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A QUASISTATIC BILATERAL CONTACT PROBLEM WITH
FRICTION FOR NONLINEAR ELASTIC MATERIALS

AREZKI TOUZALINE

Abstract. We consider a mathematical model describing the bilateral con-
tact between a deformable body and a foundation. We use a nonlinear elastic

constitutive law. The contact takes into account the effects of friction, which
are modelled with the regularized friction law. We derive a variational formu-

lation of the problem and establish the existence of a weak solution under a

smallness assumption of the friction coefficient. The proof is based on argu-
ments of compactness, lower semicontinuity and time discretization.

1. Introduction

In this paper we study the existence of a solution for a quasistatic bilateral
contact problem with friction for nonlinear elastic materials. For linear elastic
materials the quasistatic contact problem using a normal compliance law has been
solved in [1] by considering incremental problems and in [9] by an other method
using a regularization relative to time. The quasistatic contact problem with local
or nonlocal friction has been solved respectively in [10] and in [4] by using a time-
discretization. The same method was also used in [13] to solve the quasistatic
problem with unilateral contact involving nonlocal friction law for nonlinear elastic
materials. In [2] the quasistatic contact problem with Coulomb friction was solved
by the aid of an established shifting technique used to obtain increased regularity
at the contact surface and by the aid of auxiliary problems involving regularized
friction terms and a so-called normal compliance penalization technique. Signorini
’s problem with friction for nonlinear elastic materials or viscoplastic materials
has been solved in [5] by using the fixed point’s method. In viscoelasticity, the
quasistatic contact problem with normal compliance and friction has been solved
in [11] for nonlinear viscoelastic materials by the same fixed point arguments. In the
book [8] the authors resolve the quasistatic contact problems in viscoelasticity and
viscoplasticity. Carrying out the variational analysis, the authors systymatically
use results on elliptic and evolutionary variational inequalities, convex analysis,
nonlinear equations with monotone operators, and fixed points of operators.

Here we propose a variational formulation using a regularization of the normal
stress. We model the friction by Tresca’s law, by nonlocal law as in [13] and
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by a modified version of Coulomb’s law which has been derived in [12] to take
into account the wear of the contacting surface. The variational formulation is
written in the form of a single variational inequality. By means of Euler’s implicit
scheme as in [4, 10, 13], the bilateral contact problem leads us to solve a well-posed
variatonal inequality at each time step. Finally by using lower semicontinuity and
compactness arguments we prove that the limit of the discrete solution is a solution
to the continuous problem.

2. Problem statement and variational formulation

We consider a nonlinear elastic body which is in frictional contact with a rigid
foundation. Time dependent volume forces and surface traction act on it, and
as result there is evolution of its mechanical state. Our interest is in modelling
this evolution. We assume that the forces and traction vary slowly with time and
therefore the accelerations in the system are negligible. Also, we assume that there
is no loss of contact between the body and the foundation.

The physical setting is as follows. Let Ω ⊂ Rd; (d = 2, 3), be the domain initially
occupied by the nonlinear elastic body. Ω is supposed to be open, bounded, with a
sufficiently regular boundary Γ. Γ is partitioned into three parts Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3

where Γ1,Γ2,Γ3 are disjoint open sets and meas Γ1 > 0. The body is acted upon
by volume forces of density φ1 on Ω and surface traction of density φ2 on Γ2. On
Γ3 the body is in bilateral contact with a rigid foundation.

The classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement field u : Ω× [0, T ] → Rd such that

div σ + φ1 = 0 in Ω× (0, T ), (2.1)

σ = F (ε(u)) in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = φ2 on Γ2 × (0, T ), (2.4)

uν = 0, |στ | ≤ µp(|Rσν(u)|)
|στ | < µp(|Rσν(u)|) =⇒ u̇τ = 0

|στ | = µp(|Rσν(u)|) =⇒ ∃λ ≥ 0 : στ = −λu̇τ

 on Γ3 × (0, T ), (2.5)

u(0) = u0 in Ω. (2.6)

