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MULTIPLICITY OF SOLUTIONS FOR A PERTURBED
FRACTIONAL SCHRODINGER EQUATION INVOLVING
OSCILLATORY TERMS

CHAO JI, FEI FANG

Communicated by Binlin Zhang

ABSTRACT. In this article we study the perturbed fractional Schrédinger equa-
tion involving oscillatory terms

(=2)*u+u = Q@)(f(w) +egw)), =eRY
w20,

where a € (0,1) and N > 2a, (—A)® stands for the fractional Laplacian,
Q : RY — RY is a radial, positive potential, f € C(]0,00),R) oscillates near
the origin or at infinity and g € C([0,00),R) with g(0) = 0. By using the
variational method and the principle of symmetric criticality for non-smooth
Szulkin-type functionals, we establish that: (1) the unperturbed problem, i.e.
with € = 0 has infinitely many solutions; (2) the number of distinct solutions
becomes greater and greater when |e| is smaller and smaller. Moreover, various
properties of the solutions are also described in terms of the L>°- and H(RN)-
norms.

1. INTRODUCTION

In this paper we consider the multiplicity of positive solutions for the fractional
Schrédinger equation

(~8)"u+u = Q)(f(u) +eglw), = eRY,
u >0,

where o € (0,1), N > 2a, (—A)* stands for the fractional Laplacian, @ : RN — RV
ia a radial, positive potential, f : [0+ oc) — R¥ is a continuous nonlinearity which
oscillates near the origin or at infinity and g : [0,00) — R is an continuous function
with g(0) = 0.

In the local case, that is, when « = 1, the arbitrarily many solutions for the
perturbed elliptic problem involving oscillatory terms, for the case N > 2, has
been studied in [5]. Kristdly [5] first proved the unperturbed problem with
e=01in , has infinitely many distinct solutions. Then, he proved that the
number of distinct solutions for the perturbed problem becomes greater and
greater when |e| is smaller and smaller.

(1.1)
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In the nonlocal case, that is, when a € (0, 1), to the best of our knowledge, there
are no studies for the fractional nonlinear equation , maybe because technique
developed for local case cannot be adapted immediately, c.f. [14]. Motivated by [5],
we establish the multiplicity of positive solutions for . Because of the nonlocal
nature of the fractional Laplacian, we would like to point out that some estimates
n [5] cannot be obtained directly when o € (0,1). In this paper, we will overcome
these difficulties by more careful estimates for the energy functional associated with
the auxiliary problem, see proof of Theorem Another novelty is the truncation
function w,(z) in [5] will be replaced by a more general function.

Throughout this paper, we always assume

(A1) @ : RN — R¥ is a positive, continuous, radially symmetric potential such

that Q € LP(RY) for every p € [1,2].
We recall that, for any o € (0, 1), the fractional Laplacian (—A)%u of a function
u: RY — R¥, with sufficient decay, is defined by

F((=A)*u)(§) = [ F(u)(), & eRY,

where F denotes the Fourier transform,

FONO) = gy [ ¢ o) = 3(6),

for function ¢ in the Schwartz class. (—A)®u can also be computed by the following
singular integral:

oy — u(z) — u(y)
(7A) U = CN,« P.V. \/RN md'g,

here P.V. is the principal value and cy  ia a normalization constant.
The fractional Sobolev space H*(RY) is defined by

H*RY) = {u e L*RV) : MGLQ(RNXRN)},
|z —y|=z T

endowed with the norm

2 1/2
([ s [ uw)?
b= ([ [ |zf Ty )

where the term

/2 _ u(y)|® 1/2
[U]HQ(RN) = [[(=4) / U”L?(RN = //]RNXRN Wdl’dy)

is the so-called Gagliardo semi-norm of u.
For N > 2q, from [4] we know that there exists a constant C' = C(N,a) > 0
such that

||U||L23 (RN) < CHUHH“(RN)

for every u € H*(RY), where 2}, = 22— is the fractional critical exponent. More-
over, the embedding H®(R™) C L4(RY) is continuous for any ¢ € [2,2%], and is
locally compact whenever ¢ € [2,2%). For the basic properties of the fractional

Sobolev space H*(RY), we refer to [4 8|, [T, [14].
Let f € C([O oo) R) and F(t fo T)dr, t > 0. We assume:

(A2) — ( ) F(t)

t2

= +o0.

< limsup,_,g+
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(A3) There exists a sequence (t;); C (0,00) converging to 0 such that f(¢;) <0
for every i € N.

Remark 1.1. (1) Assumptions (A2) and (A3) imply an oscillatory behavior of f
near the origin.

(2) Let a, 3,7 € RN such that 0 < @ <1 < a+ 3, and v € (0,1). Then, the
function f € C([0,00),R) defined by f(0) = 0 and f(s) = s*(7 + sin s~7) satisfies
(A2) and (A3), respectively.

For the unperturbed problem (|1.1)) with ¢ = 0, we have the following result.

Theorem 1.2. Assume (A1) holds and f € C(]0,00),R) satisfying (A2) and (A3).
Then there exists a sequence {ul}; C H*(RYN) of distinct, radially symmetric weak
solutions of (L.1) with e =0 such that

im0 = lim [Ju?]] = 0. (1.2)
For the perturbed problem (|1.1)), one has the weaker result.

