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Denseness of domains of differential operators in

Sobolev spaces. ∗

Sasun Yakubov

Abstract

Denseness of the domain of differential operators plays an essential
role in many areas of differential equations and functional analysis. This,
in turn, deals with dense sets in Soblev spaces. Denseness for functions of
a single variable was formulated and proved, in a very general form, in the
book by Yakubov and Yakubov [8, Theorem 3.4.2/1]. In the same book,
denseness for functions of several variables was formulated. However, the
proof of such result is complicated and needs a series of constructions
which are presented in this paper. We also prove some independent and
new results.

1 Introduction

We denote by Rr the r-dimensional real Euclidean space. For a bounded (open)
domian G in Rr its boundary is denoted by ∂G: ∂G = G/G.

A bounded domain G ⊂ Rr is said to be a C`, where ` = 1, 2, . . . , if there
exists a finite number of open balls Gi, i = 1, . . . , N , such that ∂G ⊂ ∪Ni=1Gi,
Gi ∩ ∂G 6= ∅, i = 1, . . . , N , and if there exist `-fold differentiable real vector-
functions f (i)(x) = (f (i)

1 (x), . . . , f (i)
r (x)) defined in Gi such that y = f (i)(x) is

a one-to-one mapping from Gi onto a bounded domain Rr, where Gi ∩ ∂G is a
part of the hyper-plane {y : y ∈ Rr; yr = 0} and Gi ∩ G is a simply connected
domain in the half-space Rr+ = {(y′, yr) : y′ ∈ Rr−1; yr > 0}. On the Jacobian
of f we assumed that

∂(f (i)
1 , . . . , f

(i)
r )

∂(x1, . . . , xr)
6= 0, x ∈ Gi.

In this case we write ∂G ∈ C` and say that ∂G admits a local rectification by
means of smooth non-degenerate transformations of coordinates. The coordi-
nates f (i) will be called local coordinates in Gi.
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2 Denseness of domains EJDE–2002/23

Let

Lνu =
∑
|α|=mν

bνα(x′)Dαu(x′) +
mν−1∑
p=0

Kνp
∂pu(x′)
∂np

, x′ ∈ ∂G, ν = 1, . . . ,m,

(1.1)
where Dα := Dα1

1 · · ·Dαr
r , Dj := −i ∂

∂xj
, j = 1, . . . , r, α := (α1, . . . , αr) is a

multi-index, |α| :=
∑r
j=1 αj , x := (x1, . . . , xr), x′ := (x′1, . . . , x

′
r), n is a normal

vector to the boundary ∂G at the point x′ ∈ ∂G. Then Lνu is called normal
if mj 6= mk for j 6= k and for any vector σ, normal to the boundary ∂G at the
point x′ ∈ ∂G,

Lν0(x′, σ) =
∑
|α|=mν

bνα(x′)σα 6= 0, ν = 1, . . . ,m,

and the operator Kνp from Wmν−p
q (∂G) into Lq(∂G) is compact, where σα =

σα1
1 · · ·σαrr , ∂G ∈ C`, q ∈ (1,∞).

Let E0 and E1 be two Banach spaces continuously embedded into a Banach
space E : E0 ⊂ E, E1 ⊂ E. Such spaces are called an interpolation couple and
is denoted by {E0, E1}. Consider the Banach space

E0 + E1 :=
{
u = u0 + u1 : uj ∈ Ej , j = 0, 1

}
‖u‖E0+E1 := inf

u=u0+u1, uj∈Ej
(‖u0‖E0 + ‖u1‖E1).

Due to Triebel [7, 1.3.1], the functional

K(t, u) := inf
u=u0+u1, uj∈Ej

(
‖u0‖E0 + t‖u1‖E1

)
, u ∈ E0 + E1,

is continuous on (0,∞) in t, and the following estimate holds:

min{1, t}‖u‖E0+E1 ≤ K(t, u) ≤ max{1, t}‖u‖E0+E1 .

