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DEFICIENCY INDICES OF A DIFFERENTIAL OPERATOR
SATISFYING CERTAIN MATCHING INTERFACE CONDITIONS

PALLAV KUMAR BARUAH, M. VENKATESULU

Abstract. A pair of differential operators with matching interface conditions
appears in many physical applications such as: oceanography, the study of step
index fiber in optical fiber communication, and one dimensional scattering in

quantum theory. Here we initiate the study the deficiency index theory of such
operators which precedes the study of the spectral theory.

1. Introduction

In the study of acoustic wave guides in the ocean, and of one dimensional time
independent scattering in quantum theory, we come across of problems of the from

L1f1 =
n∑

k=0

Pk
dfk

1

dtk
= λf1

defined on an interval I1 = (a, c] and

L1f1 =
n∑

k=0

Pk
dfk

1

dtk
= λf1

defined on an interval I2 = [c, b), with −∞ ≤ a < c < b ≤ +∞. Here λ is an
unknown constant and the functions f1, f2 are required to satisfy certain mixed
conditions at the interface t = c. In most cases, the complete set of physical
conditions on the system give rise to selfadjoint spectral problems associated with
the pair (L1, L2).

Initial-value problem and boundary-value problems for regular and singular cases
for these equations have been discussed in publications such as [2, 5, 6, 7, 8, 9]. It is
important to study the deficiency index theory of an operator before one embarks
on the study of the spectral theory. Here we present a simple result on deficiency
index of such operators. We take help of the results available in [3]; however the
proof of the main theorem rendered here is new, not the same as that found in [3].
A similar study is found in a recent work of Orochko [4], where he has considered
two arbitrary even ordered symmetric differential expressions degenerated at the
point of interface. The operator depends on two parameters p, q and based on
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certain relations between these parameters and the order of the expressions, the
interface point is classified into penetrable or impenetrable. Whereas in this work
we consider the the interface point to be regular and the functions to be sufficiently
smooth.

Definitions and Notation. Let I1 = (a, c] and I2 = [c, b) where −∞ ≤< a < c <
b ≤ +∞. For any non-negative integer n, let Cn(Ii) denote the space of all complex
valued n-times continuously differentiable functions defined on Ii; i = 1, 2. Let
C∞(Ii) denote the space of all infinitely many times differentiable complex valued
functions defined on Ii; i = 1, 2. Let An(Ii) denote the space of all functions in
C(n−1)(Ii) such that (n−1)thderivative is absolutely continuous over each compact
subset of Ii; i = 1, 2. For a function f , f (j) denote the jth derivative of f , if it
exists. For any m×n matrix A, let A∗ denote the adjoint of A. For a square matrix
A, A−1 denotes the inverse of A, if it exists. For any two nonempty sets(topological
spaces) V1 and V2, let V1 × V2 denote the cartesian product (space equipped with
product topology) of V1 and V2, taken in that order. Let L2(Ii) denote the space
of all measurable complex-valued functions square integrable on Ii, i = 1, 2. Let
the inner product in L2(Ii) be denoted by 〈., .〉, i = 1, 2. Let Hn(Ii) denote those
functions f in An(Ii) such that f (n) belongs to L2(Ii), i = 1, 2. Let Hn

0 (Ii) denote
the space of all functions f in Hn(Ii) such that f vanishes in a neighbourhood
of a and f(c) = f ′(c) = . . . ... = f (n−1)(c) = 0. Let Hn

0 (I2) denote the space
of all functions f in Hn(I2) such that f vanishes in a neighbourhood of b and
f(c) = f ′(c) = · · · = f (n−1)(c) = 0.

Let A and B be non singular n×n matrices with complex entries. For fi ∈ Cn(Ii),
let f̃i(t) = column(fi(t), f ′i(t), . . . , f

(n−1)(t)), t ∈ Ii, i = 1, 2. Let Hn(I1×I2) denote
the space of all pairs (f1, f2) ∈ Hn(I1) × Hn(I2) such that Af̃1(c) = Bf̃2(c). Let
Hn

0 (I1×I2) denote the space of all pairs (f1, f2) ∈ Hn(I1×I2) such that f1 vanishes
in a neighbourhood of a and f2 vanishes in a neighbourhood of b.

