown in Figure 2-3 [6]. 

 

Figure 2-3: Validation of System 

 

2.2 IC implementation flow 

IC development process involves many steps to produce a final circuit. IC 

development flow depends on the technology used and circuit type (digital, analog, or 

mixed-signal). The flow also differs if a re-programmable device such as a Field-

Programmable Gate Array (FPGA) is used. Figure 2-4 shows a generic flow for a digital 

Application Specific Integrated Circuit (ASIC). This flow based on standard cell libraries 

methodology, widely used for developing digital circuits [7]. These circuits usually have 

enormous complexity, high design, and production cost and benefit from Functional 
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Verification (FV). Fixing a logical error on these types of circuits is very costly. 

 

Figure 2-4: ASIC Implementation Flow 

Design goes through some form of transformation on each step shown in Figure 

2-4. The process of designing an ASIC (Application Specific Integrated Circuit) is very 

complex, and it involves many steps. Although the end product is small (in nanometer), 

but the process of designing is long and challenging. 

ASIC design flow includes design conceptualization, chip optimization, 

logical/physical implementation, and design validation and verification. The overview of 

each of the steps involved in the process is as follows: 

➢ Step 1. Specification: At this step, the engineer defines features, 

microarchitecture, hardware/software interface, Time, Area, Power, Speed with 

design guidelines of ASIC. The design specification uses natural language, which 

then transforms into Register Transform Level (RTL) code. Two different teams 

involved at this juncture: 

• Design team: Generates RTL code   
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• Verification team: Generates test bench  

➢ Step 2. RTL code: Specifications converted to synthesizable Hardware 

Description Language (HDL), like Verilog or VHDL. It includes detailed logic 

implementation of the entire IC. Functional verification is used to ensure the RTL 

code is according to the specifications. 

➢ Step 3. Logic synthesis: The hardware description (RTL) transformed into a 

gate-level netlist using a synthesis tool like RTL Compiler and Design Compiler. 

The synthesizer used a standard cell library, constraints, and the RTL code to 

generate a gate-level netlist. Static timing analysis (STA) calculates the expected 

circuit timing used to optimize the circuit's optimization. 

➢ Step 4. Test insertion: The design includes Design for Testability (DFT) to 

ensure no bug or fault escape to the production. It uses to determine if the chip 

function correctly after manufacturing. The design includes the following DFT 

structures: 

• Scan path insertion: It links all registers’ elements into one long shift 

register (scan path).  

• Memory BIST (built-in Self-Test): It uses to check RAMs. 

• ATPG (automation test pattern generation): It generates test vectors or 

sequential input to check design for faults generated within various circuit 

elements. 

➢ Step 5. Floorplan: This is the first step in the physical design process. In this 

step, the circuit is organized and structured in a layout form for the first time. It is 

the process to place blocks in the chip, including block placement, design 
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portioning, pin placement, and power optimization. The power grid is used to feed 

the circuit created, and some routing or placement restrictions may be applied. 

The overall dimensions and aspect ratio of the chip must be defined as well. A 

floorplan always takes care of the following: 

• Minimize the total chip area 

• Make routing phase easy (routable) 

• Improve signal delays 

➢ Step 6. Pad insertion: The chip pads are inserted in the layout according to the 

design constraints. The pads are the communication channels that the circuit used 

to communicate with the external environment. Electrostatic Discharge (ESD) 

should perform at this stage. 

➢ Step 7. CTS: Clock tree synthesis is a process to build the clock tree that meets 

the defined area, timing, and power requirements. It provides the clock connection 

to the clock pin of a sequential element in the required time and area, with low 

power consumption. The clock signal of a chip needs to simultaneously reach all 

the sequential elements; therefore, special optimizations are performed for clock 

buffering and routing. To avoid massive transition, high power consumption, and 

increase in delays following structures used for optimizing CTS structure: 

• Mesh Structure 

• H-Tree Structure 

• X-Tree Structure  

• Fishbone Structure  

• Hybrid structure 
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➢ Step 8. Placement: Placement places standard cells in a row. The cells that must 

be connected must keep close to each other. Elements other than proximity like 

routing congestion must consider. After the placement, no cell should overlap. A 

poor placement uses a large area and degrades performance. Various factors, like 

the timing requirement, the net lengths, and hence the connections of cells, power 

dissipation should be considered. It removes timing violations. 

➢ Step 9. Routing: At this step, physical connections between all cells are 

established. Furthermore, connect pads and power rings. Routing is of the 

following types: 

• Global Routing: It uses delays of fan-out of wire to calculate estimated 

values for each net. Global routing is of two types line routing and maze 

routing. 

• Detailed Routing: It uses various optimization methods (timing 

optimization, clock tree synthesis, etc.) to calculate actual delays of wire. 

➢ Step 10. Extraction: This step extracts the resistivity and capacitance of the final 

layout. The extracted data used to perform proper tuning of the previous steps and 

perform electric simulation for sign-off purposes. 

The chip finally becomes ready after all these transformations. Chip goes through 

all these transformations, so it is not error or misinterpretation proof. So, here verification 

comes into play. The role of verification is to avoid errors in the design flow. Some 

verification processes require several resources due to the intensive simulation nature of 

the verification method. More resources mean high costs. The high cost can also be due 

to delays in deploying a design that has tight time-to-market. The high cost due to all 
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these reasons justified with the number of errors caught early in the design cycle. 

Because if an error is caught late in the design cycle, it costs more to the company; as 

shown in Figure 2-5, the cost of errors increases as the design cycle stage increases [8]. 

Different steps of the process used different verification types; some of them explored in 

the next section.  

 

Figure 2-5: Relative cost of bugs at different stages of the design cycle 

2.3 Verification 

The previous section explained IC implementation flow. This flow is always 

executed in parallel with the verification flow. If a company can afford enough resources, 

two completely different teams work on each flow [1]. So, this approach provides two 

different views for the same design, which helps in error detection. Design specification 

works as a communication channel between these two teams.  
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As explained in the last section, each step is prone to errors or misinterpretations. 

So, it is essential to carefully execute each step and check the result of each step against 

design specifications. The first step of transformation is critical from the verification 

point of view, translating a written document to a hardware description language. It is 

highly susceptible to errors or misinterpretations. This transformation is explored 

throughout the design cycle. All other transformations are mechanical and automated, so 

they are less susceptible to errors or misinterpretations. Figure 2-6 shows various 

verification methods [9]. Mainly they are of three types: functional verification, 

equivalence checking, and code coverage. Each verification method is explained below in 

brief. Functional verification, mainly the dynamic one, is explained in detail in the next 

section.  

➢ Functional verification: This is the favored method of FV and its dynamic type. 

It is dynamic because input patterns/stimuli are generated and applied to the 

design over several clock cycles.  The corresponding results were collected and 

compared against a reference/golden model and check if it conforms with the 

specifications. The static FV is also called formal verification, performs the same 

comparison. However, it uses some sort of mathematical proof instead of 

simulation. 

➢ Equivalence checking: It compares and checks if the two representations of the 

same design are equivalent or not. This type of checking is useful, especially after 

logic synthesis, i.e., comparing gate-level netlists against the design's RTL 

representation. 
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Figure 2-6: Type of Verification Methods 

➢ Code coverage: It checks and reports the code lines that visited(covered) during 

the simulation. It is easy to collect, and it is an indirect metric to check the overall 

verification progress. 

Some methods are shared with different techniques (e.g., assertions), so they can 

be misleading in different literature works. This thesis uses the following convention: a 

technique is a collection of methods used in conjunction. A method is an approach to 

prove a particular statement or property regarding a design. So, Figure 2-6 shows only 

methods classified by type. 

The verification of design, in general, accomplished mainly two techniques: 
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formal and functional verification [6].FV refers to a collection of methods: assertions, 

random or directed stimulus, coverage, and dynamic simulation. On the other hand, 

formal verification also refers to collecting methods that include property checking, 

theorem proving, formal assertion checking, etc. FV is a simulation-based technique and 

is most commonly used in the chip industry. Even though new methodologies have been 

proposed that can benefit from formal or semi-formal methods and even adopted in the 

industry; still, these methods are limited [10]. 

 

2.4 Functional verification 

The goal of functional verification is to prove that a design work as intended. The 

following are the main steps to achieve this goal [6]: 

• Determine the intent. 

• Determine what the design does.  

• Compare the two to ensure that they match. 

• Estimate the level of confidence in the verification effort. 

Figure 2-7 shows how design intent, design specifications, and RTL code are 

related to composing space of design behavior [11]. In Figure 2-7, each circle represents 

a set of behaviors. The design intent is a set that includes design requirements. The 

system architect, along with the customer, defined the design requirements. It is an 

abstract of architect and customer’s expectations from a particular design’s functionality. 

The specification is a written document that tries to enumerate those functionalities 

exhaustively. Engineers follow the specification to do coding. The implementation is the 

actual intent that is coded in the RTL code. The space that is not covered by any of these 

circles represents the unspecified, unintended, and unimplemented behavior. The 
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verification tries to meet these three circles and try to bring them in coincidence.  

 

Figure 2-7: The design behavior space 

When verification tries to match these circles from Figure 2-7, these three circles 

usually do not coincide and generate very definite results. Region G is the best scenario 

for any design as a particular intent is defined, specified, and implemented. The goal of 

functional verification is to maximize this region. In region D, the desired design’s intent 

was specified but could not be implemented for some reason. There may be some 

functionality specified and implemented in this region, but that was not the design’s 

intent. Region F represents it. So, these scenarios waste resources and time. 

So, verification is a must for today’s complicated digital design development. 

Verification complexity increases as hardware’s complexity increases. Figure 2-8 shows 

that verification technology falls behind design and fabrication capability, which widens 
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the verification gap  [12].  

 

 

Figure 2-8: Design and Verification gaps [12] 

So, in other words, the capability of the industry’s current processes to fill a chip with 

complex logic is pretty high. However, it cannot guarantee that this logic works 

appropriately. Hardware Verification Languages (HVL) like e language, the Property 

Specification Language (PSL), and the SystemVerilog language are used to deal with 

verification complexity. The verification process is essential for the design and very hard 

to accomplish. Verification is considered complete if each possible scenario is applied to 

the Design Under Verification (DUV). Each possible output shows the design intended 

and specified value at every point in time [13]. Measuring verification completeness is 

not easy, so verification engineers use indirect metrics to measure progress. 

These indirect metrics also called coverage metrics. The verification quality is 

obtained from coverage, either functional or structural coverage. Structural coverage is 
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also called code coverage because it is directly related to the RTL code. On the other 

hand, functional coverage is related to design functionalities. The critical element of the 

verification process is functional coverage—the number of transistors per chip increases, 

decreasing validation effectiveness. The test cases used for simulation are becoming more 

complex, resulting in expensive simulation and less coverage [14]. 

 

2.5 Filters 

Electronics filters either separate the desirable signal frequencies from 

undesirable frequencies or change the frequency content that changes the signal 

waveform. Filters of some form are essential for most of the operations of the electronic 

circuits. Filters are used for two purposes to separate signals and to restore signals. A 

filter is used for signal separation when the signal contains interference, noise, or other 

undesirable signals. On the other hand, a filter is used as signal restoration when the 

signal gets distorted somehow [15]. The filter’s primary purpose is to pass signals in a 

particular frequency range and reject other frequency ranges in electronic systems. 

 

2.5.1 Classification of Filters 

The broad classification of the filter is given below in Figure 2-9. 

➢ Analog/Digital filters: Filters are classified as analog and digital filters based on 

the incoming signal. Digital filters perform mathematical operations on the 

discrete-time signal that reduce or enhance some aspects of the signal. On the 

other hand, analog filters operate on continuous-time analog signals. In digital 

filters, the analog signal is first processed by digital filter by digitizing and 

representing a sequence of numbers, then manipulating mathematically, and 
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finally reconstructing it as a new analog signal. In analog filters, the circuit 

"directly" manipulates the incoming signal [16]. 

 

Figure 2-9: Filters classification 

➢ Active/Passive filters: Filters are classified as active and passive based on 

components used. Active filters use active components like amplifiers and passive 

components like resistors and capacitors, and it is a type of analog filter. On the 

other hand, passive filters use passive components like resistors, capacitors, and 

inductors [17]. 

➢ FIR/IIR filters: Digital filters classified as FIR and IIR based on impulse 

response. FIR filters have finite impulse response, and IIR filters have infinite 

impulse responses [18]. 

➢ Linear/Nonlinear filters: Filters are classified as linear and nonlinear based on 

the output signal’s dependency on the input signal. Linear filters produce the 

output signal in the time domain resulting from processing time-varying input 

signal, which is subject to linearity constraint. These results are composed solely 

of components that have a linear response. In contrast, nonlinear filters produce 

an output signal that is not a function of its input signal [19].  
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2.6 FIR Filters 

Finite Impulse Response (FIR) filter settles to zero in finite time. Hence, its 

impulse response (or response for any finite duration input signal) is finite. Its filter 

structure is such that that it can use to implement any sort of frequency response digitally. 

The FIR filter's primary characteristics are stability, linear phase, and high filter order 

(more complex circuits) [20]. To implement an FIR filter, it uses a series of delays, 

adders, and multipliers. Other names of FIR filters are non-recursive or feed-forward, or 

transversal filters.  

 

2.6.1 FIR filter’s properties    

The following properties are characteristics of FIR filters [21]: 

• It does not need any feedback for its operation. 

• FIR filter has excellent delay characteristics, so it requires more memory.  

• Higher-order filters use the FIR filter for tapping. 

• Magnitude shaping is flexible, convenient, and implementation is easy and 

dependent on linear phase characteristics. 

• All poles are located at the origin; it means they are located in the unit circle (a 

requirement for stability in Z transform), which is due to no feedback 

requirement; thus, it is a stable filter. 

• It has only zeros (no poles), so it is also called the all-zero filter. 

• To design FIR filter as a linear phase, make symmetric coefficient sequence; 

linear phase; change phase proportional to frequency, which corresponds to equal 

delay at all frequencies. 
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2.6.2 Parameters of FIR filters 

➢ Ripple: specifies the peak to peak level in decibels. It describes the filter’s 

amplitude variation within a band. A smaller ripple is always preferable as it 

represents a more consistent response. Passband ripple should be as low as 

possible. 

➢ Bandwidth: defines the frequency width of the filter’s passband. The bandwidth 

is the same as the cut-off frequency in a low-pass filter. In a band-pass filter, it 

defines the difference between upper and lower frequencies at -3dB points. 

➢ Attenuation: input signal acquires amplitude loss after passing through a digital 

filter; it is measured in dB. It defines as a ratio of amplitudes, at a given 

frequency, the filter's output signal over the filter's input signal.  

➢ Passband edge frequency: defines the start of the passband, the signal fully 

passed in this region without any attenuation. 

➢ Stopband edge frequency: defines the start of stopband, the signal attenuated in 

this region without passing any signal—minimum attenuation in the stopband 

reached at stopband frequency (Fs). 

➢ Filter coefficients: the set of constant or tap weights multiply with delayed signal 

sample value in digital filters. Digital filter design needs to exercise to determine 

its coefficients to get the desired frequency response. The coefficients for the FIR 

filter, by definition, are the impulse response of the filter. 

➢ Filter order: describes a number that is the highest exponent either in the 

numerator or in the denominator of a digital filter's z-domain transfer function. 

There is no denominator in the transfer function in FIR filters, so filter order is 
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just the number of taps used in the structure. The large filter order is preferable, as 

it provides a better frequency magnitude response performance of the filter. 

➢ Transition region: describes a frequency range that is between the passband and 

stopband of the digital filter. It is also called the transition band. 

➢ Frequency magnitude response: describes in frequency domain how a filter 

interacts with the input signal. It is a curve that represents filter attenuation (in 

dB) versus frequency.  

 

2.6.3 Types of FIR filters 

As mentioned earlier, the primary purpose of a filter is to differentiate between 

different frequency bands, so the most common filter classification method is frequency 

selectivity. Based on frequency selectivity, filters are classified as low-pass, high-pass, 

band-pass, and band-stop [21]. Figure 2-10 shows the frequency response of these four 

types of filters. 

 

2.6.3.1 Low-pass filter 

A low-pass filter passes signals with low frequency than the cut-off frequency and 

attenuates (reduces amplitude); all signals have the frequency above the cut-off 

frequency. How much a signal attenuates varies from filter to filter. There are different 

applications of low-pass filters: electronic circuits (for example, hiss filter that is used in 

audio), image blurring, acoustic barriers, anti-aliasing filters that condition signals before 

analog-to-digital conversion, and digital filters that smooth sets of data. An ideal filter 

does not have a transition band, whereas there is a transition band for practical filters 

between passband and stopband.  
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Figure 2-10: Filter types 

2.6.3.2 High-pass filter 

A high-pass filter passes signals that have a frequency above the cut-off frequency 

and attenuates (reduces amplitude) all signals that have the frequency below the cut-off 

frequency. Its amplitude response increases with the frequency above the cut-off 

frequency. 
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2.6.3.3 Band-pass filter 

A band-pass filter passes signals that have frequencies within a specific range and 

attenuates (reduces amplitude) all other frequencies outside that range. 

 

2.6.3.4 Band-stop filter 

A band-stop filter does not pass any signal that has frequencies within a specific 

range and passes all other frequencies outside that range. 

 

2.6.4 Z-transform 

The Z-transform is derived from the Fourier discrete time-domain transformation, 

and it is a necessary operation in the digital filter design process. It is performed upon 

discrete-time signals, which convert it into frequency-domain representation, which is 

very useful for analyzing discrete-time signals and systems. The Z-transform defined as 

shown in equation 2-1 [22]. 