Theorem 1.3. Assume (A1) holds, f € C(]0,00),R) satisfying (A2) and (A3) and
g € C([0,00),R) with g(0) = 0. Then, for every k € N, there exists €} > 0 such
that (1.1)) has at least k distinct, radially symmetric weak solutions in H*(RN)
whenever € € [—€),€%]. Moreover, if this k solutions are denoted by u?’ﬁ € H*(RN),
i=1,...,k, then

1 1
[uf Nl < A and |juf | < n foranyi=1,...,k. (1.3)

Remark 1.4. Note and are in a perfect concordance. Moreover, the
perturbed and unperturbed ones are equivalent in the sense that they are deducible
from each other. Clearly, the perturbed problem contains the unperturbed one by
choosing ¢ = 0. Conversely, exploiting the behavior of certain sequences which
appear in the proof of Theorem we can show that for every k € N, there exists
€2 > 0 such that the perturbed problem has at least k distinct solutions in H®(RY)
whenever € € [—€?, €?].

Next, we will state the counterparts of Theorems and when f oscillates
at infinity. We assume:

(A4) —oco < liminf; F;(;) < limsup,_, % = +00.

(A5) There exists a sequence (¢;); C (0, 00) converging to +oo such that f(¢;) < 0
for every i € N.

Remark 1.5. (1) The assumptions (A4) and (A5) imply an oscillatory behavior
of f at infinity.

(2) Let o, 3,7 € RY such that a > 1, |a — 8| < 1, and v € (0,1). Then, the
function f € C([0, 00),R) defined by f(s) = s*(y+sins~?) satisfies (A4) and (A5),
respectively.

For problem (|1.1)) with € = 0, we have the counterpart of Theorem [1.2

Theorem 1.6. Assume (A1) holds and f € C(]0,0),R) satisfying (A4), (A5) and
f(0) = 0. Then there exists a sequence {u®}; C HY(RY) of radially symmetric
weak solutions of with € = 0 such that

Jim g = oo, (L4)
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Remark 1.7. Beside of (A4) and (A5), no further growth condition is assumed on
the nonlinear tern at infinity. Actually, this is why we cannot give H®(R¥)-norm
estimates for the solutions in Theorem If we further assume that f satisfies
the following growth condition at infinity, i.e., there exists ¢ € (1, %) and C' > 0
such that

If(t)] < C@+t171) forall t €[0,00). (1.5)
Then, we have
lim ||ug®|| = 0. (1.6)
11— 00

It is easy to see that (1.5) and the right side of (A4) imply ¢ > 2. Thus, (1.6)

is possible for the lower dimensions N = 1,2, 3 and adding some restriction for «,
that is, when 4a > N > 2a, since 2 < 27“ In fact, for holds, we need to
further assume that o € (§,3), if N=1, 0 € (3,1),if N=2, a0 € (3,1),if N =3,
Another way to guarantee (|1.6) is to complete assumption (A1) by allowing for
instance Q € L*(RY) and with q€(2,2%).

For problem (|1.1]), we also have the counterpart of Theorem

Theorem 1.8. Assume (Al) holds, f € C([0,00),R) satisfying (A4), (A5) with
f(0) =0, and g € C([0,00),R) with g(0) = 0. Then, for every k € N, there exists
e’ > 0 such that has at least k distinct, radially symmetric weak solutions
in H*(RN) whenever € € [—€5°,€°]. Moreover, for this k solutions are denoted by
ugs € H*(RN),i=1,...,k, we have

lugellpe >i—1 fori=1,... k. (1.7)

Remark 1.9. Equations (|1.4) and (1.7 are also in concordance. Moreover, if both
functions f and g verify (1.5) with ¢ € (2, 27“) andif N =1,a € (+,1),if N =2,

402
a € (%,1), ifN=3 ac (%, 1), then besides of (|1.7)), whenever € € [—€°, €°], we
also have

uel >i—1 fori=1,... k. (1.8)

In recent years, the study of the various nonlinear equations or systems involving
fractional Laplacian has received considerable attention. These problems mainly
arise in fractional quantum mechanics [0, [7], physics and chemistry [9], obstacle
problems [16], optimization and finance [3] and so on. The literature on non-local
fractional Laplacian operators and their application to differential equations is quite
large, we refer the interested reader to [I}, 2, 10} 111, 12} I3} 14} 15| 16} I8, 19} 20]
and the references therein.

The rest of this article is organized as follows. In Section 2, we present an
auxiliary result which is important for our problem. In Section 3 we prove Theorems

and In Section 4 we prove Theorems [1.6] and Remarks [1.7] and
2. AN AUXILIARY RESULT
In this section we consider the generic problem
(—=A)%u+u = Q(x)h(u), zcRY
(2.1)
u >0,

Beside of the assumption (A1), we further assume that
(A6) h:[0,+00) — R¥ is a continuous, bounded function such that h(0) = 0;
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(A7) There are 0 < a < b such that h(s) <0 for all s € [a, b].

By assumption (A6), we may put h(s) =0 for s < 0. The energy functional .J,, on
H*(RY) associated with problem (2.1)) is

1

Jp(u) == = / (\(—A)O‘/2u|2 + uz)dx - Q(z)H (u) dz, (2.2)
2 RN RN

where H(u) = [ h(s)ds. By the mean value theorem and Hélder inequality, for

any u € H*(RY), we have

Qe)H(u)dr < [ Q(z)[H(u)| de < Mp[|Ql| L2 ||ul[2> < oo,
RN RN
where M, = sup,cp |h(s)], so the functional J, is well defined. Moreover, by
the assumptions (Al), (A6) and Lebesgue dominated convergence theorem, J €
CY(H*(R™),R) and its critical points are the solutions of problem (2.1)).
Now, we denote by H® ,(R") radial functions in H*(RY), and let

rad

i.e., the restriction of Jj, to H2,(R™). Moreover, for b € R, we denote

Wb ={uec H*RY): ||ullp~ <b} and W5, =W’nH,RY).

rad

Now we state the main result of this section.