Let τ1 and τ2 be a pair of formal ordinary differential operators of order n defined
on the intervals I1 and I2, respectively, of the form

τ1 =
n∑

k=0

ak(t)(
d

dt
)k, τ2 =

n∑
k=0

bk(t)(
d

dt
)k

where the coefficients ak ∈ C∞(I1), bk ∈ C∞(I2) and an(t) 6= 0 and bn(t) 6= 0 on
I1 and I2 respectively. For (f1, f2) ∈ An(I1)×An(I2), let

(τ1, τ2)(f1, f2) = (τ1f1, τ2f2)

where

(τ1f1)(t) =
n∑

k=0

ak(t)f (k)
1 (t), t ∈ I1 ,

(τ2f2)(t) =
n∑

k=0

bk(t)f (k)
2 (t), t ∈ I2
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We define T0(τi),T1(τi) in L2(Ii), i = 1, 2 and T0(τ1, τ2), T1(τ1, τ2) in L2(I1)×L2(I2)
as follows:

D(T0(τi)) = Hn
0 (Ii), T0(τi)fi = τifi, fi ∈ D(T0(τi)); i = 1, 2;

D(T1(τi)) = Hn(Ii), T1(τi)fi = τifi, fi ∈ D(T1(τi)); i = 1, 2;

D(T0(τ1, τ2)) = Hn
0 (I1 × I2), T0(τ1, τ2)(f1, f2) = (τ1f1, τ2f2);

D(T1(τ1, τ2)) = Hn(I1 × I2), T1(τ1, τ2)(f1, f2) = (τ1f1, τ2f2).

We note that T0(τi), T1(τi)) are densely defined unbounded operators in L2(Ii), i =
1, 2;T0(τ1, τ2), T1(τ1, τ2) are densely defined unbounded operators in L2(I1)×L2(I2).
We also note that the matching conditions at the interface t = c , viz. Af̃1(c) =
Bf̃2(c) are introduced into the domains of T0(τ1, τ2) and T1(τ1, τ2). It is true that
T0(τi), i = 1, 2, T0(τ1, τ2) are minimal unclosed operators and and T1(τi), i = 1, 2;
T1(τ1, τ2) are the maximal closed operators in the respective spaces. Moreover,
T0(τi) = T0(τ∗i )∗, where τ∗i is the formal adjoint of τi, i = 1, 2. Under certain
assumptions on the matrices A,B and the boundary matrices for τ1, τ2 at c, we shall
prove in the next section that T1(τ1, τ2) = T0(τ∗1 , τ∗2 )∗. Thus if τ1 and τ2 are formally
selfadjoint, then we have T1(τi) = T0(τi)∗, i = 1, 2 and T1(τ1, τ2) = T0(τ1, τ2)∗. The
positive and negative deficiency spaces of T0(τ1), T0(τ2) and T0(τ1, τ2) are defined
as follows:

D′
+ = {f1 ∈ D(T1(τ1))

/
τ1f1 = if1},

D′
− = {f1 ∈ D(T1(τ1))

/
τ1f1 = −if1},

D”+ = {f2 ∈ D(T1(τ2))
/
τ2f2 = if2},

D”− = {f2 ∈ D(T1(τ2))
/
τ2f2 = −if2},

D+ = {(f1, f2) ∈ D(T1(τ1, τ2)),
/
(τ1, τ2)(f1, f2) = i(f1, f2)},

D− = {(f1, f2) ∈ D(T1(τ1, τ2)),
/
(τ1, τ2)(f1, f2) = −i(f1, f2)},

and the following quantities

d′+ = dim D′
+; d′− = dim D′

− ,

d′′+ = dim D′′
+; d′′− = dim D′′

− ,

d+ = dimD+; d− = dimD−

are called the positive and negative deficiencies of T0(τ1), T0(τ1), T0(τ1, τ2), respec-
tively. Our main interest here is to prove the following theorem.

