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GENERALIZATIONS OF THE DRIFT LAPLACE EQUATION IN

THE HEISENBERG GROUP AND GRUSHIN-TYPE SPACES

THOMAS BIESKE, KELLER BLACKWELL

Abstract. We find fundamental solutions to p-Laplace equations with drift

terms in the Heisenberg group and Grushin-type planes. These solutions

are natural generalizations of the fundamental solutions discovered by Beals,
Gaveau, and Greiner for the Laplace equation with drift term. Our results are

independent of the results of Bieske and Childers, in that Bieske and Childers

consider a generalization that focuses on the p-Laplace-type equation while we
primarily concentrate on a generalization of the drift term.

1. Introduction

When studying partial differential equations, one frequent problem under con-
sideration concerns establishing a closed-form fundamental solution. While it is
often not possible to do so, equations that possess such closed-form solutions spark
further study and interest. One of the most well-known examples is the p-Laplace
equation in (Euclidean) Rn. In their seminal paper, Capogna, Danielli, and Garo-
falo [7] establish the closed-form fundamental solution to the p-Laplace equation
in a class of sub-Riemannian spaces called groups of Heisenberg-type. The first
author and Gong [6] found a closed-form fundamental solution to the p-Laplace
equation in some Grushin-type spaces, which are sub-Riemannian spaces that lack
an algebraic group law. Because of this deficiency, the closed-form only holds when
the singularity is at certain points. (See Sections 3 and 4 for further discussion
concerning the Heisenberg group and Grushin-type planes.)

Beals, Gaveau, and Greiner [1] establish a formula for the fundamental solution
to the 2-Laplace equation with drift term in a large class of sub-Riemannian spaces.
In [5] the first author and Childers expanded these results by invoking a p-Laplace
generalization that encompasses the formulas of [1, 7, 6] by generalizing the p-
Laplace operator. That paper also included a negative result [5, Theorems 4.1,
4.2]. In this paper, we focus on that negative result and produce a different natural
generalization of the p-Laplace equation with drift term by focusing on generalizing
the drift term. Our solutions are stable under limits when p → ∞ and when the
drift parameter L→ 0 (which is the standard p-Laplace equation).
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2. Motivating results

2.1. Heisenberg Group. In the Heisenberg group (See Section 3 for further de-
tails and discussion.) the following theorem establishing the fundamental solution
of the p-Laplace equation in the Heisenberg group was proved by Capogna, Danielli,
and Garofalo [7].

Theorem 2.1 ([7]). Let 1 < p <∞. In the first Heisenberg group H1, let

u(x1, x2, x3) = (x2
1 + x2

2)2 + 16x2
3.

For p 6= 4, let

ηp =
4− p

4(1− p)
,

and let

ζp =

{
u(x1, x2, x3)ηp p 6= 4

log u(x1, x2, x3) p = 4.

Then we have ∆pζp = Cδ0 for some constant C in the sense of distributions.

Beals, Gaveau, and Greiner [1] extend this result by finding the fundamental
solution to the 2-Laplace equation with a drift term, as shown in the following
theorem (cf. [5, Theorem 3.4]).

Theorem 2.2 ([1]). Let L ∈ R, |L| 6= 1. Consider the constants

η =
L− 1

2
and τ =

−(L+ 1)

2
together with the functions

v(x1, x2, x3) = (x2
1 + x2

2)− 4ix3 and w(x1, x2, x3) = (x1
1 + x2

2) + 4ix3,

for defining our main function

u2,L(x1, x2, x3) = v(x1, x2, x3)ηw(x1, x2, x3)τ .

Then ∆2u2,L + iL[X1, X2]u2,L = Cδ0 for some constant C, in the sense of distri-
butions.

2.2. Grushin-type planes. The first author and Gong [6] proved the follow-
ing theorem establishing the fundamental solution to the p-Laplace equation in
Grushin-type planes Gn. (See Section 4 for further details and discussion.)

Theorem 2.3 ([6]). Let 1 < p <∞ and define

F (y1, y2) = c2(y1 − a)(2n+2) + (n+ 1)2(y2 − b)2.

