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ABSTRACT

A significant portion of the veteran population experiences post-traumatic

stress disorder, or PTSD, as a result of their service. This is often accompanied by

social anxiety disorder. In particular, student veterans are especially vulnerable as

they struggle to integrate into a college lifestyle. In an effort to improve the support

systems available for student veterans, we employ approaches from topological data

analysis, an emerging area of research, to anxiety detection in text. Our models

provide a tool to support psychologists and social workers in treating social anxiety.

The results detailed in this paper could also have broader impacts in fields such as

pedagogy and public health.
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I. INTRODUCTION

Post-traumatic stress disorder, or PTSD, affects a significant proportion of the

veteran population and is often accompanied by social anxiety disorder. About 8 -

10% of returning combat veterans have PTSD, and of those, another 7 - 13% also

have social anxiety disorder [1]. In particular, student veterans can have difficulty

transitioning to life on a college campus [2]. Student veterans often face difficulty

adjusting to the lack of structure in college classes and can struggle to relate with

their younger, less experienced peers [1]. This radical lifestyle shift from service to

campus in conjunction with limited access to resources, may negatively impact a

student veteran’s quality of life [2].

In order to assist psychologists and social workers in diagnosing and treating

social anxiety disorder, we explore several applications of machine learning to

anxiety detection. We began with a set of ten interviews between a psychologist and

student veterans. Those interviews were transcribed, and the veterans’ responses

were divided into 1,187 sentences. Then, each sentence was rated by three

independent coders, each with a background in psychology or social work, for

anxiety on a scale of zero to three. Each of their ratings were averaged and rounded

to the nearest integer. This coding ultimately resulted in a set of four target classes

taking on values zero, one, two or three, where a class of zero indicates no anxiety

and class three represents high anxiety.

Terminology

In machine learning, the general goal is to take some input data and develop a

set of rules from which one can derive an output. Input data consists of a collection

of instances, which are typically represented as vectors ~x. Each entry in the vector is
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referred to as an attribute or feature. The question of what constitutes an attribute

is one with many answers depending on how the problem is formulated, and is

discussed further in Chapter I. The output value derived from our set of rules

typically consists of one value, ŷ, called a label or target. This value can be

numerical or categorical, depending on the problem at hand. In the case of our

problem, each sentence is an instance, and the rating on a scale of zero to three is a

label.

The set of rules that allow us to predict the label of an instance is referred to as

a model. Models can perform different tasks, namely regression or classification. In a

regression problem the model tries to predict a continuous value that is typically a

floating-point number, e.g. 3.14. In a classification problem the model is concerned

with providing a discrete value as output. For example, determining the salary of an

NBA player given their season statistics is a regression problem, whereas predicting

the breed of dog based on an image of said dog is a classification problem. The

problem we address in this thesis is one of classification.

It is useful to be able to discern between the true label given to an instance and

the label predicted by our model. We denote the true label given to an instance

with y. As mentioned above, labels can be numerical or categorical. Our data is

both ordinal and categorical, meaning that each label (zero, one, two or three)

corresponds to a particular category, called a class (no, low, medium or high

anxiety, respectively), and that these categories imply some sense of order. It is

important to acknowledge when data are ordinal because it allows us to better

assess the viability of our model. For instance, a model predicting that a sentence

has no anxiety when the sentence is actually high in anxiety is a much graver error

than a model predicting that the same sentence has medium anxiety (rather than

its true label of high anxiety).
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Overview of Topological Data Analysis

Topological data analysis (TDA) is an emergent area of interest in the data

science community [3]. The underlying idea of TDA is that our data form shapes

with specific mathematical properties. We can use these mathematical properties to

discern the different classes to which our data belong. The tool that we use to

perform TDA is known as persistent homology. Like in a game of connect-the-dots,

persistent homology allows us to impose a continuous image on a discrete set of

data. In particular, persistent homology is concerned with the number of holes that

appear in our data at each dimension when we try to create a continuous shape.