Theorem 1.1. If τ1, τ2 are formally selfadjoint and

(A−1)∗Fc(τ1)A−1 = (B−1)∗Fc(τ2)B−1 (1.1)

where Fc(τi) is the boundary matrix of τi at t = c, i = 1, 2, then

d+ = d′+ + d′′+ − n and d− = d′− + d′′− − n .

If τ1 = τ2, that is the same differential operator is defined on I1 and I2, and
A = B = I, (where I denotes the identity matrix) then [3, corollary (XIII).2.26]
becomes a special case of the above theorem. The proof of Theorem 1.1, that we
present here is new and more appealing than the proof given in [3], for the special
case τ1 = τ2, and A = B = I.
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2. Preliminary results

In this section, we present a few definitions and results that are useful towards
proving Theorem 1.1.

Let gi be complex valued measurable function which is integrable over every
compact subinterval of Ii, i = 1, 2. Consider the boundary-value problem (BVP)

(τ1, τ2)(f1, f2) = (g1, g2) (2.1)

Af̃1(c) = Bf̃2(c) (2.2)

By a solution of problem (2.1)-(2.2), we mean a pair (f1, f2) ∈ An(I1) × An(I2)
such that

(i) (τ1f1)(t) = g1(t) for almost all t ∈ I1

(ii) (τ2f2)(t) = g2(t) for almost all t ∈ I2

(iii) Af̃1(c) = Bf̃2(c).

Let ti ∈ Ii, i = 1, 2 and {c0, . . . , cn−1}, {d0, . . . , dn−1} be arbitrary set of complex
numbers. Consider the initial conditions

f
(i)
1 (t1) = ci, i = 0, 1, . . . , n− 1, t1 ∈ I1, (2.3)

f
(i)
2 (t2) = di, i = 0, 1, . . . , n− 1, t2 ∈ I2, (2.4)

The following results can be proved easily.

Lemma 2.1. The initial boundary-value problem (2.1)-(2.2)-(2.3) ( (2.1)-(2.2)-
(2.4)) has a unique solution.

Lemma 2.2. If gi has k continuous derivatives in Ii, then the component fi of
the solution (f1, f2) of (2.1)-(2.2)-(2.3) ( (2.1)-(2.2)-(2.4)) has (n + k) continuous
derivatives in Ii, i = 1, 2.

Lemma 2.3. If (g1, g2) = (0, 0) and 0 = c0 = c1 = · · · = cn−1(0 = d0 = d1 = · · · =
dn−1), then (f1, f2) = (0, 0) is the only solution of (2.1)-(2.2)-(2.3) ( (2.1)-(2.2)-
(2.4)).

We say the pairs (f11, f21), . . . , (f1p, f2p) are linearly independent on I1 × I2 if

p∑
k=1

αkf (j)(t) = 0, t ∈ Ii, j = 0, 1, . . . , n− 1, i = 1, 2

where α1, . . . , αp are scalars, then α1 = α2 = · · · = αp = 0.
The next result follows easily from Result 2.1.

Lemma 2.4. The boundary-value problem

(τ1, τ2)(f1, f2) = (0, 0) (2.5)

Af̃1(c) = Bf̃2(c) (2.6)

has exactly n linearly independent solutions.

We now prove the Green’s formula for the pair (τ1, τ2).
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Theorem 2.5. Let I1 = [a, c], I2 = [c, b], −∞ < a < c < b < +∞. Let relation
(1.1) be true. Then for (f1, f2)(g1, g2) ∈ Hn(I1 × I2),∫ c

a

(τ1f1)(t)ḡ1(t)dt +
∫ b

c

(τ2f2)(t)ḡ2(t)dt

=
∫ c

a

f1(t) ¯(τ∗1 g1)(t)dt +
∫ b

c

f2(t) ¯(τ∗2 g2)(t)dt + Fb(f2, g2)− Fa(f1, g1)

where Ft(fi, gi) is the boundary form for τi at t ∈ Ii.