Theorem 2.1. Assume that (A1), (A6), (A7) hold. Then

(i) The functional Ry, is bounded from below on W2, and attains its infimum
at up, € W2,.
(ii) up € [0,a] for a.e. x € RN,
(iii) wp is a radial weak solution of problem (2.1)).

Proof. (i) For any u € H2,(RY), by (A1) and (A6), we have
Ri(w) = 51l = | Q@) (s
S YA o] P
> Ll ~ Mal|@l 2l
>~ MEIQIE,

so the functional Ry, is bounded from below on Wrbad. Now we prove that it attains
infimum at u, € W2,. Noting that W?  is convex and closed, so it is weakly
closed. By the above inequality, the functional R}, is coercive, so we only need to
show that the functional Rj is sequentially weakly lower semicontinuous. Since
u +— ||lu|| is sequentially weakly lower semicontinuous, it is enough to show that
U — IRN Q(x)H (u) is sequentially weakly continuous. Arguing by contraction,
suppose that for a sequence {u,}, C H2,(RY) such that u, — u € HZ (RY),
there exists a number €y > 0 such that

0<e < ‘ - Q(x)H (uy) — - Q(z)H(u)| for alln eN.
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By [8], we can see that H2,(RY) is compactly embedded into LI(RY) for all ¢ €

(2,2%), so u, — u in LI(RY). By the mean value theorem and Holder inequality,
we have

0<a<|[ Q@rw) - [ ewHw| <M [ Q@ ~ulds

< M| QI 2 llun — ul e,

this is a contradiction and the proof part (i) is complete.

(ii) Let A = {z € RN : uy(z) ¢ [0,a]} and suppose that |[A| > 0, where |A]
denotes the Lebesgue measure of the set A. Define the function v : R — RY
by v(s) = min(s,a), where s; = max(s,0), then 7 ia a Lipschitz function and
7(0) = 0. Set w = youy, it is clear that w is radial, 0 < w < a for a.e. x € RY and
w € HYRN).

Now we define the sets

Ar={x e A:up(z) <0}, Ay={x e A:up(r) >a}.
Then A = A; U Ay, and we have that w(z) = uy(z) for all z € RV \ A, w(z) =0
for all z € Al, and w(z) = a for all © € As. Thus,

R Rh (uh)

—w(y) // |un(x) — un(y)]?
=l Sl 1URAT) =~ YR 1 dy
//RNxRN |37— \N+2a RN xRN | — y|N T2

+f/ (W =3 da:+/ Q(x)(H(w) — H(up))dzx

// —w(y) // |un(z) — un(y)? dr dy
RN xRN |33— \NHO‘ RN xRN |T —y|VH2e

+2/A(w —uhdz+/Q )*H(Uh))dx-
If x € A; and y € Ay, then
w(z) —w(y)| =0 < |un(x) — un(y)l- (2.3)
If x € A; and y € A,, then
w(z) —w(y)l = a < un(x) —un(y)]. (2.4)
If x € A; and y € RV \ A, then
w(@) —w(y)| = uny) < un(z) — un(y)l. (2.5)
If x € Ag, y € Ay, then
w(z) —w(y)] =0 < Jun(z) — un(y)| (2.6)
If v € Ay, y € RNV \ A, then
w(@) —wy)| = la—un(y)] < [un(z) — un(y)l. (2.7)
Ifx e RV\ A yeRY\ A, then
w(z) —w(y)| = lun(z) — un(y)l. (2.8)

From (2.3)-(2.8)), for any 2,y € RY, one has
w(@) —wy)| < [un(@) — un(y)l,
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(@) = w(y)? Jun () — un(y)|?
—d dy < 0.
// |l_ |N+M // o —yN+2a

Note that
/ (w? —ui)dr = —/ ujdx +/ (a® —u})dr <0.
A Ay Az

Since h(s) =0 for all s <0, we have

/Al Q(x) (H(w) - H(uh))dm =0.

By the mean value theorem, for a.e. & € A,, there exists 6(z) € [a,up(z)] C [a,b]
such that

H(w(z)) — H(un(z)) = H(a) — H(un(z)) = h(0(z))(a — un(z)).
y (A7), we have

/A2 Q) (H(w) ~ H(w,))dz < 0.

So Rp(w) — Rp(up) < 0. Moreover Ry(w) — Rp,(up) > 0 according to the definition
of uy,. Thus

3 R //|||<>l
Q/A(wz_uh /Q H(u h))dxzo.

In particular,
/ ujdr = / (a® —u})dx =0,
Ay As

this implies that meas(A) should be zero and this is a contradiction with the as-
sumption.
(iii) By [17], we have

R} (up)(w —up) >0 for every w € WP. 2.9
h

where we use a non-smooth symmetric critical principle for the Szulkin-type func-
tional.
Now we prove that uy, is a weak solution of (2.1)), that is, for all v € H*(RY),

/ (=AY 20y, (=AY %0 4 upv de = Q(z)h(up)v de.
RN

RN
By ([2.9)), for all w € W?, it follows that

A (=302 = un) +un = )
= (2.10)
- [ Q@htw) - w)dz 20

RN

Define the function y(s) = sgn(s)min(|s|,b), and fix ¢ > 0 and v € H*RYN)
arbitrarily. Since 7 is Lipschitz and v(0) = 0, w, = v o (up, + ev) € H*(RY). The
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explicit expression of the truncation function w, is

