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COMPACTNESS OF THE SET OF SOLUTIONS TO ELLIPTIC
EQUATIONS IN 2 DIMENSIONS

SAMY SKANDER BAHOURA

ABSTRACT. We study the behavior of solutions to elliptic equations in 2 di-
mensions. In particular, we show that the set of solutions is compact under a
Lipschitz condition.

1. INTRODUCTION

Let us define the operator
div[ae(z)V]

5\x|2/2.
ae(z)

el i= A+ e(210) + 2902) = , with ac(z)=¢e

We consider the equation

—Au — €(x101u + x20u) = —Leu = Ve in ) C R?,

1.1
u=0 1in 00, (L.1)

where  is a starshaped set, u € VVOI’I(Q)7 e € LY(N),0<V <b,1>€>0.

For € = 0 equation has been studied by many authors with and without the
boundary condition. This equation also has been studied in Riemann surfaces; see
[1]-[20], where one can find some existence and compactness results. Also we have
a nice formulation in the sense of the distributions of this problem in [7]. Among
the known results we find the following Theorem.

Theorem 1.1 (Brezis-Merle [0]). If (u;) and (V;) are two sequences of functions
in problem (L.1)) with e =0, and

0<a<V;,<b< +o0,
then for all compact subset K of € it holds

supu; < ¢,
K

with ¢ depending on a,b, K and ).

We can find an interior estimate if we assume a = 0, but we need an assumption
on the integral of e%:.
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Theorem 1.2 (Brezis-Merle [6]). Let (u;) and (V;) two sequences of functions in

problem (1.1)) with
0<V,<b< +00 and /e“idng.
Q

Then, for all compact subset K of € it holds

supu; < ¢,
K

with ¢ depending on b,C, K and (.

The condition fQ e¥idy < C is a necessary in Problem (l.1)) as showed by the
following statement for € = 0.

Theorem 1.3 (Brezis-Merle [0]). There are sequences (u;) and (V;) in problem
(L.I) with
0<V; <b< +o0, /e""'dySC,
Q

such that supg u; — +00.

To obtain Theorems and Brezis and Merle used an inequality [6l Theorem
1] obtained by an approximation argument, Fatou’s lemma, and the maximum
principle in T/VO1 ’I(Q), which arises from Kato’s inequality. Also this weak form of
the maximum principle is used to prove the local uniform boundedness result by
comparing a certain function and the Newtonian potential. We refer the reader to
[5] for information about the weak form of the maximum principle.

Note that for problem , by using the Pohozaev identity, we can prove that
fQ e% is uniformly bounded when 0 < a < V; < b < 400, |[|[VVi||L~ < A, and
starshaped. When a = 0 and V log V; is uniformly bounded, we can find a uniform
bound for [, Vie":.

Ma-Wei [I7] proved that those results remain valid for all open sets not neces-
sarily starshaped when a > 0. Chen-Li [9] proved that if a = 0, [, e* is uniformly
bounded, and V log V; is uniformly bounded, then (u;) is bounded near the bound-
ary and we have directly the compactness result for the problem (L.1]). Ma-Wei [17]
extend this result in the case where a > 0.

When ¢ = 0 and if we assume V more regular we can have another type of
estimates called sup + inf type inequalities. It was proved by Shafrir [I9] that, if
(u;), (V;) are two sequences of solutions to Problem , without assumption on
the boundary and 0 < a < V; < b < 400, then it holds

b

We find in [10] the explicit value C'(a/b) = y/a/b. In his proof, Shafrir [I9] used
the blow-up function, the Stokes formula and an isoperimetric inequality. Chen-Lin
[10] used the blow-up analysis combined with some geometric type inequality for
obtaining the integral curvature.

Now, if we assume (V;) is uniformly Lipschitzian with constant A, then C(a/b) =
1 and ¢ = ¢(a,b, A, K,Q) see Brezis-Li-Shafrir [4]. This result was extended for
Holderian sequences (V;) by Chen-Lin [I0]. Also we have in [I5], an extension
of the Brezis-Li-Shafrir result to compact Riemannian surfaces without boundary.
One can see in [I7] an explicit form, (8mm, m € N* exactly), for the numbers in
front of the Dirac masses when the solutions blow-up. Here the notion of isolated

C(g) Sup u; +ir§12fui <c=c(a,b, K,Q).
K
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blow-up point is used. Also one can find in [I1] refined estimates near the isolated
blow-up points and the bubbling behavior of the blow-up sequences.

Here we study the behavior of the blow-up points on the boundary, and give a
compactness result with Lipschitz condition. Note that our problem is an extension
of the Brezis-Merle Problem.