𝑋(𝑧) =  ∑ 𝑥(𝑛)𝑧−𝑛

∞

𝑛=−∞

 2-1 

where, 

z = complex number 

 

2.6.5 Transform function of discrete-time systems 

The Z-transform is used to find the transfer function of linear discrete-time 

systems necessary for zeros and poles in the z-plane. The transfer function of the 

discrete-time system is defined in equation 2-2 [22]. 

𝐻(𝑧) =  
∑ 𝑏𝑖𝑧

−1𝑀−1
𝑖=0

∑ 𝑎𝑗𝑧−1𝑁−1
𝑗=0

=  𝐻0

∏ (1 − 𝑞𝑖𝑧
−𝑖)𝑀−1

𝑖=0

∏ (1 − 𝑝𝑗𝑧−𝑗)𝑁−1
𝑗=0

 
 

2-2 
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where, 

 bi = feedforward filter coefficients (non-recursive part) 

 aj = feedback filter coefficients (recursive part)  

 H0 = constant 

 qi = zeros of transfer function 

 pj = poles of transfer function 

The recursive part of transfer function is a feedback of discrete-time system. FIR filters 

do not have recursive part of the transfer function, so equation 2-3 shows the simplified 

form of equation 2-2. 

𝐻(𝑧) =  ∑ 𝑏𝑖𝑧
−𝑖 =  𝐻0 ∏(1 − 𝑞𝑖𝑧

−𝑖)

𝑀−1

𝑖=0

𝑀−1

𝑖=0

 2-3 

The inverse Z-transform of the transfer function gives the impulse response of a 

discrete-time system. In other words, the discrete-time system’s transfer function is the Z-

transform of the impulse response, as shown in equation 2-4. 

 𝐻(𝑧) =  ∑ ℎ(𝑛)𝑧−𝑛

∞

𝑛=−∞

 2-4 

where, 

h(n) = impulse response of discrete-time system. 

 

Figure 2-11: Block diagram of a linear discrete-time system 
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Another representation in the time-domain of the discrete-time system shown in Figure 2-

11 is the convolution of the input signal x(n) with the system's impulse response h(n). 

Equation 2-5 shows the time-domain representation of the discrete-time system. This 

representation of a discrete-time system is very suitable for software implementation. 

𝑦(𝑛) =  ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

 2-5 

On the other hand, in the frequency domain, the discrete-time system shown in Figure 2-

11 is the Z-transformed input signal X(z) with the transfer function H(z) the system. 

Equation 2-6 shows the frequency domain representation of the discrete-time system. 

𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧) 2-6 

Rearrange Equation 2-6 to get transfer function H(z), as shown in equation 2-7.  

𝐻(𝑧) =  
𝑌(𝑧)

𝑋(𝑧)
 

 

2-7 

This representation of the discrete-time system is suitable for hardware implementation, 

analysis, and synthesis. 

 

2.6.6 Ideal filter approximation 

When the FIR filter is designed using the window function, an ideal frequency 

response must compute the ideal filter samples. As the FIR filter has a finite impulse 

response, so ideal filter frequency sampling has a finite number of points. As we know, 

the frequency response of an ideal filter is infinite, so the chances of sampling errors are 

high if the filter order is small. The sampling errors decrease with an increase in filter 

order. Figure 2-12 shows the transfer function of the four standard ideal filters [22].  
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Figure 2-12: Transfer functions of four standard ideal filters 

 

 

 

Inverse Fourier transform is used to calculate the ideal frequency response. Table 

2-1 shows the standard ideal filter frequency responses.  

where,  

n = variable ranges between 0 and N 

 N = filter order 

 N+1 = number of ideal frequency response samples 

 M=N/2 
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Table 2-1: Frequency response of four standard ideal filters 

Type of filter Frequency response hd[n] 

Low-pass filter 

ℎ𝑑[𝑛] = {

sin[𝜔𝑐(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
  ; 𝑛 ≠ 𝑀

𝜔𝑐

𝜋
                          ; 𝑛 = 𝑀

 

High-pass filter 

ℎ𝑑[𝑛] =  {

1 −
𝜔𝑐

𝜋
                       ;  𝑛 ≠ 𝑀

−
sin (𝜔𝑐(𝑛 − 𝑀)

𝜋(𝑛 − 𝑀)
 ;  𝑛 = 𝑀

 

Band-pass filter 

ℎ𝑑[𝑛] = {

sin[𝜔𝑐2(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
−

sin [𝜔𝑐1(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
  ; 𝑛 ≠ 𝑀

𝜔𝑐2 − 𝜔𝑐1

𝜋
                                                     ; 𝑛 = 𝑀

 

Band-stop filter 

ℎ𝑑[𝑛] = {

sin[𝜔𝑐1(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
−

sin [𝜔𝑐2(𝑛 − 𝑀)]

𝜋(𝑛 − 𝑀)
  ; 𝑛 ≠ 𝑀

1 −
𝜔𝑐2 − 𝜔𝑐1

𝜋
                                             ; 𝑛 = 𝑀

 

 

If filter order N is even, the constant M is an integer, but this is not the case with 

odd-order filters. If M is an integer (even filter order), the ideal filter frequency response 

becomes symmetric around its Mth sample found via expression shown in Table 2-1 [22]. 

The ideal filter frequency response remains symmetric even if M is not an integer, but not 

around any frequency response sample. Equation 2-8 shows the expression to calculate 

the frequency response of a non-standard ideal filter for inverse Fourier transform. 
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ℎ𝑑[𝑛] =  
1

𝜋
∫ 𝑒𝑗𝜔(𝑛−𝑀)𝑑𝜔

𝜋

0

 2-8 

 

 

2.7 Window functions 

The window function is a popular method for FIR filter design due to its 

simplicity. A window, which is a finite array, consists of coefficients selected to satisfy 

desired requirements. It is necessary to specify the following points when designing a 

digital FIR filter using a window function: 

• It uses a window function. 

• The filter’s order according to specifications (stopband attenuation, selectivity). 

The above requirements are interrelated. Each function uses the following two 

requirements to choose a filter based on specification: 

• High selectivity means a narrow transition region. 

• High suppression of undesirable signals means high stopband attenuation. 

Table 2-2 shows all window functions mentioned in this thesis and briefly compares their 

stopband attenuation and selectivity [23].  

As shown in Table 2-2, the minimum attenuation of window function and the 

filter designed using that function are not the same. This difference is due to additional 

attenuation added during the filter design process that uses the window function. Due to 

this, stopband attenuation increases, which is desirable. 

 This method's drawback is that it has fixed minimum stopband attenuation for 

each function except the Kaiser window. These windows have fixed stopband 

attenuation, so the only way to affect the transition region is by increasing the filter order. 

So, stopband attenuation is used to select appropriate window functions for the design 
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process. A window function with the least attenuation and fulfills the given requirement 

is always preferred, which gives a narrow transition region to a designed filter. The next 

step is to compute the filter order. It uses normalized cut-off frequencies of the transition 

region.  

Table 2-2: Comparison of window functions 

 

2.7.1 Rectangular window 

The rectangular window has low stopband attenuation, which makes it less 

attractive for most of the filters. Finding rectangular window coefficients is very easy; all 

coefficients between 0 and (N-1) (N-filter order) equals 1. Equation 2-9 shows the 

mathematical representation of the rectangular window. 

𝑤[𝑛] = 1;      0 ≤ 𝑛 ≤ 𝑁 − 1 2-9 

 

Window 

Function 

Normalized 

Transition width 

[Hz] 

Passband 

Ripple [dB] 

Minimum 

stopband 

attenuation of the 

window function 

Minimum 

stopband 

attenuation of the 

designed filter 

Rectangular 0.9/N 0.7416 13 dB 21 dB 

Hanning 3.1/N 0.0546 31 dB 44 dB 

Hamming 3.3/N 0.0194 41 dB 53 dB 

Blackman 5.5/N 0.0017 58 dB 75 dB 

Kaiser 4.32/N(β=6.76) 

5.71/N(β=8.96) 

2.93/N(β=4.54) 

0.00275 

0.000275 

0.0274 

 
70 

90 

50 
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The rectangular window only selects N samples from an input sequence, but it 

does not perform sample scaling. Figure 2-13 shows a rectangular window’s coefficients 

in time-domain: 

 

Figure 2-13: Rectangular window in the time domain[23] 

It is not a preferable window for digital filter design due to its reduced stopband 

attenuation. The reason for its reduced attenuation is the cut-off samples within a 

window. All sampled frequencies up to a zero sample (from which sampling starts) are 

equal to zero. The first sample suddenly jumped to a non-zero value, which produces 

relatively sharp high-frequency components and reduces the stopband attenuation. 

Its attenuation increases as the cut-off sample’s sharpness decreases, which 

reduces filter selectivity, which means a wide transition region. The digital filter has 

predefined requirements, and as the rectangular window has low selectivity, so to get a 

narrow transition region, the only way is to increase the filter order. The transition region 

is inversely proportional to the filter order N, so as the filter order increases, the transition 

region decreases. As the filter order increases, the filter's complexity also increases, 
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which require more time to process samples. So, it is essential to choose a window 

function and filter order carefully [23].  

 

2.7.2 Hanning window 

The Hanning window minimizes the adverse effects on the final samples' 

frequency characteristics of the filtered signal. The stopband attenuation of the posterior 

lobes relatively increases sharply. This window has higher attenuation than a rectangular 

window. 

 

Figure 2-14: Hanning window in the time domain [23] 

 

 

 

 

 

 

 

 

Figure 2-14 shows the Hanning window's coefficients in the time-domain, and 

Equation 2-10 shows the Hanning window's mathematical representation.  

𝑤[𝑛] =  
1

2
[1 − 𝑐𝑜𝑠 (

2𝜋𝑛

𝑁 − 1
)] ;           0 ≤ 𝑛 ≤ 𝑁 − 1 2-10 

 

 

2.7.3 Hamming window 

The Hamming window is the most popular and commonly used. The filter that 

uses a Hamming window has 53dB minimum stopband attenuation, suitable for most 
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digital filter implementation. It has a wide transition region as compare to the Hanning 

and also has high stopband attenuation. With an increase in filter order, the transition 

region narrows, whereas there is no effect on stopband attenuation. Figure 2-15 shows the 

coefficients of the Hamming window in the time-domain. Equation 2-11 shows the 

mathematical representation of the Hamming window  [23].  

𝑤[𝑛] = 0.54 − 0.46 [1 − 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 − 1
)] ;           0 ≤ 𝑛 ≤ 𝑁 − 1 2-11 

 

 

Figure 2-15: Hamming window in the time domain [23] 

2.7.4 Blackman window 

The Blackman window is another popular and commonly used window. It is very 

convenient for many applications due to its high attenuation and has minimum stopband 

attenuation of 75dB of a designed filter. Figure 2-16 shows the coefficients of the 

Blackman window in the time-domain. Equation 2-12 shows the mathematical 

representation of the Blackman window.  

𝑤[𝑛] = 0.42 − 0.5𝑐𝑜𝑠 [
2𝜋𝑛

𝑁 − 1
] + 0.08𝑐𝑜𝑠 [

4𝜋𝑛

𝑁 − 1
]  ;           0 ≤ 𝑛 ≤ 𝑁 − 1 2-12 

 

The Blackman window has an almost similar frequency response as a Hanning 

window. The only difference is that it has a wide main lobe, and its first side lobe’s 
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attenuation is 51dB. There is additional stopband attenuation due to the side lobes 

following the first one [23].  

 

Figure 2-16: Blackman window in the time domain [23] 

2.7.5 Kaiser window 

There is always a compromise between a narrow transition region (high 

selectivity) and high stopband attenuation in all the windows described above, so that 

means these windows are not optimal. The optimal window is described as a function 

with maximum attenuation per the main lobe's given width. It is also called the Kaiser 

window. Equation 2-13 shows the mathematical representation of Kaiser window 

coefficients. 

𝑤[𝑛] =  

𝐼0 [𝛽. √1 − (
𝑛 − 𝛼

𝛼 )
2

]

𝐼0(𝛽)
  ;           0 ≤ 𝑛 ≤ 𝑁 − 1 

 

2-13 

 

where, 

             𝛼 =
𝑁 − 1

2
 

2-14 
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             𝑁 =  
𝐴 − 8

4.57 ∆𝜔
+ 1 2-15 

 

             𝛽 = shape parameter 

where, 

 A = minimum required stopband attenuation 

 ∆𝜔 = width of the desired normalized transition region  

Multiply by 2 to get the order of band-pass and band-stop filters. Table 2-3 below provides 

the value of 𝛽.  

Table 2-3: Values of parameter 𝜷 

A 𝜷 

A  <  21 0 

21  ≤  A  ≤  50 0.5842(𝐴 − 21)0.4 + 0.07886(𝐴 − 21) 

A  >  50 0.1102(𝐴 − 8.7) 

 

𝐼0 = modified zero-order Bessel function, which approximated as shown in equation 2-16: 

𝐼0(𝑥) = 1 + lim
𝐾→∞

∑ (
𝑥2

4
)

𝑘

(𝑘!)−2

𝐾

𝑘=1

 2-16 

 

Choose a decent value for K for accuracy. K=20 works for most of the cases. 

From all the expressions mentioned above, it is clear that to design an optimal Kaiser 

filter, the knowledge of normalized transition region’s width and desirable minimum 

stopband attenuation is a must [23].  
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2.8 FIR filter design using window functions 

The process to design an FIR filter using window function involves steps [22]:  

• Define the filter specification. 

• According to the filter specification, specify the window function. 

• Compute the filter order required for the given specifications. 

• Compute window function coefficients. 

• Compute ideal filter coefficients according to filter order. 

• Compute FIR filter coefficients according to the obtained window function and 

ideal filter coefficients. 

• If the transition region is too wide or too narrow of the resulted filter, then change 

the filter order, and steps 4,5, and 6 iterated as needed. 

The filter specifications define the desired transition width, normalized frequencies 

(𝜔𝑐, 𝜔𝑐1, 𝜔𝑐2) and stopband attenuation. The filter order and window function computed 

based on these specifications. The window function is selected such that it satisfies the 

given specifications. After selecting the window function, the filter’s order is computed 

according to the given set of specifications. After these steps, window function 

coefficients 𝑤[𝑛] is computed using a formula based on the window function selected. 

The next step is to find frequency samples of the ideal filter using formulas explained in 

section 2.6.6. This step gives coefficients ℎ𝑑[𝑛]. The 𝑤[𝑛] and ℎ𝑑[𝑛] have an equal 

number of elements. And then designed filter’s frequency response ℎ[𝑛] computed using 

equation 2-17. 

ℎ[𝑛] = 𝑤[𝑛]. ℎ𝑑[𝑛] 2-17 

 The final step is to compute the designed filter’s transfer function by transforming 
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impulse response via Fourier transform, as shown in equation 2-18. 

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛]. 𝑒−𝑗𝑛𝜔

𝑁

𝑛=0

 

 

2-18 

 

Alternatively, via Z-transform, as shown in equation 2-19. 

𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛

𝑁

𝑛=0
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Use the following steps if the designed filter has a wide transition region than required: 

• Increase filter order. 

• Recompute coefficients of the window function.  

• Recompute frequency samples of the ideal filter. 

• Multiply them to get the desired filter’s frequency response.  

• Recompute transfer function. 

Follow the below steps if the designed filter has a narrow transition region than required: 

• Decrease filter order to optimize hardware and software resources. 

• Recompute coefficients of the window function.  

• Recompute frequency samples of the ideal filter. 

• Multiply them to get the desired filter’s frequency response.  

• Recompute transfer function. 
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2.9 FIR filter realization 

Equation 2-20 shows the FIR filter’s transfer function.  

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= ∑ ℎ[𝑛]. 𝑧−𝑛

𝑁−1

𝑛=0

 

 

2-20 

 

Equation 2-21 used to compute the FIR filter’s output samples: 

 𝑦[𝑛] = ∑ ℎ[𝑘]. 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

 

 

2-21 

 

where, 

𝑥[𝑘] = FIR filter’s input samples 

ℎ[𝑘] = the coefficients of FIR filter frequency response 

𝑦[𝑛]= FIR filter’s output samples 

FIR filter realization is of the following types: 

• Direct  

• Direct transpose 

• Cascade 

• Optimized 

 For hardware implementation, direct, direct transpose, and cascade realization are 

convenient. However, for software implementation, direct and optimized are good. This 

thesis explained only direct and direct transpose form. 
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2.9.1 Direct realization 

In block diagram representation, the real filter coefficients appear as multipliers in 

a digital filter's direct structures. Direct realization directly implements equations 2-22. 

𝑦[𝑛] = ∑ ℎ[𝑘]. 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

 

 

2-22 

 

 

Figure 2-17: Block diagram of the direct form of FIR filter 

The transversal filter is another name of direct realization. Based on the above 

expression, to produce an output point, it needs the current sample along with 𝑁 − 1 

previous samples. Based on Figure 2-17, which shows a block diagram of direct 

realization, it needs 𝑁 multipliers for (𝑁 − 1)𝑡ℎ order FIR filter [22].  