—b if x € {up + ev < —b},
wy(z) = S up(z) +ev(z) ifz€{=b<u,+ev<b},
b if x € {up, + ev > b},

thus w, € W, Taking w = w~ as a test function in 7 we obtain
0= / (7A)a/2uh(*A)a/2(wv —up) +up(wy — up)dz
RN
= | Q@)h(un)(wy — up)dz
// (1) = un (1)) @) = (&) =, ) +n0))
RN xRN |

€T — |N+2a

+ /]RN up (wy — up)de — - Q) h(up)(wy — up) dz

_ _ 2
:// |un (x) Nlﬁ;(f)\ dr dy
{up+ev<—b}x{up+ev<—b} |!E - y‘
_ —b—uy(z) —
i () ~ )b wie) — )
{up+ev<—b} x{—b<up+ev<b} |£Z' - y| *

o (10(x) = )2~ @) ),
{up+ev<—b}x{up+ev>b} ‘SL‘ - y| ¢

o () — ) e) +b+ )
{—b<up+ev<b}x{up+ev<—b} |.’II - y| «

o (0(x) ~ ) )
{—b<up+ev<b}x{—b<up+ev<b} |1" - y| “

-l (o) @) evle) b+ )
{—b<up+ev<d} x{up+ev>b} |'5tj - y|

n // (un(z) — un(y)) (b ;g;(x) —e(®) ;. dy
{un+ev>b} x{up+ev<—b} ‘1‘ - y|

A (@) ~ )6 o) — ),
{un+ev>b} x{—b<up+ev<b} |z —yl

o (1n(0) = )0 0) ~ @)
{up+ev>b}x{up+ev>b} |:L' - y‘

- / (b -+ unyun — Q(a)h(un ) (b + w)dc
{up+ev<—b}

+ e/ [upv — Q(z)h(up)v]de
{—b<up+ev<b}

_ / [(up, — b)up + Q(x)h(up)(up, — b)]dx.
{up+ev>b}

After a suitable rearrangement of the above terms, we obtain that

up(x) — un(y))(v(z) —v(y))
0<6//]RN><RN 7 — gV da:dy—Fe/RNuhvdx
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—€ Q(z)h(up)v dx

RN

_ _ 2
f NES
{up+ev<—b}x{up+ev<—b} |‘T - y‘
N 6// (un(z) — Uh(y))A(’i(zi) —v®) 4. dy
{up+ev<—b} x{up+ev<—b} |(E - y‘
o (0 (2) ~ )b~ a) vl
{up+ev<—b} x{—b<up+ev<b} |£E - y|

./ () ~ ) o0,
{up+ev<—b} x{—b<up+ev<b} |.’L' - y| a

o (10(x) ~ )2~ a) ),
{up+ev<—b}x{up+ev>b} ‘SL’ - y| *

—e (un(z) — un(y))(v(@) —v(y)) .
//{uh+ev<b}><{uh+ev>b} |z — y|N+2e dx dy

o (n(x) ~ ) e) +b+ )
{—b<up+ev<b}x{up+ev<—b} |.’L‘ - y| «

o (@) ~ ) o),
{-b<up+ev<b}x{up+ev<—b} |.13 - y| )

- (10 0) ~ vl b)),
{—b<up+ev<d} x{up+ev>b} |'T - y|

_ 6// (un(x) — Uh(l/))}\(fi(zi) —0(y)) dx dy
{—b<up+ev<b}x{up+ev>b} lz -yl
o (unfa) = )0 = (o) — )
{unp+ev>b} x{up+ev<—b} “T - y|N+2a
/i (un) = wr ) o) = o)
{up+ev>b} x{up+ev<—b} |1’ - y|N+2a
o (1) = wr ()b = wn (o) = ev(w)
{up+ev>b} x{—b<up+ev<b} |£L’ - y|N+20¢
/i () ~ ) o),
{up+ev>b}x{—b<up+ev<b} |.’E - y| ¢
o (una) = ) n ) — wna))
{up+ev>b} x{up+ev>b} |,’E - y‘N+2a

/] (1) = w0 012) —0(0))
{up+ev>by x{up+ev>b} |:L‘ — y|N+2a

+ / [Q(z)h(un) — up](b+ up + ev)dx
{up+ev<—b}

+ / [Q(z)h(up) — up](=b + up + ev)de.
{up+ev>b}
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By the direct computation, one has

_ _ 2
// |un () Niiz;iy)\ du dy
{up+ev<—b}x{up+ev<—b} |JJ - y‘
_ 6// (un(zx) - uh(y))A(]i(Q‘Z) —00) 4 gy
{up+ev<—b}x{up+ev<—b} |Q]‘ - y‘

</ o) ) =) g
{up+ev<—b} x{up+ev<—b} |03 - y|

/] () ~ b))

{up+ev<—b}x{—b<up+ev<b} |£E - y|

. ()~ )G o),
{up+ev<—b}x{—b<up+ev<b} |'T - y| @

<] o)~ @) oWy,
{up+ev<—b}x{—b<up+ev<b} ‘SL’ - y| a

/] (00 (0) ~ )2~ ) £ @),

{up+ev<—b}x{up+ev>b} |1’ - y| «

/i () w0 e
{up+ev<—b}x{up+ev>b} |I - y|

< 6// |un () — uh(y)llvﬁi) W gy,
{up+ev<—b}x{up+ev>b} ‘x - y|

/] () ~ ) e) + b+ w)