Because topological data analysis is robust to outliers, it is very attractive for

use in situations where data are particularly noisy [4]. We employ topological data

analysis as a method of feature extraction before applying different machine

learning models.

Overview of Methods

As mentioned above, we begin by exploring the ways that we can use TDA as a

method for feature extraction. In order to use TDA for textual data, we embed each

sentence into a real-valued vector space. Then, after applying persistent homology,

we employ a number of machine learning algorithms to classify the level of anxiety

in each sentence.

Outline

We begin with a discussion of related work in Chapter II, before proceeding to

explain our methodology in Chapter III. The results of our work are discussed in

Chapter IV. Finally, a conclusion that includes discussions of limitations and areas

for future work is included in Chapter V.
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II. RELATED WORK

Detecting emotion from text has been a task of interest for a long time, and

much research has been dedicated to training classifiers capable of detecting a range

of affect states. With the advent of popular social network sites such as Twitter,

many researchers have turned to the internet to collect data [5, 6, 7] and have

achieved promising results. However, recognizing emotion from text alone is still

quite challenging, so text data is sometimes accompanied by other supplemental

data like audio, resulting in even greater levels of classification accuracy [8, 9].

Our project differs from most other attempts to classify emotion because we

analyze the nuances in a single emotion rather than a range of different feelings.

Although some work exists in detecting anxiety through text [6], the work is limited

in scope, analyzing only tweets containing the words ‘work’ and ‘feeling.’ In

addition, our approach pairs anxiety recognition with topological data analysis, an

approach that is, to the best of our knowledge, completely novel.

As is discussed in Chapter III, the word vector representation, or embedding,

used can have a significant impact on model accuracy [10]. Popular word embedding

methods include GloVe [11], which we use in this paper, and word2vec [10].

Topological data analysis, as mentioned above, is a relatively new field of

interest in the world of data science and machine learning. Many researchers have

explored the possible applications of TDA to time series data [12, 13, 14, 3] and

have achieved promising results. There has also been recent interest in the

applications of TDA to specifically text-based data [15, 16]. A standing research

question is concerned with the ways in which we can use the information yielded by

persistent homology as input suitable for machine learning tasks. Popular

kernel-based learners such as support vector machine (SVM) classifiers require more

than just a persistence diagram in order to make predictions. For example, they
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need either a stable kernel like those provided in [17, 12] or a vector-based

representation of persistence diagrams such as the ones detailed in [18, 19].

When working with traditional machine learning options, we first chose to

explore support vector classifiers both because of their performance on text

classification [5] and their ability to perform well on small data sets [9]. We also

chose to implement a logistic regression classifier due to the promising results

obtained by others using this algorithm in conjunction with persistence images [19].

Finally, to provide a baseline for comparing the efficacy of persistence images to

that of solely persistence diagrams, we implement extreme gradient boosting.
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III. METHODOLOGY

Data Collection

Our data was collected with the help of colleagues from the School of Social

Work at Texas State University and the Graduate College of Social Work at the

University of Houston. Ten student veterans with PTSD and social anxiety disorder

agreed to be interviewed by a professional psychologist. Their interviews were

transcribed and broken into 1,187 responses of varying lengths. Then, three

independent coders with experience in mental health research and treatment of

PTSD and anxiety listened to recordings of each interview and rated the transcribed

responses for anxiety following a scale of zero (no anxiety present in the sentence) to

three (high anxiety present in the sentence). Two sentences were missed by our

judges, bringing our final sample size down to 1,185 responses. The data collection

methods used for this project are further described in [1].

Type ICC F Statistic p-value 95% CI

ICC(3,3) 0.678 3.103 0 [0.64, 0.71]

Table 1: ICC(3,3) statistic for our data set.

We measured the amount of agreement between our three coders by using the

intraclass correlation coefficient (ICC), which is a measure of inter-rater reliability.