Equality (2.1) represents the equilibrium equation. Equality (2.2) represents the
elastic constitutive law of the material in which F is a given function and ε(u)
denotes the small strain tensor; (2.3) and (2.4) are the displacement and traction
boundary conditions, respectively, in which ν denotes the unit outward normal
on Γ and σν represents the Cauchy stress vector. Conditions (2.5) represents the
bilateral contact boundary conditions and the associate friction law in which στ

denotes the tangential stress, u̇τ denotes the tangential velocity on the boundary
and µ is the coefficient of friction. Finally (2.6) represent the initial condition. In
(2.5) and below, a dot above a variable represents its derivative with respect to time.
We denote by Sd the space of second order symmetric tensors on Rd (d = 2, 3). To
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proceed with the variational formulation, we need the following function spaces:

H = L2(Ω)d,H1 = (H1(Ω))d,

Q = {τ = (τij); τij = τji ∈ L2(Ω)},
H(div; Ω) = {σ ∈ Q; div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx.

The small strain tensor is

ε(u) = (εij(u)) =
(1
2
(ui,j + uj,i)), i, j ∈ {1, . . . , d};

div σ = (σij,j) is the divergence of σ. Let HΓ = H1/2(Γ)d and let γ : H1 → HΓ be
the trace map. For every element v ∈ H1, we also use the notation v for the trace
γv of v on Γ and we denote by vν and vτ the normal and tangential components of
v on Γ given by

vν = v.ν, vτ = v − vνν.

Let H ′
Γ be the dual of HΓ, for every σ ∈ H(div Ω), σν can be defined as the element

in H ′
Γ which satisfies the Green’s formula:

〈σ, ε(v)〉Q + (div σ, v)H = 〈σν, v〉H′
Γ×HΓ ∀v ∈ H1.

Denote by σν and στ the normal and tangential traces of σ, respectively. If σ is
regular (say C1), then

σν = (σν).ν, στ = σ − σνν

〈σν, v〉H′
Γ×HΓ =

∫
Γ

σν.v da

for all v ∈ H1, where da is the surface measure element. Let V be the closed
subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1, vν = 0 on Γ3}.

Since meas Γ1 > 0, the following Korn’s inequality holds [7],

‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V (2.7)

where the constant cΩ depends only on Ω and Γ1. We equip V with the inner
product

(u, v)V = 〈ε(u), ε(v)〉Q
and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.7) that the
norms ‖ ·‖H1 and ‖ ·‖V are equivalent on V . Then (V, ‖ ·‖V ) is a real Hilbert space.
Moreover by the Sobolev’s trace theorem, there exists dΩ > 0 which only depends
on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ dΩ‖v‖V ∀v ∈ V (2.8)

For p ∈ [1,∞] , we use the standard norm of Lp(0, T ;V ). We also use the Sobolev
space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).
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For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X; recall that C([0, T ];X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose

φ1 ∈ W 1,∞(0, T ;H), φ2 ∈ W 1,∞(0, T ;L2(Γ2)d) (2.9)

and we denote by f(t) the element of V defined by

(f(t), v)V =
∫

Ω

φ1(t).v dx +
∫

Γ2

φ2(t).v da ∀v ∈ V, for t ∈ [0, T ] (2.10)

Using (2.9) and (2.10) yields f ∈ W 1,∞(0, T ;V ). 〈., .〉 shall denote the duality
pairing on H1/2(Γ3)×H−1/2(Γ3), where

H1/2(Γ3) = {w
∣∣
Γ3

: w ∈ H1/2(Γ), w = 0 on Γ1}.

The normal stress σν(u(t)) ∈ H−1/2(Γ3) associated with a function u(t) ∈ V is
defined by

∀ w ∈ H1/2(Γ3) :

〈σν , w〉 = 〈F (ε(u(t))), ε(v)〉Q − (f(t), v)V

∀ v ∈ H1 : v = 0 on Γ1 and vν = w, vτ = 0 on Γ3.