Proof. Being the proof routine it suffices to verify that

Fc(f1, g1) = Fc(f2, g2).

To show this, we consider,

Fc(f1, g1) = (g̃1(c))∗Fc(τ1)f̃1(c)

= (g̃1(c))∗A∗(A−1)∗Fc(τ1)A−1Af̃1(c)

= (Ag̃1(c))∗(A−1)∗Fc(τ1)A−1(Af̃1(c))

= (Bg̃2(c))∗(B−1)∗Fc(τ2)B−1(Bf̃2(c))

= (g̃2(c))∗B∗(B−1)∗Fc(τ2)B−1Bf̃2(c)

= (g̃2(c))∗Fc(τ2)f̃2(c)

= Fc(f2, g2)

�

The following corollary is immediate.

Corrolary 2.6. If I1 and I2 are arbitrary intervals and Relation (1.1) is true,
then Green’s formula is valid for (f1, f2), (g1, g2) ∈ Hn(I1 × I2) (or even (f1, f2) ∈
Hn(I1 × I2), (g1, g2) ∈ An(I1) × An(I2) satisfying Ag̃1(c) = Bg̃2(c)) provided that
either (f1, f2) or (g1, g2) vanishes outside a compact subcell of I1 × I2.

In the rest of the work, we assume Relation (1.1) to be true. The following
results could be proved with suitable modifications as in [3, pp 1291-1295].

Lemma 2.7. Let fi be a function whose square is integrable over every compact
subinterval of Ii, i = 1, 2. Suppose that

2∑
i=1

∫
Ii

fi(t) ¯τ∗i gi(t)dt = 0, for all (g1, g2) ∈ Hn
0 (I1 × I2) .

Then (after modification on a set of measure zero)

(f1, f2) ∈ C∞(I1)× C∞(I2), Af̃1(c) = Bf̃2(c)and(τ1, τ2)(f1, f2) = (0, 0).

Lemma 2.8. T1(τ1, τ2) = T0(τ∗1 , τ∗2 )∗.

From Lemma 2.8 it follows that T1(τ1, τ2) is a closed operator. Thus T1(τ1, τ2)
is an extension of T0(τ1, τ2) and hence T0(τ1, τ2) has an minimal closed extension

¯T0(τ1, τ2).

Lemma 2.9. If τ1, τ2 are formally selfadjoint then T0(τ1, τ2) is the restriction of
T0(τ1, τ2)∗. (that is T0(τ1, τ2) is symmetric).
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Lemma 2.10. If τ1, τ2 are formally selfadjoint then D′
+, D′

−;D′′
+, D′′

−;D+, D− con-
sists precisely of those solutions of the equations (τ1 − i)f1 = 0, (τ1 + i)f1 = 0;
(τ2 − i)f2 = 0, (τ2 + i)f2 = 0; ((τ1, τ2) + i)(f1, f2) = (0, 0), satisfying Af̃1(c) =
Bf̃2(c), lying in L2(I1), L2(I2), L2(I1)× L2(I2), respectively.

Lemma 2.11. Let J1 × J2 be a compact subcell of I1 × I2. Then
(i) The space Hn(J1 × J2) is complete in the norm

‖ (f1, f2) ‖=max
( n−1∑

i=0

max
t∈J1

|f (i)
1 (t)|,

n−1∑
i=0

max
t∈J2

|f (i)
2 (t)|

)
+

( 2∑
i=1

∫
Ji

|f (n)
i (t)|2dt

)1/2

.