An interpolation space for {E0, E1} by the K-method is defined as follows:

(E0, E1)θ,p :=
{
u ∈ E0 + E1 : ‖u‖(E0,E1)θ,p <∞, 0 < θ < 1, 1 ≤ p <∞,

}
‖u‖(E0,E1)θ,p :=

(∫ ∞
0

t−1−θpKp(t, u) dt
)1/p

(E0, E1)θ,∞ :=
{
u ∈ E0 + E1 : ‖u‖(E0,E1)θ,∞ <∞, 0 < θ < 1

}
‖u‖(E0,E1)θ,∞ := sup

t∈(0,∞)

t−θK(t, u).

W `
q ((0,∞);E), 1 ≤ q <∞, with ` integer, denotes a Banach space of functions

u(x) with values from E which have generalized derivatives up to `-th order,
inclusive, on (0, 1) and the norm ‖u‖W `

q ((0,∞);E) :=
∑`
k=0

( ∫ 1

0
‖u(k)(x)‖qE dx

)1/q
is finite.
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Let the embedding E0 ⊂ E1 be continuous. Consider the Banach space
W `
q ((0,∞);E0, E1) := Lq((0,∞);E0) ∩W `

q ((0,∞);E1) with the norm

‖u‖W `
q ((0,∞);E0,E1) := ‖u‖Lq((0,∞);E0) + ‖u(`)‖Lq((0,∞);E1) .

Let G be an open set of Rr, in particular, G = R
r and G = R

r
+. Then,

Wm
q (G) is a Banach space of functions u(x) that have generalized derivatives

on G up to the m-th order inclusive, for which the following norm is finite:

‖u‖Wm
q (G) :=

( ∑
|α|≤m

‖Dαu‖qLq(G)

)1/q

.

Let s0 and s1 be non-negative integers, 0 < θ < 1, 1 < p < ∞, 1 ≤ q ≤ ∞
and s = (1− θ)s0 + θs1. From Triebel [7, Theorem 4.3.2/1, formula 2.4.2/16] it
follows that if s = (1− θ)s0 + θs1 = (1− θ′)s′0 + θ′s′1, then,

(W s0
p (G),W s1

p (G))θ,q = (W s′0
p (G),W s′1

p (G))θ′,q.

Consider the space

Bsp,q(G) := (W s0
p (G),W s1

p (G))θ,q,

where s0, s1 are non-negative integers, 0 < θ < 1, 1 < p < ∞, 1 ≤ q ≤ ∞ and
s = (1− θ)s0 + θs1. For s positive and not an integer, set

W s
p (G) := Bsp,p(G) := (W s0

p (G),W s1
p (G))θ,p .

The closure of a set M of E by the norm of E is denoted by M |E and sometimes
by M . The set M is called dense in E if M |E = E.

The following two equalities are application of Theorem 2.5 in this paper.
For (r − 1)/q < 2, we have:

W 3
q

(
G;u|∂G = 0,

∂2u

∂n2

∣∣∣
∂G

+ u(x′0) = 0
)∣∣∣
W 2
q (G)

= W 2
q (G;u|∂G = 0),

W 4
q

(
G;u|∂G = 0,

∂2u

∂n2

∣∣∣
∂G

+ u(x′0) = 0
)∣∣∣
W 3
q (G)

= W 3
q

(
G;u|∂G = 0,

∂2u

∂n2

∣∣∣
∂G

+ u(x′0) = 0
)
,

where x′0 ∈ ∂G is a fixed point of the boundary ∂G. These equalities are simple
but are new. Such equalities without the term u(x′0) follow from interpolation
theorems of Grisvard-Seeley type (see, Grisvard [3], Seeley [6]). The following
equality is also known:

C∞0 (G)
∣∣∣
Wk
q (G)

= W k
q

(
G;u|∂G =

∂u

∂n

∣∣∣
∂G

= · · · = ∂k−1u

∂nk−1

∣∣∣
∂G

= 0
)
.