Brezis-Merle Problem [6]. Suppose that V; — V in C%(Q) with 0 < V;, and
consider a sequence of solutions (u;) of (L.1)) relative to (V;) such that

/e“i dx < C.
Q

luillpee < C =C(b,C,V, )7

Is it possible to have

Here we give a blow-up analysis on the boundary when V; are nonnegative and
bounded (similar to the prescribed curvature when € = 0). On the other hand, if
we add the assumption that these functions (similar to the prescribed curvature)
are uniformly Lipschitzian, we have a compactness of the solutions of problem
for e small enough. (In particular we can take a sequence of ¢; tending to 0).

For the behavior of the blow-up points on the boundary, the following condition
is sufficient,

0<Vi <),

The condition V; — V in C°() is not necessary. But for the compactness of the
solutions we add the condition

[VVillLe < A.
Our main results read as follows.

Theorem 1.4. Assume that maxqu; — +o0o, where (u;) are solutions of (1.1
with € = €; and

0<V; <, /e“ideC, € — 0.
Q

Then, after passing to a subsequence, there are a function u, a number N € N, and
N points x1,...,xn € 0, such that

N
Oyu; — Oyu + Za]ﬁzj, aj > 4m,
=1
in the sense of measures on 052, and
. 1 N
w; =~ u in Cigo(Q—{z1,...,2N8}).

Theorem 1.5. Assume that (u;) are solutions of (L.1)) with e = ¢;, and
0<V;<b, |[VVi|re <A, /e“"gC, e — 0.
Q

Then
luill L= < e(b, A, C, ).
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2. PROOFS OF MAIN RESULTS

Proof of Theorem [1.4l First we remark that
—Au; = ei(xlalui + (EQ@Q’U@) + Ve € Ll(ﬂ) in QC RQ,

2.1
U; = 0 in ON. ( )

and u; € Wy ' (Q).

By [6, Corollary 1] we have e% € L*(Q) for all k > 2 and the elliptic estimates
of Agmon and the Sobolev embedding see [I] imply that

u; € W2k(Q) nChe(Q).
Also we remark that for two positive constants C, = C(q,Q2) and C; = C1(2), we
have
[Vuillne < CqllAugl|pr < (Cf + €Chl|Vugl|1), Viand 1 < g <2.
(see [7]). Thus, if € > 0 is small enough and by Holder’s inequality,
[VuillL« < Cf, Viand 1< g <2.

Step 1: Interior estimate. First we consider the equation
—Aw; = Ei(l‘lalui + LUQ@QUZ‘) S Lq, 1<g<2 in QC R2,

2.2
w; =0 in O9. (2:2)

If we consider v; as the Newtonnian potential of €;(x101u; + x202u;), we have
v; € CY(Q), A(w; —v;) =0.

By the maximum principle w; — v; € C°(2) and thus w; € C°(Q).
Also we have by elliptic estimates that w; € W2+€ € L°°, and we can write the
equation of the Problem as

—Au; —w;) = Vie™ ™™ in Q C R?,
| (2.3)
u; —w; =0 in 99,
with
0<V; = Ve < l~77 / etiTwi < O,
Q
We apply the Brezis-Merle theorem to u; —w; to have u; —w; € L2 (), and, thus

loc

Step2: Boundary estimate. Let 0,u; be the inner derivative of u;. By the
maximum principle d,u; > 0. Then we have

al,ui do S C.
o0

We have the existence of a nonnegative Radon measure p such that

8Vu7:¢d0- — M(¢)7 v¢ € CO (89)
o0
We take an z¢ € 92 such that u(xg) < 4w. Set B(zg,€) N IQ := I.. We choose a
function 7, such that
77551, ODI€,0<E<6/27
ne =0, outside Io,
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0<n <1,
CO(anO)
197l 1y < =52

We take a 7. such that
—A7f, =0 inQ CR?
e =Ne in 0.
Remark 2.1. We use the following steps in the construction of 7., taking a cutoff
function 7o in B(0,2) or in B(zo, 2):
(1) We set ne(x) = no(|z — zo[/€) in the case of the unit disk it is sufficient.
(2) Or, in the general case: we use a chart (f,) with f(0) = z¢ and we take
pe(x) = no(f(|x]/€)) to have connected sets I. and we take n.(y) = p(f~1(y)).
Because f, f~1 are Lipschitz, |f(x)—zo| < ke|z| < 1 for |z| < 1/ks and |f(2)—20| >
kilz| > 2 for |z| > 2/ky > 1/ko, the support of 1 is in I(g/p,)e-
ne=1, on f(](l/k2)6), O0<e< 5/2,
Ne = 0, outside f(I(2/k1)e)7
0<ne<1,
CO(Qy 1’0)

||V776‘|L°°(I(2/k1)€) < -

(3) Also, we can take: p.(x) = no(|x|/€) and n.(y) = p(f~(y)), we extend it
by 0 outside f(B1(0)). We have f(B1(0)) = Di(xg), f(Bc(0)) = Dc(z9) and
f(BF) = Df(x¢) with f and f~! smooth diffeomorphism.
e =1, on the connected set J. = f(I.), 0 < e <§/2,
ne =0, outside J. = f(Iz),
0<n <1,
Co(Q, o)