{—b<up+ev<b}x{up+ev<—b} |‘T - y| @

o (10 (a) = )00 =) 5,
{—bv<up+ev<b}x{up+ev<—b} |$ - y| +ra

<] o)~ @) oWl
{—b<up+ev<b}x{up+ev<—b} ‘LIJ - y‘

// (un(z) — uh(y))(evﬁl —btuny)) dy

{=b<up+ev<b}x {un+ev>b} |z — y|NF2e

| (00 (0) ~ w0 )
{—b<up+ev<db}x{up+ev>b} |’JC - y| «

< €// |un () — uh(y)w}f;) O gy,
{—b<up+ev<b}x{up+ev>b} |£U - y‘ ¢

(un(x) — un(y))(b — up(x) — ev(y)) .
//{uh+ev>b}><{uh+w<b} |_r1; _ y|N+2a dx dy
—c (un(2) — un(y))(v(@) —v(y)) .
//{uh+ev>b}><{uh+ev<b} |z — y|N+2<¥ dz dy

<] o)~ @) o0,
{up+ev>b}x{up+ev<—b} |Jj - y| «
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Il (00 (0) ~ )~ ) — vl
{up+ev>b} x{—b<up+ev<b} |$ - y| @

] (@) ~ ) ol
{up+ev>b} x{—b<up+ev<b} |$ - y|

= // [un (@) = un(@)lo(z) = v(y)|
S {up+ev>b} x {—b<up+ev<b} |1; _ y‘N+2O‘

(un () — un(y)) (un(y) — un(z))
//{uh+€v>b}><{uh+ev>b} |z — y|N+2e dx dy

—€ (un(x) — un(y))(v(z) —v(y)) .
//{uh+€v2b}><{uh+ev2b} |z — y|N+2e dx dy

< e// [up () — un(y)||v(z) — v(y)|
N {un+ev=b}x{un+ev=b} |x — y|N+2e

Moreover, from uy, € [0,a] C [~b,b] for a.e. z € RV one has

/{u Fev<—b} (Q(x)h(uh) - “h) (b+up + ev) dx

dx dy,

and

dx dy.

< —e€ /{Uh+€v<b} (MhQ(x) + uh(x)>v(;v)dx

and

(Q(x)h(uh) - uh) (=b+up + ev)dx

{up+ev>b}

th/ Q(z)v(z)dx.
{up+ev>b}

Using the above the estimates and dividing by € > 0, we obtain

(un (@) — un(y))(v(z) —v(Y))
OS//RNXRN @ 7o d:cdy—k/RNuhvdx

_y‘N

IN

- Q(z)h(up)v dx

RN

o )~ @)~
{up+ev<—b}x{up+ev<—b} |JJ - y‘

+ // |un(x) — Uh(y)\lli(i) —v()l dz dy
{un+ev<—=b}x{—-b<up+ev<b} |.’13 - y|

A )~ Ik oy, .
{un+ev<—b} x{up+ev>b} |3§‘ - y‘

o o)~ ) oy,
{—b<up+ev<d}x{up+ev<—b} |JC - y|

o )~ ) oy,
{—b<up+ev<b}x{up+ev>b} |:L‘ - y|

o )~ @)~
{up+ev>b} x{up+ev<—b} |(E - y‘

11
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o ae) ~ua @)~
{up+ev>b} x{—b<up+ev<b} |$ - y| o

A o)~ @) oW,
{up+ev>b} x{up+ev>b} |Z‘ - y‘

- »/{uh+5v<b} (MhQ(x) + Uh(x))’l)(x)dx

+ Mh/ Q(z)v(x)dx.
{un+ev>b}

Letting ¢ — 0%, we have
meas({up + ev < —b}) - 0 and meas({up +ev >b}) — 0,

respectively. So, it follows that

(un(z) —un(y))(v(@) —v(y))
0<//]RN><RN drdy

o =y

+/ upv de — Q(x)h(up)v dx.
RN RN

Using —v instead of v, we also have the above inequality. So, uy is a weak solution

of . The proof is complete. O
Fix 0 € (0,1) and p > 0, for any ¢ > 0 we introduce the function
0 if 7 € RN\ B,,
we () := ﬁ(ﬂ —lz|) ifz € B, \ By, (2.11)
t if x € By,

where B, denotes the N-dimensional ball with center 0 and radius r > 0. It is clear
that w! () is radial. Later we will show that w! (z) € H*(RY). To prove the main
theorems in this paper, we need a important estimate for the norm of w’,(z). For
this, we set

1 Vul?
voi=14+—, M= in H!ﬂ' (212)
N weH (B0} [[ullFzp )

Proposition 2.2. Let o € (0,1), p >0 and ¢t > 0. Let w be the function given in
[2.11), Sy_o be the Lebesgue measure of the unit sphere in RN~ and

—+oo
I'(t) ::/ 27 le™dz, t >0,
0

be the usual Gamma function. Then w! € H*(RY), and one has

I A L S
Ry @ =y (1-0) r+3%) (2.13)
= K(p,0),
where
2vg if N =1,
K1 = (7r+ﬁ)1/0 if N =2,

Sn—a(5 + 553)%0  if N >3,
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1 n 2
Ko i= ————— + —
2T 21-a) o
where vy is given in (2.12)).
Proof. The proof can be found in [I1], for the sake of completeness, we give it here.
Computing the standard seminorm of the function w! in H*(RY), one has