For p 6= n+ 2, consider

τp =
n+ 2− p

(2n+ 2)(1− p)
so that in Gn we have the well-defined function

ψp =

{
F (y1, y2)τp p 6= n+ 2

logF (y1, y2) p = n+ 2.

Then ∆pψp = Cδ0 for some constant C, in the sense of distributions.

As in the Heisenberg environment, Beals, Gaveau and Greiner [1] extend this
result by finding the fundamental solution to the 2-Laplace equation with a drift
term, as shown in the following theorem (cf. [5, Theorem 3.2]).
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Theorem 2.4 ([1]). Let L ∈ R, |L| 6= 1. Consider the quantities

α =
−n

(2n+ 2)
(1 + L) and β =

−n
(2n+ 2)

(1− L).

We use these constants with the functions

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b),
h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b)

for defining our main function

f2,L(y1, y2) = g(y1, y2)αh(y1, y2)β .

Then ∆2f2,L + iL[Y1, Y2]f2,L = Cδ0 for some constant C, in the sense of distribu-
tions.

To motivate our study, we make the following key observation.

Observation. In the Heisenberg group H1 \ {0}, both the equation and solution
of Theorem 2.1 when p = 2 coincides with the equation and solution of Theorem
2.2 when L = 0. In particular, u2,0 = ζ2. Similarly, in Grushin-type planes
Gn \ {(a, b)}, both the equation and solution of Theorem 2.3 when p = 2 coincides
with the equation and solution of Theorem 2.4 when L = 0. In particular, f2,0 = ψ2.

This observation then leads us to state our main question under consideration.

Main question. Can we extend the preceding relationship in H \ {0} and in Gn \
{(a, b)} from p = 2 to all p, 1 < p ≤ ∞?

Specifically, we have the following goals:

• In the case of the Heisenberg group, we wish to find a differential operator
Hp,L and a function up,L satisfying:

Hp,0 = ∆p and H2,L = ∆2 + iL[X1, X2]

with up,0 being the solution of Theorem 2.1 and u2,L being the solution of
Theorem 2.2 such that

Hp,Lup,L(q) = 0

for q ∈ H1 \ {0}, 1 < p ≤ ∞, and L ∈ R.
• In the case of the Grushin-type planes, we wish to find a differential operator
Gp,L and a function fp,L satisfying:

Gp,0 = ∆p and G2,L = ∆2 + iL[Y1, Y2]

with fp,0 being the solution of Theorem 2.3 and f2,L being the solution of
Theorem 2.4 such that

Gp,Lfp,L(q) = 0

for q ∈ Gn \ {(a, b)}, 1 < p ≤ ∞, and L ∈ R.
• Furthermore, we would like fp,L and up,L to be the fundamental solutions

to their respective equations.
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3. Heisenberg group

3.1. Properties. We begin with R3 using the coordinates (x1, x2, x3) and consider
the linearly independent vector fields {X1, X2, X3}, defined by:

X1 =
∂

∂x1
− x2

2

∂

∂x3
, X2 =

∂

∂x2
+
x1

2

∂

∂x3
, X3 =

∂

∂x3

which obey the relation

[X1, X2] = X3.

We then have a Lie Algebra denoted h1 that decomposes as a direct sum h1 = V1⊕V2

where V1 = span[X1, X2] and V2 = span[X3]. The Lie algebra is statified; i.e.,
[V1, V1] = V2 and [V1, V2] = 0. We endow h1 with an inner product 〈·, ·〉H and
related norm ‖ · ‖H so that this basis is orthonormal.

The corresponding Lie Group is called the general Heisenberg group of dimension
1 and is denoted by H1. With this choice of vector fields the exponential map
is the identity map, so that for any p, q in H1, written as p = (x1, x2, x3) and
q = (x̂1, x̂2, x̂3) the group multiplication law is given by

p · q =
(
x1 + x̂1, x2 + x̂2, x3 + x̂3 +

1

2
(x1x̂2 − x2x̂1)

)
.

The natural metric on H1 is the Carnot-Carathéodory metric given by

dC(p, q) = inf
Γ

∫ 1

0

‖γ′(t)‖H dt

where the set Γ is the set of all curves γ such that γ(0) = p, γ(1) = q and γ′(t) ∈ V1.
By Chow’s theorem (See, for example, [2].) any two points can be connected by
such a curve, which makes dC(p, q) a left-invariant metric on H1.

