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ABSTRACT

EIGENVALUES AND EIGENVECTORS IN DATA DIMENSION REDUCTION 

FOR REGRESSION

by

Randolf H. Reiss, B.S.

Texas State University-San Marcos

May 2013

SUPERVISING PROFESSOR: QIANG ZHAO

A basic theory of eigenvalues and eigenvectors as a means to reduce the dimension of data, 

is presented.  Iterative methods for finding eigenvalues and eigenvectors are explored with 

proofs of the existence and uniqueness of solutions.  Of particular focus is the Power 

Method as it is the basis of most eigenvector algorithms.  Interpretations of the Power 

Method are presented in the context of linear algebra and data dimension reduction.  It is 

shown that the algorithms for principal component analysis and partial least squares are 

extensions of the Power Method.  The estimation of parameters for a computer-based 

pharmaceutical bioreactor simulator is presented as an application. Diagnostics methods of 

ordinary multiple least squares regression are applied to partial least squares, including 

detection of hidden extrapolation. 

x



CHAPTER 1

INTRODUCTION

1.1 The Mathematics of Data Analytics

The era of big data is here (Singh and Singh  2012, 1-4 ; Office of the White House, 2012). 

Technological advancements in the past ten years has enabled a fruition of data collection 

and storage systems of mammoth proportions (XueFeng et al. 2011, 3220–3232 ).  

Following the successful implementation of many data warehouses, there has been a 

realization that data, no matter how much, is worthless unless it can be transformed into 

relevant and concise information (Wegman and Solka 2005, 1-54).  The quip “data rich and 

information poor” summarizes the situation of many organizations in the private and public 

sector (Han and Kamber 2006, 1-9).  

Organizations implementing data analytics include businesses looking for a commercial 

benefit.  The industrial sector, including pharmaceutical manufacturers, are no exception.  

Modern computer production and process control systems are personal computer based and 

leverage the low cost of consumer computer equipment.  The nature of industrial 

production often produces time series data of many variables that result in large 

dimensional data sets.  An important selling point of many these computer control systems 

is the ability to store massive amounts of production data with the assumption that 

something could be done with it.  Although not as well publicized as Google® or 

1
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Facebook®, the industrial sector is at the forefront of big data and eager to see a return on 

their investment in data centers.  The  need to perform data analytics on this type of data is 

growing.

On the front lines of the deluge of data are the computer scientists and programmers that 

implement the intricate systems of data collection and storage.  Their response is a growing 

collection of highly creative procedures and ad hoc algorithms classified under the terms of 

knowledge discovery in databases (KDD) and data mining (Maimon and Rokach 2005, 1-

13).  Many books on the subject of data mining describe a multidisciplinary framework of 

machine learning, statistics, pattern recognition, information retrieval, neural networks, 

knowledge-based systems, artificial intelligence, high-performance computing, and data 

visualization (Han and Kamber 2006, xxi; Olson and Delen 2008, 3-4).  Others even 

attempt to differentiate data mining from mathematics and statistics by asserting that 

statistical methods are just not capable of dealing with the demand of big data (Sumathi 

and Sivanandam 2006, 2-5).  

However, all data mining algorithms, at some level, require the use of numbers, equations 

and formulas.  In order to produce reliable results, many of the nascent ad hoc algorithms 

of data mining will need to mature to the rigor of mathematic theory.  The approach taken 

in this study is to build on mathematic theory to avoid reinventing the wheel and ensure 

algorithms are more than an aberration of a particular data set.  The theory of statistics is 

based on mathematics and is primarily concerned with the inference of information from 

quantitative data.  This definition aligns with the goal of most data mining algorithms and, 
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as such, the fundamentals of mathematical and statistical theory should be applied 

(Wasserman 2004, vii-viii).  That is, the solution to big data is mathematical theory and 

statistical inference.

What appears to be the defining feature of data mining is that it is concerned with the 

analysis of very large sets of data.  Although the size of the data is unprecedented, so is the 

storage capacity, memory size, and computational capability of modern processors.  Thus, 

the size of the data in relation to the computational power is not a new problem, but it is a 

problem.  However, it is of interest to notice that the collection and analysis of large scale 

data is no longer a centralized activity of governments or huge multi-nation conglomerates. 

The relatively low cost of data collection equipment and network connectivity has allowed 

medium and small organizations, and even individuals, to engage in the practice data 

collection and analysis.  Thus, what is really new about big data and data mining is who is 

doing it.    

When the size of the data to be analyzed is larger than the memory or processing capability 

of a computer, some reduction in size is required to perform meaningful analytics.   Data 

can be reduced in two ways; reducing the number of records in the database or reducing 

the size of each record.  Reducing the number of records is an application of statistical 

sampling theory and information on methods can be found in (Lavallee 2007; Good 2006).  

The primary focus of this study is the reduction in the size of each record. This is also 

known as a reduction in the dimension of the data.
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A regression method uses the relationships between known data to infer an unknown 

response.  Regression methods are often employed to establish relationships in data, 

classify data,  or make predictions.  These are often the same goals as data mining.  This 

study explores the mathematics of certain methods of regression that involve data 

dimension reduction.  Specifically, the study focuses on eigenvectors and eigenvalues of 

data matrices and their use in dimension reduction for regression.  Chapter 2 contains a 

description of the eigenvalue problem and an intuitive introduction to dimension reduction. 

The mathematical theory of eigenvectors and eigenvalues is presented in Chapter 3.  

Chapter 4 includes details on the relevant methods for computing eigenvectors and 

eigenvalues.  The regression methods of principal component regression and partial least 

squares are covered in Chapter 5.  Chapter 6 describes an application of partial least 

squares for estimation of parameters for a pharmaceutical bioreactor simulator.  The study 

concludes with some final remarks and a discussion on future research directions  in 

chapter 7.

1.2 Notation

Unless otherwise specified, the following conventions are established.  A vector is defined 

as n  1 column of scalars where n is a natural number.  A matrix is any collection of p 

vectors where p is a natural number.  All vectors and matrices are elements of a finite 

dimensional vector space that is defined over the field of real numbers.  Matrix and vector 

addition and multiplication are as usually defined for a real-valued vector space (Halmos 

1974, 3-5).
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Notation: 

 ℝ is the set of real numbers

 ℂ is the set of complex numbers

  a is a scalar, real or complex.

  a is a vector.

∥a∥2=√a1
2+a2

2+...+an
2 is the 2-norm of an n dimensional vector a and ai are the 

components of a.

  A is a matrix.

  c is the complex conjugate of the vector c and is defined as (a+bi) = (a-bi) where i is the 

imaginary unit and a,b are real numbers.

  A' is the transpose of the matrix A.

  A* is the conjugate transpose of the matrix A.

  A-1 is the inverse matrix of the matrix A.

  An is the nth power of a square matrix and is defined as the product of n many A matrices.



CHAPTER 2

THE EIGENVALUE PROBLEM AND DIMENSION REDUCTION

2.1 The Eigenvalue Problem

The eigenvalue problem can be considered as the problem of finding the roots of the 

characteristic polynomial of a square matrix.  The characteristic polynomial of the square 

matrix A is defined as det(A- λI ) where det is the determinant of a matrix, I is the identity 

matrix of appropriate dimension, and λ is a scalar.  This interpretation of the eigenvalue 

problem is important for proving existence of eigenvalues, but less insightful for the study 

of  the dimension reduction of data.  A more intuitive view of the eigenvalue problem is as 

an equality that establishes a relationship between a matrix, a scalar, and a vector.  The 

eigenvalue problem is defined to be the scalar λ that satisfies the equation

A x=λ x (1)

where A is an n  n square matrix and x is an n  1 vector and x ≠ 0 (Wilkinson, 1965, 2; 

Horn 1985, 1-77).  A solution is an eigenvalue λ and an eigenvector x, also referred to as 

an eigenpair, that satisfies (1).  The relationship established by (1) is that multiplication of 

A on x has the same result as multiplication of the scalar λ on x.  This relationship is an 

important aspect of the eigenvalue problem.  To investigate this relationship further, some 

basis definitions and concepts of linear algebra must be introduced.

6
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Definition 1.  A set of vectors xi is said to be linearly dependent if there exists a set of 

scalars αi, not all equal to zero, such that ∑
i=1

p

α i x i=0.

If only two vectors are considered, then they are linearly dependent if one vector is a scalar 

multiple of the other. 

Definition 2.  A set of vectors are said to be linearly independent if they are not linearly 

dependent.  

Definition 3.  When x=∑
i=1

p

αi x i , then x is a linear combination of the set of vectors xi.

Definition 4. A vector space is a set of vectors that is defined over a field of scalars that 

satisfy the following axioms:

 1. For all vectors x, y and z in the vector space, the operation of addition is defined 

such that;

 a)  Addition of vectors is commutative, x+y = y+x.

 b) Addition of vectors is associative, (x+y)+z = x+(y+z).

 c) There exists a unique vector 0 in the vector space such that 

x+0 = 0+x = x.

 d) For each x in the vector space, there exists a unique vector -x such that 

x+(-x) = (-x)+x = 0
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 2. For all vectors x and y in the vector space and all scalars a and b in the field of 

scalars defined by the vector space, the operation of scalar multiplication is defined 

such that;

 a) Scalar multiplication is associative, a(bx) = (ab)x.

 b) There exists a unique scalar 1 in the field of scalers such that 1x = x.

 c) Scalar multiplication is distributive with respect to vector addition, 

a(x+y) = ax+ay.

 d) Multiplication by vectors is distributive with respect to scalar addition, 

(a+b)x = ax+bx.

Notice that a vector space is defined over a field of scalars. A definition of a field of scalars 

and a detailed description of the its relation to a vector space can be found in  (Halmos 

1974, 3-7).

Definition 5.  A basis of a vector space is defined as a set of linearly independent vectors 

such that every vector in the space can be written as a linear combination of the basis 

vectors.

Definition 6.  The span of a set of vectors is the space defined by all linear combinations 

of the set of vectors. 

Definition 7.  The rank of a matrix is the minimum number of linearly independent vectors 

required to span the same space as the columns of the matrix.
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Definition 8.  The nullity of a matrix is the difference between the matrix rank and the 

dimension of the vector space.  

Consider a column vector of n scalars representing a point in an n-dimensional vector 

space and an n  n square matrix A.  The matrix A performs a linear transformation on a n-

dimensional vector x by matrix multiplication, noted as Ax.  The linear transformation can 

be decomposed into n linear functionals, each represented by a row of A.  The linear 

functional in the ith row of A is multiplied by the vector x and the result is the ith entry in 

the transformed column vector.  Thus, the effect of a linear transformation is made up of 

the effects of the individual linear functionals (rows) of the matrix A.  The transformation 

is linear in that the linear functionals can only perform scaling on each component of the 

column vector.  As a result, a linear transformation preserves the operations of vector 

addition and scalar multiplication (Halmos 1974, 20). 

The classic description of the effect of a linear transformation on a vector is that of a 

rotation, a reflection, and a shear (Lay 2003, 82-87).  However, a shear can be decomposed 

into a reflection and a dilation, and a reflection can be expressed as a rotation about the 

origin and a dilation.  Thus, any linear transformation also can be expressed as a rotation 

and a dilation.  This interpretation of the effect of a linear transformation on a vector is 

helpful in seeing the intuitive effects of linear transformations.

Consider the linear transformation A in (1) on the eigenvector x.  The effect of A on x is the 

same effect the multiplication of x by the scalar λ.  Thus, A only has the effect of a dilation 
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on x, but not a rotation and the specific amount of the dilatation is λ.  The implication of 

the relationship between the eigenpair and the transformation matrix concerns the 

invariance of rotation of the transformation in the direction of the eigenvector.  As a result, 

instead of needing to transform the vector x by the entire matrix A, only the single scalar λ 

is required.  The direction described by x is an important property of the linear 

transformation A. 

A basis of a vector space can be constructed, starting with the eigenvector x and adding 

linearly independent vectors until the set of vectors span the vector space (Halmos 1974, 

11).  As a result, only the scalar λ is required to perform the linear transformation A on the 

component of a vector in the direction of x.  For example, let y be a vector in the vector 

space.  Then y may be expressed as a linear combination of the basis vectors.  Let a be the 

coefficient for the basis vector x in the linear combination.  The vector Ay can also be 

expressed as a linear combination of the basis vectors and would have the coefficient aλ 

for the basis vector x.  This shows the importance of an eigenvector as a basis vector.  

Specifically, the effect of the linear transformation A on the basis vector x has been 

reduced from the multiplication of vectors to the multiplication of scalars.  Notice that the 

coefficients of Ay for the basis vectors that are not also eigenvectors do not have this 

simple relationship.

If there is an n-dimensional vector space, then a minimum of n vectors are required to span 

the vector space.  If a matrix has n columns and the rank of the matrix is less than n, then 

the columns of the matrix are linearly dependent and at least one of the columns may be 
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written as a linear combination of one or more of the remaining columns.  In this case, at 

least one column may be discarded and the rank of the matrix remains the same. A 

minimal spanning set is the smallest number of vectors required to span a vector space and 

a maximal linearly independent set is the largest set of vectors in a vector space that are 

still linearly independent.  Both result in a basis of the vector space (Halmos 1974, 10).

Consider the linear transformation A with rank n. It would be desirable to find n linearly 

independent vectors that have the same property of our eigenpair x and λ.  It will be shown 

that, not only can such a set of vectors be found to satisfy this requirement, but the set will 

also be orthogonal.  

Definition 9. Two vectors are orthogonal if their dot product is equal to 0.

Orthogonality of two vectors may be noted as x'y = y'x = 0 .  As set of vectors are called 

orthogonal if all the vectors are pair-wise orthogonal.

Definition 10. A projection is an idempotent linear transformation where idempotent is 

defined as the property of a linear transformation A for which A2 = A. 