 

2.9.2 Direct transpose realization 

In many ways, direct transpose realization is similar to direct realization. Both 

structures use the same number of delay elements, the same number of multipliers, and 

the same coefficients. Figure 2-18 shows the block diagram of the direct transpose form 

of the FIR filter. This thesis uses the direct transpose FIR filter realization. 
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Figure 2-18: Block diagram of the direct-transpose form of FIR filter 

2.10 Graphical user interface 

With GUI's help, the user can easily communicate with Python code, ModelSim, 

and MATLAB. GUI design instructions are easy to use by any user, even without the 

knowledge of Python, ModelSim, or MATLAB coding. In GUI, input and data 

modification is easy and convenient, and it has a fast and intuitive output. The advantages 

of using GUI for FIR filter design are as follow: 

• Reconfiguration is easy. 

• Length and variable width can adjust at design-time easily. 

• Coefficients are adjustable at run time. 

• It generally provides the user with immediate visual feedback about the effect of 

each action. 

 

2.11 Hardware description language 

The interconnected transistors are the basic blocks of any digital circuit. Digital 

circuits can easily design and analyze with a hierarchical structure, which uses 

interconnected diagrams to represent it. This approach has a limitation that it is 

impractical to use for large circuits. Another approach to describe these circuits is a 

textual language used to clearly and concisely capture the digital design’s defined 
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features. These languages are called hardware description language (HDL) [24]. 

Hardware description language, as the name tells, is used to describe a circuit layout or 

hardware application. 

HDL used for this system is Verilog, which can describe electronic circuits and 

systems in textual format. It can be used for verification through simulation, provides 

timing analysis, and can also use for logic synthesis. The Verilog HDL is an IEEE 

standard. With the help of HDL, the circuit’s representation uses words and symbols; 

then, development software converts textual description into configuration data that loads 

into FPGA to implement the desired functionality [24]. 

 

2.11.1 Importance of HDLs 

HDLs have the following advantages as compared to traditional schematic-based 

design [25]: 

• By using HDLs, the design is described at a very abstract level. Designers do not 

need to choose specific fabrication technology to write RTL description. Design 

can automatically convert to any fabrication technology by using logic synthesis. 

There is no need to redesign a circuit if a new technology emerges. Designers 

simply use RTL description as input to logic synthesis ad generate new gate-level 

netlists using new fabrication technology. The logic synthesis tool automatically 

optimizes the circuit’s area and timing for new technology. 

• Functional verification of the design performs early in the design cycle if 

designers use HDLs. Designers work at the RTL level, so they can optimize and 

modify the RTL description until the design meets the desired functionality. Most 

design bugs are eliminated at this point; this reduces the design cycle time 
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because it reduces the probability of finding a functional bug at a later stage in the 

gate-level netlist or physical layout. 

• It uses a textual description with comments, so it is easy to develop and debug 

circuits. As compare to gate-level schematics, it provides a concise representation 

of the design. For complex designs, gate-level schematics are almost 

incomprehensible. 

 

2.11.2 Basics of Verilog 

The basics of Verilog HDL is as follow [25]: 

• Verilog HDL is a general-purpose HDL which is easy to learn and easy to use. Its 

syntax is similar to the C programming language.  

• The same model can mix different abstraction levels to define the hardware model 

in terms of switches, gates, RTL, or behavioral code. For stimulus and 

hierarchical design, designers have to learn only one language. 

• It is mostly the designer’s choice because it is the language that most popular 

logic synthesis tools support. 

• For post logic synthesis simulation, Verilog’s libraries are provided by all 

fabrication vendors. So, it provides a wide choice of vendors for chip designing. 

• Using the Programming Language Interface (PLI) feature, the designer can write 

a custom C code that can interact with internal Verilog’s structures. With the help 

of PLI, it is easy to customize a Verilog HDL simulator according to the 

designer’s need. 
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2.12 Automating the generation 

The tools discussed in section 3.2 are either too complicated or lack ASIC 

support. Some tools can generate design but not testbench, some can generate design and 

testbench, but the user must have coding knowledge. Another critical point is the tool 

availability. Some tools have publications about the FIR filter generators. However, tools 

do not become available freely or a license required for commercial usage. The 

companies spend money carefully for a license, mainly if it is just for a simple filter, and 

for any engineering change requirement, it needs permission or license. So, due to all 

these reasons, this thesis considered the automation of the FIR filter as a case study. The 

scripts developed for FIR filter using mainly Python language and a portion of it 

developed using Perl; these languages have many advantages discussed in the following 

sections. Python and Perl are used to develop scripts that can automatically generate 

design and testbench code of FIR filer and simulate it using ModelSim. A brief 

explanation of both is as follow: 

 

2.12.1 Python  

Python is useful for verification speed up. It is a boon for the project that has time 

and resources constrained. Python is easy to learn, dynamic, object-oriented 

programming language suited for large and complex projects with changing 

requirements. There are many reasons to use Python script; the following are the main 

reason to use it for this thesis [26]: 

• Easy to use, read, and flexible. 

• No compilation is necessary. 

• It has an open-source license. 
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• Python is mature with much support. 

• Language can run on multiple systems (for example, Mac, Linux, Windows) but 

retain its similar interface. Its design does not change a lot with each operating 

system. 

• Program reusability with already available packages and modules with a standard 

library. 

• Easy to connect to other languages (like C++, Perl). 

• Software like MATLAB, ModelSim can run smoothly from its script. 

 

2.12.2 Perl 

Perl is a general-purpose high level interpreted and dynamic programming 

language. Perl supports both procedural and Object-Oriented programming. Perl has a 

similarity to C syntactical, so it is easy to use. The following are the advantages of Perl 

[27]: 

• Easy to learn 

• Text-processing  

• Contains features of different languages 

• Free and open-source 

• Supports open-source modules 

• Provides support for cross platforms 
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3. LITERATURE REVIEW 

The literature review mainly focuses its attention on functional verification automation, 

particularly design and testbench automation. The automation of FIR filter 

implementation and the graphical user interface were also studied and analyzed. 

 

3.1 Functional verification 

Due to the design’s heterogeneous nature, functional complexity increases; for 

example, co-existing hardware and software, analog and digital. There is a requirement of 

higher system reliability, which pushes verification tasks to ensure that chip-level 

functions perform satisfactorily in the system environment, especially if chip-level 

defects have a multiplicative effect. As complexity continuously increases, new 

verification languages are introduced to verify complicated designs at various abstraction 

levels. The new tools and technologies are also created to support these new languages. 

 A. Molina and O. Cadenas provided a quick survey of functional verification to 

make it easy to choose the technique for the hardware’s design cycle to take full 

advantage of these tools and techniques for verification projects. It is necessary to decide 

on them as early as possible. They provided an overview of FV, described bottlenecks of 

the verification, challenges of FV, and explained current FV technologies and trends. The 

paper described functional verification as the art of combining hardware, software, and 

communication skills with creative strategies to understand design and its usage to ensure 

that its quality and delivery schedule are successful. Many problems associated with 

today’s functional verification methodologies are due to the absence of effective 

automation and growth in the design's size and complexity. Verification is primarily a 

manual process. The most notorious design and verification problem is the lack of a 
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useful metric to measure its progress. These are vital points to help design and 

verification engineers, verification automation, and comprehensive methodology [9]. 

 

3.1.1 Design automation 

Mehdi Dehbashi et al. presented efficient automation of the debugging procedure, 

which reduces the debugging time and increases the diagnosis accuracy. This procedure 

used the integrated Boolean Satisfiability (SAT) based debugging with testbench based 

verification. The diagnosis accuracy increased by iterating debugging and 

counterexample generation that means the total number of fault candidates decreased. Its 

experimental data shows that this procedure was accurate as actual formal debugging in 

71% of the experiments. This paper proposed three techniques to generate diagnostic 

traces for high-quality counterexamples to enhance diagnosis accuracy. Local Branch 

activation (LBA) activates the local branches of each fault candidate. Minimization of 

Sensitized Path Intersection (MSPI) looks for sensitized paths that include a minimum 

number of fault candidates. Limited Minimization, followed by Branch Activation 

(LMBA), combines the advantages of both techniques [28]. 

  

3.1.2 Testbench automation  

Srikant Kumar Mohanty, Suchismita Sengupta, and S K Mohapatra proposed a 

test bench automation solution that verifies the completeness and correctness of data as it 

passes through interconnect fabric. It automatically creates authenticated infrastructure, 

stimulus vector, and coverage model to support all exchanges between masters and slaves 

within a System-On-Chip (SOC), reducing verification efforts. It uses a protocol-

independent scoreboard to check data integrity and verify different data path transactions 
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to and from each bus fabric port. The proposed solution saved 40% in the verification 

cycle compared to various bus matrix testing [29].  

Isaac Maia et al. generated a semi-automatic testbench tool called eTBc (Easy 

Testbench Creator). Furthermore, a methodology called VeriSC ( which allows testbench 

simulation before RTL without writing any additional code). These resources are used 

together in IC-development flow to enhance productivity in verification tasks by 

automatically generating testbench prototypes. In VeriSC methodology, eTBc is used in 

all functional verification steps. They created TLN (Transaction Level Netlist) using eDL 

(eTBc Design Language) language and randomly generated stimuli for testbench. They 

compared results with using eTBc and without using it and concluded that by using 

eTBc, the production profit was 83.33% higher than the manual process. So, this tool can 

speed up the functional verification process. This approach's disadvantage is that the user 

must know eTL (eTBc Template Language) to use this approach. This tool's next steps to 

develop a graphical user interface and a specific template for more verification 

methodologies [30].  

M. Lajolo et al. proposed an approach for simulation-based validation that 

generates input sequences for testbench. If current stimuli poorly exercise a part of the 

design, then designers develop new stimuli to address that part of the design. Developing 

new stimuli is a very time consuming and laborious task because the designer must 

understand all the design details to generate a new input sequence. This paper proposed 

an automated approach that assists designers in generating a test bench for system-level 

design. It is also suitable for simulation-based validation environments and focuses on 

integration rather than replacing current manual simulation. Its results show that this 



 

49 

method increased the quality of the validation process [31]. 

  

3.1.3 Testcase automation 

Samuel Nascimento et al.  describe a tool suite named Veasy, which contains four 

modules to perform linting, simulation, coverage collection, and test case generation, 

which are vital challenges of functional verification. A Graphical User Interface is used 

to integrate all modules. This tool is used for test case automation based on layers, 

capable of generating complex scenarios using drag and drop operations. The tool’s 

capability and performance are compared with commercial and academic functional 

verification tools, which shows it takes less overall simulation time than other 

commercially available tools and algorithms used in this tool capable of coverage 

collection with lower simulation overhead [32]. 

 

3.2 FIR filter automation 

Verma and Chien developed a generator, which generates efficient decimating 

filters. The optimized logic is such that there is no need to calculate those values ignored 

by the decimator. It uses canonical signed digit (CSD) format to save silicon area [33].  

Many FPGA projects use FIR generators by Xilinx that create a design that is a 

good match for the FPGA platform, but the resulting HDL is very difficult to read and 

understand. Xilinx Compiler v6.3 supports interpolators, decimators, half-band filters, 

and resource sharing. It generates distributed arithmetic filters, so it supports multiple 

coefficient banks [34]. Xilinx VHDL is encrypted, so it is difficult to get ideas for 

implementation. 

HDL Coder generates synthesizable Verilog and VHDL code from MATLAB 
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functions, Simulink models, and State flow charts. The code is suitable for FPGA 

programming, ASIC prototyping, and design. It can develop and verify FIR filter designs 

at a high-level of abstraction and automatically generate a synthesizable RTL code that 

targets FPGA, ASIC, or SOC devices. However, they are quite complicated for simple 

filters [35]. 

Bogdan Sbarcea and Dan Nicula developed a tool called Sim2HDL, which 

automatically translate Simulink models into a hardware description language and 

drastically reduce the project time. It generates VHDL or Verilog language at a 

behavioral level description, and it can implement in FPGA using commercial 

synthesizers. It uses a limited set of Simulink blocks from the original Simulink libraries, 

and it offers support for Altera and System Generator and various ASIC technologies. It 

also offers support for MATLAB variables from the workspace. It does not have any bus 

limitations, unlike Altera [36].  

As a part of the Master’s thesis, Kevin Camera developed a tool called SF2VHD, 

which translates state machines in the Stateflow graphical language into VHDL capable 

of synthesizing into hardware. Stateflow is a vibrant graphical and textual language-based 

strictly on the original StateCharts language defined by Harel. First, Stateflow data types 

are converted to bit-accurate VHDL data types to generate a VHDL code. Then the 

Stateflow expression syntax and operators converted to VHDL equivalents on a line-by-

line basis to implement the state machine's functional behavior [37]. 
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3.3 GUI for FIR filter  

Myagmardorj Bayasgalan and Xiang-E Sun developed a graphical user interface 

for the FIR filter. The GUI has used MATLAB’s computing power and GUI platform to 

complete the GUI design and implementation of the FIR digital filter through 

programming. The GUI achieved the program to design and implement various amplitude 

characteristics of the FIR digital filter. By setting global shortcut keys, the user, after all, 

parameters and options, confirmed that it achieved the filter design's rapid 

implementation [38]. 

Zhang XueMin introduced a method to simulate the FIR filter-based GUI. This 

method depends on the MATLAB code and uses controls to generate GUI. The 

simulation results confirmed that the design based on GUI is convenient, fast, intuitive, 

and flexible. This method used MATLAB for simulation [39]. 

Rosa et al. provide a complete optimized FIR filter’s design flow from the transfer 

function to synthesizable VHDL. The generator uses common subexpression sharing 

(CSE). The tool also modifies the coefficients to make the hardware implementation 

simple while maintaining the filter’s desired design constraints  [40]. 
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4. PROPOSED SYSTEM 

Automation through the graphical user interface (GUI) is the main feature of the Easy-

filter. Using GUI, the user can design and implement the FIR filter, generate Verilog 

code, simulate, and validate generated code. The examples of such operations are 

explained in chapter 5. Easy-filter uses ModelSim for simulation, uses MATLAB for 

comparison and validation, and produces Verilog (design and testbench of FIR filter) and 

MATLAB code as output. The methodology allowed automation (of design and 

testbench) using Python and Perl language. This chapter explains the design, verification, 

and validation methodologies.  

 

4.1 Design methodology 

Easy-filter uses Python and Perl languages to automatically generates the 

following: 

• Filter coefficients 

− Python generated coefficients 

− MATLAB generated coefficients 

• Verilog code 

− Filter design code 

− Filter testbench code 

• MATLAB code 

− Filter code using Python generated coefficients 

− Filter code that uses MATLAB generated coefficients 

• Waveform Outputs 

− Filter characteristics 
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 Impulse response 

 Frequency response 

 Frequency response in dB 

− Time-domain representation of input signal and filtered signal 

− The frequency-domain representation of the input signal and filtered 

signal 

The user provides inputs through GUI based on the required filter’s specifications. 

The scripts written in Python and Perl use this input information to generate filter 

coefficients, Verilog design, and testbench code; and generate MATLAB codes. GUI 

uses different scripts to generate outputs. A Python script generates the FIR filter’s 

coefficients. Perl script reads these coefficients and converts them into floating-point 

binary; this floating-point binary representation of coefficients used by another Perl script 

to generate Verilog design and testbench. Another Python script uses this information to 

generate impulse response, frequency responses, and filter status. A different Python 

script uses user input to generates MATLAB codes. One MATLAB code uses the 

coefficients generated by the proposed system’s Python code, and another code uses 

MATLAB generated coefficients. One Python script connects GUI to MATLAB and 

shows the unfiltered and filtered output in time-domain and frequency-domain. The user 

can select between MATLAB and Python generated coefficients to filter the unfiltered 

signal. The user can also choose four frequencies for the input signal (unfiltered). Figure 

4-1 shows the block diagram of filter design automation. 
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Figure 4-1: Block diagram of filter design automation 
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4.2 Verification methodology 

Easy-filter uses GUI generated Verilog design and testbench code for filter’s 

verification. The GUI’s 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button uses to launch ModelSim software. Figure 4-2 

shows the verification methodology. 

 

Figure 4-2: The verification methodology 

A Python script uses user input and another script’s generated coefficients to 

generate .do file and automatically opens and runs this .do file. This .do file is a script 

that can execute many commands at once. To create .do file, simply type a set of 

commands in a text file. In this thesis, we created a .do file that loads a design, adds 

signals to the wave window, provides stimulus to those signals, and runs the simulation. 

Figure 4-3 shows an example of .do file.  
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Figure 4-3: An example of .do file 

ModelSim software provides a visual representation of filter coefficients, the 

input signal that needs to be filtered, and filtered output. It uses the Verilog testbench to 

simulates the input signal to generate the output signal.  

 

4.3 Validation methodology 

Easy-filter also automatically validates the designed filter by using well-

established MATLAB software. For proposed system validation, we provide the same 

user input to MATLAB software as well. For validation, we use the following GUI’s 

buttons: 

• 𝐷𝑒𝑠𝑖𝑔𝑛 : It generates filter coefficients using Python script. 

• 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓: It generates MATLAB code using the coefficients 

generated by the proposed system’s Python script. 

• 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓: It generates MATLAB code that generates filter 

coefficients by MATLAB software. 

• 𝑀𝐴𝑇𝐿𝐴𝐵: This button uses the above MATLAB codes and generates coefficients 

and filtered outputs. 

• 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒: This button uses Easy-filter’s generated coefficients and MATLAB 

generated coefficients and compares and produces percentage error. 
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  For validation, we provide the same user input to MATLAB software; it generates 

filter coefficients and compared them against Python script generated coefficients using 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button. Easy-filter also compares the filtered signal in time-domain and 

frequency-domain. Easy-filter provides Python generated coefficients and user-input to 

MATLAB software and generates time-domain and frequency-domain representation of 

the input signal to compare the filtered signal. And then provides the same user-input to 

MATLAB software, and it calculates its coefficients and generates time-domain and 

frequency-domain representation of the input signal. A block diagram of the validation 

methodology is shown in Figure 4-4.  