Given a smooth function u : H1 → R, we define the horizontal gradient by

∇0u = (X1u,X2u).

Additionally, given a vector field F =
∑2
i=1 fiXi + f3X3, we define the Heisenberg

divergence of F , denoted divF , by

divF =

2∑
i=1

Xifi .

A quick calculation shows that when f3 = 0, we have

divF = diveucl F

where diveucl is the standard Euclidean divergence. The main operator we are
concerned with is the horizontal p-Laplacian for 1 < p <∞ defined by

∆pu = div(‖∇0u‖p−2
H ∇0u) =

2∑
i=1

Xi

(
‖∇0u‖p−2

H Xiu
)

=
p− 2

2
‖∇0u‖p−4

H

2∑
i=1

Xi‖∇0u‖2HXiu+ ‖∇0u‖p−2
H

2∑
i=1

XiXiu.

(3.1)

For an extensive treatment of the Heisenberg group, the interested reader is directed
to [2, 4, 8, 9, 10, 11, 12, 13] and the references therein.
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3.2. Generalization in the Heisenberg group. For the Heisenberg group H1,
we consider the parameters

η =
4− p+ 2L(1− p)

4(1− p)
and τ =

4− p− 2L(1− p)
4(1− p)

for L ∈ R with

L 6= ± 4− p
2(1− p)

.

We use these parameters with the functions

v(x1, x2, x3) = (x2
1 + x2

2)− 4ix3, w(x1, x2, x3) = (x2
1 + x2

2) + 4ix3

to define our main function

up,L(y1, y2) = v(x1, x2, x3)ηw(x1, x2, x3)τ . (3.2)

Using this equation, we have the following result.

Theorem 3.1. Let 1 < p <∞. On H1, we have

Hp,L(up,L) := ∆pup,L + iL[X1, X2]
(
‖∇0up,L‖p−2

H up,L
)

= Cδ0

for some constant C, in the sense of distributions.

Proof. Suppressing arguments and subscripts, we obtain the following:

X1u = 2vη−1wτ−1
(
(ηw + τv)x1 + (ηw − τv)ix2

)
(3.3)

X1u = 2vτ−1wη−1
(
(ηv + τw)x1 + (ηv − τw)ix2

)
X2u = 2vη−1wτ−1

(
(ηw + τv)x2 − (ηw − τv)ix1

)
(3.4)

X2u = 2vτ−1wη−1
(
(ηv + τw)x2 − (ηv − τw)ix1

)
and so ‖∇0u‖2 = 8(η2 + τ2)vη+τ−1wη+τ−1(x2

1 + x2
2). (3.5)

Using the above we have

X1(X1u) = 2vη−2wτ−2
(

2
(
(ηw + τv)x2

1 + (−ηw − τv)ix1x2

)(
(η − 1)w + (τ − 1)v

)
+ 2i

(
(ηw + τv)x2

2 + (ηw − τv)ix2
2

)(
− (η − 1)w + (τ − 1)v)

)
+ vw

(
2(x2

1 + x2
2)(τ + η) + (ηw + τv)

))
,

X2(X2u) = 2vη−2wτ−2
(

2
(
(ηw + τv)x2

2 + (−ηw + τv)ix1x2

)(
(η − 1)w + (τ − 1)v

)
+ 2i

(
(ηw + τv)x1x2 + (−ηw + τv)ix2

1

)(
− (η − 1)w + (τ − 1)v)

)
+ vw

(
2(x2

1 + x2
2)(τ + η) + (ηw + τv)

))
.