Moreover, one can add first derivatives of the function u at some fixed points of
the boundary ∂G, and integral terms with u(x′) in addition to u(x′0) in boundary
conditions.
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2 Functions of several real variables

Lemma 2.1 Let ϕj ∈W
`−j− 1

q
q (Rr−1), where `, j are integer numbers, 0 ≤ j ≤

` − 1, q ∈ (1,∞). Then, there exist functions uj(yr, λ) = uj(y′, yr, λ), λ > 0
belonging to the Banach space W `

q (Rr+) = W `
q ((0,∞);W `

q (Rr−1), Lq(Rr−1)) and
satisfying

∂juj(y′, 0, λ)
∂yjr

= ϕj(y′), y′ ∈ Rr−1, (2.1)

such that the following estimate holds

˜̀∑
k=0

λ
˜̀−k‖uj‖Wk

q (Rr+) ≤ C
(
‖ϕj‖

W
˜̀−j− 1

q
q (Rr−1)

+ λ
˜̀−j− 1

q ‖ϕj‖Lq(Rr−1)

)
, (2.2)

where 0 ≤ j ≤ ˜̀− 1, ˜̀≤ `.

Proof In the Banach space E = Lq(Rr−1) consider the operator A = (−Λ +
I)2. By virtue of Lemma 3.1, for k = 1, 2, . . . ,

D(Ak) = D(Λ2k) = W 2k
q (Rr−1), D(A

k
2 ) = D(Λk) = W k

q (Rr−1).

Consider the functions

uj(yr, λ) = e−yr(A+λ2I)1/2
gj , (2.3)

where gj ∈ E. Since

u
(j)
jyr

(yr, λ) = (−1)je−yr(A+λ2I)1/2
(A+ λ2I)j/2gj ,

the functions in (2.3) satisfy (2.1) if (−1)j(A+ λ2I)
j
2 gj = ϕj . Consequently,

uj(yr, λ) = (−1)je−yr(A+λ2I)1/2
(A+ λ2I)−j/2ϕj . (2.4)

Since

A
k
2 uj(yr, λ) = (−1)jAk/2(A+ λ2I)−

j
2 e−yr(A+λ2I)1/2

ϕj ,

u
(k)
j (yr, λ) = (−1)k+j(A+ λ2I)

k−j
2 e−yr(A+λ2I)1/2

ϕj ,
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for k ≤ `, we have

λ(`−k)q‖uj‖qWk
q (Rr+)

=λ(`−k)q‖uj‖qWk
q ((0,∞);Wk

q (Rr−1),Lq(Rr−1))

=λ(`−k)q‖uj‖q
Wk
q ((0,∞);E(A

k
2 ),E)

≤Cλ(`−k)q
(
‖A k

2 uj‖qLq((0,∞);E) + ‖u(k)
j ‖

q
Lq((0,∞);E)

)
≤Cλ(`−k)q

∫ ∞
0

(
‖A k

2 (A+ λ2I)−
j
2 e−yr(A+λ2I)

1
2 ϕj‖qE

+ ‖(A+ λ2I)
k−j

2 e−yr(A+λ2I)
1
2 ϕj‖qE

)
dyr

≤Cλ(`−k)q‖(A+ λ2I)−
`−k

2 ‖qB(E)(‖A
k
2 (A+ λ2I)−

k
2 ‖qB(E) + 1)

×
∫ ∞

0

‖(A+ λ2I)
`−j

2 e−yr(A+λ2I)
1
2 ϕj‖qEdyr.