(ii) {(f1n, f2n)} is a sequence in Hn(I1 × I2) such that {(f1n, f2n)} and
(τ1, τ2){(f1n, f2n)} converge (converge weakly) in L2(I1) × L2(I2), then
the sequence {(f1n, f2n)} converges (converge weakly) in the topology of
Hn(J1 × J2) defined by the above norm. For (f1, f2), (g1, g2) ∈ L2(I1) ×
L2(I2), the inner product in L2(I1)× L2(I2) is given by〈

(f1, f2), (g1, g2)
〉

= 〈f1, f2〉+ 〈g1, g2〉
Since T1(τ1, τ2) is closed, Hn(I1 × I2) = D(T1(τ1, τ2)) becomes a Hilbert
space upon introduction of the inner product〈

(f1, f2), (g1, g2)
〉∗ =

〈
(f1, f2), (g1, g2)

〉
+

〈
(τ1, τ2)(f1, f2), (τ1, τ2)(g1, g2)

〉
Definition. A boundary value for (τ1, τ2) is a continuous linear functional Θ on
D(T1(τ1, τ2)) which vanishes on D(T0(τ1, τ2)). If Θ(f1, f2) = 0 for each (f1, f2) ∈
D(T1(τ1, τ2)) which vanishes in a neighbourhood of a, Θ is called a boundary value
at a. A boundary value at b is defined similarly . An equation Θ(f1, f2) = 0, when
Θ is a boundary value for (τ1, τ2), is called a boundary condition for (τ1, τ2). A
complete set of boundary values is a maximal linearly independent set of boundary
values. Similarly a complete set of boundary values at a(b) is a maximal linearly
independent set of boundary values at a(b).

Note: If τ1, τ2 formally selfadjoint, the boundary values for (τ1, τ2) coincides with
[3, Definition (XII)4.20] of a boundary value for T0(τ1, τ2).

The following results can be provided with suitable modifications as in [3, pp:
1298-1301].

Lemma 2.12. The space of boundary values for (τ1, τ2) is the direct sum of the
space of boundary values for (τ1, τ2) at a and the space of boundary values for (τ1, τ2)
at b.

Lemma 2.13. There exists a one to one linear mapping of the space of all boundary
values for τ1(τ2) at a(b) on to the space of all boundary values for (τ1, τ2) at a(b).

Lemma 2.14. τ1(τ2) and (τ1, τ2) have the same number of linearly independent
boundary conditions at a(b).

Lemma 2.15. (τ1, τ2) has at most n linearly independent boundary values at a(b).

Lemma 2.16. If I1 = [a, c], −∞ < a(I2 = [c, b], b < +∞), then the functionals
Θi(f1, f2) = f

(i)
1 (a)(f (i)

2 (b)), i = 0, 1, . . . n − 1 form a complete set of boundary
values for (τ1, τ2) at a(b).
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Lemma 2.17. If τ1, τ2 are formally selfadjoint and

d = d+ + d−, d′ = d′+ + d′−, d′′ = d′′+ + d′′−

then d = d′ + d′′ − 2n.

3. Proof of Theorem 1.1

Proof. Let (f11, f21), . . . , (f1d+, f2d+) be a basis for D+ ; g11, . . . , g1d′
+

be basis
for D′

+; h21, . . . , h
′′
2d+

be a basis for D′′
+. Clearly, {(f1i, f2i)}, i = 1, 2 . . . , d+ are

linearly independent and belong to L2(I1)×L2(I2); {g1i}, i = 1, . . . , d′+ are linearly
independent and belong to L2(I1); {h2i}, i = 1, . . . , d′′+ are linearly independent and
belong to L2(I2). We have d+ ≤ d′′+, d+ ≤ d′+.
Claim 1: At least (d′+−d+) number of gi1s are linearly independent with respect to
the set S = {f11, . . . , f1d+}. For, if possible, let this number of gi1s be strictly less
than (d′+ − d+). Then at least (d+ + 1) number of gi1s shall be linearly dependent
to S. Without loss of generality, we may assume that g11, . . . , g1d+ are linearly
independent to S. Then there exists scalars αij , i, j = 1, 2, dots, d+ and β1, . . . , βd+

such that
α11f11 + · · ·+ α1d+f1d+ = g11

α21f11 + · · ·+ α2d+f1d+ = g12

...
αd+1f11 + · · ·+ αd+d+f1d+ = g1d+

(3.1)

and
β1f11 + · · ·+ βd+f1d+ = g1d++1 (3.2)

Since g11, . . . , g1d+ are linearly independent, the matrix
α11 . . . α1d+

α21 . . . α2d+

...
...