Consider three vectors x, y and z.  The projection of x onto y in the direction of z is the 

vector in the direction of y with the length determined by moving the end point of x in the 

direction of z until is intersects the vector y.  Notice that the vector z is not required to be 

orthogonal to x or y.  However, the special case when z is orthogonal to y is called an 
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orthogonal projection of x onto y.  Orthogonal projections are common enough that it is 

assumes that “a projection of x onto y” is an orthogonal projection.  The case when z is not 

orthogonal to y is called an oblique projection or non-orthogonal projection and will 

always be explicitly defined as such.  Projections are an important part of dimension 

reduction.

The dot product of two vectors can be thought of as the scalar component of a orthogonal 

projection (Thomas 2005, 867).  Notice that, if x and y are orthogonal, a projection of x 

onto y (or y onto x) results in a vector of length 0.  Thus, if x and y are orthogonal basis 

vectors, then the projection of some vector a along x onto y is an orthogonal projection.  

Likewise, the projection of a along y onto x is an orthogonal projection.  Also notice that  

the result of each projection is a term of the linear combination of the basis vectors that 

uniquely expresses a.  More specially, the coefficient of the term in the direction of x is the 

dot product of x and a and the coefficient of the term in the direction of y is the dot product 

of y and a.  

For example, consider the three dimensional euclidean space and the vectors x = [1,0,0]' , 

y = [0,1,0]', and z = [0,0,1]'.  This set of vectors satisfies a minimal spanning set and a 

maximal linearly independent set in the vector space and is, therefore, a basis for the vector 

space.  It is also easily shown that these particular basis vectors are orthogonal and have 

unit length.  Consider some vector a in the vector space. Then the linear combination 

expressing a can be constructed by the orthogonal projection of a onto each basis vector. 

Let a⋅x=1, a⋅y=2, and a⋅z=3, then 1x is the orthogonal projection of a onto x, 2y is 
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the orthogonal projection of a onto y, and 3z is the orthogonal projection of a onto z.  Thus, 

a may be uniquely expressed as the linear combination a = 1x+2y+3z.  Assuming the basis 

as described, we may express a by the coordinates, noted as a = [1,2,3]'.  Notice that, if the 

basis vector were not orthogonal, the projections would not be orthogonal and the above 

computation would be more complicated.  This simple example illustrates that a change of 

basis to an orthogonal basis is as simple as an orthogonal projection onto each basis vector.

Now consider that a matrix may have more than one eigenpair.  In fact, it will be shown 

that a matrix will have the same number of eigenpairs as the rank of the matrix.  In the 

context of a linear transformation, when each basis vector is an eigenvector of the 

transformation and the eigenvectors are orthogonal, then the linear transformation can be 

reduced to orthogonal projections.  As each orthogonal projection is defined by the dot 

product of the vector in the direction of each basis vector and, as each basis vector is also 

an eigenvector of the transformation, the transformation can be expressed as the matrix of 

the corresponding eigenvalues.  That is, we may express a vector as a linear combination 

of the eigenvectors of the transformation because the eigenvectors are also a basis of the 

vector space.  Thus, the effect of the transformation on each component of the linear 

combination of the vector can be simplified to scalar multiplication by the corresponding 

eigenvalue. As a result, the linear transformation may be expressed as a diagonal matrix 

consisting of the eigenvalues.  This is the theory behind the preceding example.  

The key is that the change of basis is a linear transformation of the transformation matrix 

and the specific basis is the set of the eigenvectors of the linear transformation.  Thus, a 
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linear transformation with n distinct eigenvalues may be represented as a diagonal matrix 

and is described as diagonable (Halmos 1974, 108) or diagonalizable (Friedberg, Insel, 

and Spence 1989, 216).  Notice that this would not be possible if all n eigenvectors of the 

linear transformation did not exist.  With these basic concepts of linear algebra introduced, 

some intuitive concepts of eigenvalues and eigenvectors will be presented. 

2.2 Dimension Reduction of the Data Matrix

Consider a simplified example to illustrate some basic concepts of data dimension 

reduction.  A pharmaceutical drug company uses a reactor to manufacture a new drug.  The 

drug is produced by adding ingredients into the reactor and a process of mixing, 

pressurization, heating, and cooling results in the drug.  The reactor has two sensors that 

the company feels are important and they are recorded for every batch of the drug that is 

produced.  The sensor readings that are recorded are the maximum temperature and 

maximum pressure in the reactor during the processing of a batch.  The data is stored in a  

n  2 matrix where n is the number of batches that have been recorded.  Thus, each column 

of the matrix represents the data from a sensor and each row represents a batch of the drug. 

Each sensor (variable) is n-dimensional and each batch (observation) is 2-dimensional.   

Definition 11.  A data matrix is a matrix of data values arranged such that each column 

represents a variable and each row represent an observation (Khattree and Naik 2000, 1-7; 

Gentle 2007, 8).
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Figure 2.1: Direction of maximum variance of drug batch data.

Consider the graph of the drug batch data in Figure 2.1 with the two arrows to indicate the 

direction of the greatest variation of the data.  Notice that the arrows are perpendicular to 

one-another but are not parallel to each axis.  The direction and length of the arrows in 

Figure 2.1 are of interest.  In the context of reducing the number of variables, while 

retaining as much information as possible, it makes sense to consider the data in the 

direction of the longer arrow.  The process of extracting this data is a projection onto the 

vector in the direction of the longer arrow.  After this data is extracted, what is left behind 
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is the data in the direction of the second (smaller) arrow.  As a result, the arrows are 

perpendicular and, in fact, they have to be as all the data in the direction of the previous 

arrow has been removed from the matrix.  It is intuitive to think of the arrows as a set of 

basis vectors that are inherent to the shape of the data.  Expressing the data as linear 

combinations of vectors in the direction of the arrows facilitate the projections required to 

reduce the dimension of the data.  These are key concepts that will be used in the reduction 

of the dimension of a data matrix.

The arrows in Figure 2.1 are, in fact, eigenvectors that relate to the data matrix and the 

projection of the data onto these eigenvectors can be performed by a change of basis or 

linear transformation of the data.  Because the eigenvectors are orthogonal, the matrix of 

the transformation is the matrix of eigenvectors.  With properly preprocessed data, the 

eigenvalues indicate the variance of the data in the direction of each associated 

eigenvector.  Thus, eigenpairs hold important information about the size and shape of the 

data in a data matrix. 

Consider the eigenvalues as the variance of the data in the direction of each eigenvector. If 

a large amount of variation occurs in one direction, then a small amount of variation will 

occur in another direction.  Thus, eigenvalues have a proportional relationship to one 

another.  Consider the example of the drug manufacturer data in Figure 2.1.  The readings 

of temperature and pressure are from the same reactor and this often means that there is a 

direct relation.  Figure 2.1 indicates that this appears to be the case for this particular data.  

Notice that the length of the longer arrow (first eigenvalue) is significantly larger than the 
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length of the second arrow (second eigenvalue).  This indicates that there exists a stronger 

correlation between the columns of the data matrix in the direction of the first eigenvector 

than the second.  By correlation, it is meant that there is a linear relationship or non-zero 

covariance between columns of the data matrix. 

Perfectly correlated data is identical to the concept of linearly dependence.  That is, if a set 

of columns are linearly dependent, then, at least one column may be written as a linear 

combination of the other columns.  With many data sources, including industrial sensor 

reading, there is rarely a perfect linear correlation between columns of a data matrix. When 

there is a near-dependence relation among the columns, the data is said to have a condition 

called  multicollinearity in regression (Montgomery, Peck, and Vining 2006, 111).  Another 

way to think of multicollinearity is that one column can be well predicted by the other 

columns.  Multicollinearity may occur when multiple columns have a common source of 

information.  For example, when two sensors monitor the same physical phenomena, then 

there may be a correlated response to a perturbation.  A more complex example comes 

from the use of time series data.  Considering the drug production example, if data were 

collected throughout the production run of the batch, then we would have multiple 

readings of the same sensors at different points in time.  The data can be unfolded where 

each sensor reading at each point in time is a column of the data matrix.  As a result, the set 

of columns of the sensor reading of the same sensor at different points in time will usually 

have a multicollinear relationship.  Thus, a data matrix can be multicollinear by design. 

Also notice there may not be multicollinearity of the columns, but, as the number of the 
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columns in the data matrix increases, there can only be an increase in the dependency 

relation among the entire set of columns.  To see this consider that most sources of data  

are not uncorrelated. Thus, each variable has some level of correlation with the other 

columns.  As columns are added, this level of correlation can only increase.  Instead of a 

few columns having a near-dependent relation, there are many columns may have a low 

pair-wise dependence relation that, all together, represent enough overlap to result in a 

near-dependency of some columns.  In summary, it can be said that there may be an 

increased dependency relationships between the columns of a data matrix as columns are 

added.

However, the level of dependence between the columns is also an opportunity to reduce the 

dimension of the data.  If two columns have a near-dependent relationship, then one 

column may be removed from the data matrix with little loss of information.  More often is 

the case where many columns are correlated, but removing any one columns may also 

cause an undesired loss of information.  That is, each column contains some redundant 

information and some unique information.  The better solution is to condense the columns 

into a smaller number of columns or smaller dimension that removes the overlap while 

retaining as much of the unique information as possible.  The optimal condensing may be 

achieved by a projection of the data in the directions of the greatest variation of the data.  

This is a primary concept is dimension reduction with eigenpairs. 

This is the big picture of dimension reduction with eigenpairs.  Uncorrelated information 

in a data matrix may be represented by projections onto inherent structures of the data 
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described by eigenpairs.  However, the presentation of these concepts and intuitive 

interpretations has lacked the rigor of mathematics.  A mathematical foundation for 

eigenpairs must be established to validate these assertions.



CHAPTER 3

MATHEMATICAL THEORY OF EIGENVALUES AND EIGENVECTORS

The validity of the relationship between eigenpairs and data matrices can only be 

established with the rigor of mathematical proofs.  The existence of real eigenpairs of 

symmetric matrices with real coefficients is presented, followed by the required association 

of an eigenpair to a non-square data matrix.  The theory begins with the existences of 

eigenvalues. 

3.1 Eigenvalues and Eigenvectors of Matrices

Consider an eigenvalue as a root of the characteristic polynomial defined as det(A- λI) 

where det is the determinant of a square matrix and I is the identity matrix of the 

appropriate dimension.  Induction on The Fundamental Theorem of Algebra is appropriate 

to show the existence of roots of a characteristic polynomial (eigenvalues) of a square 

matrix.

Theorem 1: The Fundamental Theorem of Algebra. Let p(z) be a non-constant  

polynomial with a complex variable and complex coefficients with degree n>0 where n is 

an natural number.  Then p(z) has a root.

Proof:

Suppose p (z )≠0 for all z∈ℂ .  Then ∣p( z)∣=∣an z n
+an−1 zn−1

+....+a0∣.

By the triangle inequality, 

20
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∣an∣∣z
n∣−∣an−1∣∣z

n−1∣−....−∣a0∣ ≤ ∣p(z )∣ ≤ ∣an∣∣z
n∣+∣an−1∣∣z

n−1∣+....+∣a0∣, which implies

∣z∣
n[∣an∣−

∣an−1∣
∣z∣

−
∣an−2∣
∣z 2∣

−....−
∣a0∣
∣z n∣] ≤ ∣p (z )∣ ≤ ∣z∣

n[∣an∣+
∣an−1∣
∣z∣

+
∣an−2∣
∣z2∣

+....+
∣a0∣
∣z n∣] .  As

∣z∣→∞ , ∣z∣
n[∣an∣−

∣an−1∣
∣z∣

−
∣an−2∣
∣z2∣

−....−
∣a0∣
∣zn∣]→∞ and ∣z∣

n[∣an∣+
∣an−1∣
∣z∣

+
∣an−2∣
∣z2∣

+....+
∣a0∣
∣z n∣ ]→∞ .

By the squeeze principle, ∣p( z)∣→∞ . Then there exists real numbers M > 0 and r > 0 

such that ∣p( z)∣>M when ∣z∣>r , which implies that
1

∣p( z)∣
≤

1
M

for ∣z∣>r.  Thus,

1
∣p( z)∣

is bounded on the compact set ∣z∣≤r.  Then, by the Liouville Theorem,

1
∣p( z)∣

is a constant function, which implies ∣p( z)∣ is a constant function.  This is a 

contradiction.  Therefore, p(z) must have a root. ٱ

Detailed information on Theorem 1 can be found in (Fine and Rosenberger 1997, 70-71; 

Remmert, 1991, 266-267; Truss 1997, 200-203; Hirsch 1974, 329-330; Kuttler 2004, 387-

388).  The general approach of the proof of Theorem 1 is credited to Joseph Liouville who 

is also credited with the Liouville Theorem which is used in the proof but not proved here.  

Proofs of the Liouville Theorem can be found in (Fine and Rosenberger 1997, 70; 

Remmert, 1991, 244-247).

Theorem 2.  Let p(z) be a complex polynomial with degree n>0, then p(z) has n roots. 

Proof:

Let p(z) be a complex polynomial.  We note that if p(z) has degree 1, then Theorem 1 is the 

same as Theorem 2.  Let p(z) be have degree n>1.  By Theorem 1, p(z) has at least one 
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complex root a.  Then, p(z) can be written as p(z) = (z-a)h(z) where h(z) is a complex 

polynomial of degree n-1 and, by theorem 1, has at least one complex root.   Therefore, by 

induction on the degree of the polynomial, p(z) has a n roots.ٱ

It is assumed that zero may be a root of p(z). In fact, there may be multiple roots of p(z) 

with the value zero.  Theorem 3 constructs the minimal polynomial of p(z) with non-zero 

roots (Hoffman 1971, 191). 

Theorem 3.  Let p(z) be a complex polynomial with degree n>0.  If zero is a root of p(z), 

then there exists a polynomial m(z) with degree k<n such that m(z) has the same non-zero 

roots as p(z).