W s vy = / Ve () Pde
RN

t2
= ———dzx
LP\BUP (1—0)2p?
tQ
= m(|3/ﬂ| — | Bopl)
2 gN2pN=2(] _ 5N)
(1-0)2  TO+5)
Since w! € H}(B,), by [L1, Proposition 1.1(b)], it follows that w! € W*2(B,).
Moreover, the boundary 8B, is Lipschitz, by |11, Lemma 1.3], we have that w!, €
H(RV).
Hence, since a € (0, 1), [II], Corollary 1.15] yields

1 —cosz
s12 o < 2a t 2
sl <2( [ | Torvraede) [ lePellA O

1 — cos
<2 [ Tatan) [+ lePDiFL @ P

Now, by standard arguments on the Fourier transform and Poincaré inequality, we
have

(2.14)

(2.15)

| UHIEPDILRdE < wolut B amy (216)
R
Moreover, by Parseval-Plancherel identity, it follows that

wi e L*(RY) ifand only if Fuw! € L*(R")

and
lwZ 72 ey = IFwell7 2y (2.17)
Moreover,
lwt| € L2RY) if and only if |¢|Fw! € L2(RY),
and

IVwgllfe@ny = I EIFOL T2y (2.18)
By (2.17) and (2.18), we have
/RN(l FEPDIFOL(O)PdE = l|wp 172 mny + YWy 72 @y)-

Hence, by (2.12) and the definition of A1, we have that the inequality (2.16]) is a
direct consequence of above equality, taking into account that w! € H}(B,).

Then, by (2.15) and (2.16)), it follows that

|wk () — Wi (y)[? 1 —coszq ‘19
o 5o ey <2 [ ptin) e

Finally. from (2.14) and [II, Remark 1.13], we can get the inequality ([2.13]. |
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3. PROOFS OF THEOREMS AND

By (A3) and the continuity of f and g, we may fix the positive sequences {a; };,
{b;}: and {€;}; such that lim; . a; = lim; ., b; = 0 and for all i € N,
biy1 <a; <t; <b <1, (3.1)
f(®) +eg(t) <0 forallt € [a;,b;] and € € [—€;, €].

For every i € N, we define the truncation function f;, g; : [0, +00) — RY by
fi(t) = f(min(¢,b;)) and g;(t) = g(min(¢, b;)). (3.3)

By (A2) and (A3), it is easy to see that f(0) = 0. Since f;(0) = ¢;(0) = 0, we may
extend continuously the function f; and g; to RV, taking 0 for negative arguments.
For every t € RY and i € N, let Fj(t) = fot fi(T)dr and G;(t) = fot gi(T)dT.

For every i € N and € € [—¢;, €], the function hf = f; + €g; is a continuous,
bounded function with A9 (0) = 0. By and (3.3), we have h{ (t) < 0 for all
t € [a;,b;]. Thus, by Theorem for every i € N and € € [—¢;, €], the problem

(~A)"u+u= Q)M (), «€RY

w0, (3.4)

has a radially symmetric weak solution u?, € H*(R") with
u). €[0,a;] forae z¢€ RY, (3.5)
u?’e is the minimizer of the functional R; on Wrb;m (3.6)

where R is the functional associated with problem (3.4)), and
1
Ri(w) = 5 |lul® - / Q@) (Fw) +eGiw))da,  we Hy(RY).

By (3.3)) and (3.5)), uge is a weak solution not only for (3.4)) but also for problem
).

Proof of Theorem[I.3. As an abbreviation, for every i € N, write uf = uf, and

R; = R?. According the observation for problem , we only need to show that

there are infinitely many distinct elements in the sequence {u?yo}i verifying .
We first prove that

R;(u)) <0 forallic N,

lim R;(uY) =0.

The left side of (A2) implies that there exist lp > 0 and § € (0,b1) such that

F(t) > —lot* for all t € (0,0). (3.9)
Let Ly be large enough such that
1 .
§K(p,a)l0||Q||L1 < Lo(op)Nwy min B,,Q. (3.10)

where p > 0 and K(p, o) come from (2.13). The right side of (A2) implies there is
a sequence {t;} C (0,0) such that t; < a; and F(t;) > Lot? foralli € N. Leti € N
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fixed and wg € H,(RN) be the function from (2.11)) corresponding to #; > 0.

Then wgi € Wrbaid, and by (2.13)) and (3.9), we have

i 1z 7
Ril) = 518 = [ Q)Fwh)ds

= 52l F(tl)/BWQ( )d /B Q(x)Fi(wg')d

P\Bop

IN

1 .
[55(p.0) = Lo(op)eon min @ + 1o | Qll 1 | &

So, by (3.10), one has

Ri(u)) = min R; < R,(w?) <0 (3.11)
W’V‘éd

which proves (3.7). Now we prove the limit (3.8). For every ¢ € N, by the mean
value theorem, one has

Ri(u)) > = | Q(2)F;(uw))dz > —||Q|l L+ max [f(t)]a;.
RN te[0,1]
Because of lim;_ . a; = 0, the above inequality and (3.11)) leads to the limit ((3.8)).
By (3.3) and (3.5), we know that
R;(u)) = Ry(u)) forallic N.

Moreover, by and , we know that the sequence {ul} are the infinitely
many distinct radially symmetric weak solutions of problem .

Finally, we prove (1.2). It is clear that [|[ul| 1~ < a; for alli € N by (3.5). Since
lim; .o a; = 0, the first limit holds. For the second limit, by (3.11)), (3.1)),
and , for ¢ € N, one has

1 .
17 < 1@l ma [F(Blas =0, as i — oo,

The proof is complete. O

Proof of Theorem[I.3 By the observation for problem , to prove this theorem,
we only need to prove that for every k € N, there are at least k distinct elements
u?)e verifying when € belongs to a certain interval around the origin.