By virtue of Lemma 3.2 and Theorem 3.3, we have

λ(`−k)q‖uj‖qWk
q (Rr+)

≤ C
(
‖ϕj‖q(E,E(A`)) `−j

2` −
1

2`q ,q
+ λ(`−j)q−1‖ϕj‖qE

)
. (2.5)

Since

(E,E(A`)) `−j
2` −

1
2`q ,q

= (Lq(Rr−1),W 2`
q (Rr−1)) `−j

2` −
1

2`q ,q
= W

`−j− 1
q

q (Rr−1),
(2.6)

from (2.5) and (2.6) it follows that a function defined by (2.4) belongs to the
space W `

q (Rr+) = W `
q ((0,∞);W `

q (Rr−1), Lq(Rr−1)) and estimate (2.2) holds. �

Theorem 2.2 Let ϕj ∈ W
`−j− 1

q
q (Rr−1), 0 ≤ j ≤ m − 1, m ≤ `. Then, there

exist functions u(yr, λ) = u(y′, yr, λ), λ > 0, belonging to the Banach space
W `
q (Rr+) = W `

q ((0,∞);W `
q (Rr−1), Lq(Rr−1)) and satisfying

∂ju(y′, 0, λ)
∂yjr

= ϕj(y′), y′ ∈ Rr−1, j = 0, . . . ,m− 1, (2.7)

such that the following estimate holds

˜̀∑
k=0

λ
˜̀−k‖u‖Wk

q (Rr+) ≤ C
m−1∑
j=0

(
‖ϕj‖

W
˜̀−j− 1

q
q (Rr−1)

+ λ
˜̀−j− 1

q ‖ϕj‖Lq(Rr−1)

)
, (2.8)

where m ≤ ˜̀≤ `.

Proof By virtue of Lions and Magenes [5, Theorem 1.3.2], if

Uj(yr, λ) =
m∑
p=1

cpjuj(pyr, λ), (2.9)
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where
uj(pyr, λ) = (−1)je−pyr(A+λ2I)1/2

(A+ λ2I)−
j
2ϕj , (2.10)

the operator A is defined in the proof of Lemma 2.1, and the complex numbers
cpj satisfy the systems

m∑
p=1

pkcpj =

{
0, k 6= j,

1, k = j,
k = 0, . . . ,m− 1, (2.11)

then
∂kUj(0, λ)

∂ykr
=

{
0, k 6= j,

ϕj , k = j.
(2.12)

Consequently, the function

u(yr, λ) =
m−1∑
j=0

Uj(yr, λ) =
m−1∑
j=0

m∑
p=1

cpjuj(pyr, λ) (2.13)

belongs to the space W `
q (Rr+) = W `

q ((0,∞);W `
q (Rr−1), Lq(Rr−1)) and satisfies

(2.7). From (2.2) and (2.9)–(2.13) for the function u(yr, λ), it follows estimate
(2.8). �

Corollary 2.3 For λ > 0, there exists a continuous operator which is a contin-
uation of R(λ) : (ϕ0, . . . , ϕm−1)→ R(λ)(ϕ0, . . . , ϕm−1) from

+̇m−1
j=0 W

`−j− 1
q

q (Rr−1) into W `
q (Rr+), such that

∂jR(λ)(ϕ0, . . . , ϕm−1)(y′, 0)
∂yjr

= ϕj(y′), y′ ∈ Rr−1, j = 0, . . . ,m− 1

and

˜̀∑
k=0

λ
˜̀−k‖R(λ)(ϕ0, . . . , ϕm−1)‖Wk

q (Rr+)

≤ C
m−1∑
j=0

(
‖ϕj‖

W
˜̀−j− 1

q
q (Rr−1)

+ λ
˜̀−j− 1

q ‖ϕj‖Lq(Rr−1)

)
.

Proof Define a continuation operator as

R(λ)(ϕ0, . . . , ϕm−1) :=
m−1∑
j=0

m∑
p=1

cpjuj(pyr, λ)

and apply Theorem 2.2. �

Theorem 2.4 Let the following conditions be satisfied:
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1. bνα ∈ C`−mν (G), operators Kνp from Wmν−p
q (∂G) into Lq(∂G) and from

W `−p
q (∂G) into W `−mν

q (∂G) are compact, where ` ≥ max{mν} + 1, q ∈
(1,∞), ∂G ∈ C`.