Proof:

Let p(z) be a complex polynomial with degree n>0 where p(0)=0.  By theorem 2, p(z) has 

n roots.  Then, we may write p(z) = (z-bn)(z-bn-1)…(z-bi+1)(z-bi)(z-bi-1)...(z-b1) where bi=0 

for some i such that 0 ≤ i ≤ n.  Define m(z) = (z-bn)(z-bn-1)…(z-bi+1)(z-bi-1)...(z-b1) and see 

that m(z) has the same non zero roots as p(z) and the degree of m(z) is n-1.  The process 

can be repeated for each bi = 0. Therefore, there exists a polynomial with degree k<n with 

the same non-zero roots as p(z).ٱ

Corollary 3.1 pulls the ideas together from the first three theorems to prove that non-zero 

square matrices have non-zero eigenvalues.

Corollary 3.1.  Every n  n matrix A, where A is not all zeros, has k non-zero eigenvalues 
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such that k ≤ n where k and n are natural numbers.

Proof:

Define the characteristic polynomial of A as as det(A- λI).  Then the characteristic 

polynomial of A has order n.  By theorem 3, there exists a minimal polynomial with order 

k≤n.  Therefore, A has k non-zero eigenvalues.ٱ

Proofs can be found with the similar results to corollary 3.1 in (Piziak 2007, 329; Beezer 

2004, 457-458).

Note that an eigenvalue may have an algebraic multiplicity greater than one.  That is, two 

or more eigenvalues may exist with the same value.  Thus, the characteristic polynomials 

may contain a factor of the form (z-b)g where g>1.  Then we simply point out that (z-b)g    

= (z-b)(z-b) for g = 2 and there exists two roots equal to b.  Thus, the above theorems 

count each algebraic multiplicity as a separate eigenvalue associated with a single 

eigenvector.   It is noted that the existence of multiple roots of the same value does cause 

difficulties for algorithms that compute eigenpairs.  In the special case where there is more 

than one eigenvalue that are equal to zero, then the set of corresponding eigenvectors span 

the null space of the matrix.  A complete handling of the subject of eigenvalue multiplicity 

can found in (Halmos 1974, 104-105; Shores 2007, 258; Bernstein 2009, 245-247).

It is possible for a matrix with real values to have complex eigenvalues just as it is possible 

for a polynomial with real coefficients have complex roots.  However, the roots of a 

complex valued polynomials can only have complex roots.  Thus, the set of complex 
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numbers is referred to as algebraically closed and, as a result, all matrices with complex 

values have complex eigenvalues.  To obtain the results desired, it is required that the 

scope of the matrices considered be narrowed to only those matrices that are equal to their 

own conjugate transpose, noted as A=A*.  The conjugate transpose of a matrix is  the 

matrix constructed by taking the transpose of the original matrix and then taking the 

complex conjugate of each entry.  A matrix that is equal to its own complex conjugate is 

called self-adjoint or a Hermitian matrix.  Of importance is that a Hermitian matrix has 

only real-valued eigenvalues and eigenvectors.

Theorem 4.  The eigenvalues of a Hermitian matrix are real.

Proof:

Let A be a Hermitian matrix.  By Corollary 2.1, A has n eigenvalues.  Suppose λ is a 

complex eigenvalue and v is the associated complex valued eigenvector.  Then, by the 

definition of an eigenvalue, Av = λv.  Define the scalar c = v*Av then  c = c*= (v*Av)* 

= v*Av = c implies that c is a real number.  Then, c = v*Av = v*λv = λv*v implies 

λ = c/(v*v).  As v*v represents sum of squared complex values, it must be a real value.  

Thus, λ is real.  Therefore, the eigenvalues of A are real. ٱ

Additional information and proofs of Theorem 4 can be found in (Shores 2007, 283; Bapat, 

1993, 22; Wilkinson 1965, 25; Bronson 1989, 121).

Theorem 5.  The eigenvectors of a Hermitian matrix have only real-values.
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Proof:

Let A be a Hermitian matrix.  By Theorem 4, there exists a real eigenvalue λ of A.  Then 

there exists a vector v such that Av= λv.  Suppose that v has only an imaginary component, 

then define y=iv is a real-valued vector.  Ay = A(iv) = i(Av) = i(λv) = λ(iv) = λy implies 

that y is a real-valued eigenvector corresponding to the eigenvalue λ.  Suppose that v has a 

real and imaginary component. The define y = v + v, then y is real-valued.  Then consider 

Ay = A(v+v) = Av+Av = Av + Av = λv + λv = λv + λv = λ(v + v) = λy implies that y is a 

real-valued eigenvector of of the eigenvalue λ.  Therefore, the eigenvectors of a Hermitian 

matrix are real. ٱ

The reader is referred to (Bronson 1989, 121; Corrochano 2005, 132-133) for more 

information on theorem 5.

Another desired property of eigenvectors is orthogonality.  Theorem 6 provides this result 

for Hermitian matrices.

Theorem 6.  The eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix 

are orthogonal.

Proof:

Let A be a Hermitian matrix.  Let {v1, v2, …, vn} be the eigenvectors corresponding to 

distinct eigenvalues { λ1, λ2, …, λn}.  By Theorems 4 and 5, the eigenpairs are real-valued. 

Then  λkvj
*vk = vj

*λkvk =  vj
*Avk = (Avj)*vk = (λjvj)*vk = λjvj

*vk implies λkvj
*vk = λjvj

*vk .  Then, 

λkvj
*vk – λjvj

*vk = 0 implies (λk - λj) vj
*vk = 0.  Then,  λk ≠ λj implies (λk – λj) ≠ 0.  Thus, 
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vj
*vk = 0.  Therefore, the eigenvectors of A are pairwise orthogonal.ٱ

A thorough discussion of the results of Theorem 6 can be found in (Shores 2007, 284; 

Wilkinson 1965, 26).

Before preceding to the next theorem, a definition of an orthogonal matrix is presented.  

The property of an orthogonal matrix V that will be used in the proof of Theorem 7 is that 

V'=V-1.  That is, the transpose of an orthogonal matrix is equal to its inverse. 

Definition 12. Let {vn} be a finite set of vectors.  If vi'vj = 0 for all i ≠ j and vi'vi = 1, then 

{vn} is an orthonormal set of vectors (Halmos 1974, 122) and the matrix consisting of 

columns of {vn} is called an orthogonal matrix or an orthonormal matrix (Strang 1988, 

167; Parlett 1998, 92; Shilov 1977, 239; Stewart 1998, 56-57).    

Theorem 7 proves an essential connection between a data matrix and eigenpairs.  For any 

non-square real matrix A, the eigenvalues of A'A and AA' are equal.  The theorem further 

establishes a relationship between the matrix A and the eigenpairs of A'A and AA'.  It is 

shown that A can be written as a product of matrices that are made up of the eigenvectors 

and eigenvalues of A'A and AA'.  This is important as most data matrices are not square 

and, as such, do not have eigenpairs.  However, it will be shown that the eigenpairs of A'A 

and AA' are related to the structure of the data in the matrix A. 

Theorem 7.  Let A be a matrix with real values.  Then the eigenvalues of A'A and AA' are 
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equal and A=U ΣV ' where the orthogonal matrices U and V consist of columns of the 

eigenvectors of A'A and AA' respectively and the matrix Σ is all zeros except the 

diagonal elements that consists of the square roots of eigenvalues of A'A and AA'.

Proof:

Let A be a real-valued n x p matrix where p<n.  Then A'A and AA' are symmetric real-

valued (Hermitian) matrices.  Then there exists a set of vectors {v1,...vr} of non-zero 

eigenvectors of A'A corresponding to eigenvalues {λ1,...,λr} where 0 ≤ r ≤ p.  By the 

definition of an eigenpair, A'Avi = λivi.  Left multiplication by A yields AA'(Avi) = λi(Avi) 

implies that Avi and λi are eigenpairs of AA'.  Thus, A'A and AA' have the same eigenvalues. 

Define ui = Avi / λi
1/2 for each ui in {u1,…, us} where 0 ≤ s ≤ n.  Then {u1,…, us} are the unit 

length eigenvectors of AA'.  Consider ui'A vj = (Avi / λi
1/2)' Avj = vi' A' (1/ λi

1/2) Avj 

= vi' (A'A vj / λi
1/2 ) = vi' ( λj vj / λi

1/2 ) = vi' vj ( λj / λi
1/2 ).  Because vi and vj are orthogonal, 

vi' vj ( λj / λi
1/2 ) = 0 when i ≠ j.  Because vi is a unit vector, vi' vj ( λj / λi

1/2 ) = ( λj / λi
1/2 ) = λi

1/2 

when i = j.  Thus, U ' A V=Σ where U is the matrix with columns ui, V is the matrix with 

columns vi, and Σ is a matrix with all zeros except the diagonal elements which are equal 

to λi
1/2.  Because each ui is pairwise orthogonal and scaled to unit length, U is an 

orthogonal matrix.  Similarly, V is an orthogonal matrix.  Therefore, A=U ΣV ' . ٱ

Theorem 7 is often presented in the context of the singular value decomposition of a non-

square matrix and can be found in (Bronson 1989, 125; Bernstein 2009, 301-304; 

Trefethen 1997, 29).

The relationship between the matrix A and the symmetric matrices A'A and AA' can be 
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more easily seen from the equations

A ' A=(U ΣV ') ' (U ΣV ' )=V ΣU ' U ΣV '=V ΣΣV '=V Σ
2 V ' ,

 AA'=(U ΣV ')(U ΣV ' )'=U ΣV ' V ΣU '=U ΣΣU '=U Σ
2 U ' .

Because, V is orthonormal, V'=V-1 and V transforms the columns of A'A into the diagonal 

matrix of eigenvalues and V' transforms the diagonal matrix of eigenvalues back into A'A.  

As U is also orthonormal, it has the same effect on AA'. 

Now consider that each component of A'A is the dot product of a column of A with another 

column of A.  Recall that the a dot product is the scalar component or magnitude of an 

orthogonal projection of one column onto another.  However, we note that, if the columns 

are not of unit length, the value of the dot product will have some scaling factor from that 

of the actual length of the projection.  But, such a scaling maintains a homogeneous 

relationship and, as such, the magnitude of the projection is zero when the columns are 

orthogonal.  Consider a transformation that insures the dot product of the columns of A are 

all zero except when one column is multiplied by itself.  This same transformation would 

diagonalize A'A.  This transformation is exactly V.  More specifically, V is a change of 

basis matrix that transforms the columns of A into a set of orthogonal vectors.  

Furthermore, as each column of V is of unit length, V only rotates the columns of A, but 

does not perform a dilation.  As a result, V does not alter the data in the columns of A, but 

just rotates the columns to align with an orthogonal basis. 

Notice that to diagonalize A'A is to maximize the elements on the diagonal.  Thus, V 

maximizes the elements on the diagonal of A'A and these maximized values are the 
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eigenvalues.  Recall that the diagonal elements of A'A consist of the the dot products of a 

column of A multiplied by itself which represents the magnitude or length of the column.  

Thus, the eigenvalues represent maximized lengths of a columns of A when rotated by V. 

Another way to say this is that V rotates A such that the columns lengths are maximized.  

The particular direction that maximizes the length of each column of A are exactly the 

eigenvectors of A'A, which are the columns of V.  Thus, it can be said that the eigenvectors 

of A'A are the directions that maximize the length or variance of the data in A.  This shows 

the relationship between the eigenvectors of the matrix A'A and the inherent structure of 

the data in A.  

A similar interpretation can be made for AA' as the dot products of the rows of A. Thus, U' 

is a change of basis matrix that transforms the rows of A into an orthogonal set of vectors.  

However, in the context of a data matrix, there is less relevance to the orthogonalization of 

the observations.  Thus, the decomposition of A'A is the desired result.

The relationship between the eigenpairs of A'A, AA', and the non-square matrix A, is more 

specifically called the non-symmetrical eigenvalue problem and a more rigorous handling 

of the topic can be found in (Golub and Van Loan 1996, 308-318; Wilkinson 1965, chap. 6 

and 7).

As an example, recall the drug data from Chapter 2.  The charts on the left of Figure 3.1 

shows the original data points expressed as a linear combination of the natural basis of 

columns of the data matrix.  The chart on the right shows the data points after the change 
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of basis performed by multiplication by the linear transformation V.  The rotated data 

points in the chart on the right are expressed as linear combination of the columns of V.  

Notice that the structure of the data is maintained and the direction of greatest variance of 

the data now aligns horizontal axis of the chart. 

V


Figure 3.1: Original data (left) and rotated data (right).

Notice that, to make the equation A=U ΣV ' work for a n  p matrix A, the matrix Σ

is required to be  n  p.  Assume p<n, then the rank of A is, at most, p.  The matrix A'A is p 

 p, which will require V to be p  p.  Similarly, AA' and U will be n  n.  Theorem 7 states 

that Σ will be all zeros except the diagonal elements that consists of the square roots of 

the eigenvalues of A'A and AA'.  This implies that there are more rows of Σ than there are 

eigenvalues and that the elements on the remaining rows are all zeros.  These zeros 

effectively truncate the eigenvectors of AA' to be p dimensional.  This reflects that the rank 

of A'A is equal to the rank of AA' which is equal to the rank of A.
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3.2 A Note Concerning the Covariance Matrix

The covariance matrix, also known as the variance-covariance matrix, is a matrix used to 

describe the linear relationships between structures in a matrix.  For the purpose of data 

dimension reduction, the columns of the data matrix are the structures of interest.  Thus, 

the covariance matrix is made up of variance and covariances of the columns of a data 

matrix.