In other words, the ICC quantifies how much our different judges agree with each

other. We used ICC (3, 3) because each judge rated each instance, and we

considered the mean of their ratings to be our target [20]. Our results, found in

Table 1, suggest a reasonable amount of agreement between our three coders.

After each judge rated every target, their ratings were averaged and rounded to
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the nearest integer, which then became our final target class. The distribution of

average ratings is right-skewed, with only 18 instances of high stress responses out

of 1,185 total rated instances. The distribution of our target classes can be seen in

Figure 1.
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Figure 1: The distribution of average anxiety ratings across all responses.

Word Embeddings

In order to perform machine learning on our data, we must first find some

scheme with which we can transform our data into real-valued vectors. This process

is known as an embedding, whereby a single word is projected into Rd for d ∈ N.

Thus, if we consider a sentence x = {w0, w1, w2, ..., wn} consisting of a set of n

words, each word wi gets transformed into a real-valued vector, ~wi ∈ Rd for

i = 0, 1, ..., n, so that x becomes a matrix of vectors of the form ~wi.

A suitable word embedding will do more than assign random numbers as

entries in each word vector. Ideally, an embedding retains certain semantic qualities

that exist within a word. A good word embedding will typically assign words that

are closer in meaning to vectors that are closer together in space. For instance, one

should expect the vector representation of the word ‘dog’ to exist closer to the

vector representation of the word ‘cat’ than to that of the word ‘truck.’ In fact,
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certain embeddings even allow for arithmetic on word vectors to yield a meaningful

answer. For example, the analogy ‘queen is to woman as princess is to girl’ will be

represented in the vector space as queen - woman = princess - girl.

We employ GloVe, which stands for Global Vectors, in order to embed each

sentence into a vector space. GloVe is a popular word embedding algorithm which

has been shown to yield state-of-the-art results on a myriad of natural language

processing tasks [11].

Topological Data Analysis

After embedding each sentence into a vector space Rd, we are left with a

discrete collection of vectors on which we can employ persistent homology. We do

this by constructing simplicial complexes from our data. A simplicial complex is a

collection of simplices. We can envision a 0-simplex as being a singular point, a

1-simplex as a line between two points, and a 3-simplex as a triangle [15]. Simplices

are defined in all dimensions, and a k-simplex consists of a collection of points in

(k+1) dimensions. A visualization of select simplices and a simplicial complex from

[15] is given in Figure 2.

Figure 2: A 0-simplex, 1-simplex, 2-simplex, and 3-simplex (left). A simplicial complex
(right). This figure first appeared in [15].

As mentioned above, we begin with each sentence consisting of a discrete set of

vectors residing in Rd. This is sometimes referred to as a data cloud. With this data

cloud, we can construct what is known as a Vietoris-Rips complex, often

abbreviated as a Rips complex. A Rips complex is a simplicial complex consisting of
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Figure 3: An example of some shapes and their Betti numbers.

k-simplices whose components {xα}k0 are pairwise within some distance ε [21].

Of interest to us is the number of holes that appear in our data as we construct

this simplicial complex. Formally, the ith Betti number, βi is the rank of the ith

homology group of a topological space. Informally, the ith Betti number is the

number of i-dimensional holes in our data. We are primarily interested in the

number of components, β0, and loops, β1, present in our data cloud. Some examples

of familiar shapes and their Betti numbers are given in Figure 3.

However, the Betti numbers of a single Rips complex constructed in isolation

tells us little about our data. We must delve further, and ask which of these holes

persist in the Rips complexes that are constructed at different values of ε [21]. We

do this through the construction of a persistence diagram.

Figure 4: An example of Rips filtration.

A persistence diagram is a graph that gives us information about the

components and loops that appear in our data as ε increases in value. Imagine that

we are given a set of discrete points such as an incomplete connect-the-dots. Rather

than playing the game traditionally, wherein we would connect the dots according to
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a predefined order, we take a different approach. We begin by drawing an arbitrarily

small circle around each point in our connect-the-dot game. Then we slowly start to

draw larger and larger circles around each point until two or more of those circles

intersect. When two dots’ circles intersect, we connect them. As we begin to connect

more dots, loops will start to appear (and eventually disappear) in our data and

individual components will start to disappear. For each component or loop, we plot

a point (x, y) in our persistence diagram so that x represents the radius of the

circles when the component or loop first appeared and y represents the radius of the

circles when the component or loop disappeared. This is our persistence diagram.