 

Figure 4-4: The validation methodology 

4.4 Experiment 

In this thesis, Easy-filter’s GUI can create four types of filters: low-pass, high-

pass, band-pass, and band-stop. The following experiments were carried out as a part of 

this thesis. 
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4.4.1 FIR filter generation  

With the help of GUI, four different types of filters were created. As user inputs 

vary, filter specifications also vary. The filter’s output is checked in the form of the 

waveforms and checked against the filter status window.  

 

4.4.2 FIR filter verification  

To verify, it uses Python generated Verilog testbench, which simulates the inputs 

and observes outputs. It is often a critical way to verify whether the design's functionality 

is correct before feeding it to an FPGA. GUI has a button called 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚. By clicking 

this button, the Python script automatically generates a . 𝑑𝑜 𝑓𝑖𝑙𝑒 and runs it on ModelSim 

software, which shows all the filter coefficients, input, and output waveforms. The 

coefficients compare against the text file generated by a Python script. ModelSim uses 

testbench to generate output waveform, which contains simulation information of the 

design and plotted against time to provide a graphical representation of the simulation. 

 

4.4.3 FIR filter validation 

For filter validation, the filter coefficients generated by Python script using GUI 

compare against the filter coefficients generated by MATLAB software for the same 

specifications. The filtered output waveforms of the generated filters are compared 

against the MATLAB filtered output. 
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5. EXPERIMENTAL SETUP 

This chapter explained the experimental setup used in this thesis for the FIR filter’s 

design, verification, and validation automation. Figure 5-1 shows the basic block diagram 

of the experiment setup. 

 

5.1 Experiment set-up 

Figure 5-1 provides the complete block diagram of the experiment setup; this 

section explains each experiment setup step. 

 

Figure 5-1: Basic block diagram of the experiment setup 

➢ User input: The user provides the information for filter design according to the 

requirement using the GUI’s user input section, as shown in Figure 5-2, to the 

proposed system.  
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Figure 5-2: GUI’s user input section 
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The user provides the following information: 

• Select filter type  

• Select window type  

• Enter sampling frequency 

• Enter cutoff frequency 

• Enter transition bandwidth 

• Enter stopband attenuation for Kaiser window 

• Select between quality and quantity 

• Enter four frequencies for the input signal that needs to be filtered 

The Python script behind Easy-filter’s GUI has been written to automatically 

enable or disable the cut-off frequencies according to the filter selection. The 

range of cut-off frequencies and transition width varies automatically according to 

the user's sampling frequency. The stopband attenuation only enables if the user 

selected the Kaiser window. The transition width disables if the user wants to 

design a filter with quantity. For quantity, the user has to enter N (required filter 

order), and the system automatically calculates transition width based on N 

entered by the user. If the user selected quality, then transition width enables, and 

the system calculates filter order and the number of coefficients automatically 

based on the user input. 

➢ Easy-filter: The proposed system is a graphical user interface. GUI window has 

the following windows: filter settings, the filter’s impulse response, frequency 

response, the frequency response in dB, filter’s coefficients, Verilog and 

MATLAB code, ModelSim options, MATLAB options, and filter’s status 
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windows. It has four buttons: 𝐷𝑒𝑠𝑖𝑔𝑛, 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒, 𝑀𝐴𝑇𝐿𝐴𝐵, and 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚. After 

filter design, the user has options: 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑑𝑒𝑠𝑖𝑔𝑛, 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵, 𝐶𝑜𝑑𝑒 −

𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓, and 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓. Using GUI, as shown in Figure 5-

3, users enter all the information according to the required filter’s specification. 

 

  

Figure 5-3: The proposed system’s graphical user interface 

The user follows the following steps to enter the filter’s specifications using GUI: 

• Select filter type 

• Select window type 

• Enter sampling frequency 

• Enter cut-off frequency (or frequencies for band-pass and band-stop filter) 

within the specified range 

• Enter transition bandwidth within a specified range 

• Enter stopband attenuation if Kaiser window is selected  
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• Choose between quality and quantity 

• If quantity selected, then enter the value of 𝑁 (filter order) 

• Press 𝐷𝑒𝑠𝑖𝑔𝑛 button to design filter according to entered filter’s 

specifications 

• Select 𝑉𝑒𝑟𝑖𝑙𝑜𝑔  to generate filter’s Verilog design code 

• Press 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 to generate filter’s Verilog testbench code 

• Press 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button to launch the ModelSim simulator 

• Select 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓 to generate MATLAB code that uses 

Python generated coefficients 

• Select 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓 to generate MATLAB code that uses 

MATLAB generated coefficients 

• Press 𝑀𝐴𝑇𝐿𝐴𝐵 button to launch MATLAB software to generate time-

domain and frequency-domain responses for filtered and unfiltered signals 

• Press 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button to compare Python generated coefficients against 

MATLAB generated coefficients and generate a percentage error if there 

is any difference 

The Python and Perl scripts use all the information provided by the user and  

generate the following based on the above information: 

• Filter coefficients 

• Impulse response 

• Frequency response in dB 

• Verilog design and testbench code 

• MATLAB code for Python generated coefficients as well as MATLAB’s 
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coefficients 

• Compare the proposed system’s coefficients against MATLAB’s 

coefficients for the same user input and produce a percentage error 

• Floating point to a decimal conversion error 

• Also, shows filter status 

➢ Coefficients: The Python script generates filter coefficients based on user input, 

mainly filter type, window function, and transition width. Perl script converts 

these coefficients to normalized coefficients and then converts them into binary. 

As shown in Figure 5-4, GUI shows these coefficients in impulse form and text 

form. Figure 5-4 (a) shows FIR filter’s coefficients in text form, and Figure5-4(b) 

shows them in impulse form. On the other hand, MATLAB uses the same user 

inputs and generates the filter’s coefficients. 

 

Figure 5-4: FIR filter’s coefficients window in text and impulse form 
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➢ X[n]:  Input signal that the user wants to filter. GUI has four options to enter 

frequencies to combine them to produce an input signal that needs to be filtered. 

As shown in Figure 5-5, the input signal’s frequencies should be within the 

specified range 

 

Figure 5-5: Input signal window 

The Python script calculates the range based on sampling frequency. Figure 5-5 

shows the GUI’s input signal window that the user can use to change the input 

signal’s frequencies. 

➢ Verilog code: The proposed system generates the Verilog code of filter design 

and testbench. After entering all the GUI specifications, when the user selects 

𝑉𝑒𝑟𝑖𝑙𝑜𝑔 button, it generates Verilog's design code according to the specifications, 

and it uses 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 to generate the Verilog testbench. 𝑉𝑒𝑟𝑖𝑙𝑜𝑔 𝑇𝐵 button uses 

Perl and Python scripts. Perl script reads the coefficients file to generate Verilog 

code, and Python script uses user inputs for input frequencies and generates input 

signal values that Verilog testbench code uses. The user can use 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚 

button to simulate a designed filter on ModelSim software and analyze the filter’s 

coefficients. The Perl script generated Verilog design and testbench code 

simulates the FIR filter coefficients, input, and output signal on ModelSim 

software. Figure 5-6(a) shows the Verilog code options and 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚 button, 
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and Figure 5-6(b) shows the Verilog design code snippet. 

 

Figure 5-6: Verilog options and Verilog code window 

➢ MATLAB code: The proposed system can generate two types of MATLAB 

codes. If the user selects 𝐶𝑜𝑑𝑒 − 𝑃𝑦𝑡ℎ𝑜𝑛 𝑐𝑜𝑒𝑓𝑓 button, then the Python script 

automatically uses user input to generates MATLAB code by using Python script-

generated coefficients. Furthermore, if the user chooses 𝐶𝑜𝑑𝑒 − 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑒𝑓𝑓 

option, then the Python script automatically generates MATLAB code with 

MATLAB calculated coefficients. By pressing 𝑀𝐴𝑇𝐿𝐴𝐵 button, it runs the last 

code option selected by the user using MATLAB software. It generates a time-

domain and frequency-domain representation of the input signal (unfiltered) and 

the output signal(filtered). Figure 5-7(a) shows the options and MATLAB button, 

and Figure 5-7(b) shows the MATLAB code window.  
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Figure 5-7: MATLAB options and MATLAB code 

➢ Simulation: GUI has 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button to launch the ModelSim simulator. When 

the user press 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button on GUI, it automatically creates . 𝐷𝑜 𝑓𝑖𝑙𝑒 and 

runs it on ModelSim. . 𝑑𝑜 𝑓𝑖𝑙𝑒 is a script file with commands to compile the 

Hardware Description Language (HDL) files, load the design, give stimulus, and 

simulate your design in a single . 𝑑𝑜 𝑓𝑖𝑙𝑒. So, it saves engineers time. ModelSim 

generates waveforms that are very good to analyze the filter’s signals. Figure 5-8 

shows the ModelSim window that automatically opens by clicking the on 

𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑚 button and simulates the FIR filter design. 
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Figure 5-8: ModelSim simulation window 

➢ Synthesis: The Verilog code generated by GUI is synthesizable. Xilinx software 

is used to synthesize this FIR filter design using Artix-7. It converts HDL-based 

logic of FIR filter design to low-level implementable circuits called Netlist, 

consisting of a combination of transistors representing digital logic gates. The 

design’s synthesis provides utilization and power report. 

➢ Validation: The proposed system’s output coefficients and filtered output are 

compared against well-established MATLAB’s coefficients and filtered output for 

the same inputs. The GUI window shows the filter’s coefficients comparison and 

percentage error, as shown in Figure 5-9 as the user presses 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button. As 

the user press 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 button, the Python script automatically reads GUI 

generated coefficients and MATLAB generated coefficients, compares them, and 

generates a total percentage difference and displays it. 
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Figure 5-9: Comparison: GUI versus MATLAB coefficients 

➢ Conversion error: The proposed system catches floating-point to a decimal 

conversion error. As the user presses 𝐹𝑃_2_𝐷𝐸𝐶 button, the python script 

automatically reads floating-point to decimal converted binary coefficients. Then, 

convert them back to floating-point binary coefficients, compare them, and 

generates an absolute percentage difference and display it as a total percentage 

error. 
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6. DESIGN IMPLEMENTATION 

This chapter explains the different filters that we have designed using the proposed 

system’s GUI. The filter’s specifications varied to design different filters. There are four 

types of filters in this system, and by varying user input, users can design a different kind 

of filters. 

 

6.1 Filter design 

The filter design depends on many parameters, particularly filter type, widow 

type, sampling frequency, cut-off frequencies, transition bandwidth; by varying any of 

these parameters, the filter design changes. Using Easy-filter’s GUI, users can design 

different filters by varying any of these parameters. This thesis included one example of 

each design. Here are the filter designs that this thesis included: 

• Low-pass filter  

• High-pass filter 

• Band-pass filter 

• Band-stop filter 

Each of the above filters, redesign by varying sampling frequency, window type, cut-off 

frequencies, transition bandwidth, and switching between quality and quantity. 

 

6.1.1 Low-pass filter design 

Although the user can consider any filter specification, this thesis considered a 

quality-based low-pass filter design that uses filter specifications, as shown in Table 6-1. 
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Table 6-1: Low-pass filter specifications 

 

As the required stopband attenuation of this filter is >70 dB, so filter order calculated 

using the Blackman window. The designed filter’s coefficients provided in section 8.1.1, 

converted to binary form by the Python script and used directly in Verilog code. This 

Verilog code is simulated using ModelSim.  For the Blackman window number of filter, 

coefficients are 27. Equation 6-1 shows the formula to calculate filter coefficients for the 

Blackman window. 

𝑁 = 5.98 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 5.98 ∗ (

3500 𝐻𝑧

800 𝐻𝑧
)  ≈ 27 

 

6-1 

 

6.1.2 High-pass filter design 

Although the user can consider any filter specification, this thesis considered a 

quality-based high-pass filter design that uses filter specifications, as described in Table 

6-2. As the required stopband attenuation of this filter is >50 dB, so Hamming, 

Blackman, and Kaiser window are eligible to use for this filter design, and this thesis 

used the Hamming window to calculate filter order for this filter. The designed filter’s 

coefficients provided in section 8.1.2, converted to binary form by the Python script and 

Parameters Values 

Passband edge frequency 500 Hz 

Sampling frequency 3500 Hz 

Transition bandwidth 800 Hz 

Stopband attenuation >70 dB 
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used directly in Verilog code. This Verilog code is simulated using ModelSim.  The 

Hamming window’s coefficients calculated using equation 6-2. 

𝑁 = 3.44 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 3.44 ∗ (

5000 𝐻𝑧

650 𝐻𝑧
)  ≈  27 

 

6-2 

 

Table 6-2: High-pass filter specifications 

 

6.1.3 Band-pass filter design 

Although the user can consider any filter specification, this thesis considered a 

quality-based band-pass filter design that uses filter specifications, as described in Table 

6-3. As the required stopband attenuation of this filter is 40 dB, Hanning, Hamming, 

Blackman, and Kaiser's window are eligible for this filter design. This thesis used the 

Kaiser window to calculate the order for this filter. The designed filter’s coefficients 

provided in section 8.1.3, converted to binary form by the Python script and used directly 

in Verilog code. This Verilog code is simulated using ModelSim. Equation 6-3 shows the 

formula used to calculate beta for the Kaiser window: 

𝑏𝑒𝑡𝑎 = 0.5842 ∗ (𝐴 − 21)
2
5 + 0.07886 ∗ (𝐴 − 21) 6-3 

 

Parameters Values 

Passband edge frequency 1500 Hz 

Sampling frequency 5000 Hz 

Transition Bandwidth 650 Hz 

Stopband attenuation >50 dB 
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𝑏𝑒𝑡𝑎 = 0.5842 ∗ (40 − 21)
2
5 + 0.07886 ∗ (40 − 21) = 3.3953 

 

Table 6-3: Band-pass filter specifications 

 

The Kaiser window’s coefficients calculated using equation 6-4.  

𝑁 = (
(𝐴 − 8) ∗ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1 

 

6-4 

 

     = (
(40 − 8) ∗ 8000

2.285 ∗ 2 ∗ 𝜋 ∗ 496
) + 1 ≈ 36  

 

The coefficients are even in number, so to make the coefficients odd, add 1 to it, so total 

coefficients equal to 36 + 1 = 37 

 

6.1.4 Band-stop filter design 

Although the user can consider any filter specification, this thesis considered a 

quality-based band-stop filter design that uses filter specifications, as described in Table 

6-4.  

Parameters Values 

Passband edge frequencies 1300 Hz, 2650 Hz 

Sampling frequency 8000 Hz 

Transition Bandwidth 496 Hz 

Stopband attenuation 40 dB 

Window Kaiser 
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Table 6-4: Band-stop filter specifications 

 

As the required stopband attenuation of this filter is >40 dB, so Hanning, 

Hamming, Blackman, and Kaiser's window are eligible to use for this filter design, and 

this thesis used the Hanning window to calculate filter order for this filter. The designed 

filter’s coefficients provided in section 8.1.4, converted to binary form by the Python 

script and used directly in Verilog code. This Verilog code is simulated using ModelSim. 

Equation 6-5 shows the formula used to calculate coefficients for the Hanning window: 

𝑁 = 3.32 ∗ (
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) = 3.32 ∗ (

10000

900
) ≈ 37 

 

6-5 

 

 

 

 

 

 

 

 

Parameters Values 

Passband edge frequencies 2000 Hz, 4000 Hz 

Sampling frequency 10000 Hz 

Transition Bandwidth 900 Hz 

Stopband attenuation >40 dB 
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7. DESIGN SIMULATION & VALIDATION 

This chapter provides the FIR filter design’s verification and validation. The FIR filter’s 

coefficients calculated, as mentioned in Chapter 6, are used to generate Verilog design 

and testbench codes automatically. The Verilog design and testbench simulate using 

ModelSim; it provides a visual representation of FIR filter’s coefficients. 

 

7.1 Design simulation 

It uses ModelSim software to simulate the generated FIR filter’s design. The 

proposed system generates many outputs for design simulation. After generating a 

custom FIR filter, it can simulate using ModelSim software. Easy-filter uses Verilog 

testbench to simulate the FIR filter design in ModelSim software. It uses . 𝑑𝑜 𝑓𝑖𝑙𝑒 to load, 

simulate, add signals to the waveform, and terminate the simulation. The simulation of 

the FIR filter mainly checks if the filter coefficients, input signal, and output signal 

converted duly to binary form or not. APPENDIX A shows the Verilog design and 

testbench code of the low-pass filter.  

 

Figure 7-1: The FIR filter’s simulation waveforms 
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Figure 7-1 shows the snippet of coefficients, input, and output waveform automatically 

generated by Easy-filter after the FIR filter simulation.  

 

7.1.1 Testbench 

In this thesis, the Verilog language is used to develop a testbench for the FIR 

filter. So, the FIR filter is the design under test (DUT). The testbench is used to stimulate 

the inputs to the design and observe the outputs. Its outputs are compared against the text 

file that contains Python generated FIR filter’s coefficients. If the testbench generated 

coefficients are equal to the text file coefficients, then its test pass; otherwise, it fails. It 

checks that the coefficients do not change during floating-point to binary conversion, and 

all the signals behave according to the specifications. Figure 7-2 shows the testbench 

setup of the FIR filter. 

 

Figure 7-2: The testbench set up of the FIR filter 

7.1.2 Floating-point 

The standard specifies the following formats for the floating-point numbers. 