More specifically, for a covariance matrix A of a n  p data matrix D, the diagonal value aii 

is the variance of the ith column of D and the off-diagonal value aij, where i j, is the 

covariance between the ith column and the jth column of D.  As the data matrix is 

interpreted as a sample from a population, the definition of a sample covariance defines the 

entries of A as

a ij=Cov(d i ,d j)=
1

n−1
∑
k=1

n

(d k i−d̄ i)(d k j− d̄ j) ,
(2)

where di is the ith column of D, di is the mean of di , and dij is the entry at the ith rows and 

jth column of D.  In the case where the data is preprocessed to be mean centered, then (2) 

becomes

a ij=Cov(d i , d j)=
1

n−1
∑
k=1

n

(d i k )(d k j)=
1

n−1
(d i) ' d j .

As a result, the covariance matrix of the columns of the data matrix D can be expressed as 

A=
D ' D
n−1

.

This explicitly shows the matrix D'D has a homogeneous linear relationship to the 
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covariance matrix of D when the data is mean centered.  This convenient relationship 

maintains that, when D'D is a diagonal matrix, the columns of D are uncorrelated and the 

diagonal values of D'D are a scalar multiple of the column variances. 

For the remainder of this study it is assumed that the data matrix has been preprocessed to 

be mean centered (Jolliffe 2002 , 31).  It will be shown in Chapter 4 that the eigenvectors 

of D'D have the desired result of being the uncorrelated directions that also maximize the 

variance of the data in the data matrix. 

The theory of eigenpairs is vast and only a small portion has been presented.  The proofs 

offered in this chapter have provided a basic foundation of mathematics and validity of 

eigenpairs as structures of data matrices. The relationship was established between the 

eigenpairs of a real symmetric matrix D'D and the non-square data matrix D.  The next 

chapter explores relevant methods for computing eigenpairs of data matrices.



CHAPTER 4

EIGENPAIR ALGORITHMS

The eigenpairs with the largest eigenvalues are of greatest interest when considering the 

reduction of the dimension of the data.  The eigenpair with the largest eigenvalue is called 

the largest eigenpair and represents the direction of the data that contains the most 

information.  Thus, it makes sense that finding the largest eigenpairs of a data matrix fits 

the criterion for data dimension reductions.

Some eigenpair algorithms compute eigenpairs sequentially and other algorithms compute 

all the eigenpairs at once.  The algorithms that compute all the eigenpairs at once are 

considered to be more “advanced” algorithms as they are more efficient per eigenpair 

computed.  However, if only a subset of the eigenpairs are desired, then these more 

“advanced” methods often turn out to be slower overall.  For example, there is a data 

matrix with 4000 columns and only five eigenpairs are required, then it is quicker to 

compute just those first five eigenpairs with a less efficient sequential algorithm than to use 

a more “efficient” algorithm that must compute all 4000 eigenpairs.  This relatively recent 

realization has come about due to the explosion in the size of data sets and has caused a 

renewed interest in more “basic” methods for finding eigenpairs, like the Power Method.  

However, it is notable that there is not a renewed interest in the Power Method by name, 

but rather a renewed interest in algorithms, such as the Non-Linear Iterative Partial Least 

33
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Squares (NIPALS) algorithm, which is easily shown to be equivalent to the Power Method. 

4.1 The Power Method

The Power Method is the first algorithm widely used for computing eigenpairs of a matrix 

and remained a well used computational method, with modifications, until the 1970s 

(Jolliffe 1986, 8).  Harold Hotelling's seminal paper, Analysis of a Complex of Statistical 

Variables into Principal Components, introduced Principal Component Analysis and the 

Power Method (Hotelling 1933, 417-416).  The Power Method has been shown to be the 

basis of all eigenpair algorithms.  As such, most texts use the Power Method to introduce 

algorithms for computing eigenpairs, but often discount it as old and inefficient. 

The Power Method only computes the largest eigenpair of a square matrix.  After which, a 

method called “deflation” can be used to remove the data in the direction of the first 

eigenvector.  As such, the deflated matrix is the residual matrix after regressing the data on 

first eigenvector.  The Power Method can be applied to the deflated matrix to find the 

second largest eigenpair.  This procedure may be repeated until the desired number of 

eigenpairs have been computed.

The only requirement of the Power Method is a square matrix.  Thus, for a n  p data 

matrix D, the p  p symmetric matrix A=D'D must be explicitly computed prior to 

applying the Power Method.  Proof of the convergence of the power method is presented 

next.
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Theorem 9. Convergence of the Power Method

Let A be a p  p symmetric real valued matrix with k eigenvectors vi and corresponding to 

eigenvalues λj where λ1> λ2 > λi for all i=3, …, k where k<p.  Then Anx0 = xn  → v1 as 

n → ∞ where x0 is any appropriately size vector with a non-zero component in the 

direction of v1.

Proof:

Any vector in k-dimensional space can be written as a liner combination of the basis 

formed by the eigenvectors of A.  Let x0 = c1 v1 + c2 v2 + ... + ck vk  be an arbitrary starting 

vector such that c1 ≠ 0.  Then we see that Anx0 = c1 λ1
n v1 + c2 λ2

n v2 + … + ck λk
n vk.  Then, 

by dividing by λ1
n, the equation becomes Anx0 / λ1

n = c1 v1 + c2 ( λ2 / λ1 )n v2 + … 

+ ck ( λk / λ1 )n vk .  Therefore, as n → ∞, ( λi / λ1 )n→0 for all i = 2, …, k and

Anx0 / λ1
n → c1 v1.  ٱ

Additional information and variations of proofs can be found in (Wilkinson 1965, 570-572; 

Householder 1964, 187-190; Gentle 2007, 245-247; Mathews and Fink 1999, 568-573).

Selection of a starting vector is the first step of the the Power Method.  It is a requirement 

that the starting vector x0 have a component in the direction of the largest eigenvector.  

However, at this point, there is no indication of the direction of the largest eigenvector.  A 

common practice is to select a column of the A matrix to be used as x0.  It has been 

suggested that the column of A with the greatest euclidean length should be selected as the 

starting vector.  The idea is that a vector with the larger length may be closer to the 
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direction of greatest variance.  However, the computation required to find the column with 

the largest euclidean length can be more intensive than finding the first eigenvector.  Thus, 

it is recommended that x0 be assigned the value of the first column of A and it will be as 

good an any choice.

Theoretically, the Power Method is described as Anx0 → v1 while n → ∞ where v1 is the 

eigenvector with the largest corresponding eigenvalue.  This theoretical formulation 

requires the computation of the powers of the matrix A.  Using the starting vector x0, the 

computations are characterized as follows,

A x0 = x1

A2 x0 = x2

A3 x0 = x3

⋮

An x0 = xn

where xn → v1 as n → ∞.  Convergence is achieved when ∥xn – xn−1∥2<ϵ for some 

prescribed ϵ>0 .  

The matrix An acts as a linear transformation on the vector x0.  The linear transformation An 

is modified at each iteration such that the columns of An become aligned with the direction 

of the first eigenvector.  Thus, An  approaches a rank one matrix as n → ∞.  It is interesting 

to note that the vector x0 is not really required in the computation as the simple iteration of 

powers of the matrix A will result in the columns of An aligning with the first eigenvector.  

The proof of the convergence of the Power Method follows the theoretical description of 
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the powers of a matrix as a linear transformation on a starting vector x0.

Notice that the rate of convergence of the Power Method to the first eigenvector is 

explicitly seen as the rate in which the terms c2 ( λ2 / λ1 )nv2 , … , cp ( λp / λi )nvp vanish.  

Thus, the rate of convergence is directly related to the ratio between λ1 and λ2.  The rate of 

convergence of the Power Method can also be visually represented by an ellipse that 

circumscribes the data in the direction v1 and v2 (Phatak and De Jong 1997, 317-318). 

When the ellipse is elongated, convergence is quick and when the ellipse looks more like a 

circle, convergence is slow.

A practical issue is the computation cost for computing powers of a matrix.  An equivalent, 

but more efficient implementation of the Power Method, employs a successive updating of 

the starting vector until it converges to the first eigenvector.  As such, the iterative 

computation of the Power Method changes from computing powers of a matrix to the 

multiplication of a matrix by a vector.  The iterations are characterized as follows,

A x0 = x1

A x1 = x2

A x2 = x3

⋮
A xn-1 = xn

where xn → v1 as n → ∞.  The iteration of the xn vector can be seen as successive steps 

toward the first eigenvector.  Again, the methods stops when ∥xn – xn−1∥2<ϵ for some

ϵ>0. In this sense, the starting vector undergoes multiple transformation by a linear 

transformation until the transformation no longer has a directional effect on the vector.   
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The result is the solution to the eigenvalue problem Axn-1 = kxn where k is some constant.  

We would like k to be the eigenvalue, but it is not. The iterations of multiplication has 

caused a scaling problem.

The computation of the Power Method causes a monotonic exponential scaling of the 

vector xn as it approaches the first eigenvector.  This is shown as the constant c1 in 

Theorem 9.  Without a rescaling factor, c1 will grow or shrink very quickly, causing the 

algorithm to exceed the storage capacity for a numeric value in most computers.  Thus, a 

rescaling or normalization is required at each iteration.  There are two commonly used 

methods for rescaling in the iterations of the Power Method.  The methods differ in the 

choice a norm; the 2-norm or the ∞-norm. The ∞-norm is defined as 

∥xn∥∞=max {∣c1∣,∣c2∣,… ,∣ck∣}, where ci are the components of xn and k is the dimension 

of xn.  As can be seen, the ∞-norm only requires a comparison of p values to find the 

largest component of xn where as the 2-norm requires p squares, a summation, and a square 

root.  As the rescaling is required at every iteration, the use of the ∞-norm is more efficient 

per iteration.  Another benefit of using the ∞-norm is that that, as c1 is rescaled to 1 at 

every iteration and, when the algorithm converges, is equal to the eigenvalue.  However, in 

practice, using the ∞-norm causes additional iterations to be required which degrades any 

benefits. Thus, the two scaling methods are largely equivalent. 

An actual implementation of the Power Method using C++ is presented below.  A matrix 

class is used to represent the matrices and vectors A, xn, and new_xn.  The A matrix is a 

real symmetric matrix.  The vector xn is initialized as the first column of A.   



39

for (int ICounter=1;ICounter<=ItMax;ICounter++)

{

new_xn=A*xn;

lambda=xn.at(ColMax(xn,1),1);

new_xn=new_xn*(1.0/lambda);

if (VectorNorm(xn-new_xn,2)<Epsilon)

break;

xn=new_xn;

} 

The convergence criteria of the Power Method is based on a preset value of Epsilon that 

represents an acceptable distance between xn-1 and xn.  A common value for the Epsilon is 

10e-10.  In general, a smaller Epsilon is better, limited by the floating point precision of the 

computer.  However, the processing power of the computer is often the practical lower 

bound.  As computation of successive eigenpairs relies on the residual data from the last 

eigenpair computation, any error is cumulative.  Thus, a large value of Epsilon can cause 

instability, especially for smaller eigenvalues. 

After convergence to the first eigenvector is achieved, a method of deflation of the data 

matrix can be applied.  Deflation removes the data in the direction of the first eigenvector.  

Consider a projection of the data onto the first eigenvector vector v1.  Then, as ∥v1∥=1,

the scalar component of the projection would be A v1 and the direction component would 



40

just be v1. The result is the formula  for the deflation as Anew = A - Av1v1' (Wilkison 1965, 

597).  Then each column of Anew is a residual of a simple linear regression of the 

corresponding column of A and v1.  A simpler form, using the definition of the eigenvalue 

problem, was suggested by Hotelling as  Anew = A – λ1v1v1'.  Although computationally more 

efficient, additional error is introduced as λ1 is an estimate.  

Notice that there is error in the estimation of the eigenvector which results in an error in 

the deflated matrix.  The result is additional error in the that computation of the second 

eigenpair.  As the data matrix is deflated again to find the third eigenpair, additional error is 

accumulated in the deflated matrix.  After many deflations, it is possible that the error may 

dominate the deflated matrix and may result in a false eigenpair.  This is a problem 

common with all algorithms that compute eigenpairs.

Another problem that may occur with the Power Method is that it may not converge at all.  

Geometrically, consider the representation of an ellipse that circumscribes the data in the 

direction of first two eigenvectors.  When the two eigenvalues are similar in value, the 

ellipse looks like a circle.  In this case, it is difficult to identify the point on the ellipse that 

intersects the major axis.  Algorithmically, the Power Method has the same problem.  In the 

case when the two largest eigenvalues are equal, the Power Method fails to converge.  

Although this failure mode exits, it is very rare with real data that any two eigenvalues are 

exactly equal.  The case is usually that the first few eigenvalues are significantly different 

and the last eigenvalues may be close in value (Jackson 1991, 32). This tends to work well 

in the context of dimension reduction as the largest eigenpairs are of importance.  Notice 
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how the convergence of the Power Method is related to the geometric properties of the data 

represented by the ratio of the eigenvalues.

A second failure mode of the Power Methods is a poor starting vector.  If the starting 

vector does not have a component in the direction of the eigenvector being sought, then the 

Power Method fails to converge.  This is the case when the starting vector x0 is orthogonal 

to the eigenvector being computed.  Although the Power Method may fail in this situation, 

it is not a common, even with small dimensional data.  In the context of data matrices with 

a large number of columns, the possibility of selecting a vector orthogonal to another is 

very small and is often not considered a practical failure mode.  However, an upper bound 

to the number of iterations should be part of any implementation of the Power Method.

Variations have been developed over the years to extend or enhance the Power Method.  

Two such variations are the Inverse Power Method and the Shifted Power Method.  The 

Inverse Power method is the Power Method applied to A-1 instead of A.  the result is that 

the smallest eigenpair is computed instead of the largest.  The Inverse Power Method is 

often used in numerical solutions to partial differential equations where the smaller 

eigenpairs are desired.  The Shifted Power Method performs a shift to the A matrix in order 

to increase the speed of convergence.  The intent is to shift the data to increase the ratio 

between the first two eigenvalues.  Although computing the shift takes additional work, the 

Shifted Power Method has been shown to increase the speed of convergence from that of 

the standard Power Method.  More on the Inverse Power Method and the Shifted Power 

Method can be found in (Wilkinson 1965, 572).
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The Power Method can be use to compute eigenpairs for a real symmetric matrix.  With the 

use of deflation, the largest eigenpairs are computed one at a time.  This successive 

computation of the eigenpairs avoids unnecessary computations when only the first few 

eigenpairs of a matrix are desired.  Algorithms that only compute a subset of the eigenpairs 

have gained relevance with the growing size of databases.  Another such method for 

computing eigenpairs is the Nonlinear Iterative Partial Least Squares algorithm.