Let {60;}; be a sequence such that §; < 0 for all i € N and lim;_,, 0; = 0. By
and , we have lim;_, oo Ri(wg‘) = 0. Thus, up to a subsequence, we
may assume that the sequence {(6;, R;(u?), R;(w%), a;)}; C R* which converges to
(0,0,0,0) has the property that for all i € N,

[ea

0; < Rl(u?) < Rl(wf:l) < 91'_;,_1, (312)
1 1
a; < minq -, — . 3.13
{ 7 222\|Q||L1(max[071] lf|+ maxig, ] lgl +1) } ( )
Denote
€ Oi1 — Rilwy) and €/ Ri(u?) — 0: Vi € N.

~ 1@l zr (maxgo 1) 9] + 1) © 7 1@ £ (maxgo ) 9] + 1)

and fix k € N. By (3.12),

0 _ .3 / ron "
€p =min{l,e1,... €, €,...,€,,€,...,€601>0.
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Then for every i € {1,...,k} and € € [—€), €}], it follows from (3.1), (3.6) and the
choice of € that

Ri(u?,) < RE(wh)

:Ri<wi}>7ewcz(> i(Wh)dz < B4

Meanwhile, we also have from . for e = 0 and the choice of €
RE(UZQ,E) = R’L(u?,e) — € Q(x)Gl(u?,e)dx
RN
> Ri(u?) — e Q(2)G;(u) )dx > 0;.
RN
Thus, for every i € {1,...,k} and € € [—€2, €7], one has
0; < Ri(uf,) < 0iy1,

S0

Ri(u} ) < < Ri(ug).
But uf € W for every i € {1,...,k}, so R§(u) ) = Ri(u,) from (3.3). Thus
for every € € [—€),€Y], we obtain

Ri(“’%e) <. < Ri(ug,e)v

this shows that the elements u{ , ..., u  are distinct whenever € € [—e}, €)].

Now we show that (L.3). By (3.5) and (3.13)), the left limit of (1.3) holds. For the
right limit of (1.3)), it is easy to see that for every i € {1,...,k} and € € [—€?, €)],

RS (uf,) = R(uy,) < 6iy1 < 0.
Thus, for every i € {1,...,k} and € € [— ek, ek] by the mean value theorem, 7

(3-5), (3-13) and €2 < 1, one has

1
Sl < [ Q@R +eGiid,)
2 s RN s )
< Qs (max| ]+ max g1 ) a:
[0,1] [0,1]
1
= 227
which completes the proof. ([

4. PROOFS OF THEOREMS AND [L8]

The left-hand side of (A4) implies the existence of [, > 0 and § > 0 such that

F(t) > —loot* forall t > 6. (4.1)
Let L, be large enough such that
1 .
5 K(0,0) + 1ol QI < Loo(0p) N wy min Q, (4.2)

where p > 0 and K (p, o) comes from (2.13). The right side of (A4) implies there is
a sequence {t;}; C (0,00) such that lim; . t; = co and

F(t;) > Loot? forallie N. (4.3)
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Since lim;_,o t; = 00, we may fix a subsequence {t~ml}z of {t~z}1 such that #; < tNmi
for all ¢ € N. Moreover, since f and g are continuous, we may fix the positive
sequences {a;};, {b;}; and {¢;}; such that lim; . a; = lim; o, b; = 400 and for
alli € N,

a; < ’tvml <b < Aji1, (44)
f(t)+eg(t) <0 forallt € [a;,b;] and € € [—€;, €]. (4.5)
For every i € N, we define the truncation function f;,g; : [0, +00) — R¥ as in

(3.3). Since f;(0) = ¢;(0) = 0, so we may extend continuously the function f;
and g; to RY, taking 0 for negative arguments. For every t € RY and i € N, let
Fi(t) = [} fi(r)dr and Gy(t) = [ gi(7)dr.

For every i € N and € € [—¢;, €], the function h$® := f; + €g; is a continuous,
bounded function with h7%(0) = 0. By and , we have hi%(t) < 0 for all
t € [a;,b;]. Thus, by Theorem for every i € N and € € [—¢;, €], the problem

(=A)*u+u=Q(x)hi(u), =€ RN

w0, (4.6)

has a radially symmetric weak solution u{$ € H*(R") with
ug, € [0,a;] forae. x€ RV, (4.7
u; is the minimizer of the functional R on Wrb;d, (4.8)

where R is defined as in section 4. By (3.3) and (4.7), u$$ is a weak solution not
only for (4.6) but also for problem (|1.1)).
Proof of Theorem[I.g. As in proof of Theorem for every i € N, write uf® = ugg

and R; = RY. According the observation for problem (4.6, we only need to show
that there are infinitely many distinct elements in the sequence {u;’%}l verifying

(1.4). We prove that

Let i € N be fixed and wl € He ,(RY) be the function from (2.11]) corresponding
to t; > 0. Then w’ € Wb, and by [2.13), (1)) and ([@.3), we have

2 X UJt~1 X
|, Q@R

2 _ P / Qa)dz - / Q@R
Bo, (Bo\B,, ) {we' >8}

Q(z)Fi(wh)dx

g

g

~ 1 ~
Ri(wy) = gHW?

1, 5
= gll?

/(Bp\s,pm{w?}@}

1 .
|55 (p,0) = Loo(0p)Vwn min Q + L [ Q2 |7 + 1Q]1 1 max |F(2)]
op t€10,6]

IA

Since lim;_,o0 &; = 0o and , one has lim;_ R;(wh) = —oco. But R;(u®) <
R;(wk) for all 4 € N, which proves (4.9).