After constructing a persistence diagram, we will likely find that many points

in the diagram are clustered around the line y = x. Those points that are further

away from the line y = x are considered persistent, and of interest to us [14]. An

example of one of our persistence diagrams is shown in Figure 5.

Figure 5: An example of a persistence diagram (right). Note that ‘Birth’ refers to the ε value
at which the loop appeared and ‘Death’ refers to the ε value at which the loop
disappeared.

Although persistence diagrams are powerful, they are not conducive as input

for many popular machine learning algorithms. This is where what is known as a

persistence image becomes useful. As explained in [18], persistence images offer a

stable, vector-based representation of persistence diagrams that work as input for
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many popular machine learning algorithms.

As described in [18], to create a persistence image, we begin by mapping a

persistence diagram PD to an integrable function ρPD : R2 → R that’s defined as a

weighted sum of probability density functions (one centered at each point in PD).

Then a grid is defined by taking a discretization of a subdomain of ρPD. Finally, a

persistence image is yielded by taking an integral of the function on each grid box

(Fig. 6).

Figure 6: The persistence image of an instance of class one.

Materials

We used Sci-kit Learn, TensorFlow, and Keras to implement the machine and

deep learning models. To extract the persistence diagrams from our data we used

Ripser [22]. Finally, to convert the persistence diagrams to persistence images we

used Persim [23].

Methods

We began preparing the data by stripping each response of punctuation and

converting all letters to the same case e.g. lowercase. Because the data consist of

transcribed interviews we did not need to remove emojis or links, which can be the

case when analyzing text data from social media. Then, we tokenized each response

and embedded them into a vector space using GloVe (Fig. 7).
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Death, be not proud. death, be, not, proud 10, 2, 29, 67

Figure 7: An example of text processing, from a complete sentence through the embedding.

After embedding our data in a feature space, we used Ripser [22] to extract the

persistence diagram from each sentence. Then we used Persim [23] to convert each

diagram into a persistence image. Persistence images begin as matrices, so in order

to convert them into suitable input for our machine learning algorithms we flattened

each matrix into a vector using NumPy [24].

As mentioned previously, we used this set of input vectors to train two different

models: a support vector classifier and logistic regression model. Additionally, we

used the raw persistence diagrams as input to an extreme gradient boosting (XGB)

classifier. Since XGB classifiers do not require persistence images in order to train,

this algorithm serves as a baseline of comparison in order to evaluate whether

extracting these persistence images does in fact allow for better prediction accuracy.

Finally, to act as a litmus test, we also trained a long short-term memory (LSTM)

network with an attention layer on the original embedded word vectors themselves.

Since LSTMs have been shown to perform well on text classification tasks [25], they

provide a reliable basis of comparison between our approach and pre-existing

classification methods.

In order to more accurately assess the performance of our models, we used

five-fold cross validation. In five-fold cross validation, one fifth of the data are set

aside, while the other four fifths are used to train the model. When the model is

done training it is evaluated for accuracy on the previously-withheld fifth of data.

This process is then repeated, except now the fifth of the data reserved for testing

consists entirely of instances that were previously in the training set. This process is

again repeated until every instance has been in the test set once and the training set

12



...

= validation set

= training set

Figure 8: A visualization of five-fold cross validation.

four times. This process of validation allows us to ensure that our model performs

well on all of our data, i.e. it didn’t just get an “easy” set of test data. We used the

accuracy given along each fold to construct an average classification accuracy for all

of our models (see Chapter IV).
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IV. RESULTS

In order to properly evaluate our models we developed two baselines. The first

baseline is a blind guess, which would result in about a 25% accuracy score since

there are four classes. The second baseline accuracy is 46.2%, which is yielded by

predicting only the most common class.