➢ Single precision: It uses 32-bits, as shown in Figure 7-3, and has the following 

format: 

• 1 bit- sign (0-positive,1-negative) 

• 8 bit- exponent 
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• 23 bit- mantissa 

 

Figure 7-3: Single precision floating point 

➢ The sign bit: The first bit in the floating-point number is the sign bit. If the 

number is positive, then set the sign bit to 0, and if the given number is negative, 

then set it to 1.  

➢ The exponent: For large numbers, the exponent is positive, and it is negative for 

small numbers (fraction). The unsigned binary with 8 bits can represent numbers 

0 through 255, and to represent negative numbers in floating-point, add 127 to the 

exponent. With this, it can represent numbers between 128 to -127. The number 

128 is reserved to represent special numbers. 

Example 1:  

Required exponent =   7 

Floating-point exponent calculation =  7+127 = 134 

Binary representation   = 10000110 

For exponent, if the leftmost bit is 1, then it is positive exponent means it is a 

large number, and if it is 0, then it is a negative number means a small 

number(fraction).   

➢ The mantissa: The point move in scientific notation such that there is only a 

single(non-zero) digit to the left of it. In binary representation, this digit is 1 as 
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there is no other non-zero digit. So, after converting the given number to binary 

and before storing its mantissa, it drops 1 to store an extra bit in the mantissa.   

Example 1: 

Number to store = 100.01101110 

Scientific notation =  1.0001101110  

Mantissa to be stored = 0001101110  

Example 2: 

Number to store = 0.0001111110 

Scientific notation =  1.111110 

Mantissa to be stored = 111110  

➢ Special cases: These cases include zero, infinity, not a number (division by zero, 

or the square root of the negative number). 

• Zero: set sign bit 1 or 0 and all other bits to 0 

• Infinity: for positive infinity, set sign bit to 0, and for negative set it to 1, 

set mantissa to all 1 and exponent to all 0 

• Not a number: set sign bit either 0 or 1, set exponent to all 1, and set 

mantissa to a combination of 1 and 0  

 

7.1.3 Converting to floating-point 

Follow the following steps to convert a number to floating-point [41]: 

• If the given number is positive, set the sign bit to 0, and if the number is negative, 

then set it to 1. 

• Divide the number into two parts- the whole part and the fraction part. 

• Convert these two parts into binary and then join them by a decimal point. 
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• Count how many spaces the binary point needs to move so that there is only one 1 

to the left. If a binary point moves towards the left, then it is a positive number, 

and if it moves to the right, then it is a negative number; add 127 to the count and 

convert it to binary. 

• Format the mantissa by dropping the first 1 and store the remaining 23 bits. 

Table 7-1: An example of floating-point conversion 

 

7.2 Design validation 

For design validation, it uses MATLAB software. The Python script generates the 

FIR filter’s coefficients and saves them in text format. Easy-filter validation has two 

parts.  

• The same specifications fed to Python script and MATLAB software both 

generate FIR filter’s coefficients and compare these coefficients 

• The text file is generated by a Python script that contains FIR filter’s coefficients 

Parameters Values 

Decimal number -61.6 

Sign bit 1 

Convert whole part to binary 111101 

Convert fraction part to binary 0.1001100110011001100110 

Join both parts together 111101.100110011001100110 

Number of spaces to move binary point 5 

Add 127 to get the exponent 132 

Convert exponent to binary 10000100 

Adjust the mantissa 1.11101100110011001100110 

Remove leading 1 11101100110011001100110 

Result in binary: 1 10000100 11101100110011001100110 
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read by MATLAB code and generates filtered output and compares this output 

with the MATLAB generated filtered output with the same filter specifications. 

APPENDIX-B shows the MATLAB code for the low-pass filter that used to generate 

coefficients and filtered output. 
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8. RESULT EVALUATION AND COMPARISON 

This chapter shows the results along with a comparative analysis of the experiment's 

coefficients and filtered output. Easy-filter’s coefficients and filtered result compared 

against MATLAB generated coefficients and filtered output. It also shows the simulation 

results produced by ModelSim software using Easy-filter’s generated Verilog design and 

testbench codes. 

 

8.1 Easy-filter versus MATLAB 

The proposed system uses its GUI to enter the user input. To enter user input for 

MATLAB, one should have basic knowledge of the MATLAB coding. To modify an 

existing code, one should have to understand it first to modify it according to requirement 

changes. On the other hand, the proposed system uses GUI to accommodate any 

specification changes; it is easy and less time-consuming. The user who does not have 

any coding background can also modify and design it without any problem. The 

following sections show the results of the experiments included in this thesis. 

 

8.1.1 Low-pass filter results 

Table 8-1 shows Easy-filter’s GUI generated low-pass filter’s coefficients and 

MATAB’s generated low-pass filter’s coefficients. The results show that the proposed 

system generates the same filter coefficients for the same user inputs. So, engineers can 

rely on this system as much as they rely on the MATLAB system to generate FIR filters. 

For this experiment, the input signal has 50 Hz, 200 Hz, 1000Hz, and 1500 Hz 

frequencies. The designed filter’s cut-off frequency is 500 Hz, which passes only 50 Hz 

and 200 Hz frequencies and rejects 1000 Hz and 1500 frequencies.  
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Table 8-1: Low-pass filter’s coefficients comparison 

Coefficient No. Easy-filter GUI MATLAB %Error 

h1=h27 2.6561E-19 0.0000E+00 2.6561E-21 

h2=h26 -1.3873E-04 -1.3873E-04 0.0000E+00 

h3=h25 -2.8516E-04 -2.8516E-04 0.0000E+00 

h4=h24 7.6479E-04 7.6479E-04 0.0000E+00 

h5=h23 3.7093E-03 3.7093E-03 0.0000E+00 

h6=h22 5.6859E-03 5.6859E-03 0.0000E+00 

h7=h21 -3.1408E-18 -3.1408E-18 0.0000E+00 

h8=h20 -1.6695E-02 -1.6695E-02 0.0000E+00 

h9=h19 -3.3348E-02 -3.3348E-02 0.0000E+00 

h10=h18 -2.3324E-02 -2.3324E-02 0.0000E+00 

h11=h17 3.7001E-02 3.7001E-02 0.0000E+00 

h12=h16 1.4089E-01 1.4089E-01 0.0000E+00 

h13=h15 2.4292E-01 2.4292E-01 0.0000E+00 

h14 2.8565E-01 2.8565E-01 0.0000E+00 

 

The Verilog code uses Easy-filter’s generated coefficients to create design and 

testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-1 shows the 

snippet of the simulation waveform generated by the ModelSim simulator that shows the 

filter’s coefficients. 
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Figure 8-1: The low-pass filter’s coefficient’s simulation waveform 

Figure 8-2 shows the frequency response generated by GUI and MATLAB. Both 

have the same frequency response and attenuation. When a pure sinusoidal input signal 

passes through a time-variant filter, then the output signal is also sinusoidal at the same 

frequency, but its magnitude and phase could have changed. 

In the second part of the validation, the GUI generated coefficients are stored in a 

text file and fed to MATLAB code instead of generating its own coefficients.  
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Figure 8-2: The low-pass filter’s frequency response 

 

Figure 8-3: Filtered output comparison 
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Figure 8-3 shows the comparison of MATLAB generated outputs ( using 

coefficients generated by MATLAB software) and MATLAB generated output with 

coefficients fed from the GUI system. Easy-filter’s GUI generates the same filtered 

output as MATLAB. 

The Verilog design code generated by the Easy-filter GUI is used to generate the 

circuit using the Xilinx synthesis tool for low-pass filter design. Table 8-2 shows 

implementation results for the low-pass filter using sampling frequency 20000 Hz, cutoff 

frequency 5000 Hz, and transition width 1000 Hz. Artix-7’s part number 

‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 454.545 

MHz is the highest frequency obtained using this device. 

 
Rectangular Hanning Hamming Blackman Kaiser 

with 

A=60 

Kaiser 

with 

A=75 

Coefficients 19 67 69 121 75 95 

Total On-chip 

Power 

1.167W 4.595W 4.607W 7.903W 5.062W 6.362W 

LUT 9.34% 34.46% 35.67% 63.00% 38.84% 49.30% 

FF 1.19% 4.40% 4.57% 8.03% 4.97% 6.30% 

DSP 2.16% 9.19% 9.46% 16.49% 10.27% 12.97% 

IO 22.81% 22.81% 22.81% 22.81% 22.81% 22.81% 

 

8.1.2 High-pass filter results 

Table 8-3 shows that Easy-filter generated high-pass filter’s coefficients, and 

MATAB’s generated high-pass filter’s coefficients.  

 

Table 8-2: Low-pass filter’s Implementation results 
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Table 8-3: High-pass filter’s coefficients comparison 

Coefficient No. Easy-filter GUI MATLAB %Error 

h1=h27 1.151E-03 1.151E-03 0.0000 

h2=h26 1.455E-03 1.455E-03 0.0000 

h3=h25 -3.650E-03 -3.650E-03 0.0000 

h4=h24 -3.050E-18 -3.050E-18 0.0000 

h5=h23 9.369E-03 9.369E-03 0.0000 

h6=h22 -8.810E-03 -8.809E-03 0.0000 

h7=h21 -1.294E-02 -1.294E-02 0.0000 

h8=h20 3.003E-02 3.003E-02 0.0000 

h9=h19 1.096E-17 1.096E-17 0.0000 

h10=h18 -6.061E-02 -6.061E-02 0.0000 

h11=h17 5.512E-02 5.512E-02 0.0000 

h12=h16 8.857E-02 8.857E-02 0.0000 

h13=h15 -2.985E-01 -2.985E-01 0.0000 

h14 3.998E-01 3.998E-01 0.0000 

 

The results show that Easy-filter generates the same filter coefficients for the 

same user inputs. So, engineers can rely on this system as much as they rely on the 

MATLAB system to generate FIR filters. For this experiment, the input signal has 500 

Hz and 1000 Hz, 2000 Hz, and 2300 Hz frequencies. The designed filter’s cut-off 

frequency is 1500 Hz, which passes only 2000 Hz and 2300 Hz frequencies and rejects 

500 Hz and 1000 Hz frequencies.  
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Figure 8-4: The high-pass filter’s coefficient’s simulation waveform 

 

Figure 8-5: The high-pass filter’s frequency response 



 

88 

 

Figure 8-6: Filtered high-pass filter’s output comparison 

The Verilog code uses the GUI Easy-filter’s generated coefficients to create 

design and testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-

5 shows the snippet of the simulation waveform that shows the filter’s coefficients, 

frequency response generated by a Python script, and MATLAB. Both have the same 

frequency response and attenuation.  

In the second part of the validation, Python generated coefficients are stored in a 

text file and fed to MATLAB code instead of generating its own coefficients. Figure 8-6 

compares MATLAB generated outputs and MATLAB generated output with coefficients 
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fed from the GUI system. Easy-filter GUI generates the same filtered output as 

MATLAB. When a pure sinusoidal input signal passes through a time-variant filter, then 

the output signal is also sinusoidal at the same frequency. However, its magnitude and 

phase could have changed; the same is the case with the proposed GUI filter's output. 

The Verilog design code generated by Easy-filter GUI was used to generate the 

circuit using the Xilinx synthesis tool for low-pass filter design. Table 8-4 shows the 

high-pass filter implementation results using sampling frequency 20000 Hz, cutoff 

frequency 4000 Hz, and transition width 800 Hz. Artix-7’s part number 

‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 454.545 

MHz is the highest frequency obtained using this device. 

 
Rectangular Hanning Hamming Blackman Kaiser with 

A=40 

Coefficients 23 83 87 151 57 

Total On-

chip Power 

1.521W 5.396W 5.663W 9.597W 3.725W 

LUT 11.72% 43.01% 45.15% 78.75% 29.39% 

FF 1.52% 5.49% 5.76% 10.03% 3.77% 

DSP 3.24% 11.35% 11.89% 20.54% 7.84% 

IO 22.81% 22.81% 22.81% 22.81% 22.81% 

 

8.1.3 Band-pass filter results 

Table 8-5 shows Easy-filter’s GUI generated band-pass filter’s coefficients and 

MATLAB generated band-pass filter’s coefficients. The results show that Easy-filter 

generates the same filter coefficients for the same user inputs. So, engineers can rely on 

Table 8-4: High-pass filter’s Implementation results 
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this system as much as they rely on the MATLAB system to generate FIR filters. For this 

experiment, the input signal has 500 Hz,1500 Hz, 2000Hz, and 3800 Hz frequencies. The 

designed filter’s cut-off frequencies are 1300 Hz and 2650 Hz, so it passes only 1500 Hz 

and 2000 Hz frequencies and rejects 500 Hz and 3800 Hz frequencies as they are not in 

the pass-band range.  

In MATLAB code, beta 𝑁 and transition bandwidth are calculated automatically 

by a 𝑓𝑖𝑟1 function, and the given stopband attenuation is 0.01. On the other hand, the 

proposed Python code used a formula mentioned in section 6.1.3 to calculate beta and 𝑁. 

The code used to calculate stopband attenuation for the Easy-filter is shown in equation 

8-1. 

𝐴 = 𝑅𝑠 ∗
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2
= 0.01 ∗

8000

2
= 40 𝑑𝐵 

 

8-1 

 

However, the formula shown in equation 8-2 is used to calculate transition bandwidth. 

36 = (
(𝐴 − 8) ∗ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1 

 

8-2 

 

36 = (
(40 − 8) ∗ 8000

2.285 ∗ 2 ∗ 𝜋 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 1 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑤𝑖𝑑𝑡ℎ ≈ 496 
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Table 8-5: Band-pass filter’s coefficients comparison 

Coefficient No. Easy-filter GUI MATLAB %Error 

h1=h37 5.7317E-04 5.7317E-04 0.00E+00 

h2=h36 9.6570E-04 9.6570E-04 0.00E+00 

h3=h35 7.6609E-03 7.6609E-03 0.00E+00 

h4=h34 -3.7741E-03 -3.7741E-03 0.00E+00 

h5=h33 -1.4642E-02 -1.4642E-02 0.00E+00 

h6=h32 3.0479E-03 3.0479E-03 0.00E+00 

h7=h31 2.0035E-03 2.0035E-03 0.00E+00 

h8=h30 3.0263E-03 3.0263E-03 0.00E+00 

h9=h29 3.2308E-02 3.2308E-02 0.00E+00 

h10=h28 -8.4859E-03 -8.4859E-03 0.00E+00 

h11=h27 -5.1956E-02 -5.1956E-02 0.00E+00 

h12=h26 5.3487E-03 5.3487E-03 0.00E+00 

h13=h25 3.4973E-03 3.4973E-03 0.00E+00 

h14=h24 5.2287E-03 5.2287E-03 0.00E+00 

h15=h23 1.2519E-01 1.2519E-01 0.00E+00 

h16=h22 -1.1924E-02 -1.1924E-02 0.00E+00 

h17=h21 -2.7084E-01 -2.7084E-01 0.00E+00 

h18=h20 6.2501E-03 6.2501E-03 0.00E+00 

h19 3.3522E-01 3.3522E-01 0.00E+00 
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Figure 8-7: The band-pass filter’s coefficient’s simulation waveform 

The normalized cut-off frequencies calculated based on 𝑓𝑐𝑢𝑡𝑠 frequencies are 0.3250 and 

0.6625. Equation 8-3 and 8-4 show the formulas used to calculate the normalized cut-off 

frequencies for the Easy-filter. 
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𝑓𝐿(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = 𝑓𝐿 ∗
(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

2
= 1300 ∗

2

8000
= 0.3250 𝐻𝑧 8-3 

 

And, 

𝑓𝐻(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = 𝑓𝐻 ∗
(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

2
= 2650 ∗

2

8000
= 0.6625 𝐻𝑧 

 

8-4 

 

The Verilog code uses Python generated coefficients to create design and 

testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-7 shows the 

snippet of the simulation waveform that shows the filter’s coefficients. 

Figure 8-8 shows the frequency response generated by GUI and MATLAB. Both 

have the same frequency response and attenuation.  

In the second part of the validation, the Python generated coefficients are stored in 

a text file and fed to MATLAB code instead of generating its own coefficients.  

 

 

Figure 8-8: The band-pass filter’s frequency response 
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Figure 8-9: Filtered band-pass filter’s output comparison 

Figure 8-9 compares MATLAB generated outputs and MATLAB generated 

output with Python generated coefficients. Easy-filter generates the same filtered output 

as MATLAB. When a pure sinusoidal input signal passes through a time-variant filter, 

then the output signal is also sinusoidal at the same frequency. However, its magnitude 

and phase could have changed; the same is the case with the proposed GUI filter's output. 

The Verilog design code generated by Easy-filter was used to generate the circuit 

using the Xilinx synthesis tool for low-pass filter design. Table 8-6 shows 

implementation results for the band-pass filter using sampling frequency 20000 Hz, 
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cutoff frequencies 2500 Hz and 8000 Hz, and transition width 900 Hz. Artix-7’s part 

number ‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 

454.545 MHz is the highest frequency obtained using this device. 

 
Rectangular Hanning Hamming Blackman Kaiser with 

A=68 

Coefficients 21 75 77 133 187 

Total On-chip 

Power 

1.439 W 4.869 W 4.991 W 8.373 W 12.121 W 

LUT 10.69% 38.83% 39.91% 69.28% 95.58% 

FF 1.38% 4.96% 5.10% 8.82% 12.39% 

DSP 2.97% 10.27% 10.54% 18.11% 25.14% 

IO 22.81% 22.81% 22.81% 22.81% 22.81% 

 

8.1.4 Band-stop filter results 

Table 8-7 shows Easy-filter’s GUI generated band-stop filter’s coefficients and 

MATAB’s generated band-stop filter’s coefficients. The results show that the Easy-filter 

generates the same filter coefficients for the same user inputs. So, engineers can rely on 

this system as much as they rely on the MATLAB system to generate FIR filters. For this 

experiment, the input signal has 500 Hz,2500 Hz, 3200Hz, and 4500 Hz frequencies.  