Suppose that in the sequence {u$°}; there are only finitely many distinct el-
ements, denote {uf®,...,us} for some ip € N. Thus the sequence {R;(ui°)};

reduces mostly to the finite set which contradicts (4.9)).
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Now we prove the limit (1.4). Argument by contradiction. Assume that there
exists a subsequence {up®}; of {ug®}; Such that for all i € N, [[up®|lL~ < M, for
some M > 0. In particular, {ug® }Z C W, for some [ € N. Thus for every k; > [,
one has

rad

Ry(u®) = mlln R, = mllan
Wrdd Wrdd

> min Ry, = Ry, (ugy)
Wk

i
rad

> mln Ry,

b
Wiaa

= Ri(uw®).
As a consequence,
Ry, (ug;) = Ri(u®) forall i€ N. (4.10)

Moreover the sequence {R;(u$°)}; is non-increasing. By (3.3) and (4.8), for all
1 € N, we have

Rip1(uisy) = mln Ry < mln Ry = mlnR R;(u®).
bit1 whi whi

rad rad rad

Combining this latter fact with (4.10), one can find a number iy € N such that
R;(u$®) = R;y(up®) for all i > iy, this is a contraction with (4.9). The proof is
complete. ([l

Proof of Remark[1.5, Assume that (1.5 holds for f with ¢ € (2, %) Assume by
contradiction that there exists a subsequence {up’}; of {u{°}; such that for all

i € N, we have [[u?|| < M for some M > 0. Fix 8 € [2¢,2%). By (L5) and the
mean value theorem7 one has

|, @i < (el

< O (QU M + QI s M%) < oc

Thus, the sequence {Ry,(ug®)}; is bounded. Since the sequence {Ry,(ug’)}i is
non-increasing, it will be bounded, this contradicts (4.9). |

Proof of Theorem[1.8. By the observation for problem ([4.6)), in order to prove this
theorem, we only need to prove that for every k € N, there are at least k distinct
elements u?; verifying (1.7) when € belongs to a certain interval around the origin.

Let {6; } be a sequence such that 6; < 0 for all ¢ € N and lim;_,, §; = —oc0. By
the proof of Theorem up to a subsequence, we may assume that the sequence
{(6;, Ri(u%®), Ri(wk),a;)}i € R* which converges to (—o00, —00, —00,00) has the
property that for all i € N,

"‘2

Oir1 < Ri(u®) < Ri(w;') < 0, (4.11)
a; > (4.12)
Denote
0; — Ri(wli) Ri(u$®) — 041 .
€ = L and € = s s ieN.
1@l ( )bi 1@l (maxiop,) 9]+ 1)bs
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and fix k € N. By (4.11)), one has
€ =min{l, €1, ..., €5, €1, een, €y €1yerey€nt > 0.

Then for every i € {1,...,k} and € € [—€}, €], it follows from , , the
choice of €; and ¢; < t,,,, that

R (uf%) < R(w))
= Ri(wy) —€ | Q(z)Gi(ws')d < 6;.
RN
Meanwhile, from (4.8) for e = 0, (4.4)), the choice of €/ and t; < ty, we have

Rf(uf‘;) = Rl(uf';) —€ Q(x)Gi(uff;)dm

RN
> Ri(u®) —¢ Q(z)Gi(ui)dr > 0541
RN
Thus, for every i € {1,...,k} and € € [—€;°, €7°], one has
Oiv1 < Ri(u7s) < 0, (4.13)
s0
R (ug>) < -+ < Rf(uf,) <0. (4.14)

But u$ € WPk for every i € {1,...,k} by (&4), so Ri(u%) = Ri(u%) by (3.3).
Thus for every € € [—€2,€}], it follows from (4.14) that
Ry (upse) < -+ < R (ui) <0,

this shows that the elements u$%, ..., up°, are distinct whenever € € [—€g®, °].

Now we prove (L.7). Fix € € [—€°, €3°]. First, since R{(u$%.) < 0 = R{(0), then
[l Les > 0 which proves (1.7) for i = 1. We further prove that
lustllzee > a;—1 forallie {2,...,k}. (4.15)
Argument by contradiction. Assume that there exists an element 10 €1{2,...,k}
such that ||u10 = < ai,—1. Since a;,—1 < bj;—1, then ui? € Wra‘g '. So, by (3.3)
and ([4.8), it follows that
16'0—1(U§>§—1,e) = mm Rzo 1< Rzo 1(“10,) Re( iy )

b1 — 107
0~
Wrad

which contradicts - Thus, (4.15) holds. By (4.15) and (4.12)), we can complete

the proof. |

Proof of Remark[1.7, Assume that both functions f and g satisfy (1.5) with ¢ €
(2, 27‘*) Fix 8 € (2¢,2}). We may assume that the sequence {6;}; from (4.11)
satisfies

0, < —2C,(1 + |e|)(||QHL2(i0 ~1)+1QI s o - 1)q) for all i € N,

where C7 > 0. Fix € € [—€°,e°] and assume that [uf® || < 4o — 1 for some

i0 € {1,...,k}. Then, we have
—Rfo(u;?;”e)—&-/ Q) (Fig (uis ) + Gy (u5S,) ) da
RN

< 01, + Ca(1+ Jel) (I @z s, )

10,€

|| lo,
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< 01, + 201 (1Qll 2o = 1) + QI _s_(io = 1)) < 0.

B—

This is a contradiction. Therefore ((1.8) holds. O
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