2. System (1.1) is normal.

3. fν ∈W
`−mν− 1

q
q (∂G), ν = 1, . . . ,m.

Then, there exist functions u(x, λ), λ > 0, belonging to the Sobolev space W `
q (G)

and satisfying

Lνu(x′, λ) = fν(x′), x′ ∈ ∂G, ν = 1, . . . ,m, (2.14)

where Lν are defined in (1.1), such that the following estimate holds

˜̀∑
k=0

λ
˜̀−k‖u‖Wk

q (G) ≤ C
m∑
ν=1

(
‖fν‖

W
˜̀−mν− 1

q
q (∂G)

+ λ
˜̀−mν− 1

q ‖fν‖Lq(∂G)

)
, (2.15)

where max{mν}+ 1 ≤ ˜̀≤ `.

Proof Consider the balls Gi, i = 1, . . . , N , from R
r, which cover the ∂G, i.e.,

∂G ⊂ ∪Ni=1Gi; Gi ∩ ∂G 6= 0, i = 1, . . . , N.

Let {θi(x)} be a partition of unity subordinate to a cover of ∂G by {Gi} (see,
e. g., Lions and Magenes [5, 2.5.1]). The functions θi(x) have the following
properties:

1. The support of the function θi(x) belongs to the set Gi, i.e., θi(x) = 0
outside of Gi;

2. Functions θi(x) are infinitely differentiable on Rr;

3. 0 ≤ θi(x) ≤ 1;
∑N
i=1 θi(x) ≡ 1, x ∈ ∂G.

In Gi we introduce a system of curvilinear coordinates y1(x′), . . . , yr(x′),
where x′ ∈ ∂G. Assume that yr(x′) = n(x′) is the normal vector, while
y1(x′), . . . , yr−1(x′) are tangential vectors on ∂G. The operators Lν may be
expressed in these curvilinear coordinates as

L̃ν ũ :=cν(y′, 0)
∂mν ũ(y′, 0)
∂ymνr

+
∑

|α|≤mν ,|αr|<mν

cνα(y′, 0)
∂αũ(y′, 0)

∂yα1
1 · · · ∂y

αr−1
r−1 ∂yαrr

+
mν−1∑
p=0

K̃νp
∂pũ(y′, 0)
∂ypr

, ν = 1, . . . ,m, (y′, 0) ∈ f (i)(Gi ∩ ∂G), (2.16)
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where

ũ(y) := u((f (i))−1(y)), y ∈ f (i)(Gi ∩G),

K̃νp
∂pũ(y′, 0)
∂ypr

:=
(
Kνp

∂pu(x′)
∂np

)
((f (i))−1(y′, 0)), (y′, 0) = f (i)(x′),

where cν , cνα ∈ C`−mν (f (i)(Gi ∩G)), and f (i) is defined in a similar way as in
the beginning of the paper. It holds that cν(y′, 0) 6= 0 for (y′, 0) ∈ f (i)(Gi∩∂G).

We look for functions u(x, λ) ∈W `
q (G), λ > 0, satisfying the relations

L̃ν ũ = f̃ν(y′, 0), (y′, 0) ∈ f (i)(Gi ∩ ∂G), ν = 1, . . . ,m, (2.17)

where L̃ν are operators defined in (2.16), and for which additionally

∂j ũ(y′, 0, λ)
∂yjr

= 0, j 6= mν , j = 0, . . . ,max{mν}−1, (y′, 0) ∈ f (i)(Gi∩∂G).