 

 

 

 

Table 8-6: Band-pass filter’s Implementation results 
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Table 8-7: Band-stop filter’s coefficients comparison 

Coefficient No. Easy-filter GUI MATLAB %Error 

h1=h37 0.0000E+00 0.0000E+00 0.0000 

h2=h36 2.1889E-04 2.1892E-04 0.0000 

h3=h35 2.1806E-04 2.1798E-04 0.0000 

h4=h34 1.0442E-18 8.7082E-18 0.0000 

h5=h33 -9.6679E-04 -9.6642E-04 0.0000 

h6=h32 -6.7303E-03 -6.7314E-03 0.0000 

h7=h31 1.0206E-02 1.0207E-02 0.0000 

h8=h30 3.4606E-03 3.4592E-03 0.0000 

h9=h29 6.4409E-18 -9.6662E-18 0.0000 

h10=h28 -6.4281E-03 -6.4256E-03 0.0000 

h11=h27 -3.5933E-02 -3.5939E-02 0.0000 

h12=h26 4.6958E-02 4.6966E-02 0.0000 

h13=h25 1.4463E-02 1.4458E-02 0.0000 

h14=h24 1.2804E-17 4.4838E-17 0.0000 

h15=h23 -2.5543E-02 -2.5533E-02 0.0000 

h16=h22 -1.5235E-01 -1.5238E-01 0.0000 

h17=h21 2.3755E-01 2.3759E-01 0.0000 

h18=h20 1.1483E-01 1.1478E-01 0.0000 

h19 6.0010E-01 6.0015E-01 0.0000 

 

The designed filter’s cut-off frequencies are 2000 Hz and 4000 Hz, so it passes 

only 500 Hz and 4500 Hz frequencies and rejects 2500 Hz and 3200 Hz frequencies as 

they are in the band-stop range.  

Easy-filter used a formula mentioned in section 6.1.3 to calculate 𝑁. The 

normalized cut-off frequencies calculated using equations 8-5 and 8-6. 
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𝑓𝐿 = 2000 ∗
2

(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
= 2000 ∗

2

10000
= 0.4 𝐻𝑧 8-5 

 

And, 

𝑓𝐻 = 4000 ∗
2

(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
= 4000 ∗

2

10000
= 0.8 𝐻𝑧 

 

8-6 

The Verilog code uses the GUI system’s generated coefficients to create design 

and testbench code, further used by ModelSim to simulate the FIR filter. Figure 8-10 

shows the snippet of the simulation waveform that shows the filter’s coefficients. 

Figure 8-11 shows the frequency response generated by Python script and 

MATLAB. Both have the same frequency response and attenuation. In the second part of 

the validation, the GUI generated coefficients are stored in a text file and fed to 

MATLAB code instead of generating its own coefficients. Figure 8-12 compares 

MATLAB generated outputs and MATLAB generated output with coefficients fed from 

the GUI system. Easy-filter generates the same filtered output as MATLAB.  
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Figure 8-10: The band-stop filter’s coefficient’s simulation waveform 

The Verilog design code generated by easy-filter was used to generate the circuit 

using the Xilinx synthesis tool for low-pass filter design. Table 8-8 shows 

implementation results for the band-stop filter using sampling frequency 20000 Hz, 

cutoff frequencies 3000 Hz and 7000 Hz, and transition width 1100 Hz. Artix-7’s part 

number ‘xc7a200tsbv484-1’ is used. This device's breaking point is 190 coefficients, and 

454.545 MHz is the highest frequency obtained using this device. 
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Figure 8-11: The band-stop filter’s frequency response 

 

Figure 8-12: Filtered band-stop filter’s output comparison 
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Rectangular Hanning Hamming Blackman Kaiser with 

A=55 

Coefficients 17 61 63 109 121 

Total On-chip 

Power 

1.208 W 3.886 W 3.975 W 7.189 W 7.632 W 

LUT 8.57% 31.50% 32.58% 56.68% 62.92% 

FF 1.12% 4.03% 4.17% 7.23% 8% 

DSP 2.43% 8.38% 8.65% 14.86% 16.22% 

IO 22.81% 22.81% 22.81% 22.81% 22.81% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8-8: Band-stop filter’s Implementation results 
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9. CONCLUSION AND FURTHER RESEARCH 

Easy-filter automatically generates Verilog and MATLAB code for the FIR filter with 

user-defined specifications. It shortens the development time, increases the efficiency of 

Verilog coding, and decrease the staff-hour. This method helps even those users who do 

not know Verilog or MATLAB coding. Additionally, GUI makes it convenient, fast, 

intuitive, and flexible. 

This thesis presented an automated generation, verification, and validation of the 

most used electronics component, the FIR filters. According to some experienced 

designers, it takes approximately two days to design and verify a filter. This automated 

flow reduces the design time to a few minutes. A complete chip project usually has 

dozens of filters so that this flow can save many hours at the project level. 

This flow guarantees the design's timing closure, as it saves time in design and 

verification and reduces the back-end team’s work. It requires less effort in 

documentation to describe a filter and saves the time that it takes to study, develop, and 

documentation. 

This system can fulfill the original filter’s requirements without depending on 

high-level synthesis tools, which keeps complexity and license costs low. The user can 

freely choose the filter length and coefficients. 

The code quality and coefficients generated by Easy-filter are checked with both 

ModelSim and MATLAB software. 

However, it still needs some improvements. 
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9.1 Further research 

Below is the list of recommendations for further research on Python script-

controlled GUI used for automation: 

• GUI for IIR filter  

• Verilog design and testbench automation of other essential electronics 

components like CPU (Central Processing Unit) 

• Accessing Xilinx from GUI 

• The optimization of the design 

• Replacing multiplier with shift and add 
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APPENDIX SECTION 

APPENDIX A.1 Verilog design: Low-pass filter 

// FIR filter order = 26 

module fir_27tap( 

 input Clk, 

 input signed [31:0] Xin, 

 output reg signed [31:0] Yout); 

 

//internal variables  

wire signed[31:0] 

H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20,H21, 

H22,H23,H24,H25,H26; 

wire 

signed[31:0]MCM0,MCM1,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,MCM8,MCM9,MCM10,MCM

11, 

MCM12,MCM13,MCM14,MCM15,MCM16,MCM17,MCM18,MCM19,MCM20,MCM21,MCM22,MCM

23,MCM24, MCM25,MCM26; 

wire signed [31:0]add_out1,add_out2,add_out3,add_out4,add_out5,add_out6, 

add_out7,add_out8,add_out9,add_out10,add_out11,add_out12,add_out13,add_out14,add_out15,add_out16

,add_out17,add_out18,add_out19,add_out20,add_out21,add_out22,add_out23,add_out24,add_out25,add_o

ut26; 

wire signed [31:0]Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15,Q16,Q17, 

Q18,Q19,Q20,Q21,Q22,Q23,Q24,Q25,Q26; 

 

// filter coefficient initializations 

assign H0 = 32'b00100000100111001100101000110100;  // 2.656123646688299902e-19 

assign H1 = 32'b10111001000100010100000000000000;  // -1.387284829302638301e-04 

assign H2 = 32'b10111001100101011000000000000000;  // -2.851629516083550408e-04 
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assign H3 = 32'b00111010010010000111000000000000;  // 7.647929107363890056e-04 

assign H4 = 32'b00111011011100110001100000000000;  // 3.709346677506889216e-03 

assign H5 = 32'b00111011101110100101000000000000;  // 5.685874479165271313e-03 

assign H6 = 32'b10100010011001111011111110010001;  // -3.140775377194302274e-18 

assign H7 = 32'b10111100100010001100001110000000;  // -1.669499760510593719e-02 

assign H8 = 32'b10111101000010001001100001000000;  // -3.334846494083928276e-02 

assign H9 = 32'b10111100101111110001000110000000;  // -2.332396573602673120e-02 

assign H10 = 32'b00111101000101111000111000000000;  // 3.700083096764832102e-02 

assign H11 = 32'b00111110000100000100010010000000;  // 1.408865162512743796e-01 

assign H12 = 32'b00111110011110001011111100110000;  // 2.429170367675183018e-01 

assign H13 = 32'b00111110100100100100000100111000;  // 2.856538433253219544e-01 

assign H14 = 32'b00111110011110001011111100110000;  // 2.429170367675183295e-01 

assign H15 = 32'b00111110000100000100010010000000;  // 1.408865162512743796e-01 

assign H16 = 32'b00111101000101111000111000000000;  // 3.700083096764832796e-02 

assign H17 = 32'b10111100101111110001000110000000; // -2.332396573602673120e-02 

assign H18 = 32'b10111101000010001001100001000000; // -3.334846494083929663e-02 

assign H19 = 32'b10111100100010001100001110000000; // -1.669499760510594760e-02 

assign H20 = 32'b10100010011001111011111110010001; // -3.140775377194304585e-18 

assign H21 = 32'b00111011101110100101000000000000;  // 5.685874479165271313e-03 

assign H22 = 32'b00111011011100110001100000000000;  // 3.709346677506889216e-03 

assign H23 = 32'b00111010010010000111000000000000;  // 7.647929107363904151e-04 

assign H24 = 32'b10111001100101011000000000000000; // -2.851629516083556371e-04 

assign H25 = 32'b10111001000100010100000000000000; // -1.387284829302649143e-04 

assign H26 = 32'b00100000100111001100101000110100;  // 2.656123646688299902e-19 

//Multiple constant multiplications 

multiplier fp1 (.a_1(H26),.b_1(Xin),.out_1(MCM26)); 

multiplier fp2 (.a_1(H25),.b_1(Xin),.out_1(MCM25)); 

multiplier fp3 (.a_1(H24),.b_1(Xin),.out_1(MCM24)); 
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multiplier fp4 (.a_1(H23),.b_1(Xin),.out_1(MCM23)); 

multiplier fp5 (.a_1(H22),.b_1(Xin),.out_1(MCM22)); 

multiplier fp6 (.a_1(H21),.b_1(Xin),.out_1(MCM21)); 

multiplier fp7 (.a_1(H20),.b_1(Xin),.out_1(MCM20)); 

multiplier fp8 (.a_1(H19),.b_1(Xin),.out_1(MCM19)); 

multiplier fp9 (.a_1(H18),.b_1(Xin),.out_1(MCM18)); 

multiplier fp10 (.a_1(H17),.b_1(Xin),.out_1(MCM17)); 

multiplier fp12 (.a_1(H16),.b_1(Xin),.out_1(MCM16)); 

multiplier fp12 (.a_1(H15),.b_1(Xin),.out_1(MCM15)); 

multiplier fp13 (.a_1(H14),.b_1(Xin),.out_1(MCM14)); 

multiplier fp14 (.a_1(H13),.b_1(Xin),.out_1(MCM13)); 

multiplier fp15 (.a_1(H12),.b_1(Xin),.out_1(MCM12)); 

multiplier fp16 (.a_1(H11),.b_1(Xin),.out_1(MCM11)); 

multiplier fp17 (.a_1(H10),.b_1(Xin),.out_1(MCM10)); 

multiplier fp18 (.a_1(H9),.b_1(Xin),.out_1(MCM9)); 

multiplier fp19 (.a_1(H8),.b_1(Xin),.out_1(MCM8)); 

multiplier fp20 (.a_1(H7),.b_1(Xin),.out_1(MCM7)); 

multiplier fp21 (.a_1(H6),.b_1(Xin),.out_1(MCM6)); 

multiplier fp22 (.a_1(H5),.b_1(Xin),.out_1(MCM5)); 

multiplier fp23 (.a_1(H4),.b_1(Xin),.out_1(MCM4)); 

multiplier fp24 (.a_1(H3),.b_1(Xin),.out_1(MCM3)); 

multiplier fp25 (.a_1(H2),.b_1(Xin),.out_1(MCM2)); 

multiplier fp26 (.a_1(H1),.b_1(Xin),.out_1(MCM1)); 

multiplier fp27 (.a_1(H0),.b_1(Xin),.out_1(MCM0)); 

 

//adders 

adder fadd1 (.a(Q1),.b(MCM25),.out(add_out1)); 

adder fadd2 (.a(Q2),.b(MCM24),.out(add_out2)); 
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adder fadd3 (.a(Q3),.b(MCM23),.out(add_out3)); 

adder fadd4 (.a(Q4),.b(MCM22),.out(add_out4)); 

adder fadd5 (.a(Q5),.b(MCM21),.out(add_out5)); 

adder fadd6 (.a(Q6),.b(MCM20),.out(add_out6)); 

adder fadd7 (.a(Q7),.b(MCM19),.out(add_out7)); 

adder fadd8 (.a(Q8),.b(MCM18),.out(add_out8)); 

adder fadd9 (.a(Q9),.b(MCM17),.out(add_out9)); 

adder fadd10 (.a(Q10),.b(MCM16),.out(add_out10)); 

adder fadd11 (.a(Q11),.b(MCM15),.out(add_out11)); 

adder fadd12 (.a(Q12),.b(MCM14),.out(add_out12)); 

adder fadd13 (.a(Q13),.b(MCM13),.out(add_out13)); 

adder fadd14 (.a(Q14),.b(MCM12),.out(add_out14)); 

adder fadd15 (.a(Q15),.b(MCM11),.out(add_out15)); 

adder fadd16 (.a(Q16),.b(MCM10),.out(add_out16)); 

adder fadd17 (.a(Q17),.b(MCM9),.out(add_out17)); 

adder fadd18 (.a(Q18),.b(MCM8),.out(add_out18)); 

adder fadd19 (.a(Q19),.b(MCM7),.out(add_out19)); 

adder fadd20 (.a(Q20),.b(MCM6),.out(add_out20)); 

adder fadd21 (.a(Q21),.b(MCM5),.out(add_out21)); 

adder fadd22 (.a(Q22),.b(MCM4),.out(add_out22)); 

adder fadd23 (.a(Q23),.b(MCM3),.out(add_out23)); 

adder fadd24 (.a(Q24),.b(MCM2),.out(add_out24)); 

adder fadd25 (.a(Q25),.b(MCM1),.out(add_out25)); 

adder fadd26 (.a(Q26),.b(MCM0),.out(add_out26)); 

 

//Flipflop instantiation (for introducing delay) 

DFF dff1 (.Clk(Clk),.D(MCM26),.Q(Q1)); 

DFF dff2(.Clk(Clk),.D(add_out1),.Q(Q2)); 
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DFF dff3(.Clk(Clk),.D(add_out2),.Q(Q3)); 

DFF dff4(.Clk(Clk),.D(add_out3),.Q(Q4)); 

DFF dff5(.Clk(Clk),.D(add_out4),.Q(Q5)); 

DFF dff6(.Clk(Clk),.D(add_out5),.Q(Q6)); 

DFF dff7(.Clk(Clk),.D(add_out6),.Q(Q7)); 

DFF dff8(.Clk(Clk),.D(add_out7),.Q(Q8)); 

DFF dff9(.Clk(Clk),.D(add_out8),.Q(Q9)); 

DFF dff10(.Clk(Clk),.D(add_out9),.Q(Q10)); 

DFF dff11(.Clk(Clk),.D(add_out10),.Q(Q11)); 

DFF dff12(.Clk(Clk),.D(add_out11),.Q(Q12)); 

DFF dff13(.Clk(Clk),.D(add_out12),.Q(Q13)); 

DFF dff14(.Clk(Clk),.D(add_out13),.Q(Q14)); 

DFF dff15(.Clk(Clk),.D(add_out14),.Q(Q15)); 

DFF dff16(.Clk(Clk),.D(add_out15),.Q(Q16)); 

DFF dff17(.Clk(Clk),.D(add_out16),.Q(Q17)); 

DFF dff18(.Clk(Clk),.D(add_out17),.Q(Q18)); 

DFF dff19(.Clk(Clk),.D(add_out18),.Q(Q19)); 

DFF dff20(.Clk(Clk),.D(add_out19),.Q(Q20)); 

DFF dff21(.Clk(Clk),.D(add_out20),.Q(Q21)); 

DFF dff22(.Clk(Clk),.D(add_out21),.Q(Q22)); 

DFF dff23(.Clk(Clk),.D(add_out22),.Q(Q23)); 

DFF dff24(.Clk(Clk),.D(add_out23),.Q(Q24)); 

DFF dff25(.Clk(Clk),.D(add_out24),.Q(Q25)); 

DFF dff26(.Clk(Clk),.D(add_out25),.Q(Q26)); 

 

//Assign the last adder output to the final output 

always@ (posedge Clk) 

 Yout <= add_out26; 
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endmodule 

 

APPENDIX A.2 Verilog testbench: Low-pass filter 

// ################ Testbench for the FIR filter: ######################### 

module tb_fir; 

 // Inputs  

 reg Clk; 

 reg signed [31:0] Xin; 

 // Outputs  

 wire signed [31:0] Yout; 

 // Instantiate the Unit Under Test (UUT)  

 fir_27tap uut ( 

 .Clk(Clk), 

 .Xin(Xin), 

 .Yout(Yout)); 

 // Generate a clock with a 10ns clock period 

 initial Clk =0; 

 always #5 Clk =~Clk; 