4.2 Nonlinear Iterative Partial Least Squares Algorithm

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is credited to Herman 

Wold (Wold 1966, 391-420).  The NIPALS algorithm computes the eigenpair with the 

largest eigenvalue one at a time, using deflation to compute additional eigenpairs.  It will 

be shown that the NIPALS algorithm is equivalent to the Power Method (Lorber, Wangen, 

and Kowalski 1987, 19-31).  The NIPALS algorithm differs from the Power Method in 

convenience of application and as a more explicit computation of an important structure 

called a principal component.  The principal component is of particular interest with 

regards to data dimension reduction.

The NIPALS algorithm begins with an arbitrary starting vector, usually a column directly 

from the data matrix is selected.  The starting vector undergoes two transformations to 

complete a single iteration of the NIPALS algorithm.  At the end of each iteration, 

convergence is checked.  The algorithm is characterized as follows, where D is any n  p 
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data matrix and t0 is initialized as the starting vector.

p1=D' t0 

t1=D p1

p2=D' t1 

t2=D p2

⋮
pn=D' tn-1 

tn=D pn

where pn → v1 as n → ∞ for the eigenvector v1 corresponding to the largest eigenvalue.  

Notice that the two step iteration accommodates the the non-square data matrix D, thus 

making it appear that the NIPALS is more capable than the Power Method.  

The starting vector t0 is chosen as the first column of the data matrix.  The algorithm starts 

by multiplying t0 by the transpose of the data matrix D, which transforms t0 into the p1 

vector that exists in the row space of D.  Then, the p1 vector is pre-multiplied by D to 

obtain a new t vector in the column space of of D.  The iteration are often characterized as 

projections onto the row space and column space of D (Geladi and Kowalski, 1986, 5-8; 

Varmuza and Filzmoser 2009, 87-88).  However, the NIPALS algorithm is better explained 

by its equivalence to the Power method.  The relationship between the NIPALS algorithm 

and the Power Method is simply the condensation of the two steps of NIPALS to the single 

step of the Power Method.  Consider the last step of one iteration and the first step of the 

next iteration of the NIPALS algorithm,

tn=D pn-1 (2)
pn=D' tn 

can be condensed to the single line
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pn=D'D pn-1.

Which is exactly the Power Method.  Thus, Theorem 9 can be considered a proof of the 

convergence of the NIAPLS algorithm and all conclusion concerning the Power Method 

also apply to the NIPALS algorithm.

To compute the corresponding eigenvalue of an eigenvector found using the NIPALS 

algorithm, the Rayleigh Quotient may be used.  The Rayleigh quotient is easily derived 

from the definition of an eigenvalue as follows:

   A pn = λ1 pn

   pn' A pn = pn' λ1 pn

pn ' A pn

pn ' pn

=λ1

for n sufficiently large where λ1 is the estimate of the eigenvalue associated with the 

estimated eigenvector pn.  Thus, as  pn'pn=1 and A=D'D, the Rayleigh Quotient reduces to 

pn' A pn = (pn' D') D pn = tn' tn = λ1 .

The vector tn is referred to as the principal component corresponding to the eigenvector pn 

and is defines as tn = Dpn.  The principal component represents the data in the direction of 

the eigenvector.  That is, if we consider the context of dimension reduction of a data 

matrix, the tn vector is the magnitude or scalar component of the data projected onto the 

direction of the greatest variance.  In that sense, the tn vector can be thought of as a vector 

that captures the maximum variation or information in the data matrix.  The principal 

component corresponding to the largest eigenpair is a one dimensional representation of 

the data matrix that retains the most information.  Additional principal components can be 
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used to retain information from data remaining in the data matrix after deflation.  This is an 

important concept in the reduction of the dimension of data with eigenpairs.

 

The principal component may be considered as the scalar component of a projection onto 

the first eigenvector and the first eigenvector is the direction of the projection.  Together, 

they are a decomposition of a single dimension of the data in the data matrix.  As the 

eigenvectors form a basis of the row space of the data matrix, the columns may be 

represented as a linear combination of eigenvectors.  The coefficients of the linear 

combination are the magnitudes of the projection in the direction of each eigenvector, 

which are exactly the corresponding principal components.  Thus, for a n  p data matrix 

of full rank, let r = p < n and where r is the number of eigenpairs computed. The 

relationship between the eigenvectors, principal components, and the data matrix is

D=TP' (3)

where D is the data matrix, T consists of columns t1 … tr of principal components and P 

consists of columns p1 … pr of eigenvectors corresponding to the respective principal 

components of T.  Then, because T=DP, it can be said that P is the change of basis matrix 

from D to T.  That is, the eigenvectors are used to rotate the data matrix to a set of 

orthogonal columns ordered by the maximum variance inherent to the data.  The result of 

the change of basis is the T matrix. 
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Figure 4.1: Plot of the principal components of the drug batch data.

As an example, consider the simplified drug data from Chapter 2.  Figure 4.1 shows the 

principal components of the data matrix for the same drug batch data.  Each original data 

point can be expressed as the sum of two points, one from each principal component.  As 

the eigenvectors are an orthogonal basis, the columns of T are uncorrelated.  Thus, the 

corresponding eigenvalues can also be interpreted as an indication of the strength of the 

dependency relationship among of the columns of D in the direction of the respective 

eigenvector.  That is, if there is a strong dependency relationship among the columns of the 

data matrix, then many of the columns have a significant correlation in a particular 

direction and that direction is an eigenvector.  As a result of the dependency relationships 

among the columns of the data matrix, there will also be small eigenvalues that represent 
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the less uncorrelated information in the data.  This indicates that most of the variation of 

the data is captured in the first r principal components where r < p.  Thus, all p of the 

columns of T and P may not be required to retain most of the information in the data.  Then 

the relationship describes by (3) becomes 

D=Tr Pr'+E, (4)

where Tr and Pr only contain r corresponding columns of T and P respectively.  As the 

columns of T and P are kept in the order in which they were computed, the first r columns 

are the best choice to retain the most information.  Thus, the dominate linear relationships 

of the data are represented as the n  r matrix TrPr'.  The amount of dependency among the 

columns of the data matrix determine the amount of information that can be represented in 

the first r principal components.  

As each eigenvalue represents the variability of the data in the direction of the 

corresponding eigenvector, the sum of the eigenvalues represents the total variability of the 

data.  Thus, to represent the largest amount of variability with the smallest number of 

principal components, the principal components with the largest corresponding eigenvalues 

are retained. 

The E term in (4) represents the information not included in the first r principal 

components.  Also notice that the existence of multicollinearity will result in a high amount 

of information being represented by a small number of principal component.  Thus, the 

best value of r is determined by the level of the dependency relationships between the 
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columns of the data matrix. 

As the eigenvalues indicates the level of the dependency relationship of the information in 

the corresponding principal component, it makes sense to analyze the eigenvalues to 

determine an appropriate value of r.  Many algorithms have been developed to optimize 

the number of principal components and extensive information can be found on these 

formulas in (Jackson 1991, 41-51; Jolliffe 2002, 111-147; Khattree and Naik 2000, 40-91).  

However, in practice, there is often an obvious drop off point between the large and small 

eigenvalues.  To see this construct a plot of the eigenvalue versus r, called a SCREE plot.  

An example of a SCREE plot is presented in Figure 4.2. 

Figure 4.2: An example of a SCREE plot 
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The notion that the largest eigenvector represent the direction of greatest variance has been 

asserted many times in this study.  This relationship will now be made explicit with 

Theorem 10 and Corollary 10.1.  First we show that the Raleigh Quotient of a matrix is 

maximized by its first eigenvector. 

Theorem 10: The Rayleigh Quotient obtains its maximum value for a given symmetric 

matrix with its largest eigenvector.

Proof:

Let D be a n  p data matrix and A=D'D is a p  p real valued symmetric matrix.  Then 

there exists real eigenvector v1, …, vp and real eigenvalue 1
2 > 

 … > p
2.  By theorem 

8,  A = V 2 V' where the columns of V are v1, …, vp and is a diagonal matrix with 

diagonal entries 1
2 > 

 … > p
2.  Define y = V' x for any x∈ℝ p : x ' x=1. Then, the 

Rayleigh Quotient is

x ' A x
x ' x

=
x ' V Σ

2V ' x
x ' VV ' x

=
yΣ2 y '

y ' y
=

∑
i=1

p

λ i
2 yi

2

∑
i=1

p

y i
2

≤λ1
2
∑
i=1

p

y i
2

∑
i=1

p

y i
2

=λ1
2 .

Consider x = v1 , then y=V ' v1=[
1
0
⋮
0
] and

v1 ' A v1

v1 ' v1

= y ' Σ2 y=λ1
2 .

Therefore, x ' A x
x ' x

≤
v1 ' Av1

v1 ' v1

∀ x∈ℝ p: x ' x=1. ٱ
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A full discussion of Theorem 10 can be found in (Johnson and Wichern 2007, 80-81).

Corollary 10.1: The variance of a principal component is maximized.

Proof:

Let D be a n  p data matrix and A=D'D is a p  p real valued symmetric matrix.  Then 

there exists real eigenvector v1 with a corresponding real eigenvalue 1
2, such that 

2 > i
2 

for i = 2, …, p.  Let t1=Dv1 be the first principal component of the data matrix D.  Thus, 

Var (t 1)=t 1 ' t 1=v1 ' D ' D v1=
v1 ' D ' D v1

v1 ' v1

=
v1 ' Av1

v1 ' v1

 and, from the results of Theorem 

10,  x ' A x
x ' x

≤
v1 ' Av1

v1 ' v1

∀ x∈ℝ p: x ' x=1.  Therefore, the variance of a principal 

component is maximized.ٱ

Corollary 10.1 proves the assertion that the most variation of the data matrix is captured in 

each principal component.  As subsequent principal components are computed from the 

deflated data matrix, each principal component is uncorrelated and contains the maximum 

amount of variation.  Also notice how that the proofs explicitly show the relation between 

the variance of a principal component of the data matrix D and the eigenvalue of the 

corresponding eigenpair of the symmetric matrix D'D. 

The use of principal components to represent data is the basic concept of Principal 

Component Analysis as introduced by Hotelling in 1933.  The idea is that there is a small 
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number of latent or soft variables that describe the underlying relations of the explicit data 

in the data matrix.  To that extent, there is more than dimension reduction occurring, rather 

a discovery process of the true variables of the phenomena being observed.  Using 

pharmaceutical production as an example, there may be many sensors on a reactor, but 

there may be only a few underlying semi-observable chemical processes occurring that 

result in correlated perturbations in the sensor readings.  Thus a very large data matrix may 

be represented by a small number of principal components with very little loss of 

information.  Some excellent references for information on Principal Component Analysis 

are (Jackson 1991; Jolliffe 2002; Khattree and Naik 2000, 40-91).

The NIPALS algorithm is a conveniently structured implementation of the Power Method, 

but offers no more functionality than the Power Method.  The NIPALS algorithm has been 

widely used in chemometrics, the statistical monitoring of chemical processes (Geladi 

1988, 231-246; Roffel and Betlem 2006, 305-316; Qin 2003, 480–502; Lee and 

Vanrolleghem 2002, 489-497; Jackson and Mudholkar 1979, 341-349).  The NIPALS 

algorithm is presented here for two purposes.  The first is a convenient presentation of the 

concept of a principal component and its use in the dimension reduction of data matrices.  

The second purpose is to give a historical perspective of the method of Partial Least 

Squares that will be presented in the next chapter.  The NIPALS algorithm and the Partial 

Least Squares algorithms are both credited to Herman Wold, where the NIPALS algorithm 

preceded the PLS algorithms.  After a discussion on principal component regression, it will 

be shown in the next chapter that the NIPALS and PLS algorithms (and transitively, the 

Power Method) are very closely related.   



CHAPTER 5

REGRESSION METHODS AND DIMENSION REDUCTION OF DATA

One goal of this study is to present methods for extracting meaningful information from 

large data sets.  It has been shown that eigenpairs can be used to construct principal 

components that are representations of the dominate linear relationships of the data.  

Chapter 5 takes the next step from dimension reduction to inferential information 

extraction in the form of regression. 

5.1 Principal Component Regression

The method of Principal Component Regression (PCR) is a simple extension of the 

concept of principal components.  The basic idea is to use the principle components instead 

of the data matrix in a regression model.

Consider the data matrix D and the the Tr and Pr matrices as in equation (4).  The r 

subscript will be dropped and the T and P matrices will be assumed to have only r columns 

where r represents the number of principal components retained.  The PCR algorithm uses 

the orthogonal columns of T as regressors on some response variable y represented by a    

n  1 vector.  PCR uses the familiar ordinary least squares formulas in (5) to compute the 

52
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coefficients of the regression,  
 
β̂ and fitted values, ŷ .

 
 
β̂=(T ' T )

−1 T y (5)

 
 
ŷ=T β̂ .

The prediction of the response requires that a new 1  p observation vector xnew be 

transformed by P to obtain the 1  r vector tnew.  Then the prediction is calculated as

 
 

ŷnew=tnew β̂ .

An obvious benefit of PCR is in the reduction of the dimension of the data.  Computing the 

coefficients of the regression for a data matrix with thousands of columns can be difficult 

even with the fastest computers.  However, computing the coefficients of the regression 

from a T matrix with a significantly reduced number of columns can make the analysis 

feasible to compute.  