(2.18)
Consider for (y′, 0) ∈ f (i)(Gi ∩ ∂G) the functions

ϕj(y′) :=0, j 6= mν , j = 0, . . . ,max{mν} − 1,

ϕmν (y′) :=
(
cν(y′, 0)

)−1[
f̃ν(y′, 0)

−
∑

|α|≤mν ,|αr|<mν

cνα(y′, 0)
∂αϕαr (y

′)
∂yα1

1 · · · ∂y
αr−1
r−1

−
mν−1∑
p=0

K̃νpϕp(y′)
]
.

(2.19)
Since W s

q = (W s0
q ,W s1

q )θ,q, s > 0 is not an integer, s0, s1 are integers, 0 < θ < 1,
and s = (1− θ)s0 + θs1, by virtue of the interpolation theorem [4] (see, e.g., [7,

1.16.4]) and condition 1 of Theorem 2.4, the operators Kνp from W
k−p− 1

q
q (∂G)

into W
k−mν− 1

q
q (∂G), for mν + 1 ≤ k ≤ `, are compact. Then, from conditions

1 and 3 of Theorem 2.4 and (2.19) it follows that ϕj ∈W
`−j− 1

q
q (f (i)(Gi ∩ ∂G).

Let ηi(x) ∈ C∞(Rr), i = 1, . . . , N , and supp ηi ⊂ Gi, ηi(x) = 1, x ∈ supp θi.
Consider the function

u(x, λ) :=R(λ)(ϕ0, . . . , ϕm̃−1)(x, λ)

:=
N∑
i=1

ηi(x)R(λ)(θi((f (i))−1(y′, 0))ϕ0, (2.20)

. . . , θi((f (i))−1(y′, 0))ϕm̃−1)(f (i)(x), λ),
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where m̃ = max{mν}+ 1, for x ∈ G (where ηi(x)R{ }(f (i)(x), λ) = 0 outside
of Gi). By virtue of Corollary 2.3, for function (2.20) we have

∂j ũ(y′, 0, λ)
∂yjr

=
∂ju((f (i))−1(y′, 0), λ)

∂yjr

=
N∑
i=1

θi((f (i))−1(y′, 0))ϕj = ϕj(y′), y′ ∈ Rr−1, j = 0, . . . , m̃− 1,

(2.21)
where ϕj(y′) is defined in (2.19). From (2.19) and (2.21) we get (2.17) and
(2.14). Since the mapping f (i) is a diffeomorphism of class C` then, by virtue
of Corollary 2.3, function (2.20) satisfies estimate (2.15). �

Theorem 2.5 Let the following conditions be satisfied:

1. bνα ∈ C`−mν (G), operators Kνp from Wmν−p
q (∂G) into Lq(∂G) and from

W `−p
q (∂G) into W `−mν

q (∂G) are compact, where ` ≥ max{mν} + 1, q ∈
(1,∞), ∂G ∈ C`.

2. System (1.1) is normal.

Then, for integer k ∈ [0, `],

W `
q (G;Lνu = 0, ν = 1, . . . ,m)

∣∣∣
Wk
q (G)

= W k
q (G;Lνu = 0,mν ≤ k − 1). (2.22)

Proof For k = 0, (2.22) follows from the known embedding C∞0 (G)
∣∣∣
Lq(G)

=

Lq(G). Let k ≥ 1. Obviously,

W `
q (G;Lνu = 0, ν = 1, . . . ,m)

∣∣∣
Wk
q (G)

⊂W k
q (G;Lνu = 0,mν ≤ k − 1). (2.23)

Indeed, let un ∈W `
q (G;Lνu = 0, ν = 1, . . . ,m) and let

lim
n→∞

‖un − u‖Wk
q (G) = 0.