In addition, we have

X1‖∇0u‖2 = 16(η2 + τ2)vη+τ−2wη+τ−2

×
(
vwx1 + 2(η + τ − 1)(x2

1 + x2
2)2
(
x1 − 4x2x3

)) (3.6)

and
X2‖∇0u‖2 = 16(η2 + τ2)vη+τ−2wη+τ−2

×
(
vwx2 + 2(η + τ − 1)(x2

1 + x2
2)2
(
x2 − 4x1x3

)) (3.7)
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so that
2∑
j=1

Xj‖∇0u‖2(Xju)

= 32(η2 + τ2)v2η+τ−3wη+2τ−3
(

(ηw + τv)vw(x2
1 + x2

2)

+ 2(η + τ − 1)(x2
1 + x2

2)2
(

(ηw + τv)(x2
1 + x2

2)2 − 4(ηw − τv)ix3

))
and

‖∇0u‖2
(
X1X1u+X2X2u

)
= 16(η2 + τ2)v2η+τ−3wη+2τ−3(x2

1 + x2
2)
(

2vw(ηw + τv) + 4vw(η + τ)(x2
1 + x2

2)

+ 2
(
(η − 1)w + (τ − 1)v

)
(ηw + τv)(x2

1 + x2
2)

+ 2
(
− (η − 1)w + (τ − 1)v

)
(ηw − τv)(x2

1 + x2
2)
)
.

This yields

∆pu = ‖∇0u‖p−4
( (p− 2)

2

2∑
j=1

Xj‖∇0u‖2(Xju) + ‖∇0u‖2(X1X1f +X2X2u)
)

= 2L
(4− p)p−2

(1− p)p−2

(
1 +

4L2(1− p)2

(4− p)2

) p−2
2

v
1
2 (pη+(p−2)τ−p)w

1
2 ((p−2)η+pτ−p)

× (x2
1 + x2

2)
p−2
2 (−2L(x2

1 + x2
2) + p4ix3).

We then compute

iL[X1, X2](‖∇0u‖p−2u)

= iL
(4− p)p−2

(1− p)p−2

(
1 +

4L2(1− p)2

(4− p)2

) p−2
2

(x2
1 + x2

2)
p−2
2

× ∂

∂x3
v

1
2 (p−2)(η+τ−1)+ηw

1
2 (p−2)(η+τ−1)+τ

= −2L
(4− p)p−2

(1− p)p−2
Big(1 +

4L2(1− p)2

(4− p)2

) p−2
2

(x2
1 + x2

2)
p−2
2

× v 1
2 (pη+(p−2)τ−p)w

1
2 ((p−2)η+pτ−p)(−2L(x2

1 + x2
2) + p4ix3)

= −∆pu

from which it follows that Hp,Lup,L = 0 on H1 \{0}, away from the singularity. We
now consider the normalization

vε(x1, x2, x3) := (x2
1 + x2

2) + ε2 − 4ix3,

wε(x1, x2, x3) := (x2
1 + x2

2) + ε2 + 4ix3

so that
uε(x1, x2, x3) := vε(x1, x2, x3)ηwε(x1, x2, x3)τ .

Suppressing arguments and computing similarly as before yields the distribution

Hp,Luε = 2
3p−2

2 ε2
(p(4− p)

4(1− p)
+ L2

)
(η2 + τ2)

p−2
2 (x2

1 + x2
2)

p−2
2

× v
ηp+τ(p−2)−p

2
ε w

η(p−2)+τp−p
2

ε .

(3.8)
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By the argument in [1, Theorem 7.5, (c)], the distribution of (3.8) is determined
by the density

2
3p−2

2

(p(4−p)
4(1−p) + L2

)
(η2 + τ2)

p−2
2

(
(x1

ε )2 + (x2

ε )2
) p−2

2 dm
(x2

1+x2
2

ε2

)
d(x3

ε2 ) 1
−2i(

(x1

ε )2 + (x2

ε )2 + 1− 4ix3

ε2

)− ηp+τ(p−2)−p
2

(
(x1

ε )2 + (x2

ε )2 + 1 + 4ix3

ε2

)− η(p−2)+τp−p
2

(3.9)
where dm denotes the Lebesgue measure in the complex plane. Then as ε→ 0 the
distribution of (3.9) tends to the δ0 distribution, up to a constant factor. �

Observing that

L 6= ± 4− p
2(1− p)

implies p 6=
∣∣2L+ 4

2L+ 1

∣∣, ∣∣2L− 4

2L− 1

∣∣
we have immediately the following corollary.