(2.11)

R : H−1/2(Γ3) → L2(Γ3) is a continuous regularizing operator representing the
averaging of the normal stress over a small neighborhood of the contact point. In
the case where p is a known function which is independent of σν , i.e., p(r) = g,
the friction law involved in (2.5) becomes the Tresca friction law, and H = µg is
the friction bound. By choosing p(r) = r in (2.5), we recover the usual regularized
Coulomb friction law used in the literature. The choice p(r) = r+(1− δr)+, where
δ is a small positive coefficient related to the wear and hardness of the surface, was
employed in [12]. We assume that R : H−1/2(Γ3) → L2(Γ3) is a linear compact
mapping. The assumptions on the friction function p are:

(a)p : Γ3 ×R → R+

(b)There exists Lp > 0 such that |p(x, u1)− p(x, u2)| ≤ Lp|u1 − u2|
for all u1, u2 ∈ R, a.e. x ∈ Γ3.

(c)For each u ∈ R, x → p(x, u) is measurable on Γ3.

(d)The mapping x → p(x, 0) ∈ L2(Γ3).

(2.12)

We observe that the above assumptions on p are quite general. Clearly, the functions
p(r) = g, p(r) = r, p(r) = r+(1− δr)+ satisfy these conditions, when g is a known
function and δ is a given positive constant. So, the results presented below hold
true for the boundary value problems with each one of these tangential functions.
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Hypotheses on the nonlinear elasticity operator. As in [13] we assume F :
Ω× Sd → Sd satisfies the following conditions:

(a)There exists L1 > 0 such that |F (x, ε1)− F (x, ε2)| ≤ L1|ε1 − ε2|,
for all ε1, ε2 in Sd, a.e. x in Ω.

(b)There exists L2 > 0 such that (F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ L2|ε1 − ε2|2,
for all ε1, ε2 in Sd, a.e. x in Ω.

(c)The mapping x → F (x, ε) is Lebesgue measurable on Ω,

for any ε in Sd.

(d)F (x, 0) = 0 for all x in Ω.

(2.13)

Remark 2.1. F (x, τ(x)) ∈ Q, for all τ ∈ Q and thus it is possible to consider F
as an operator defined from Q to Q.

We assume that the friction coefficient satisfies

µ ∈ L∞(Γ3) and µ ≥ 0 a.e. on Γ3. (2.14)

Also we assume that the initial data u0 ∈ V satisfies

〈F (ε(u0)), ε(v)〉Q + j(u0, v) ≥ (f(0), v)V ∀v ∈ V. (2.15)

Now by assuming the solution to be sufficiently regular, we obtain by using Green’s
formula and techniques similar to those exposed in [7] that the problem (P1) has
the following variational formulation.

Problem P2. Find a displacement field u ∈ W 1,∞(0, T ;V ) such that u(0) = u0

in Ω and for almost all t ∈ [0, T ]:

〈F (ε(u(t))), ε(v)− ε(u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V.
(2.16)

where

j(u, v) =
∫

Γ3

µ|Rσν(u)||vτ |da.

Our main result of this section, which will be established in the next is the
following theorem.

Theorem 2.2. Let T > 0 and assume that (2.9), (2.12), (2.13), (2.14), and (2.15)
hold. Then problem (P2) has at least a solution for a small enough friction coeffi-
cient µ. Moreover, there exists a constant C > 0 such that

‖u‖W 1,∞(0,T ;V ) ≤ C‖f‖W 1,∞(0,T ;V ).

3. Existence of solutions

This evolution problem can be integrated in time by an implicit scheme as in
[13]. Let 0 = t0 < t1 < · · · < tn = T be a uniform partition of the time interval
[0, T ], i.e., ti = i∆t, i = 0, 1, . . . , n, ∆t = T

n the step-size. We denote by ui the
approximation of u at the time ti and by the symbol ∆ui the backward difference
ui+1 − ui. We obtain a sequence of incremental problems, for u0 ∈ V , defined as
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Problem (P i
n). Find ui+1 ∈ V such that

〈F (ε(ui+1)), ε(w)− ε(ui+1)〉Q + j(ui+1, w − ui)− j(ui+1, ui+1 − ui)

≥ (f i+1, w − ui+1)V ∀w ∈ V
(3.1)

where u0 = u0, f i+1 = f(ti+1).

Lemma 3.1. There exists a positive constant µ1 > 0 such that for ‖µ‖L∞(Γ3) < µ1,
problem (P i

n) admits a unique solution.