It is proved in Theorem 2.4 that from condition 1 of Theorem 2.5 it follows that

operators Kνp from W
k−p− 1

q
q (∂G) into W

k−mν− 1
q

q (∂G), for mν + 1 ≤ k ≤ `, are
compact. Then, by virtue of [7, Theorem 4.7.1], for mν ≤ k − 1 we have

lim
n→∞

‖Lνun − Lνu‖
W
k−mν− 1

q
q (∂G)

≤C lim
n→∞

‖un − u‖
W
k− 1

q
q (∂G)

≤C lim
n→∞

‖un − u‖Wk
q (G) = 0, mν ≤ k − 1.

(2.24)
Thus, Lνu = 0, mν ≤ k − 1, since Lνun = 0.
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Now, we show the inverse inclusion

W k
q (G;Lνu = 0,mν ≤ k − 1) ⊂W `

q (G;Lνu = 0, ν = 1, . . . ,m)
∣∣∣
Wk
q (G)

. (2.25)

Let u ∈W k
q (G;Lνu = 0,mν ≤ k−1). Then, there exists a sequence of functions

vn(x) ∈ C∞(G), n = 1, . . . ,∞, such that

lim
n→∞

‖vn − u‖Wk
q (G) = 0. (2.26)

From (2.26) and (2.24) it follows that

lim
n→∞

‖Lνvn‖
W
k−mν− 1

q
q (∂G)

= ‖Lνu‖
W
k−mν− 1

q
q (∂G)

= 0, mν ≤ k − 1. (2.27)

By virtue of Theorem 2.4 (for ˜̀= k, λ = λ0), there exists a solution wn ∈W `
q (G)

of the system
Lνwn = −Lνvn, mν ≤ k − 1, (2.28)

and
‖wn‖Wk

q (G) ≤ C
∑

mν≤k−1

‖Lνvn‖
W
k−mν− 1

q
q (∂G)

. (2.29)

Then, from (2.27) and (2.29) it follows that

lim
n→∞

‖wn‖Wk
q (G) = 0. (2.30)

Let λn be a sequence tending to ∞, if with respect to n

‖Lν(vn + wn)‖
W
`−mν− 1

q
q (∂G)

≤ C, mν ≥ k; (2.31)

and
λn = max

mν≥k
‖Lν(vn + wn)‖δ

W
`−mν− 1

q
q (∂G)

, (2.32)

where δ > q, if ‖Lν(vn + wn)‖
W
`−mν− 1

q
q (∂G)

is not a bounded sequence at least

for one mν ≥ k.
Apply Theorem 2.4 (for ˜̀= `, λ = λn) to the system

Lνgn = 0, mν ≤ k − 1,
Lνgn = −Lν(vn + wn) mν ≥ k.

(2.33)

Then there exists a solution gn(x) of (2.33) on W `
q (G) and for this solution, as

n→∞,

λ`−kn ‖gn‖Wk
q (G) ≤C

∑
mν≥k

(
λ
`−mν− 1

q
n ‖Lν(vn + wn)‖Lq(∂G)

+ ‖Lν(vn + wn)‖
W
`−mν− 1

q
q (∂G)

)
.
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From this and (2.31),(2.32) we have

‖gn‖Wk
q (G) ≤ C

∑
mν≥k

(λ
`−mν− 1

q+ 1
δ

n + λ
1
δ
n )λ−`+kn

≤ C
∑
mν≥k

(λ
k−mν− 1

q+ 1
δ

n + λ
−`+k+ 1

δ
n ).

(2.34)

Since δ > q, (2.34) and (2.31),(2.32) imply

lim
n→∞

‖gn‖Wk
q (G) = 0. (2.35)

Now, it is easy to see that for the sequence of functions un = vn + wn + gn ∈
W `
q (G) the relations

Lνun = 0, ν = 1, . . . ,m, (2.36)
lim
n→∞

‖un − u‖Wk
q (G) = 0 (2.37)

hold. Namely, (2.36) follows from (2.28) and (2.33), and (2.37) follows from
(2.26), (2.30), and (2.35). So, the inverse inclusion (2.25) has also been proved.
From (2.23) and (2.25) it follows (2.22). �

3 Appendix

Lemma 3.1 ([7, Lemma 2.5.3 and formula 2.5.3/11]) Let 1 < q < ∞,
cr−1‖(1 + |x|2)−

r
2 ‖L1(Rr−1) = 1 and(

P (t)u
)

(x) = cr−1

∫
Rr−1

t

(|x− y|2 + t2)r/2
u(y)dy, 0 < t <∞, u ∈ Lq(Rr−1).