Corollary 3.2. Let p > max{
∣∣ 2L+4

2L+1

∣∣, ∣∣ 2L−4
2L−1

∣∣}. Then the function up,L of (3.2) is
a smooth solution to the Dirichlet problem

Htp,L(up,L(q)) = 0 q ∈ H1 \ {0}
0 q = 0.

3.3. Limit as p→∞. Recall that the drift p-Laplace equation in the Heisenberg
group H1 is given by:

Hp,L(u) := ∆pu+ iL[X1, X2]
(
‖∇0u‖p−2

H u
)

= 0.

A routine expansion of the drift term yields the observation

Hp,L(u) = ∆pu+ iL
(p− 2

2
‖∇0u‖p−4

H
( ∂

∂x3
‖∇0u‖2H

)
u+ ‖∇0u‖p−2

H
∂

∂x3
u
)

= 0.

Dividing through by p−2
2 ‖∇0u‖p−4

H and formally taking the limit p→∞, we obtain

H∞,L(u) = ∆∞u+ iL[X1, X2](‖∇0u‖2H)u.

Considering (3.2) and formally letting p→∞ yields

u∞,L(x1, x2, x3) = v(x1, x2, x3)
1+2L

4 w(x1, x2, x3)
1−2L

4 ,

where we recall the functions

v(x1, x2, x3) = (x2
1 + x2

2)− 4ix3,

w(x1, x2, x3) = (x2
1 + x2

2) + 4ix3 .

Theorem 3.3. The function u∞,L, defined above, is a smooth solution to the
Dirichlet problem

H∞,Lu∞,L(q) = 0 q ∈ H1 \ {0},
0 q = 0.

Proof. We prove this theorem by letting p → ∞ in (3.3), (3.4), (3.6), and (3.7),
and invoking continuity (cf. Corollary 3.2). However, for completeness we compute
it formally. We let

N =
1 + 2L

4
and T =

1− 2L

4
.
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Suppressing arguments and subscripts, we compute

X1u = 2vN−1wT−1
(
(Nw + Tv)x1 + (Nw − Tv)ix2

)
,

X2u = 2vN−1wT−1
(
(Nw + Tv)x2 − (Nw − Tv)ix1

)
,

‖∇0u‖2 = 8(N2 + T 2)vN+T−1wN+T−1(x2
1 + x2

2),

X1‖∇0u‖2 = 16(N2 + T 2)vN+T−2wN+T−2

×
(
vwx1 + 2(N + T − 1)(x2

1 + x2
2)2
(
x1 − 4x2x3

))
,

X2‖∇0u‖2 = 16(N2 + T 2)vN+T−2wN+T−2

×
(
vwx2 + 2(N + T − 1)(x2

1 + x2
2)2
(
x2 − 4x1x3

))
,

so that

∆∞u = X1‖∇0u‖2X1u+X2‖∇0u‖2X2u

= 32(N2 + T 2)v2N+T−3wN+2T−3
(

(Nw + Tv)vw(x2
1 + x2

2)

+ 2(N + T − 1)(x2
1 + x2

2)2
(

(Nw + Tv)(x2
1 + x2

2)2 − 4(Nw − Tv)ix3

))
= 128iL(N2 + T 2)(x2

1 + x2
2)x3v

2N+T−2wN+2T−2.

We also have

iL[X1, X2](‖∇0u‖2)u = iLvNwT
∂

∂x3
‖∇0f‖2

= −128iL(N2 + T 2)(x2
1 + x2

2)x3v
2N+T−2wN+2T−2.

The proof is complete. �

We notice that when L = 0, this result was a part of the Ph.D. thesis of the
first author [3]. In particular, combined with [3, 4], we have shown the following
commutative diagram in H1 \ {0},

Hp,L(up,L) = 0 −−−−→
p→∞

H∞,L(u∞,L) = 0yL→0

yL→0

∆pup,0 = 0 −−−−→
p→∞

∆∞u∞,0 = 0

4. Grushin-type planes

The Grushin-type planes differ from the Heisenberg group in that Grushin-type
planes lack an algebraic group law. We begin with R2, possessing coordinates
(y1, y2), a ∈ R, c ∈ R \ {0} and n ∈ N. We use them to construct the vector fields:

Y1 =
∂

∂y1
and Y2 = c(y1 − a)n

∂

∂y2
.