For the proof of the above lemma, see [13] in the case of unilateral contact.

Lemma 3.2. We have the following estimates: For a positive constant µ2 > 0,
when ‖µ‖L∞(Γ3) < µ2, there exists di > 0, i = 1, 2, such that

‖ui+1‖V ≤ d1‖f i+1‖V (3.2)

‖∆ui‖V ≤ d2‖∆f i‖V (3.3)

Proof. By setting w = 0 in the inequality (3.1) and by using hypothesis (2.13)(b),
hypothesis (2.12)(b), (2.11) and the properties of j, there exists c1 > 0 such that
for ‖µ‖L∞(Γ3) < c1, we deduce that there exists d1 > 0 such that (3.2) is satisfied.

To show the inequality (3.3) we consider the translated inequality of (3.1) at the
time ti that is

〈F (ε(ui)), ε(w)− ε(ui)〉Q + j(ui, v − ui−1)− j(ui, ui − ui−1)

≥ (f i, w − ui)V , ∀w ∈ V
(3.4)

By setting w = ui in (3.1) and w = ui+1 in (3.4) and add them up, we obtain the
inequality

− 〈F (ε(ui+1))− F (ε(ui)), ε(∆ui)〉Q − j(ui+1,∆ui)

+ j(ui, ui+1 − ui−1)− j(ui, ui − ui−1)

≥ (−∆f i,∆ui)V .

Furthermore, using the inequality

||ui+1
τ − ui−1

τ | − |ui
τ − ui−1

τ || ≤ |ui+1
τ − ui

τ |

we have
j(ui, ui+1 − ui−1)− j(ui, ui − ui−1) ≤ j(ui,∆ui).

Therefore,

−〈F (ε(ui+1))− F (ε(ui)), ε(∆ui)〉Q + j(ui,∆ui)− j(ui+1,∆ui) ≥ (−∆f i,∆ui)V

Using hypothesis (2.12)(b), (2.11), hypothesis (2.13) (b) and the properties of j,
we deduce that there exists two positive constants d3 and d4 such that

L2‖∆ui‖2
V ≤ d3‖µ‖L∞(Γ3)‖∆ui‖2

V + d4‖∆f i‖V ‖∆ui‖V .

Then we deduce that there exists a constant c2 > 0 such that if ‖µ‖L∞(Γ3) < c2,
there exists d2 > 0 such that

‖∆ui‖V ≤ d2‖∆f i‖V

It suffices to take µ2 = min(c1, c2) and the lemma is proved. �
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The proof of Theorem 2.2 is done as in [4], but in L∞. For the next lemma, we
define the continuous function un on [0, T ] → V by

un(t) = ui +
(t− ti)

∆t
∆ui on [ti, ti+1], i = 0, . . . , n− 1.

Lemma 3.3. There exists a function u ∈ W 1,∞(0, T ;V ) such that passing to a
subsequence still denoted (un) we have

un → u weak ∗ inW 1,∞(0, T ;V ).

Proof. From (3.2), the sequence (un) is bounded in C([0, T ];V ) and there exists a
constant c3 > 0 such that

max
0≤t≤T

‖un(t)‖V ≤ c3‖f‖C([0,T ];V ) .

From (3.3), the sequence (u̇n) is bounded in L∞(0, T ;V ) and there exists c4 > 0
such that

‖u̇n‖L∞(0,T ;V ) = max
0≤i≤n−1

‖∆uti

∆t
‖V ≤ c4‖ḟ‖L∞(0,T ;V ) .

Consequently, the sequence (un) is bounded in W 1,∞(0, T ;V ), and thus we can
extract a subsequence still denoted (un) such that un → u in W 1,∞(0, T ;V ) weak
∗ as n →∞, and satisfying

‖u‖W 1,∞(0,T ;V ) ≤ C‖f‖W 1,∞(0,T.V ).

�

As in [11] let’s introduce the functions ũn : [0, T ] → V , f̃n : [0, T ] → V defined
by

ũn(t) = ui+1 = u(ti+1), f̃n(t) = f(ti+1) ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1

As in [13] we have the following result.