If additionally P (0) = I, then P (t) is a holomorphic semigroup in the space
Lq(Rr−1). If Λ is a corresponding infinitesimal operator for P (t), then

Λ2mu = (−1)m∆mu, D(Λm) = Wm
q (Rr−1), m = 1, 2, . . . .

The estimate of the semigroup is a central point in the theory of differential-
operator equations.

For ϕ ∈ (0, π) we denote by Σϕ the closed sector {λ ∈ C : | arg λ| ≤ ϕ }∪{0}.
Let A be a closed, densely defined operator in a complex Banach space E.

We say that A is of type ϕ with bound L if for every λ ∈ Σϕ the operator A+λI
is invertible with bounded inverse and

‖(A+ λI)−1‖ ≤ L

|λ|+ 1
.

We note that, in particular, an operator of type ϕ is invertible. Moreover,
an operator of type ϕ with ϕ > π/2 is the inverse of the generator of a holo-
morphic semigroup whose norm decays exponentially at infinity (see Fattorini
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[2, Theorem 4.2.2]). If A is of type ϕ with bound L, then for every λ ∈ Σϕ,

‖A(A+ λI)−1‖ = ‖I − λ(A+ λI)−1‖ ≤ 1 +
L|λ|
|λ|+ 1

≤ 1 + L .

We remark that, in view of the properties of the resolvent operator, if A+λI
is invertible for λ ∈ [0,∞) and supλ∈[0,∞) ‖(λ+ 1)(A+ λI)−1‖ <∞, then there
exists ϕ > 0 such that A is of type ϕ.

Lemma 3.2 ([8, Lemma 5.4.2/6]) Let A be a closed, densely defined opera-
tor in a Banach space E and

‖R(λ,A)‖ ≤ C(1 + |λ|)−1, | arg λ| ≥ π − ϕ,

where R(λ,A) := (λI −A)−1 is the resolvent of the operator A and 0 ≤ ϕ < π.
Then,

a) For | arg λ| ≤ ϕ, α ∈ R there exist fractional powers Aα and (A + λI)α

for 0 ≤ α ≤ β with

‖Aα(A+ λI)−β‖ ≤ C(1 + |λ|)α−β , | arg λ| ≤ ϕ;

b) For | arg λ| ≤ ϕ there exists the semigroup e−x(A+λI)1/2
, which is holomor-

phic for x > 0 and strongly continuous for x ≥ 0; moreover, for α ∈ R
and for some ω > 0,

‖(A+ λI)αe−x(A+λI)1/2
‖ ≤ Ce−ωx|λ|

1/2
, x ≥ x0 > 0, | arg λ| ≤ ϕ.

Theorem 3.3 ( [8, Theorem 5.4.2/1]) Let E be a complex Banach space, A
be a closed operator in E of type ϕ with bound L. Moreover, let m be a positive
integer, p ∈ (1,∞) and α ∈ ( 1

2p ,m+ 1
2p ). Then, there exists C (depending only

on L, ϕ, m, α and p) such that for every u ∈ (E,E(Am)) α
m−

1
2mp ,p

and λ ∈ Σϕ,∫ ∞
0

∥∥∥(A+ λI)αe−x(A+λI)
1
2 u
∥∥∥pdx ≤ C(‖u‖p(E,E(Am)) α

m
− 1

2mp ,p
+ |λ|pα− 1

2 ‖u‖p
)
.

The proof of this theorem can be found in [1].
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