More Importantly, consider an under-determined matrix as having less observations (rows) 

than  regressors (columns).  An under-determined data matrix D does not have a unique 

solution to the equation Dx=b.  As a result, a Multiple Least Squares (MLS) regression 

with an under-determined data matrix will fail because the solution of the formula for 

coefficients of the regression is also not unique.  However, for PCR, when the number of 

principal components is selected to be less than the number of observations, then the 

regression becomes possible.

Notice that, with a MLS regression model, every regressor is explicitly correlated to the 
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response by an estimated coefficient of regression.  When the columns of the data matrix 

have some level of dependency among them, the coefficients of the regression reflect this 

relationship, usually in a canceling effect of positive a negative coefficients.  If the MLS 

regression model is used to make a prediction with new data and the new data does not 

reflect same dependency relationships between the regressors, then an instability in the 

prediction can occur.  However, as the columns of T are orthogonal, there is no dependent 

relation among the columns and, as a result, this source of instability is avoided with PCR 

(Montgomery, Peck, and Vining 2006, 357).  In this sense, the calculation of principal 

components can be thought of as a preprocessing step that uncorrelates the columns of the 

data matrix.  This is a significant benefit of PCR over MLS regression. 

Notice, if the columns of the n  p data matrix are uncorrelated and if r = p < n, then PCR 

is identical to MLS regression.  In this case, reducing the dimension of the data by 

retaining a smaller number of principal components is the same as removing a regressor in 

a MLS regression.  However, when the columns of the data matrix are not orthogonal, then 

a PCR model with less principal components than columns of the data matrix can actually 

improve the stability of the the model.  The idea is that a subset of principal components 

retained may better represent the inherent structure or correlations of the data.  The intent 

is that the information discarded in the smaller principal components represent information 

that is uncorrelated with the rest of the columns.  Thus, an artificial correlation to the 

response from this data may contribute to instability of an estimate.  Notice that removing 

smaller principal components from the model is dissimilar to removing a whole regressor 

from the data matrix as small principal components represents less information.
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Notice that the decomposition of the data matrix into principal components in (4) does not 

involve the y vector at all.  Thus, the computation of the principal components only reflect 

the relationships among the columns of D and does not consider strength of any correlation 

to the response vector y.  As a result, the procedure of choosing principal components for 

PCR, may result is a set of vectors that do not represent a strong correlation to the 

response.  This is a fundamental flaw of PCR. 

Regardless of this flaw, PCR can be used as a simple regression method to eliminate the 

instability of multicollinearity.  However, the method may be improved if the algorithm 

could consider the dominate correlations between the the data matrix and the response 

variable.  This is the idea of the method of Partial Least Squares.

5.2 Partial Least Squares

Herman Wold is credited with the development of the Partial Least Squares (PLS) 

algorithm.  The algorithm is also referred to as Projection to Latent Structures.  Although 

Wold primarily worked in economics, the method of PLS has found wide usage in the 

areas of chemistry (and chemical engineering), education, psychology, management 

science, political science, and environmental science (Geladi 1988, 231-246).  Much of the 

focus on PLS in chemical engineering has come from Svante Wold, son of Herman Wold.

5.2.1 The General PLS Algorithm

The popularity of PLS is due to its combined utility of eliminating the effect of 



56

multicollinearity, dimension reduction, and the maximization of the correlation between 

the regressors and the response.  The elimination of the effects of multicollinearity and 

dimension reduction are very similar to PCR.  The maximization of the correlation to the 

response is what sets PLS apart form PCR.  The PLS algorithm considers both the data 

matrix and the matrix of response variables to construct the principal components.  As a 

result, a stable regression model can often be obtained with a small number of principal 

components.  Consider this example of how the dimension reduction with PLS enables the 

regression of time series data. 

The production of pharmaceutical drugs occurs in a reactor as a batch.  A reactor may have 

30 sensors and each sensor may be read thousands of times per batch.  However, each 

sensor may be read at a different interval and each batch may be a different duration.  

Thus, the data must be interpolated to a common interval and preprocessed to a uniform 

length.  Suppose the preprocessing reduces the number of sensor readings to a uniform 

length of 100 readings per batch.  Then, the data for each batch is unfolded into a row 

vector where each time slice of sensor readings is placed end-on-end.  As a batch may take 

days to finish, the number of batches available for building a model may only be 50 or less. 

Each batch to be included in the training of the model is then stacked to form a matrix.  

This rearrangement of the data is called batch-wise unfolding.  As a result, the data matrix 

has 3000 columns and 50 rows.  The time-series nature of the data matrix means that there 

are 100 column of the same sensor readings at different points of time during a batch.  

These multiple reading cause multicollinearity and, as a result, there is a small inherent 

dimension of the data that represents the best correlation to the response.  In many cases, 
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only three or four principal components are required to model a pharmaceutical batch.  

Also notice that the data matrix is under-determined and, therefore, a MLS regression 

model would not be possible.  Thus, PLS is well suited for the analysis of pharmaceutical 

batch production.  A more complete description of the use of PLS for pharmaceutical batch 

monitoring can be found in (Reiss, Wojsznis, and Wojewodka 2009, 75–82 ). 

For an deeper understanding of how the PLS algorithm works, a comparison will be made 

with the Power Method.  However, it is first noted that the general PLS algorithm has the 

capability to consider multiple response variables.  Define l to be the number of response 

variables and the matrix Y to be an n  l matrix of response data.  Although a model with 

multiple response variables has value for some applications, the estimation of a response 

variable is less accurate than a PLS model with a single response variables.  However, the 

general PLS algorithm will be presented to show the explicit connection with the Power 

Method.  A special case where l=1 will be considered later in this chapter.

Let D be an n  p data matrix and p1 be a starting vector with some component in the 

direction of the first eigenvector of D'D.  It has been shown that the Power Method 

iteration of   

pn=D'Dpn-1 (6)

will converge to the first eigenvector of D'D. That is, pn = p as n → ∞ and the solution to 

the eigenvalue problem is D'Dp = λp.  Notice that the Power Method iterations, as in (6), 

can also be written as pn=Cov(D, Dpn-1) where, as the vector pn converges to the first 
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eigenvector p, the covariance between D and Dp is maximized.  This maximization is 

subject to the constraint that p'p=1. This is just another way of saying that p represents the 

vector in the direction of the greatest covariance of D and Dp which is also the direction of 

the greatest variance of D'Dp of which was proven in Chapter 4.  

The general PLS algorithm is based on the Power Method (and NIPALS).  However, 

instead of working with one matrix, there are two matrices, the data matrix X and the 

matrix of response variables Y.  Consider the matrix to be decomposed is Y'X.  Then the 

Power Method iterates

wn=(Y'X)'(Y'X)wn-1 , (7)

until the vectors wn converges.  Notice that equation (7) can also be written as  

wn=(Y ' X )' (Y ' X )wn−1=cov (Y ' X ,Y ' X wn−1)=cov [cov (Y , X ) , cov (Y , X w n−1)] .  

The result is the vector w that maximizes the covariance of the matrices Y'X and Y'Xw, 

subject to the constraint w'w=1.  As Y'X is also a covariance matrix, w is the direction that 

maximizes the correlation in X that is most correlated to Y. 

The iteration of the equation (7) is the core of the general PLS algorithm and this 

establishes the mathematical equivalence of the general PLS algorithm to the Power 

Method.  However, the algorithm includes more steps as there are important structures that 

must be computed.  The vectors involved in the general PLS algorithm are summarized 

below.
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Table 5.1: Vectors of the general PLS algorithm

t n  1 X Scores

p 1  r X Loadings

u n  1 Y Scores

q l 1 Y loading(coefficient of the regression)

w p  1 X loadings with maximized correlation to Y

The PLS algorithm begins by initializing the u vector as a column of the Y matrix and  the 

t vector as a column of the X matrix, and defining ϵ=10e−10 or some suitable small 

value.  The General PLS algorithm is executed as follows.

w=
X ' u
∥w∥

(8)

tnew=X w

q=
Y ' tnew

tnew ' t new

u=
Y q
q ' q

if ∥t−tnew∥>ϵ then t=tnew and repeat steps above.

p=
X ' t
t ' t

Careful examination of algorithm (8) shows, in addition to (7), there are three more similar 

vector iterations occurring; tn=(X'X)'YY'tn-1, qn=(X'Y)'X'Yqn-1, and un=(Y'Y)'XX'un-1.  All of 

these computation are rolled into the algorithm to produce meaningful structures for the 

prediction of the response. These structure are now described.

The vectors p and t of the algorithm (8) are similar to the p and t vectors from the NIPALS 
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algorithm (2) as they represent the eigenvectors and principal components of the X matrix.  

However, notice, as Y appears in the computation of t and, thus, in p, the vectors are not the 

same as the t and p vector in the NIPALS algorithm.  The t and p vector are often referred 

to as the score and loading vectors for the X matrix and the u and q vectors are referred to 

as the the scores and loading vectors for the Y matrix.  Again notice that X is required in 

the computation of the u and q vectors.  Thus, each set of principal components take into 

consideration both the X and the Y matrices.  The w vector is of primary interest in that it 

represents the direction of the greatest correlation of the covariance matrices of X and Y. 

After (8) successfully converges, a method of deflation is used to remove the information 

from X and Y that is explained by this first component.  The deflation for PLS is performed 

by 

X new=X −tp (9)
Y new=Y−tq .

Notice that the deflation term for X is similar to (3) and is the matrix of residuals for the 

principal component.  Notice that tq is the fitted values of the regression of the principal 

component and is the proper deflation of the Y matrix.  Additional components are 

calculated from the residual matrices Xnew and Ynew .

The t, p, u, q and w vectors from each component are stored as columns in the T, P, U, Q, 

and W matrices, respectively.  After the desired number of principal components have been 

found, the following are the dimensions of the matrices computed by the PLS algorithm.
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Table 5.2: Matrices of the general PLS algorithm.

T n  r X matrix Scores

P p  r X matrix Loadings

U n  r Y matrix Scores

Q l  r Y matrix loading (coefficients of the regression)

W p  r X loadings with maximized correlation to Y

Below is a C++ implementation of the general PLS algorithm. 

t=X.Col(1); 

u=Y.Col(1);

for (ICounter=1;ICounter<ItMax;ICounter++) 

{ 

w=(X.Transpose()*u); 

w=w*(1.0/VectorNorm(w,2)); 

t_new=(X*w);  

q=(Y.Transpose()*t_new)*(1.0/(t_new.Transpose()*t_new));

u=(Y*q)*(1.0/(q.Transpose()*q));  

if (VectorNorm(t-t_new,2)<epsilon) 

break; 

t=t_new; 

} 

p=(X.Transpose()*t)*(1.0/(t.Transpose()*t).at(1,1));

The fitted values of the PLS model are easily calculated by  
 
Ŷ =TQ ' .  Estimating the 
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response for new data with PLS requires the new observation be projected onto the 

loadings to obtain the principal component vector tnew.  However, the desired loadings 

vectors wi, that make up the columns of the W matrix, are not orthogonal.  There is also a 

need to scale the tnew vector by wi'wi.  This oblique projection is required to compute the 

principal components for PLS (Phatak and De Jong 1997, 311–338 ) and is computed as 

follows for each principal component i where the ith component of tnew is noted as t new i

t new i
=

X wi

w i ' w i

.
(10)

After each component is computed, the deflation

X =X old−t new Pi

must occur to remove the any overlap (Jackson 1991, 286).

An example of an implementation of C++ code to perform the oblique projection is 

presented below.

for (int RCounter=1;RCounter<=r;RCounter++) 

{ 

td=W.Col(RCounter).Transpose()*W.Col(RCounter)

t_new.Assign(RCounter,1,(X*W.Col(RCounter))*(1.0/td));  

X=X-(t_new*P.Col(RCounter).Transpose()); 

}
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Once the the tnew vector has been properly computed, the estimated response is obtained as

 
 

ŷ=t new Q ' .

5.2.2 The PLS1 Algorithm

What has been described as the general PLS algorithm is commonly referred to as the 

PLS2 algorithm and its defining feature is that it can accommodate more than one response 

variable.  Although the functionality of multiple response variables is useful in some 

applications, it can have a negative effect on a PLS model used to estimate  response 

variables.  That is, unless the response variables have a strong linear relationship, the 

prediction of the PLS2 model will be less accurate than a separate model for each response 

variable (Hasegawa 2006).  The reason is that each coefficients of the regression can only 

reflect one linear relationship.  Thus, if the two response variables do not have a linear 

relationship, then the coefficients of the regression can only estimate the best linear 

relationship to represent both response variables.  The result is a compromise in the 

prediction of both response variables. 

The PLS1 algorithm is an optimized version of the PLS2 algorithm for the special case 

where l=1.  The PLS1 algorithm is significantly simplified and considerably less expensive 

to compute.  The simplification allows for the w vector to be computed directly as 

w = cov(X,y) = X'y.  Because X'y is a vector, no iteration is required as there is only one 

possible direction of the greatest covariance of X and y. 
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It is notable that a MLS regression model that requires the computation of (X'X)-1 and the 

PCR model requires both the iterations required to compute the eigenpairs of the data 

matrix and the computation of (T'T)-1.  The computation of an inverse of a matrix is 

bounded by O(n3)  flops of a computer processor and is considered to be an extremely 

expensive operation (Benner et al. 2012; Higham 1996, 261-285).  The direct computation 

of the w vector in the PLS1 algorithm avoids the need for iterations required to find 

eigenvectors.  Also notice that the PLS1 algorithm computes the T matrix one column 

vector at a time.  Thus, t't is a scalar which implies that its inverse is the scalar  1/(t't).  As 

a result, the PLS1 algorithm does not require the computation of an inverse of a matrix.  

Thus, the PLS1 algorithm is significantly less computationally complex than MLS 

regression or PCR.  In fact, computation of the PLS1 algorithm for a 2500  4200 data 

matrix takes less than five seconds on a desktop personal computer.