For these vector fields, the only (possibly) nonzero Lie bracket is

[Y1, Y2] = cn(y1 − a)n−1 ∂

∂y2
.

Because n ∈ N, it follows that Hörmander’s condition is satisfied by these vector
fields.
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We will put a (singular) inner product on R2, denoted 〈·, ·〉G, with related norm
‖ · ‖G, so that the collection {Y1, Y2} forms an orthonormal basis. We then have
a sub-Riemannian space that we will call gn, which is also the tangent space to
a generalized Grushin-type plane Gn. Points in Gn will also be denoted by p =
(y1, y2). The Carnot-Carathéodory distance on Gn is defined for points p and q as
follows

dG(p, q) = inf
Γ

∫
‖γ′(t)‖G dt ,

with Γ the set of curves γ such that γ(0) = p, γ(1) = q and

γ′(t) ∈ span{Y1(γ(t)), Y2(γ(t))}.

By Chow’s theorem, this is an honest metric.
We shall now discuss calculus on the Grushin-type planes. Given a smooth

function f on Gn, we define the horizontal gradient of f as

∇0f(p) =
(
Y1f(p), Y2f(p)

)
.

Using these derivatives, we consider a key operator on C2
G functions, namely the

p-Laplacian for 1 < p <∞, given by

∆pf = divG(‖∇0f‖p−2
G ∇0f)

= Y1

(
‖∇0f‖p−2

G Y1f
)

+ Y2

(
‖∇0f‖p−2

G Y2f
)

=
p− 2

2
‖∇0f‖p−4

G
(
Y1‖∇0f‖2GY1f + Y2‖∇0f‖2GY2f

)
+ ‖∇0f‖p−2

G
(
Y1Y1f + Y2Y2f

)
.

(4.1)

4.1. A Generalization in the Grushin plane. For the Grushin-type planes, we
consider the parameters

α =
n+ 2− p− Ln(1− p)

2(n+ 1)(1− p)
and β =

n+ 2− p+ Ln(1− p)
2(n+ 1)(1− p)

,

where L ∈ R with

L 6= ±n+ 2− p
n(1− p)

.

We use these constants with the functions

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b),
h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b)

to define our main function

fp,L(y1, y2) = g(y1, y2)αh(y1, y2)β . (4.2)

Using this equation, we have the following theorem.

Theorem 4.1. Let 1 < p <∞. On Gn, we have

Gp,L(fp,L) := ∆pfp,L + iL[Y1, Y2](‖∇0fp,L‖p−2
G fp,L) = Cδ0

for some constant C, in the sense of distributions.
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Proof. Suppressing arguments and subscripts, we compute the following:

Y1f = c(n+ 1)(y1 − a)ngα−1hβ−1(αh+ βg) (4.3)

Y1f = c(n+ 1)(y1 − a)ngβ−1hα−1(αg + βh)

Y2f = ic(n+ 1)(y1 − a)ngα−1hβ−1(αh− βg) (4.4)

Y2f = ic(n+ 1)(y1 − a)ngβ−1hα−1(αg − βh)

‖∇0f‖2 = 2c2(n+ 1)2(y1 − a)2ngα+β−1hα+β−1(α2 + β2). (4.5)

Using the above we have

Y1(Y1f) = c(n+ 1)(y1 − a)n−1gα−2hβ−2

×
(
ngh(αh+ βg) + c(n+ 1)(y1 − a)n+1

×
(
(αh+ βg)((α− 1)h+ (β − 1)g) + gh(α+ β)

))
,

Y2(Y2f) = −c2(n+ 1)2(y1 − a)2ngα−2hβ−2

×
(
(αh− βg)((α− 1)h− (β − 1)g)− gh(α+ β)

)
,

Y1‖∇0f‖2 = 4c2(n+ 1)2(α2 + β2)(y1 − a)2n−1gα+β−2hα+β−2

×
(
ngh+ c2(n+ 1)(α+ β − 1)(y1 − a)2n+2

)
,

(4.6)

Y2‖∇0f‖2 = 4c3(n+ 1)4(α2 + β2)(y1 − a)3n(y2 − b)