Lemma 3.4. There exists a subsequence still denoted by (ũn) such that
(i) ũn → u weak ∗ in L∞(0, T ;V )
(ii) ũn(t) → u(t) weakly in V a.e. t ∈ [0, T ]

Remark 3.5. Since f ∈ W 1,∞(0, T ;V ), u ∈ W 1,∞(0, T ;V ), we have

f̃n → f strongly in L2(0, T ;V ) (3.5)

ũn → u strongly in L2(0, T ;V ) (3.6)

To prove that u is a solution of the problem, in the inequality of problem (P i
n), for

v ∈ V , we set w = ui + v∆t and divide by ∆t. We obtain

〈F (ε(ui+1)), ε(v)− ε(
∆ui

∆t
)〉Q + j(ui+1, v)− j(ui+1,

∆ui

∆t
)

≥
(
f(ti+1), v −

∆ui

∆t

)
V

∀v ∈ V

Whence for any v ∈ L2(0, T ;V ), we have

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Q + j(ũn(t), v(t))− j(ũn(t), u̇n(t))

≥
(
f̃n(t), v(t)− u̇n(t)

)
V

.
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Integrating both sides of the previous inequality on (0, T ), we obtain∫ T

0

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Qdt

+
∫ T

0

j(ũn(t), v(t))dt−
∫ T

0

j(ũn(t), u̇n(t))dt

≥
∫ T

0

(f̃n(t), v − u̇n(t))V dt

(3.7)

Lemma 3.6. For every v ∈ L2(0, T ;V ) we have following properties

lim
n→∞

∫ T

0

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Qdt

=
∫ T

0

〈F (ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt,

(3.8)

lim
n→∞

∫ T

0

j(ũn(t), v(t))dt =
∫ T

0

j(u(t), v(t))dt, (3.9)

lim inf
n→∞

∫ T

0

j(ũn(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt, (3.10)

lim
n→∞

∫ T

0

(f̃n(t), v(t)− u̇n(t))V dt =
∫ T

0

(f(t), v(t)− u̇(t))V dt . (3.11)

Proof. For (3.8), see [13]. For (3.9) it suffices to use (3.6). To prove (3.10), we write

j(ũn(t), u̇n(t)) = (j(ũn(t), u̇n(t))− j(u(t), u̇n(t))) + j(u(t), u̇n(t))

then by (2.12)(b), we have∣∣ ∫ T

0

(j(ũn(t), u̇n(t)− j(u(t), u̇n(t))))dt
∣∣

≤ Lp‖µ‖L∞(Γ3)‖R(σν(ũn)− σν(u))‖L2(0,T ;L2(Γ3))‖u̇
n
τ ‖L2(0,T ;L2(Γ3)d) .

Since the mapping R is compact, we have

lim
n→∞

‖R(σν(ũn)− σν(u))‖L2(0,T :L2(Γ3)) = 0 ,

lim inf
n→∞

∫ T

0

j(u(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt

by Mazur’s lemma. For proving (3.11) it suffices to use (3.5). Passing to the limit
in inequality (3.7), we obtain∫ T

0

〈F (ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt +
∫ T

0

j(u(t), v(t))dt−
∫ T

0

(j(u(t), u̇(t)))dt

≥
∫ T

0

(f(t), v(t)− u̇(t))V dt .

In this inequality we set

v(s) =

{
z for s ∈ (t, t + λ)
u̇(s) elsewhere.
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Then we obtain
1
λ

∫ t+λ

t

(F 〈(ε(u(s))), ε(z)− ε(u̇(s))〉Q + j(u(s), z)− j(u(s), u̇(s)))ds

≥ 1
λ

∫ t+λ

t

(f(s), z − u̇(s))V ds .

Passing to the limit, one obtains that u satisfies (2.16). �

Conclusion. In this article we have obtained the existence of a weak solution of the
quasistatic bilateral contact problem for nonlinear elastic materials under a small-
ness assumption of the friction coefficient. The uniqueness of solution represents,
as far as we know, an open question.
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[6] Duvaut G.; Equilibre d’un solide élastique avec contact unilaté ral et frottement de Coulomb.

Cr Acad. Sci. Paris, Ser A, 290, 263-265, 1980.

[7] Duvaut,G,, Lions J-L; Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
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