The PLS1 algorithm has many variants with slightly different characteristics and 

performance, but most share the same common functionality (Andersson 2008, 518–529 ).  

Below is one such implementation of the PLS1 algorithm in C++ ;

w=X.Transpose()*y (11)

w=w*(1.0/VectorNorm(w,2)); 

t=Working_X*w; 

q=(t.Transpose()*y)*(1.0/(t.Transpose()*t)); 

p=(Working_X.Transpose()*t)*(1.0/(t.Transpose()*t)); 
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The same deflation method is applied to the PLS1 algorithm as is used for the PLS2 

algorithm when finding more than one component. 

When the columns of a data matrix are uncorrelated and r = p < n, then the PLS prediction 

is identical to MLS prediction. When r < p < n, the prediction capability of PLS is 

dependent on the data.  That is, if each variable has some correlation to the response, then 

the MLS regression may out-perform a PLS model with reduced dimensions as it may omit 

some contribution from some regressors.  However, consider that there exists some number 

i<p such that, when r=i, all the correlation to the response is included in the PLS model.  

Then, the PLS model is equivalent to the MLS model and the PLS model is the 

parsimonious model (Martens and Naes 1989, 163-165).  Again, this assumes that the 

regressors are uncorrelated.  In practice, there is almost always some level of dependency 

relationship between the columns of the data matrix which insures that the reduced 

dimension PLS model will produce a more stable estimation than MLS regression.  Further 

more, a subset of components may also filter out components in X that are uncorrelated to 

Y and, therefore, the PLS model becomes less susceptible to uncorrelated disturbances.

The conclusion is that the PLS model is often more stable and more parsimonious than the 

MLS regression or PCR model.  In addition, the PLS1 model is significantly faster to 

compute than the other regression methods.  The conclusion is that it would be difficult to 

describe a situation in which the MLS regression model and PCR model would be a better 

choice that a PLS model.
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5.2.3 Diagnostics for PLS

The implementation of the PLS algorithm shows the explicit relationship between the Q 

and T matrices.  However, if the entire T matrix is assumed to be already calculated, then 

the Q matrix may be obtained by Q=(T'T)-1T'Y.  This is the familiar formula for the 

coefficients of a MLS regression (Montgomery, Peck, Vining 2006, 69).  Thus, once the  

components have been computed, PLS is equivalent to a MLS regression of Y on T.  As 

such, the hat matrix of the PLS regression model can be computed as H=T(T'T)-1T'.  This 

critical relationship validates the application of many MLS regression diagnostic methods 

and plots for a PLS model.  Note that the residual degrees of freedom of a PLS model is  

n-r-1, as the number of regressors is the number of components r.  Consider the following 

diagnostics methods as applied to PLS.

1. An outlier is an observation with a larger than expected residual where the residual 

is defined as the difference between the actual value of the response and the 

predicted value from the model.  Outliers detection may be implemented using  the 

standard error of the regression di computed as

d i=
e i

√MSE
=

y i− ŷ1

√ SS res

n−r−1

=
y i− ŷ1

√∑k=1

n

( yk – ŷ k)
2

n−r−1

(12)

where ∣d i∣>3 indicates an outlier (Montgomery, Peck, and Vining 2006, 123).

2. The PRESS statistic may be used to indicate the prediction capability of the PLS 
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model and is computed as

PRESS=∑
i=1

n e i

√MSE (1−hii)

(13)

Where hii is the scalar at the ith row and ith column of the hat matrix.  A small value 

for the PRESS statistic indicates good prediction capability of the model 

(Montgomery, Peck, and Vining 2006, 142).

3. A high leverage point is a data point that lies a far distance from the center of the 

data (centroid).  A high leverage point has a high influence on the model, thus, is 

worth investigating.  High leverage points of the PLS model are indicated by the 

value of hii.  The general rule is that if hii > 2(r+1)/n then the ith observation is a 

high leverage point (Montgomery, Peck, and Vining 2006, 191).

4. Diagnostic plots commonly used to visualize a MLS regression model are also 

applicable to PLS.  Some common plots that have been successfully used with a 

PLS model are residual plots, leverage plots, and the normal Q-Q plot. 

A PLS model provides an estimate of the mean response by an interpolation of values in 

the training set.  The space defined by the data matrix is called the scope of the model.  

However, what happens if the a new observation is outside of the scope of the model?  This 

is referred to as extrapolation and will cause the prediction to be unstable.  
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Refer back to figure 2.1 and consider the extreme data points in the direction of either 

principal component.  Notice that an extreme value in the direction of one principal 

component is rarely an extreme value in the direction of the another principal component.  

That is, the space defined by the data is rarely a box, but, more often, is an ellipse.  Thus, it 

is possible for an observation to have values within the range of variables used to generate 

the model, but the data point may lie outside the scope of the model.  That is, the data point 

may lie within the box that contains the ellipse that represent the scope of the model, but 

not lie inside the ellipse itself.  Hidden extrapolation occurs when such an  observation is 

used to make a prediction of the response.

Hidden extrapolation for a PLS model can be detected with the hat matrix.  Consider a new 

observation xnew, then the tnew vector is obtained by (10).  If 

t new ' (T ' T )
−1 t new>hmax , (14)

where hmax is the maximum value of hii for i∈{1,. .. , n}, then tnew is considered outside of 

the scope of the PLS model and the corresponding estimation of the response should be 

considered an extrapolation (Montgomery, Peck, and Vining 2006, 101-103). 

Notice that the larger the number of dimensions of the data matrix, the larger the chance 

that there may be hidden extrapolation.  It becomes hard to represent the entire scope of the 

model as the number of dimension increases.  Consider a relatively small data matrix with 

10 variables and each variable is split into five equal size segments of its range (similar to 

a factor in an ANOVA model).  The ideal data matrix has an observation in every segment 
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for every variable. This would require 510 = 976562 many observations and that assumes 

perfect control over every observation.  Real data often follows a distribution that will 

result in many duplicates.  The result is that most data matrices do not contain enough 

observations to cover the entire scope of the variable ranges.  Thus, detection of hidden 

extrapolation is beneficial when working with real data of any size.  

The formula for hidden extrapolation can also be thought of as a simple convex hull of the 

data matrix in the shape of a hyper-elipsoid.  Consider the matrix T'T as the covariance 

matrix of T.  As the columns of T are uncorrelated and the eigenvalues from the data 

matrix are the variances of the columns of T we can interpret (14) as 

t ' Σ−1 t=
t1

2

λ1
+

t2
2

λ2
+…+

t r
2

λ r
>hmax ,

(15)

where Σ is the diagonal matrix of eigenvalues, ti is the ith component of the t vector and, 

any t vector that satisfies (15) is outside the convex hull of the regressor data.  Thus, the 

eigenvalues are the lengths of the half-axis of the hyper-elipsoid that circumscribes the 

data (Hotelling 1933, 426-429; Rencher 2002, 381).   The value of hmax represents the 

furtherest point from the center of the data (centroid) of the data matrix and, therefore, is 

be used to calibrate the proportions of the half axises lengths identified by the eigenvalues.

The PLS algorithms and associated methods of diagnostics have proved to be valuable 

regression methods and have been embraced by statisticians and mathematicians alike.  

Over the last 30 years, Many papers have been published on PLS and many adaptations 
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have been proposed to handle a large range of data.  A significant endorsement to the 

validity of PLS came from the US/FDA in the form of the Process Analytical Technology 

(PAT) initiative that identified PCA and PLS as statistical methods recommended to 

pharmaceutical producers for validation of drug production (Montague 2008).  As such, 

there has been a particular interest in statistical process monitoring with PCA and PLS in 

the pharmaceutical industry.  

The next chapter presents an an application of PLS to estimate the parameters of a 

pharmaceutical bioreactor simulator.  The application includes examples of many of the 

diagnostics methods presented in this chapter.



CHAPTER 6

AN APPLICATION OF PLS FOR PARAMETER ESTIMATION

The proteins from living organisms are an active component of many modern 

pharmaceuticals.  However, the kinetics of mammalian cells, used to produce these 

proteins, are not well understood and standard production practices are not well 

established.  Making changes to production or performing experiments on a production 

process is often cost prohibited.  Thus, many production facilities are run based on holistic 

knowledge of on-site operators and engineers.  The use of computer simulators can greatly 

reduce the time and cost of making experimental changes to the production process.  

Gregory McMillan has produced a general use computer based mammalian cell bioreactor 

simulator (Boudreau and McMillan 2007).  The simulator requires that 22 cell parameters 

be identified in order to match a particular production facility.  A PLS model was generated 

to estimate each unknown parameter of the simulator.  The expectation is that, with 

production runs data from a particular facility, each model will estimate a single parameter. 

With the parameters of the simulator identified for the particular production facility, the 

simulator could be used to explore new production scenarios.

6.1 Mammalian Cell Proteins in Pharmaceutical Drugs 

The history of mammalian cell proteins in pharmaceutical drugs goes back to 1798 when 

71
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Dr. Edward Jenner's seminal research was published.  Dr. Jenner's research offered a 

conclusive study describing the application of a mammalian protein as a vaccine for 

smallpox.  The smallpox vaccine that Dr. Jenner developed came from pus in blisters on a 

cow infected with cowpox (Riedel 2005,  21–25).  The protein structures in the cow pus 

are the primary agent of the smallpox vaccine.  Modern pharmaceuticals such as insulin for 

diabetes, erythropoietin (EPO) for anemia,  remicade for rheumatoid arthritis, and rituxan 

for lymphoma all contain a protein as the primary agent (Tomlinson 2004, 521 - 522). 

Whereas Dr. Jenner scraped the pus straight from the cow, modern production of proteins 

(bioprocessing) has developed into a process of growing the living cells of an organism  in 

a bioreactor.  The bioreactor is a vessel filled with a solution containing nutrients and 

components required for the the cells to grow while separated from the living organism of 

origin.  A seed culture of cells is introduced into the bioreactor and the cells grow while 

consuming the nutrients and secreting proteins and waste.  The bioreactor is infused with 

more nutrients to maintain a balance that supports the growth of the cells and production of 

the proteins (Boudreau and McMillan 2007).  Before the cell growth exceeds the capacity 

of the bioreactor, the proteins are harvested and the cells are destroyed.  The process is 

extremely complex and not well understood.  It is not yet possible to measure the protein 

concentration of the bioreactor without destroying the cells.  It is even difficult to measure 

the cell concentration of the bioreactor during the processing, thus making it a problem to  

control nutrients levels or to know when to stop the batch.
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6.2 Bioreactor Simulators and Parameter Estimation

The use of mammalian cells proteins is at the forefront of pharmaceutical production.  

Greg McMillan's research on mammalian cell bioprocessing  has lead to his development 

of a comprehensive computer based mammalian cell bioreactor simulator.  The simulator is 

a based on the first principles of physics that include the laws of conservation, energy 

balances and mass balances (Roffel and Betlem 2006, 20).  The simulator mimics the 

behavior of a bioreactor through the phases of cell growth from the charging of the 

bioreactor with the initial solution, introduction of the seed culture, the growth of the cells, 

and the final protein content.  The simulator requires a set of  parameters of the cell 

kinetics that effect the bioreactor process.  The idea is, given the correct values of the 

parameters, the simulator will mimic the actual production of a particular mammalian cell 

bioreactor.  Once the parameters are identified, the simulator can be used to test production 

scenarios without costly and time consuming trials.

The task of identifying the parameters of the simulator has been a manual precess of trial 

and error and is often heavy on the error side.  The ultimate goal is to develop an analytical 

method of estimating the parameters of a particular processing facility using actual data 

from batches run at that particular facility.  The method being presented involves a separate 

PLS model to estimate each parameter.  To generate the data for the model development, 

the parameters values of the simulator are randomly varied across the range of each 

parameter and simulated batched are run.  The data collected from the simulated batches 

are used to generate the models.  An iterative method will be employed that successively 

estimates each parameter and updates the values of the regressor for the subsequence 
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estimation.  It is expected that iterations of estimations will converge to reasonable 

estimates of the parameters.  The method is called successive parameter estimation 

(F'ukunaga 1990, 385).  

However, for this to work, it must be exhibited that such an estimation is possible.  

Specifically, given a set of sensor data with all the parameters known except one, can a 

model estimate the last parameter?  This is a necessary requirement to show that such an 

iterative estimate of all the parameters will converge.  This study will consider the results 

of the PLS models generated to estimate each parameter with all other parameters known. 

6.3 Data Collection and Preprocessing

The data from each simulated production batch is stored sequentially in a database.  During 

the batch there are 30 different sensors values that are calculated based on cell kinetics and 

first principles of physics.  Sensor data is recorded at different rates and different intervals.  

Thus, the resultant data of one batch is 30 vectors of varied length.  Each vector starts and 

ends at the same time, but the readings are not aligned.  A standard time interval is chosen 

and the data is interpolated across the raw data vectors.  The result is a k by p matrix of 

data representing the batch sensor readings where k is the number of evenly spaced 

intervals in the batch and p=30 is the number of sensors.  Notice that, depending on the 

interval of the interpolation, this may also have the effect of reducing the size of the data.

The stopping criteria for a production bioreactor is not well established across the industry. 
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The simulator stops a batch when the cell concentration reaches a certain level. It is 

assumed that the real bioreactor is equipped with an at-line analyzer that estimates cell 

concentrations from a sample taken every four hours.  As the cell growth varies based on 

the level of nutrients, oxygen level, and cell kinetics (parameters of the simulator), each 

batch runs for a different duration of time.  Thus, with n many batches, there are n many ki 

by p matrices of data where each ki is different.  

To align the lengths of each batch, a method of dynamic time warping (DTW) is employed. 

DTW uses a distance calculation as a metric and Dijkstra's lowest cost path algorithm to 

minimize the adjustments required to transform each batch to a uniform length.  