190l ey < S22,

And H,(J!) < C1Hi(I3) = C14e, because f is Lipschitz. Here H; is the Hausdorff
measure. We solve the Dirichlet Problem

Afje = An. in Q C R?,
e =0 1in 09Q.

and finally we set 7. = —7 + 1. Also, by the maximum principle and the elliptic
estimates we have

- C1
Vel < Cllnellz=e + Vel o + A7) 1) < =,
with C7 depending on €.

As we said in the beginning, see also [3| [7, 13| 20], we have

IVuilloe < Cq, Vi, 1<g<2.

We deduce from the above estimate that, (u;) converge weakly in W, (), almost
everywhere to a function v > 0 and fQ e < +oo (by Fatou lemma). Also, V;
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weakly converge to a nonnegative function V in L°°. The function w is in Wol ()
solution of

—~Au=Ve*c LY(Q) inQCR?
u=0 in 0.
According to [6, Ccorollary 1], we have ek* e LY(Q),k > 1. By the elliptic esti-
mates, we have u € W2*(Q) N CL¢(Q).

We denote by f - g the inner product of any two vectors f and g of R?. Then we
can write

— A((u; —w)fge) = (Ve = Ve )ige — 2V (u; —u) - Vije + €,(Vu; - ). (2.4)
We use the interior estimate in Brezis-Merle [6].

Step 1: Estimate of the integral of the first term of the right-hand side of (2.4)).
We use Green’s formula between 7). and u, to obtain

/ Ve'ie dr = d,un. < Ce= O(e) (2.5)
Q o

then we have
—Au; —¢,Vu; - x = Vie* in Q C R,
u=0 in 0.

We use Green’s formula between wu; and 7). to have
/ Vie“ i dx = Opuinedo — €; / (Vg - )7
Q a0 Q

:/ Opuinedo + o(1) (2.6)
o0

— p(ne) < p(Jl) <dm—eo, € >0
From (2.5) and (2.6) we have that for all € > 0 there is i¢ such that, for i > iy,

/ |(Vie" — Ve")e|de < 4w —eg + Ce (2.7)
Q

Step 2.1: Estimate of integral of the second term of the right hand side of .
Let ¥, = {z € Q,d(z,09Q) = ¢} and Qi = {z € Q,d(z,00Q) > €3}, € > 0. Then,
for e small enough, X, is an hypersurface.

The measure of Q — Qs is kae® < meas(Q — Qes) = pup(Q — Qes) < kre.

Remark 2.2. For the unit ball B(0, 1), our new manifold is B(0,1 — €*). To prove
this fact, we consider consider d(z,9Q) = d(z,z20),20 € 09, which implies that
(d(z, 20))? < (d(x,2))? for all z € 9. This is equivalent to (z—zp)-(2z—2—2¢) <0
for all z € 9. Let us consider a chart around zo and ~(¢) a curve in 052, we have
(v(t) —(to) - (2x —y(t) —v(to)) < 0 if we divide by (¢t —to) (with the sign and tend
t to to), we have v/'(to) - (x —y(to)) = 0. This implies that x = zg — svy where vy is
the outward normal of 90 at zg)

From the above remark, we can say that
S ={z,d(z,00) <€} ={x =20 — sVz,20 € 0N, —€ <5 <¢€}.

It is sufficient to work on 0f2. Let us consider charts (z, D = B(z,4€,),7y,) with
z € 0Q such that U,B(z,¢,) is cover of 02 . One can extract a finite cover
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(B(zk,€k)),k = 1,...,m, by the area formula the measure of S N B(z, €) is less
than a ke (a e-rectangle). For the reverse inequality, it is sufficient to consider one
chart around one point of the boundary). We write

/|V(ui—u)-Vﬁ€\dx:/ |V(ui—u)-VﬁE|dﬂc+/ |V (u;—u)-Vi| dz. (2.8)
Q Q.3

Q-9

Step 2.1.1: Estimate of [, , |V(u; —u) - Vi|dz. First, we know from elliptic

estimates that | Vij|[z~ < C1/€%, C; depends on €.

We know that (|Vu;|); is bounded in L7, 1 < ¢ < 2, we can extract from this
sequence a subsequence which converge weakly to h € LY. But, we know that we
have locally the uniform convergence to |Vu| (by Brezis-Merle’s theorem), then,
h = |Vu| a.e. Let ¢’ be the conjugate of g.