XGB Logistic Regression SVC LSTM w/ attention
(word2vec embedding)

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

A Comparison of Classifier Accuracies
Blind guess
Most common class

Figure 9: The five-fold cross-validated accuracy scores of our models.

Our LSTM with attention achieved a cross-validated accuracy of 47.70%, just

barely above our second baseline. Deep learning models typically require a large

volume of training data, which we do not have. The limitations highlighted by the

performance of this model elucidate our motivation for exploring topological data

analysis as a means of feature extraction in the first place.

Similarly, our XGB classifier achieved an accuracy of 44.25%. This is the only

classifier that performed below our second baseline accuracy of 46.2% (Fig. 9). This

model’s poor performance justifies our need for the ability to train a series of more

powerful classifiers like support vector machines and logistic regression.

Our logistic regression model did perform above our baseline, and in fact it

achieved an accuracy of 50.08%, outperforming even our deep learning model. Our

support vector classifier achieved a similar accuracy of 50.25%.
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Figure 10: The confusion matrix produced via five-fold cross-validation of our logistic re-
gression classifier.

Model Input Data Accuracy(%)

Extreme Gradient Boosting Persistence Diagrams 44.25
Support Vector Machine Persistence Images 50.25

Logistic Regression Persistence Images 50.08
LSTM with attention Embedded Sentences 47.70

Table 2: An overview of our classifiers, the input data they were trained on, and their accu-
racy.

Discussion

Both our support vector machine and logistic regression models outperformed

the LSTM with attention as well as our baselines. The confusion matrices from both

of these models highlight that although they outperform our second baseline, our

class distribution is so skewed that even our best models struggle to learn from this

data (Figs. 10 & 11).

Of particular note is that none of our classifiers were able to correctly identify

instances of our third class. However, as was previously explained in II, our data is

ordinal, meaning it is better to mislabel instances of class three as class two than it
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Figure 11: The confusion matrix produced via five-fold cross-validation of our support vector
classifier.

is to mislabel them as class one. In this regard, our logistic regression classifier came

the closest to correctly recognizing sentences of class three, as three out of a total of

eighteen instances were labeled as class two by the model.
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V. CONCLUSION

The research detailed in this project portrays topological data analysis as a

viable method of feature engineering for text classification tasks. Notably, our work

highlights how persistent homology paired with traditional machine learning

algorithms can outperform neural networks. Our work produced tools that can help

to support the decision making of psychology and social work professionals who are

treating social anxiety.

Beyond the immediate scope of our problem, our research is applicable to many

other areas as well. For instance, automatic emotion recognition can aid in

identifying subject areas in which students don’t feel confident [25] or help analyze

societal responses to stressful situations en masse [6].

Limitations

Our psychologists listened to the recorded interviews while rating each response

for anxiety, which resulted in a few instances of sentences having the same text

content with different anxiety levels. For example, the lone word ‘yeah’ appears as a

response in our data set 68 times, and the anxiety level of the response varies

between instances.

Additionally, deep learning typically requires a large amount of training data,

so the performance of our deep learning models is also likely limited by the small

sample size of our data. This is compounded by the deeply skewed distribution of

our classes (Fig. 1), which is difficult for most machine learning models to overcome.
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Areas for Future Work

Many areas of interest remain available to be pursued further. Of particular

interest is the possibility of using persistence images as input to a neural network.

Extracting the persistent homology of sentences before using them to train a neural

network is a difficult question, and one that has as of yet been unanswered.

However, persistence images show promise in exploring the applications of visual

attention to topological data analysis.

A second direction for future work is the exploration of how TDA can be used

as a supplement for additional features. For instance, [16] discusses how augmenting

a traditional feature set with topological features can improve classification

accuracy by up to 5%. Given the accuracy of our current models, this approach

provides a promising method for increasing classifier performance.
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