 //Initialize and apply the inputs 

 initial begin 

  Xin  =32'b10100110101100111100100110111011;    #270;//-1.24753e-15 

  Xin  =32'b00111110001001101010110001100000;     #10;// 0.162767 

  Xin  =32'b00111110101001011001100011100000;     #10;// 0.323432 

  Xin  =32'b00111110111101011010100111001000;     #10;// 0.479811 

  Xin  =32'b00111111001000010011100101100100;     #10;// 0.629782 

  Xin  =32'b00111111010001010111010100000100;     #10;// 0.771317 

  Xin  =32'b00111111011001110000101100010100;     #10;// 0.902513 

  Xin  =32'b00111111100000101100010001110000;     #10;// 1.02162 
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  Xin  =32'b00111111100100000100001100101100;     #10;// 1.12705 

  Xin  =32'b00111111100110111101010100010010;     #10;// 1.21744 

  Xin  =32'b00111111101001010101010000100000;     #10;// 1.29163 

  Xin  =32'b00111111101011001010000100110110;     #10;// 1.34867 

  Xin  =32'b00111111101100011010011010110100;     #10;// 1.3879 

  Xin  =32'b00111111101101000101011010000000;     #10;// 1.40889 

  Xin  =32'b00111111101101001010101001100100;     #10;// 1.41145 

  Xin  =32'b00111111101100101010011001001100;     #10;// 1.3957 

  Xin  =32'b00111111101011100101010010110100;     #10;// 1.36196 

  Xin  =32'b00111111101001111100100111101110;     #10;// 1.31085 

  Xin  =32'b00111111100111110010000010000100;     #10;// 1.24318 

  Xin  =32'b00111111100101000111101110001000;     #10;// 1.16002 

  Xin  =32'b00111111100010000000010010010110;     #10;// 1.06264 

  Xin  =32'b00111111011100111101010100100000;     #10;// 0.952471 

  Xin  =32'b00111111010101001100010100000000;     #10;// 0.831131 

  Xin  =32'b00111111001100110100101011101100;     #10;// 0.700362 

  Xin  =32'b00111111000011111110000000000100;     #10;// 0.562012 

  Xin  =32'b00111110110101100000010101101000;     #10;// 0.41801 

  Xin  =32'b00111110100010100110100010110000;     #10;// 0.27033 

  Xin  =32'b00111101111101111011100111100000;     #10;// 0.12096 

  Xin  =32'b10111100111001100110100110000000;     #10;// -0.0281265 

  Xin  =32'b10111110001100110011001110110000;     #10;// -0.175002 

  Xin  =32'b10111110101000101011100010100000;     #10;// -0.317815 

  Xin  =32'b10111110111010001101111001101000;     #10;// -0.454822 

  Xin  =32'b10111111000101011001101110100000;     #10;// -0.584406 

  Xin  =32'b10111111001101001000001000010100;     #10;// -0.70511 

  Xin  =32'b10111111010100001100111010110000;     #10;// -0.815654 

  Xin  =32'b10111111011010100011101001001000;     #10;// -0.914952 
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  Xin  =32'b10111111100000000100010111001010;     #10;// -1.00213 

  Xin  =32'b10111111100010011100110001100010;     #10;// -1.07655 

  Xin  =32'b10111111100100011010001011000110;     #10;// -1.13778 

  Xin  =32'b10111111100101111100001101100000;     #10;// -1.18565 

  Xin  =32'b10111111100111000011000001111110;     #10;// -1.22023 

  Xin  =32'b10111111100111101111001011111000;     #10;// -1.24179 

  Xin  =32'b10111111101000000001110000101110;     #10;// -1.25086 

  Xin  =32'b10111111100111111100010010110000;     #10;// -1.24819 

  Xin  =32'b10111111100111100000101011111010;     #10;// -1.23471 

  Xin  =32'b10111111100110110001001110111110;     #10;// -1.21154 

  Xin  =32'b10111111100101110000100110010100;     #10;// -1.17998 

  Xin  =32'b10111111100100100001101100001000;     #10;// -1.14145 

  Xin  =32'b10111111100011000111101110001000;     #10;// -1.09752 

  Xin  =32'b10111111100001100101111111011000;     #10;// -1.0498 

  Xin  =32'b10111111100000000000000000000000;     #10;// -1 

  Xin  =32'b10111111011100110010100100011000;     #10;// -0.949846 

  Xin  =32'b10111111011001101010110000010000;     #10;// -0.901063 

  Xin  =32'b10111111010110101111100000010100;     #10;// -0.855348 

  Xin  =32'b10111111010100000111100010000100;     #10;// -0.814339 

  Xin  =32'b10111111010001111001001011010000;     #10;// -0.779584 

  Xin  =32'b10111111010000001010010011100000;     #10;// -0.752516 

  Xin  =32'b10111111001111000000001101000100;     #10;// -0.734425 

  Xin  =32'b10111111001110011111011111101000;     #10;// -0.726439 

  Xin  =32'b10111111001110101100000010010000;     #10;// -0.729501 

  Xin  =32'b10111111001111101000110110100100;     #10;// -0.744349 

  Xin  =32'b10111111010001011000000110001100;     #10;// -0.771508 

  Xin  =32'b10111111010011111010111110010100;     #10;// -0.811273 

  Xin  =32'b10111111010111010001101111010100;     #10;// -0.863706 
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  Xin  =32'b10111111011011011011101011000000;     #10;// -0.928631 

  Xin  =32'b10111111100000001011100011001110;     #10;// -1.00564 

  Xin  =32'b10111111100011000000101011010000;     #10;// -1.09408 

  Xin  =32'b10111111100110001011011011011000;     #10;// -1.19308 

  Xin  =32'b10111111101001101001101000101100;     #10;// -1.30158 

  Xin  =32'b10111111101101011000101000110010;     #10;// -1.41828 

  Xin  =32'b10111111110001010101011110111100;     #10;// -1.54174 

  Xin  =32'b10111111110101011100110110110010;     #10;// -1.67034 

  Xin  =32'b10111111111001101011001110111010;     #10;// -1.80236 

  Xin  =32'b10111111111101111100110010001100;     #10;// -1.93593 

  Xin  =32'b11000000000001000110110011001010;     #10;// -2.06914 

  Xin  =32'b11000000000011001100110100100000;     #10;// -2.20002 

  Xin  =32'b11000000000101001110011011011001;     #10;// -2.32659 

  Xin  =32'b11000000000111001001100111011000;     #10;// -2.44689 

  Xin  =32'b11000000001000111100011001010100;     #10;// -2.55898 

  Xin  =32'b11000000001010100100111001010000;     #10;// -2.66103 

  Xin  =32'b11000000001100000001010100100010;     #10;// -2.75129 

  Xin  =32'b11000000001101010000000011100110;     #10;// -2.82818 

  Xin  =32'b11000000001110001111100111011011;     #10;// -2.89025 

  Xin  =32'b11000000001110111110101101011011;     #10;// -2.93624 

  Xin  =32'b11000000001111011100010000110010;     #10;// -2.9651 

  Xin  =32'b11000000001111100111011011110010;     #10;// -2.97601 

  Xin  =32'b11000000001111011111100111110000;     #10;// -2.96838 

  Xin  =32'b11000000001111000100011110011001;     #10;// -2.94187 

  Xin  =32'b11000000001110010101111011001000;     #10;// -2.89641 

  Xin  =32'b11000000001101010100001000011100;     #10;// -2.83216 

  Xin  =32'b11000000001011111111100011001010;     #10;// -2.74956 

  Xin  =32'b11000000001010011000111001110101;     #10;// -2.64932 
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  Xin  =32'b11000000001000100001001000000101;     #10;// -2.53235 

  Xin  =32'b11000000000110011001011100100100;     #10;// -2.39985 

  Xin  =32'b11000000000100000011010000011001;     #10;// -2.25318 

  Xin  =32'b11000000000001100000001100011100;     #10;// -2.09394 

  Xin  =32'b10111111111101100100001000000110;     #10;// -1.92389 

  Xin  =32'b10111111110111110101101010000100;     #10;// -1.74495 

  Xin  =32'b10111111110001111001001000111010;     #10;// -1.55915 

  Xin  =32'b10111111101011110010111101000100;     #10;// -1.36863 

  Xin  =32'b10111111100101100111100100010010;     #10;// -1.17557 

  Xin  =32'b10111111011110110111001001001100;     #10;// -0.982213 

  Xin  =32'b10111111010010100111000011000000;     #10;// -0.790783 

  Xin  =32'b10111111000110100111110101010100;     #10;// -0.603475 

  Xin  =32'b10111110110110000100011110110000;     #10;// -0.422422 

  Xin  =32'b10111110011111111010011110100000;     #10;// -0.249663 

  Xin  =32'b10111101101100100110011110000000;     #10;// -0.0871116 

  Xin  =32'b00111101100000011111101111000000;     #10;// 0.0634686 

  Xin  =32'b00111110010011010100110101000000;     #10;// 0.20049 

  Xin  =32'b00111110101001010010011011111000;     #10;// 0.322563 

  Xin  =32'b00111110110110110110011001010000;     #10;// 0.428515 

  Xin  =32'b00111111000001000111010011101000;     #10;// 0.517409 

  Xin  =32'b00111111000101101010101100110100;     #10;// 0.58855 

  Xin  =32'b00111111001001000011100101011000;     #10;// 0.6415 

  Xin  =32'b00111111001011010001001110010100;     #10;// 0.67608 

  Xin  =32'b00111111001100010011111011110100;     #10;// 0.692367 

  Xin  =32'b00111111001100001101000110010100;     #10;// 0.690698 

  Xin  =32'b00111111001010111111000111000100;     #10;// 0.671658 

  Xin  =32'b00111111001000101101010101111000;     #10;// 0.63607 

  Xin  =32'b00111111000101011100000100101100;     #10;// 0.584979 
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  Xin  =32'b00111111000001010000011100001100;     #10;// 0.519639 

  Xin  =32'b00111110111000100000101001010000;     #10;// 0.441485 

  Xin  =32'b00111110101101000100100010001000;     #10;// 0.352116 

  Xin  =32'b00111110100000011010101111110000;     #10;// 0.253265 

  Xin  =32'b00111110000101100100101011010000;     #10;// 0.14677 

  Xin  =32'b00111101000011011000001010000000;     #10;// 0.0345485 

  Xin  =32'b10111101101001101100011111100000;     #10;// -0.081436 

  Xin  =32'b10111110010010111111110001100000;     #10;// -0.199205 

  Xin  =32'b10111110101000100011001011110000;     #10;// -0.316795 

  Xin  =32'b10111110110111010101010011111000;     #10;// -0.432289 

  Xin  =32'b10111111000010110011100110001100;     #10;// -0.543847 

  Xin  =32'b10111111001001100101010011100100;     #10;// -0.649733 

  Xin  =32'b10111111001111111001001101101000;     #10;// -0.748343 

  Xin  =32'b10111111010101101001011000011100;     #10;// -0.838228 

  Xin  =32'b10111111011010110000100110110100;     #10;// -0.918117 

  Xin  =32'b10111111011111001010011111000100;     #10;// -0.986935 

  Xin  =32'b10111111100001011001101111100100;     #10;// -1.04382 

  Xin  =32'b10111111100010110100011111011000;     #10;// -1.08813 

  Xin  =32'b10111111100011110100101011001010;     #10;// -1.11947 

  Xin  =32'b10111111100100011001111011010110;     #10;// -1.13766 

  Xin  =32'b10111111100100100100011001001000;     #10;// -1.14277 

  Xin  =32'b10111111100100010100101011110100;     #10;// -1.1351 

  Xin  =32'b10111111100011101011111000110110;     #10;// -1.11518 

  Xin  =32'b10111111100010101011100010100100;     #10;// -1.08376 

  Xin  =32'b10111111100001010101100101011110;     #10;// -1.04179 

  Xin  =32'b10111111011111011000101011111100;     #10;// -0.990402 

  Xin  =32'b10111111011011100100111100010000;     #10;// -0.930894 

  Xin  =32'b10111111010111010101110101011100;     #10;// -0.864706 
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  Xin  =32'b10111111010010110001101111101100;     #10;// -0.793395 

  Xin  =32'b10111111001101111111011001111100;     #10;// -0.718605 

  Xin  =32'b10111111001001000101110010111000;     #10;// -0.64204 

  Xin  =32'b10111111000100001100000001001000;     #10;// -0.565434 

  Xin  =32'b10111110111110110010010110110000;     #10;// -0.490522 

  Xin  =32'b10111110110101101000100001011000;     #10;// -0.419009 

  Xin  =32'b10111110101101000111111111111000;     #10;// -0.352539 

  Xin  =32'b10111110100101011101100001110000;     #10;// -0.292667 

  Xin  =32'b10111110011101101001110100110000;     #10;// -0.240834 

  Xin  =32'b10111110010010110001100011010000;     #10;// -0.198337 

  Xin  =32'b10111110001010100100110101100000;     #10;// -0.166311 

  Xin  =32'b10111110000101010011001101100000;     #10;// -0.145704 

  Xin  =32'b10111110000011001000111001100000;     #10;// -0.137262 

  Xin  =32'b10111110000100001110100110010000;     #10;// -0.141516 

  Xin  =32'b10111110001000101001001111010000;     #10;// -0.158767 

  Xin  =32'b10111110010000011001111010110000;     #10;// -0.189082 

  Xin  =32'b10111110011011011101111000110000;     #10;// -0.232293 

  Xin  =32'b10111110100100110111001110101000;     #10;// -0.287992 

  Xin  =32'b10111110101101100000100100110000;     #10;// -0.355539 

  Xin  =32'b10111110110111100011111011010000;     #10;// -0.434073 

  Xin  =32'b10111111000001011100001110101100;     #10;// -0.522517 

  Xin  =32'b10111111000111101001111000011000;     #10;// -0.6196 

  Xin  =32'b10111111001110010100111111001100;     #10;// -0.723874 

  Xin  =32'b10111111010101010110111110000100;     #10;// -0.833733 

  Xin  =32'b10111111011100101000101101101100;     #10;// -0.94744 

  Xin  =32'b10111111100010000001010110100000;     #10;// -1.06316 

  Xin  =32'b10111111100101101110100000101000;     #10;// -1.17896 

  Xin  =32'b10111111101001010111110101101010;     #10;// -1.29289 
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  Xin  =32'b10111111101100111001010010000100;     #10;// -1.40297 

  Xin  =32'b10111111110000001110110011101000;     #10;// -1.50723 

  Xin  =32'b10111111110011010100100000000000;     #10;// -1.60376 

  Xin  =32'b10111111110110000110100100101110;     #10;// -1.69071 

  Xin  =32'b10111111111000100001100000010100;     #10;// -1.76636 

  Xin  =32'b10111111111010100001111110011110;     #10;// -1.82909 

  Xin  =32'b10111111111100000101000101000010;     #10;// -1.87748 

  Xin  =32'b10111111111101001000010000001110;     #10;// -1.91028 

  Xin  =32'b10111111111101101001010101000010;     #10;// -1.92643 

  Xin  =32'b10111111111101100110101000000000;     #10;// -1.92511 

  Xin  =32'b10111111111100111110111011110100;     #10;// -1.90573 

  Xin  =32'b10111111111011110001100110100100;     #10;// -1.86797 

  Xin  =32'b10111111111001111110011011000100;     #10;// -1.81173 

  Xin  =32'b10111111110111100101110010010000;     #10;// -1.7372 

  Xin  =32'b10111111110100101000100101110110;     #10;// -1.64482 

  Xin  =32'b10111111110001001000010000001110;     #10;// -1.53528 

  Xin  =32'b10111111101101000110101011010010;     #10;// -1.40951 

  Xin  =32'b10111111101000100110010001101110;     #10;// -1.26869 

  Xin  =32'b10111111100011101001111000011010;     #10;// -1.1142 

  Xin  =32'b10111111011100101001011111110000;     #10;// -0.947631 

  Xin  =32'b10111111010001010100111110111100;     #10;// -0.770748 

  Xin  =32'b10111111000101011110000011010100;     #10;// -0.585462 

  Xin  =32'b10111110110010011010000110011000;     #10;// -0.393811 

  Xin  =32'b10111110010010101010110011010000;     #10;// -0.197925 

  Xin  =32'b10100111010110111100100110110100;     #10;//-3.05017e-15 

  Xin  =32'b00111110010010100111101110010000;     #10;// 0.197737 

  Xin  =32'b00111110110010010011111100101000;     #10;// 0.39306 

  Xin  =32'b00111111000101010111001000100100;     #10;// 0.583773 
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  Xin  =32'b00111111010001001000101100000000;     #10;// 0.767746 