We have that for all f € LY (),

/|Vui|fd9:%/|Vu|fdx
Q Q

If we take f = 1g_q ,, for each € > 0 there exists i1 = i1(¢) € N, such that i > 4;

implies
/ |V, g/ |Vl + €.
Q-9 Q-Q_3

/ |Vu;| < meas(Q — Q)| V| e + € = €3 (k|| V|| e 4+ 1) = O(€3).
Q-0

Then, for i > i1(e),

Thus, we obtain
/ V(s — ) - Vit do < eC (20 |Vl +1) = O() (2.9
Q-9

The constant C; does not depend on € but on 2.
Step 2.1.2: Estimate of fQ£3 |V(u; —u) - Vije|dz. We know that, Q. CC Q, and
(because of Brezis-Merle’s interior estimates) u; — u in C'(Qs). We have

IV (u; — U)HLOO(QES) < e, for i > is.

We write
/ 19 ) Vil b S [ Wil = Cre = 000
for ¢ > i3. For € > 0, and 7 € N, with 7 > i/, we have
/Q IV (u; —u) - Vije| dz < €C1(2k1||Vu| L~ +2) = O(e) (2.10)
From ([2.7) and , for € > 0, there is 7" such that 7 > 7", we have
/Q Al — )i )|de < 47— o+ €2Ch (2ky [Vt oo +24C) = dm— e+ 0(e) (2.11)

Now we choose € > 0 small enough to have a good estimate of (2.4). Indeed, we
have

—Al(u; — u)fj] = gie tewtinQ C R?,
(u; —uw)e =0 in OQ.
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Wlth ||gi,€||L1(Q) S 471' — 60/2.
We can use [6] Theorem 1] to conclude that there are ¢ > ¢ > 1 such that

/ edlvi=ul gy < / edlvi=ulle o < (e, ),
Vg(;vo) Q

where, V,(z) is a neighborhood of zg in 2. Here we have used that in a neighbor-
hood of zg by the elliptic estimates, 1 — Ce < 7. < 1.
Thus, for each zg € 90 — {Z1,..., Ty} there is ¢g > 0,qp > 1 such that

/ el dy < C, Vi.
B(zo,¢c0)

By elliptic estimates see [14], we have

uillcro(Bao,e) < €3 Vi

We have proved that there is a finite number of points 7y, ..., T, such that the
sequence (u;) is locally uniformly bounded in C*? (8 > 0) on Q — {Z1,..., %}

Proof of theorem The Pohozaev identity gives

/ 1(x'y)(&,ui)Qda+e/(1:~Vui)2 der/ (z-v)Vie"ido = /(:Z:~VV,-+2V,-)67“ dx .
o0 2 Q 00 Q

We use the boundary condition, that € is starshaped, and that € > 0 to have
/ (Dyu;)? da < co(b, A, C, Q). (2.12)
a0

Thus we can use the weak convergence in L?(92) to have a subsequence 9, u;, such
that

Oyu;pdr — dyupdr, Vo e L*(09),
aQ o0

Thus, @; =0, j =1,...,N and (u;) is uniformly bounded.

Remark 2.3. If we assume the open set bounded starshaped and V; uniformly
Lipschitzian and between two positive constants we can bound, by using the inner
normal derivative [, e":.

If we assume the open set bounded starshaped and V log V; uniformly bounded,
by the previous Pohozaev identity (we consider the inner normal derivative) one
can bound [, Vie* uniformly.

One can consider the problem on the unit ball and an ellipse. These two problems
are different, because:

(1) if we use a linear transformation, (y1,y2) = (x1/a,x2/b), the Laplcian is
not invariant under this map.

(2) If we use a conformal transformation, by a Riemann theorem, the quantity
z - Vu is not invariant under this map.

We can not use, after using those transformations, the Pohozaev identity.
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3. A COUNTEREXAMPLE

We start with the notation of the counterexample of Brezis and Merle. The
domain € is the unit ball centered in o = (1,0). Consider z; (obtained by the
variational method), such that

—Az; —¢(x—x9) Vz; = fiei(zi) = fe,,
with Dirichlet condition. By the regularity theorem, z; € C*(Q). Then we have
[ fells = 4mA.
Thus by the duality theorem of Stampacchia or Brezis-Strauss, we have
Vzillg < Cyy 1 <g<2.

We solve
—Aw; = €¢;(x — x9) - Vzi,
with Dirichlet boundary condition.
By elliptic estimates, w; € C(Q) and w; € C°(2) uniformly. By the maximum
principle we have
Zi — w; = Uy
Where u; is the function of the counterexemple of Brezis Merle. Then we write
—Az; —€i(x —xg) - Vz; = fe, = Vie™.

Thus, we have
/eziSCh 0<V; <y,
Q

Zz(az) > uz(az) — 03 — +o00, a; — 0.

To have a counterexample on the unit disk, we do a translation x — x — zg in the
previous counterexample.
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