Adjustments are made by averaging or duplicating observations.  The DTW process can 

cause some loss or mutation of the data, however results are generally a good alignment of 

the data based on similar features.  The implementation used follows the details given in 

the excellent papers (Kassidas, MacGregor, Taylor 1998, 864-875; Ramaker et al. 2003, 

133–153).  The results of DTW are n many data matrices of uniform size k  p.

The simulator parameters are merged into each batch data matrix as constant values across 

the k many intervals.  The parameters augment the dimension of each observation (row) to 

30+22=52=p.  Notice that this count includes the variable to be estimated as it will be 

separated later for each particular model.  Because each parameter has a constant value 

across the entire batch, they can be added to the data matrix before or after the DTW 

without a change in the results.  In order to minimize processing time, they are added after 

the DTW step.
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Each batch data is then unfolded batch-wise to form a vector.  The vector is constructed by 

taking each of the 52 variables for each time slice and lining them up, end to end, to form a 

1  kp vector.  The chronological order of the time slices are maintained and the order of 

each sensor within each time slice is maintained.  The vectors for each batch are then 

stacked in a matrix to form a n  kp data matrix (Camacho and Pico 2006 1021-1035; Lee, 

Yoo, and Lee 2004, 119–136 ).

The data matrix is preprocessed to be mean centered by column.  The data in each column 

is also normalized by the standard deviation of the column.  The mean centering simplifies 

the computations and the scaling removes bias from different measurement scaling.  The 

columns for the response variable is extracted to form the Xparameter data matrix and the 

yparameter vector of the response variable.  The results are 22 data matrices and 22 

corresponding response vectors. The matrices are now ready for the PLS1 algorithm. 

In total, the data used to generate the models contains 2366 batches from the simulator. 

Each batch has 51 regressors and 81 time slices.  Thus, the Xparameter data matrix for each 

model is 2366  4131 and each yparameter vector is 2366  1.  The size of the data matrix 

used to generate each model is 111.6 megabytes.  

A remark is made on the size of the data.  The primary focus of this study is dimension 

reduction of data.  The data matrix describes has a large number of column and, thus, is 
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appropriate for this study.  However, overall, the data set is not too large to fit into the 

memory of a computer and would not be classified as big data.  For big data, some form of 

sampling would be required to reduce the size of the data to fit into the memory of a 

computer in order to generate a PLS model.  It is noted that the the PLS1 algorithm is very 

efficient and computed the final model for each parameter in about 5 seconds on an Intel® 

i7 processor running at 4GHz.  Thus, a much larger data matrix could be processed.  The 

limiting factor of the size of the data for this study was the time required for the simulator 

to run the batches.  At an average rate of 50 batches per day, it took over 48 days to 

generate the final data that was used in this study.  

It is also noted that an MLS model would fail for this application as the number of 

regressors (columns) is larger than the number of observations (rows or batches).  The PLS 

model will rely on the dimension reduction capability and multicollinearity of the data.  

The multicollinearity comes from the repeated sensor readings and that multiple sensors 

are reading the same physical phenomenon. The result is that the model will have a 

significant reduction is dimension that will permit a regression.

6.4 PLS Model Building and Diagnostics 

There are two major steps involved in constructing the regression model.  The first step 

involves the analysis of data to identify erroneous observations that can affect the model 

performance.  The second step concerns which information to include in the model to best 

estimate the parameter.
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6.4.1 Outliers and High-Leverage points

The fitted values of the model are calculated as the estimated response of the model for the 

observations used to generate the model.  As the actual values of the response are 

represented in the yparameter vector, the difference between the two is calculated and is called 

the residuals of the model.  The residuals are standardized as in (12) and an outlier is 

identified as having a standardized residual of larger than ±3.  An outlier represents an 

observation that does not conform to the linear relationships of the model.  As the data for 

the models in this study were computer generated, there were no outliers that were 

determined to represent erroneous data. 

The influence of each data point was evaluated to identify high-leverage points as 

described in Chapter 5.  As high-leverage points have a high influence on the model, each 

point identified as a high-leverage was investigated, but none were determined to be 

erroneous.  There should be special attention paid to high-leverage point with high 

dimensional data as it may be difficult for the training set to represent the entire intended 

scope of the model.  As a result, there may be many observations identified as high 

leverage.  Only points determined to be errors should be removed.   Figure 6.1 is a plot of 

the observation influence versus the standardized residual for the cell hydrolysis rate 

parameter. 
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Figure 6.1: PLS leverage versus standardized residuals for hydrolysis rate.

The high-leverage points are represented as points on the right side of the plot in Figure 

6.1.  Notice that the high-leverage points are not outliers and that the plot has the form of a 

right pointing isosceles triangle about the x-axis.  This triangle shape indicates that the  

high-leverage points do not contradict the majority of the data in the model.  Thus, there is 

not problem with high-leverage points in the model.  



80

6.4.2 Model Building

Building a MLS regression model is a matter of selecting which regressors to include in 

the model and which to omit.  For a PLS model, all regressors are included in the model 

and the selection of the number of principal components determines which information is 

retained and which is omitted. 

As mentioned in Chapter 4, there are many formulas for estimating the optimal number of 

principal components for a model.  The motivation for most of these methods is that it was 

very time consuming to generate a model with a large numbers of principal components.  

However, the speed of modern computers now makes this possible and, along with a 

computational trick,  models can be constructed with a range of principal components.  As 

a result, the different models can be evaluated directly.

The trick is to compute one model with a high number of principal components and then 

use subsets of the matrices to assemble the other models.  For this study, a model was 

computed with 20 principal components for each parameter.  A model with 19 principal 

components was assembled by removing the last column of the matrices from the 20 

principal component model.  Then, an 18 principal component model was assembled by 

removing one column from the 19 principal component model, and so on.  The result is an 

efficient method to generate twenty models from one large model that can be quickly 

compared for performance.  

Table 6.1 shows the comparison of models with one through twenty principal components 
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for the cell hydrolysis rate parameter.  Notice that that all four statistics in Table 6.1 show a 

diminishing returns or a leveling out at the six to seven principal components range.  This 

indicates that the optimal principal components is in this range.  

The better comparison of models can be made with the use of test sets.  The set of 

observations used to generate a model is called the training set.  In contrast, a test set is a 

set of observations withheld from the training set and used to simulate new observations 

for the purpose of evaluating model performance.  Recall that the goal of the models is to 

estimate the simulator parameters for set of batches from a production facility.  The set of 

batches from the production facility will have base set of parameter values that are 

reflected in each batch.  However, each batch will also have some amount of error and 

variation from the base values.  Thus, the best test set to reflect this is a set of batches 

generated with similar parameters values.

To construct such a test set, base values of the parameter were established.  Then, a set of 

batches were generated with a slight random deviation from the base parameter values. The 

result is a set of batches with similar parameters.  Different base values were used to 

generate multiple test sets with similar parameter.  Each test set was constructed with 50 

batches and a total of 20 tests sets were generated. 
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Table 6.1: Comparison of models and number of principal components.

The performance of each model was evaluated using the average of the mean squared error 

of then batches in each test set.  The test set evaluation for the hydrolysis rate parameter is 

presented in table 6.2. 

Notice that the lowest average mean squared error in table 6.2 occurs for the model with 

six principal components.  The final model for the parameter hydrolysis rate was selected 

to have six principal components.

# PCs MSE PRESS

1 4.10798157E-007 0.5149139681 0.514708771 0.0009718525

2 3.20372809E-007 0.621851675 0.6215316172 0.0007583655

3 2.14708063E-007 0.7466790792 0.7463573337 0.0005085692

4 1.79901253E-007 0.7878353693 0.7874759206 0.0004263011

5 0.000000172 0.7972727552 0.7968432483 0.0004076684

6 1.63840097E-007 0.806940602 0.806449565 0.000388486

7 1.60306765E-007 0.8111841444 0.8106236224 0.0003802205

8 1.5777305E-007 0.8142472668 0.8136167951 0.000374325

9 1.5559499E-007 0.8168893073 0.8161898182 0.0003693048

10 1.54632067E-007 0.8180997555 0.8173273553 0.0003671678

11 0.000000154 0.8188933985 0.8180471059 0.0003658197

12 1.53304639E-007 0.8198144192 0.8188954957 0.0003641961

13 1.52316975E-007 0.8210513474 0.8200622604 0.0003619846

14 1.51621723E-007 0.8219438958 0.8208835872 0.0003604833

15 1.50888277E-007 0.8228805843 0.8217500348 0.0003588369

16 1.50259489E-007 0.8236937393 0.8224928453 0.0003574352

17 1.49316224E-007 0.8248750994 0.8236071594 0.0003553342

18 1.48814607E-007 0.8255377535 0.8241997388 0.0003541984

19 1.48218041E-007 0.8263111715 0.8249044845 0.0003528893

20 1.4749672E-007 0.8272301245 0.8257566074 0.0003513036

R2 Adjusted R2
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Table 6.2: Test set statistic comparison by principal component.

6.4.3 Hidden Extrapolation Detection

As discussed in Chapter 5, the larger the dimension of the data, the greater the chance that 

a data point will lie outside of the scope of the model.  If a test set contains a point outside 

of the scope of the model, then the model's ability to predict a response will be better than 

reported.  In the case of estimation of the response from a new observation that is outside 

of the scope of the model, the estimate will be unstable.  How unstable can the estimation 

be?  Consider Figure 6.2 as an example of an estimation of the response with a point 

outside of the scope of the model. 

# of PCs Average MSE

1 8.144570346E-006

2 8.905167916E-006

3 0.000003758

4 4.261417573E-006

5 4.310589688E-006

6 3.737604055E-006

7 3.843223187E-006

8 4.013847955E-006

9 4.115186803E-006

10 4.357300507E-006

11 4.427686347E-006

12 0.000004295

13 4.381356925E-006

14 4.543801186E-006

15 4.523543118E-006

16 4.924752642E-006

17 5.097811953E-006

18 5.456273425E-006

19 0.000005876

20 6.232219059E-006
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Figure 6.2: An example of the effect of extrapolation.  

The calculation used to identify hidden extrapolation was implemented as in Chapter 5.  Of 

the test sets, a few test sets were found to have a single batch with observations that were 

outside of the scope of the model.  Data from one such test set is presented in Figure 6.2.  

The point on the plot that represents the observation that was detected as outside of the 

scope of the model is in the upper left corner, significantly away from the grouping on the 

right.  Notice that the largest standardized residual is not the extrapolated fitted value.  

Thus, the plot could be misread concerning the meaning of the deviated point.  Knowing 

that the fitted value is a result of extrapolation adds insight that the particular fitted value is 



85

not to be trusted.

The batches detected with observations outside of the scope of the model in each test set 

were removed as to not skew the evaluation of the models.

6.5 Parameter Estimation Results

Of the 22 PLS models generated, 15 adequately estimated the parameter.  Thus, the method 

of PLS appears to have performed well and, in the cases where the PLS model did not 

perform well, the data did not appear to have any observable correlation to the response.

The choice of the number of principal components in 18 of the models was 1. Thus, there 

is a single relationship that underlies many of the parameters.  The four other models had 

6, 6, 4, 3 as the number of principal components best suited to for the model.  There did 

not appear to be any correlation between the models that performed well and the number of 

principal components used in the model.

The use of diagnostics methods adapted from MLS regression was instrumental in 

evaluation the models.  Detection of hidden extrapolation allowed for the removal of 

batches from the test sets to ensure an accurate assessment of the model performance.  



CHAPTER 7

CONCLUSIONS, REMARKS AND DIRECTION OF FUTURE RESEARCH 

The use of eigenvalues and eigenvectors for the reduction of the dimension of data is based 

on a solid foundation of mathematical theory.  The original method for finding 

eigenvectors as proposed by Harold Hotelling in 1933 is the the Power Method and is the 

basis of many data dimension analysis and reduction algorithms.  As a result, the  methods 

are mathematically stable and exhibit well understood behavior.

The PLS algorithm includes a useful set of features for the dimension reduction and 

regression of data. In particular, PLS performs very well with data sets with 

multicollinearity, especially data resulting from time series observations.  As a result, PLS 

is well suited for the analysis of industrial production data.

As the correlation of the data matrix to the response is maximized with the PLS algorithm, 

the pitfall of PCR is avoided. The results of a PLS regression are either more stable or 

equivalent to a MLS regression.

Once the principal components of a PLS methods are computed, the PLS regression 

coefficients can be computed as the MLS regression coefficients of the principal 

86



87

components and the response.  This connection allows for of a rich set of diagnostics tools 

and data visualization be used to evaluate a PLS model. 

The PLS1 algorithm is more efficient than PCR and MLS regression algorithms.  As a 

result, the PLS1 algorithm enables very large data sets to be modeled in a matter of 

seconds.  The speed of the algorithm and some matrix manipulation also allow for a direct 

comparison of models with different numbers of principal components by only computing 

one large model.

Many of the bioreactor simulator parameters were estimated well with a linear PLS model.  

Non-linear adaptations to PLS were investigated during this study and, in general, did not 

perform any better than the linear PLS.  It is concluded that a linear model is the best 

model for data with very little correlation to the response.

Additional research is required to estimate the remaining seven parameters before the 

iterative successive estimation can be implemented.  Although there is always an interest in 

non-linear models, it would seem that working on algorithms that can extract linear 

relationships from data with little apparent correlation would have value in this situation.  

As the each parameter will be estimated with a set of batches, possibly the model could 

identify which batches that do estimate the parameter well and focus on the internal 

structure of those batches.  A possible way to do this would be to examine the variances of 

the regressors of the models that do predict well to find a subset of the data that has as 
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stronger correlation to the response.  These relationships may be represented by eigenpairs 

with smaller corresponding eigenvalues.

There are many possibilities for future research and a more thorough understanding of 

eigenpairs, the Power Method, and the PLS algorithms is an excellent base for a continued 

study into more advanced linear and non-linear regression algorithms.
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