(α+ β − 1)gα+β−2hα+β−2
(4.7)

and
2∑
i=1

Yi‖∇0f‖2(Yif) = 4c3(n+ 1)3(α2 + β2)(y1 − a)3n−1g2α+β−3hα+2β−3

×
(

(αh+ βg)
(
ngh+ c2(n+ 1)(α+ β − 1)(y1 − a)2n+2

)
+ ic(n+ 1)2(y1 − a)n+1(y2 − b)(α+ β − 1)(αh− βg)

)
,

‖∇0f‖2(Y1Y1f + Y2Y2f) = 2c3(n+ 1)3(α2 + β2)(y1 − a)3n−1g2α+β−3hα+2β−3

×
(
ngh(αh+ βg) + 4c(n+ 1)(y1 − a)n+1gh(αβ)

)
,

so that

∆pf = ‖∇0f‖p−4
( (p− 2)

2

2∑
j=1

Yj‖∇0f‖2(Yjf) + ‖∇0f‖2(Y1Y1f + Y2Y2f)
)

= −L2
p−2
2 cp−1n2(n+ 1)p−2(y1 − a)n(p−1)−1(α2 + β2)

p−2
2

× g 1
2 (αp+β(p−2)−p)h

1
2 (α(p−2)+βp−p)(Lc(y1 − a)n+1 + i(1− p)(n+ 1)(y2 − b)).

We then compute

iL[Y1, Y2](‖∇0f‖p−2f) = iL2
p−2
2 cp−1n(n+ 1)p−2(y1 − a)n(p−1)−1(α2 + β2)

p−2
2

× ∂

∂y2

(
g

1
2 (αp+β(p−2)−(p−2))h

1
2 (α(p−2)+βp−(p−2))

)
= L2

p−2
2 cp−1n2(n+ 1)p−2(y1 − a)n(p−1)−1(α2 + β2)

p−2
2
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× g 1
2 (αp+β(p−2)−p)h

1
2 (α(p−2)+βp−p)

× (Lc(y1 − a)n+1 + i(1− p)(n+ 1)(y2 − b))
= −∆pf

from which it follows that Gp,Lfp,L = 0 on Gn \ {(a, b)}, away from the singularity.
We now consider the normalization

gε(y1, y2) := c(y1 − a)n + ε2 + i(n+ 1)(y2 − b),
hε(y1, y2) := c(y1 − a)n + ε2 − i(n+ 1)(y2 − b)

so that
fε(y1, y2) := gε(y1, y2)αhε(y1, y2)β .

Suppressing arguments and computing similarly as before yields the distribution

Gp,Lfε = −2
p−2
2 ε2((n+ 2− p)− nL2)cp−1n(n+ 1)p−2(α2 + β2)

p−2
2

× (y1 − a)n(p−1)−1g
αp+β(p−2)−p

2 h
α(p−2)+βp−p

2 .
(4.8)

By the argument in [1, Theorem 7.5, (c)], the distribution of (4.8) is determined
by the density

− 2
p−2
2

(
(n+ 2− p)− nL2

)
cp−1n(n+ 1)p−2(α2 + β2)

p−2
2

×
( y1 − a
ε2/(n+1)

)n(p−1)−1

dm
( y1 − a
ε2/(n+1)

)
d
(y2 − b

ε2

)( 1

−2i

)
×
(
c
( y1 − a
ε2/(n+1)

)n+1

+ 1 + i(n+ 1)
(y2 − b)
ε2

)αp+β(p−2)−p
2

×
(
c
( y1 − a
ε2/(n+1)

)n+1

+ 1− i(n+ 1)
(y2 − b)
ε2

)α(p−2)+βp−p
2

(4.9)

where dm denotes the Lebesgue measure in the complex plane. Then as ε→ 0 the
distribution of (4.9) tends to the δ0 distribution, up to a constant factor. �

Observing that

L 6= ± n(p− 1)

n+ 2− p
implies p 6=

∣∣L(n+ 2) + n

n+ L

∣∣, ∣∣L(n+ 2)− n
n− L

∣∣
we have immediately the following corollary.