  Xin  =32'b00111111011100010110010010110100;     #10;// 0.942943 

  Xin  =32'b00111111100011011100000011101010;     #10;// 1.10745 

  Xin  =32'b00111111101000010011011110011110;     #10;// 1.25951 

  Xin  =32'b00111111101100101110001001000010;     #10;// 1.39753 

  Xin  =32'b00111111110000101001001101001010;     #10;// 1.52012 

  Xin  =32'b00111111110100000010010100000110;     #10;// 1.62613 

  Xin  =32'b00111111110110110111100001010110;     #10;// 1.71461 

  Xin  =32'b00111111111001000111011010011110;     #10;// 1.78487 

  Xin  =32'b00111111111010110001000101110010;     #10;// 1.83647 

  Xin  =32'b00111111111011110100001110010100;     #10;// 1.86925 

  Xin  =32'b00111111111100010000111011111100;     #10;// 1.88327 

  Xin  =32'b00111111111100000111111101110110;     #10;// 1.87889 

  Xin  =32'b00111111111011011010100000000100;     #10;// 1.85669 

  Xin  =32'b00111111111010001010001111010110;     #10;// 1.8175 

  Xin  =32'b00111111111000011001010100000010;     #10;// 1.76236 

  Xin  =32'b00111111110110001010010100100110;     #10;// 1.69254 

  Xin  =32'b00111111110011100000001100011100;     #10;// 1.60947 

  Xin  =32'b00111111110000011110001111111010;     #10;// 1.51477 

  Xin  =32'b00111111101101000111111111001010;     #10;// 1.41015 

  Xin  =32'b00111111101001100001001111010010;     #10;// 1.29748 

  Xin  =32'b00111111100101101101111010101000;     #10;// 1.17867 

  Xin  =32'b00111111100001110010000011011000;     #10;// 1.05569 

  Xin  =32'b00111111011011100011011011100000;     #10;// 0.930525 

  Xin  =32'b00111111010011100001110111001000;     #10;// 0.805142 

  Xin  =32'b00111111001011100111010010001100;     #10;// 0.681466 

  Xin  =32'b00111111000011111011010000001000;     #10;// 0.561341 

  Xin  =32'b00111110111001001001110100010000;     #10;// 0.446511 
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  Xin  =32'b00111110101011010101101011100000;     #10;// 0.338584 

  Xin  =32'b00111110011101001100000011010000;     #10;// 0.239017 

  Xin  =32'b00111110000110001010101000000000;     #10;// 0.149086 

  Xin  =32'b00111101100011110001100101000000;     #10;// 0.0698726 

  Xin  =32'b00111011000100110011000000000000;     #10;// 0.00224591 

  Xin  =32'b10111101010110011011001001000000;     #10;// -0.0531486 

  Xin  =32'b10111101110001000110011000000000;     #10;// -0.0958977 

  Xin  =32'b10111110000000001101100001000000;     #10;// -0.125825 

  Xin  =32'b10111110000100100110110000110000;     #10;// -0.142991 

  Xin  =32'b10111110000101110011110010010000;     #10;// -0.147692 

  Xin  =32'b10111110000011111101001000010000;     #10;// -0.14045 

  Xin  =32'b10111101111110011101110010100000;     #10;// -0.122003 

  Xin  =32'b10111101101111110001000101000000;     #10;// -0.0932948 

  Xin  =32'b10111101011000110001111110000000;     #10;// -0.0554502 

  Xin  =32'b10111100000111111110101100000000;     #10;// -0.00976067 

  Xin  =32'b00111101001011010110111001000000;     #10;// 0.0423417 

  Xin  =32'b00111101110010110110001001100000;     #10;// 0.0993089 

  Xin  =32'b00111110001000110101010100000000;     #10;// 0.159504 

  Xin  =32'b00111110011000101000101010100000;     #10;// 0.221232 

  Xin  =32'b00111110100100001100011001110000;     #10;// 0.282764 

  Xin  =32'b00111110101011110100101111101000;     #10;// 0.342376 

  Xin  =32'b00111110110010111111011101001000;     #10;// 0.398371 

  Xin  =32'b00111110111001011111001000000000;     #10;// 0.449112 

  Xin  =32'b00111110111111000111000101110000;     #10;// 0.493053 

  Xin  =32'b00111111000001110101110011100000;     #10;// 0.528761 

  Xin  =32'b00111111000011100001000100010000;     #10;// 0.554948 

  Xin  =32'b00111111000100100000101101101100;     #10;// 0.570487 

  Xin  =32'b00111111000100110000111001011100;     #10;// 0.574438 
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  Xin  =32'b00111111000100001110100110100000;     #10;// 0.566065 

  Xin  =32'b00111111000010110111101011110100;     #10;// 0.544845 

  Xin  =32'b00111111000000101010111100110100;     #10;// 0.510486 

  Xin  =32'b00111110111011010000010011100000;     #10;// 0.462928 

  Xin  =32'b00111110110011100000000011010000;     #10;// 0.40235 

  Xin  =32'b00111110101010001000100010010000;     #10;// 0.329167 

  Xin  =32'b00111110011110011110001010110000;     #10;// 0.244029 

  Xin  =32'b00111110000101110101101000110000;     #10;// 0.147805 

  Xin  =32'b00111101001010100101000101000000;     #10;// 0.0415815 

  Xin  =32'b10111101100101100011111100100000;     #10;// -0.0733626 

  Xin  =32'b10111110010010000100001100110000;     #10;// -0.195569 

  Xin  =32'b10111110101001011001011111010000;     #10;// -0.323424 

  Xin  =32'b10111110111010010000110110011000;     #10;// -0.455182 

  Xin  =32'b10111111000101101100100001001100;     #10;// -0.588994 

  Xin  =32'b10111111001110010001001000100000;     #10;// -0.722933 

  Xin  =32'b10111111010110101110001011111000;     #10;// -0.855026 

  Xin  =32'b10111111011110111011100010100000;     #10;// -0.983286 

  Xin  =32'b10111111100011011000100011100010;     #10;// -1.10574 

  Xin  =32'b10111111100111000011100000001000;     #10;// -1.22046 

  Xin  =32'b10111111101010011010110011101110;     #10;// -1.32559 

  Xin  =32'b10111111101101011010111100111010;     #10;// -1.41941 

  Xin  =32'b10111111110000000000100110000000;     #10;// -1.50029 

  Xin  =32'b10111111110010001000110010010010;     #10;// -1.56679 

  Xin  =32'b10111111110011110000111101111010;     #10;// -1.61766 

  Xin  =32'b10111111110100110110111011010110;     #10;// -1.65182 

  Xin  =32'b10111111110101011001000000011000;     #10;// -1.66846 

  Xin  =32'b10111111110101010101111110011000;     #10;// -1.66698 

  Xin  =32'b10111111110100101101000111100000;     #10;// -1.64703 
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  Xin  =32'b10111111110011011110010001001110;     #10;// -1.60853 

  Xin  =32'b10111111110001101001110000100010;     #10;// -1.55164 

  Xin  =32'b10111111101111010000011101110100;     #10;// -1.47679 

  Xin  =32'b10111111101100010011110100110000;     #10;// -1.38468 

  Xin  =32'b10111111101000110101101100101100;     #10;// -1.27622 

  Xin  =32'b10111111100100111000011110111100;     #10;// -1.15258 

  Xin  =32'b10111111100000011111000000011010;     #10;// -1.01514 

  Xin  =32'b10111111010111011001000001011100;     #10;// -0.865484 

  Xin  =32'b10111111001101001001001010001000;     #10;// -0.705361 

  Xin  =32'b10111111000010010110001110111000;     #10;// -0.536678 

  Xin  =32'b10111110101110010001000110101000;     #10;// -0.361463 

  Xin  =32'b10111110001110100011010010000000;     #10;// -0.181841 

  Xin  =32'b10100111011111111110100100111110;     #10;//-3.55148e-15 

  Xin  =32'b00111110001110100011010010000000;     #10;// 0.181841 

  Xin  =32'b00111110101110010001000110101000;     #10;// 0.361463 

  Xin  =32'b00111111000010010110001110111000;     #10;// 0.536678 

  Xin  =32'b00111111001101001001001010001000;     #10;// 0.705361 

  Xin  =32'b00111111010111011001000001011100;     #10;// 0.865484 

  Xin  =32'b00111111100000011111000000011010;     #10;// 1.01514 

  Xin  =32'b00111111100100111000011110111100;     #10;// 1.15258 

  Xin  =32'b00111111101000110101101100101100;     #10;// 1.27622 

  Xin  =32'b00111111101100010011110100110000;     #10;// 1.38468 

  Xin  =32'b00111111101111010000011101110100;     #10;// 1.47679 

  Xin  =32'b00111111110001101001110000100010;     #10;// 1.55164 

  Xin  =32'b00111111110011011110010001001110;     #10;// 1.60853 

  Xin  =32'b00111111110100101101000111100000;     #10;// 1.64703 

  Xin  =32'b00111111110101010101111110011000;     #10;// 1.66698 

  Xin  =32'b00111111110101011001000000011000;     #10;// 1.66846 
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  Xin  =32'b00111111110100110110111011010110;     #10;// 1.65182 

  Xin  =32'b00111111110011110000111101111010;     #10;// 1.61766 

  Xin  =32'b00111111110010001000110010010010;     #10;// 1.56679 

  Xin  =32'b00111111110000000000100110000000;     #10;// 1.50029 

  Xin  =32'b00111111101101011010111100111010;     #10;// 1.41941 

  Xin  =32'b00111111101010011010110011101110;     #10;// 1.32559 

  Xin  =32'b00111111100111000011100000001000;     #10;// 1.22046 

  Xin  =32'b00111111100011011000100011100010;     #10;// 1.10574 

  Xin  =32'b00111111011110111011100010100000;     #10;// 0.983286 

  Xin  =32'b00111111010110101110001011111000;     #10;// 0.855026 

  Xin  =32'b00111111001110010001001000100000;     #10;// 0.722933 

  Xin  =32'b00111111000101101100100001001100;     #10;// 0.588994 

  Xin  =32'b00111110111010010000110110011000;     #10;// 0.455182 

  Xin  =32'b00111110101001011001011111010000;     #10;// 0.323424 

  Xin  =32'b00111110010010000100001100110000;     #10;// 0.195569 

  Xin  =32'b00111101100101100011111100100000;     #10;// 0.0733626 

  Xin  =32'b10111101001010100101000101000000;     #10;// -0.0415815 

  Xin  =32'b10111110000101110101101000110000;     #10;// -0.147805 

  Xin  =32'b10111110011110011110001010110000;     #10;// -0.244029 

  Xin  =32'b10111110101010001000100010010000;     #10;// -0.329167 

  Xin  =32'b10111110110011100000000011010000;     #10;// -0.40235 

  Xin  =32'b10111110111011010000010011100000;     #10;// -0.462928 

  Xin  =32'b10111111000000101010111100110100;     #10;// -0.510486 

  Xin  =32'b10111111000010110111101011110100;     #10;// -0.544845 

  Xin  =32'b10111111000100001110100110100000;     #10;// -0.566065 

  Xin  =32'b10111111000100110000111001011100;     #10;// -0.574438 

  Xin  =32'b10111111000100100000101101101100;     #10;// -0.570487 

  Xin  =32'b10111111000011100001000100010000;     #10;// -0.554948 
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  Xin  =32'b10111111000001110101110011100000;     #10;// -0.528761 

  Xin  =32'b10111110111111000111000101110000;     #10;// -0.493053 

  Xin  =32'b10111110111001011111001000000000;     #10;// -0.449112 

  Xin  =32'b10111110110010111111011101001000;     #10;// -0.398371 

  Xin  =32'b10111110101011110100101111101000;     #10;// -0.342376 

  Xin  =32'b10111110100100001100011001110000;     #10;// -0.282764 

  Xin  =32'b10111110011000101000101010100000;     #10;// -0.221232 

  Xin  =32'b10111110001000110101010100000000;     #10;// -0.159504 

  Xin  =32'b10111101110010110110001001100000;     #10;// -0.0993089 

  Xin  =32'b10111101001011010110111001000000;     #10;// -0.0423417 

  Xin  =32'b00111100000111111110101100000000;     #10;// 0.00976067 

  Xin  =32'b00111101011000110001111110000000;     #10;// 0.0554502 

  Xin  =32'b00111101101111110001000101000000;     #10;// 0.0932948 

  Xin  =32'b00111101111110011101110010100000;     #10;// 0.122003 

  Xin  =32'b00111110000011111101001000010000;     #10;// 0.14045 

  Xin  =32'b00111110000101110011110010010000;     #10;// 0.147692 

  Xin  =32'b00111110000100100110110000110000;     #10;// 0.142991 

  Xin  =32'b00111110000000001101100001000000;     #10;// 0.125825 

  Xin  =32'b00111101110001000110011000000000;     #10;// 0.0958977 

  Xin  =32'b00111101010110011011001001000000;     #10;// 0.0531486 

  Xin  =32'b10111011000100110011000000000000;     #10;// -0.00224591 

  Xin  =32'b10111101100011110001100101000000;     #10;// -0.0698726 

  Xin  =32'b10111110000110001010101000000000;     #10;// -0.149086 

  Xin  =32'b10111110011101001100000011010000;     #10;// -0.239017 

  Xin  =32'b10111110101011010101101011100000;     #10;// -0.338584 

  Xin  =32'b10111110111001001001110100010000;     #10;// -0.446511 

  Xin  =32'b10111111000011111011010000001000;     #10;// -0.561341 

  Xin  =32'b10111111001011100111010010001100;     #10;// -0.681466 
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  Xin  =32'b10111111010011100001110111001000;     #10;// -0.805142 

  Xin  =32'b10111111011011100011011011100000;     #10;// -0.930525 

  Xin  =32'b10111111100001110010000011011000;     #10;// -1.05569 

  Xin  =32'b10111111100101101101111010101000;     #10;// -1.17867 

  Xin  =32'b10111111101001100001001111010010;     #10;// -1.29748 

  Xin  =32'b10111111101101000111111111001010;     #10;// -1.41015 

  Xin  =32'b10111111110000011110001111111010;     #10;// -1.51477 

  Xin  =32'b10111111110011100000001100011100;     #10;// -1.60947 

  Xin  =32'b10111111110110001010010100100110;     #10;// -1.69254 

  Xin  =32'b10111111111000011001010100000010;     #10;// -1.76236 

  Xin  =32'b10111111111010001010001111010110;     #10;// -1.8175 

  Xin  =32'b10111111111011011010100000000100;     #10;// -1.85669 

  Xin  =32'b10111111111100000111111101110110;     #10;// -1.87889 

  Xin  =32'b10111111111100010000111011111100;     #10;// -1.88327 

  Xin  =32'b10111111111011110100001110010100;     #10;// -1.86925 

  Xin  =32'b10111111111010110001000101110010;     #10;// -1.83647 

  Xin  =32'b10111111111001000111011010011110;     #10;// -1.78487 

  Xin  =32'b10111111110110110111100001010110;     #10;// -1.71461 

  Xin  =32'b10111111110100000010010100000110;     #10;// -1.62613 

  Xin  =32'b10111111110000101001001101001010;     #10;// -1.52012 

  Xin  =32'b10111111101100101110001001000010;     #10;// -1.39753 

  Xin  =32'b10111111101000010011011110011110;     #10;// -1.25951 

  Xin  =32'b10111111100011011100000011101010;     #10;// -1.10745 

  Xin  =32'b10111111011100010110010010110100;     #10;// -0.942943 

  Xin  =32'b10111111010001001000101100000000;     #10;// -0.767746 

  Xin  =32'b10111111000101010111001000100100;     #10;// -0.583773 

  Xin  =32'b10111110110010010011111100101000;     #10;// -0.39306 

  Xin  =32'b10111110010010100111101110010000;     #10;// -0.197737 
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  Xin  =32'b10100111100111101101011101011011;     #10;//-4.40873e-15 

 end 

endmodule 

 

APPENDIX B.1: MATLAB Code: Low-pass filter 

f1=200; 

f2=300;     %the frequencies of sines signal that needs filtered  

f3=1000; 

f4=2000;             

fc=500; 

TW=800; 

fs=3500.0; 

M=ceil(5.98*(fs/TW));   %define the window length 

if rem(M, 2) == 1 

M=M; 

else 

M=M+1; 

end 

N=M-1;               %define the order of filter 

b = fir1(N,fc/(fs/2),'low',blackman(M)); 

[h,f]=freqz(b,1,512);          

figure(1) 

plot(f*fs/(2*pi),20*log10(abs(h)))   % frequency and amplitude parameters respectively 

xlabel('frequency/Hz'); 

ylabel('gain/dB'); 

title('The gain response of low-pass filter'); 

t=(0:400)/fs;     %time domain and the step length 

t1=(0.002:0.00001:0.006); 
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s=sin(2*pi*f1*t)+sin(2*pi*f2*t)+sin(2*pi*f3*t)+sin(2*pi*f4*t);  %unfiltered signal 

s1=sin(2*f1*pi*t1)+sin(2*f2*pi*t1)+sin(2*f3*pi*t1)+sin(2*f4*pi*t1); 

sf=filter(b,1,s);                

figure(2) 

subplot(211) 

plot(t1,s1);                  

xlabel('time/s'); 

ylabel('amplitude'); 

title('Time-domain diagram before filtering'); 

subplot(212) 

Fs=fft(s,512);              %transform the signal to frequency domain 

AFs=abs(Fs);                %take the amplitude 

f=(0:255)*fs/512;               %frequency sampling 

plot(f,AFs(1:256));             %plot the frequency domain diagram before filtering 

xlabel('frequency/Hz'); 

ylabel('amplitude'); 

title('Frequency-domain diagram before filtering'); 

figure(3) 

subplot(211) 

plot(t,sf)               %plot the signal graph after filtering 

xlabel('time/s'); 

ylabel('amplitude'); 

title('Time-domain diagram after filtering'); 

axis([0.005 0.025 -4 4]); 

subplot(212) 

Fsf=fft(sf,512);                %frequency-domain diagram after filtering 

AFsf=abs(Fsf);              %the amplitude 

f=(0:255)*fs/512;               %frequency sampling 
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plot(f,AFsf(1:256))             %plot the frequency domain diagram after filtering 

xlabel('frequency/Hz'); 

ylabel('amplitude'); 

title('Frequency-domain diagram after filtering'); 
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