αd+1 . . . αd+d+


is nonsingular and consequently system (3.1) gives that each f1i, i = 1, . . . , d+ can
be expressed as a linear combination of g11, . . . , g1d+ and then substituting into
equation (3.2), we get g1d++1 is a linear combination of g11, . . . , g1d+ , a contradic-
tion. Hence the claim is true.

Now, let g1d++1, . . . , g1d′
+

be linearly independent with respect to S. Using
Lemma 2.1, we can extend these functions to the pairs
(g1d++1, g2d++1), . . . , (g1d′

+
, g2d′

+
) satisfying

((τ1, τ2)− i)(g1i, g2i) = (0, 0), (3.3)

Ag̃1i(c) = Bg̃2i(c), i = d+ + 1, . . . , d′+ (3.4)

Clearly, (f11, f21), . . . , (f1d+ , f2d+), (g1d++1, g2d++1), . . . , (g1d′
+
, g2d′

+
) are linearly in-

dependent and g2i /∈ L2(I2), for any i = d+ + 1, . . . , d′+.
Next, let S̃ = {f21, . . . , f2d+}. As in claim 1, we can prove at least (d′′+ − d+)

number of h2is must be linearly independent with respect to S̃. Using Lemma 2.1,
we can extend these functions to the pairs (h1d++1, h2d++1), . . . . . . , (h1d′′

+
, h2d′′

+
)

satisfying
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((τ1, τ2)− i)(h1i, h2i) = (0, 0) (3.5)

Ah̃1i(c) = Bh̃2i(c) (3.6)

Clearly, (f11, f21), . . . , (f1d+ , f2d+), (h1d++1, h2d++1), . . . , (h1d′′
+
, h2d′′

+
) are linearly

independent and h1i /∈ L2(I1), for any i = d+ + 1, . . . , d′′+.
Claim 2: (f11, f21), . . . , (f1d+ , f2d+), (g1d++1, g2d++1), . . . , (g1d′

+
, g2d′

+
),

(h1d++1, h2d++1), . . . , (h1d′′
+
, h2d′′

+
) are linearly independent solutions of

((τ1, τ2)− i)(f1, f2) = (0, 0) (3.7)

Af̃1(c) = Bf̃2(c) . (3.8)

It suffices to verify the linear independency of these pairs of functions. Again it
suffices to show that g’s and h’s are mutually linear independent. If possible for
some i, let

(g1i, g2i) = α1(h1d++1, h2d++1) + · · ·+ αd′′
+−d+(h1d′′

+
, h2d′′

+
)

for some scalars α1, . . . , αd′′
+−d+ , not all zeros. Then

g2i =
d′′
+−d+∑
i=1

αih2i

a contradiction, since the left-hand side is not in L2(I2), whereas the right-hand side
is in L2(I2). Similarly, it can be proved that no (h1i, h2i) is a linear combination of
(g1i, g2i), i = d+ + 1, . . . , d′+. This proves claim 2.

Finally by Lemma 2.4, we have

d+ + (d′+ − d+) + (d′′+ − d+) ≤ n.

That is
d′′+ + d′+ − d+ ≤ n (3.9)

Similarly we get,
d′′− + d′− − d− ≤ n (3.10)

Claim 3: d′′+ + d′+ − d+ ≤ n and d′′+ + d′+ − d+ ≤ n For if possible, let the strict
inequality hold in either (3.9) or (3.10). Then, adding these two we get

(d′′+ + d′′−) + (d′+ + d′−)− (d+ + d−) < 2n .

That is, d′′ + d′ − d < 2n which is a contradiction to Lemma 2.17. This proves
claim 3 and the proof of the theorem is complete. �

We remark that the operators of the form considered here occur in many physical
situations such as acoustic wave guides in oceans; see [1, 5, 6, 7, 8, 9, 4].
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