Corollary 4.2. Let p > max
{∣∣L(n+2)+n

n+L

∣∣
,

∣∣L(n+2)−n
n−L

∣∣}. Then the function fp,L of

Equation 4.2 is a smooth solution to the Dirichlet problem

Gp,L(fp,L(q)) = 0 q ∈ Gn \ {(a, b)}
0 q = (a, b).

4.2. Limit as p→∞. Recall that the drift p-Laplace equation in the Grushin-type
planes Gn is given by

Gp,L(f) := ∆pf + iL[Y1, Y2]
(
‖∇0f‖p−2

G f
)

= 0.

A routine expansion of the drift term yields the observation

Gp,L(f) = ∆pf + iLcn(y1 − a)n−1
(p− 2

2
‖∇0f‖p−4

G
( ∂

∂y2
‖∇0f‖2G

)
f

+ ‖∇0f‖p−2
G

∂

∂y2
f
)

= 0.
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Dividing through by p−2
2 ‖∇0f‖p−4

G and formally taking the limit p→∞, we obtain

G∞,L(f) = ∆∞f + iL[Y1, Y2](‖∇0f‖2G)f.

Considering (4.2) and formally letting p→∞ yields

f∞,L(y1, y2) = g(y1, y2)
1

2(n+1)
(1−nL)h(y1, y2)

1
2(n+1)

(1+nL)

where we recall the functions

g(y1, y2) = c(y1 − a)n+1 + i(n+ 1)(y2 − b),
h(y1, y2) = c(y1 − a)n+1 − i(n+ 1)(y2 − b).

Theorem 4.3. The function f∞,L, defined above, is a smooth solution to the
Dirichlet problem

G∞,Lf∞,L(q) = 0 q ∈ Gn \ {(a, b)},
0 q = (a, b).

Proof. We prove this theorem by letting p → ∞ in (4.3), (4.4), (4.6), (4.7), and
invoking continuity (cf. Corollary 4.2). However, for completeness we compute it
formally. We let

A =
1

2(n+ 1)
(1− nL) and B =

1

2(n+ 1)
(1 + nL)

and, suppressing arguments and subscripts, compute

Y1f = c(n+ 1)(y1 − a)ngA−1hB−1(Ah+Bg),

Y2f = ic(n+ 1)(y1 − a)ngA−1hB−1(Ah−Bg),

‖∇0f‖2 = 2c2(n+ 1)2(y1 − a)2ngA+B−1hA+B−1(A2 +B2),

Y1‖∇0f‖2 = 4c2(n+ 1)2(A2 +B2)(y1 − a)2n−1gA+B−2hA+B−2

×
(
ngh+ c2(n+ 1)(A+B − 1)(y1 − a)2n+2

)
,

Y2‖∇0f‖2 = 4c3(n+ 1)4(A2 +B2)(y1 − a)3n(y2 − b)
(α+ β − 1)gA+B−2hA+B−2,

so that

∆∞f = Y1‖∇0f‖2Y1f + Y2‖∇0f‖2Y2f

= 4c3(n+ 1)3(A2 +B2)(y1 − a)3n−1g2A+B−3hA+2B−3

×
(

(Ah+Bg)
(
ngh+ c2(n+ 1)(A+B − 1)(y1 − a)2n+2

)
+ ic(n+ 1)2(y1 − a)n+1(y2 − b)(A+B − 1)(Ah−Bg)

)
= 4iLc3(n+ 1)3n2(A2 +B2)(y1 − a)3n−1(y2 − b)g2A+B−2hA+2B−2.

We also compute

iL[Y1, Y2](‖∇0f‖2)f

= iLgAhB(cn(y1 − a)n−1 ∂

∂y2
‖∇0f‖2)

= −4iLc3(n+ 1)3n2(A2 +B2)g2A+B−2hA+2B−2(y1 − a)3n−1(y2 − b).
The proof is complete. �
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In particular, combining this with [6], we have shown that the following commu-
tative diagram in Gn \ {(a, b)},

Gp,Lfp,L = 0 −−−−→
p→∞

G∞,Lf∞,L = 0yL→0

yL→0

∆pfp,0 = 0 −−−−→
p→∞

∆∞f∞,0 = 0
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