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SPATIOTEMPORAL DRIVERS OF MUNICIPAL WATER 
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Texas State University-San Marcos 

 

August 2013 

 

 

SUPERVISING PROFESSOR: RONALD R. HAGELMAN III 

 This study analyzed the individual and joint influences of social, urban, and 

physical landscape characteristics on patterns of municipal water consumption at the 

county scale for the state of Texas using a cross-sectional research design on three 

distinct temporal slices (1990, 2000, and 2010).  Global multiple linear regression models 

and measures of global and local spatial association were combined to determine which 

landscape characteristics significantly influenced per capita municipal water consumption 

at the county scale, whether or not the statistically significant landscape characteristics 

varied over time, and to assess the degree to which the patterns and landscape 

characteristics of municipal water consumption reflected spatially stationarity.   Overall 

results suggested that the social, urbanized, and physical environments contributed
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 significantly to the patterns of per capita municipal water consumption to varying 

degrees in each year.  The social and urbanized environments consistently exerted the 

strongest influences on per capita municipal water consumption, while the physical 

environment was generally less important.  Additionally, the social environment had the 

greatest cumulative influence in all three years, and the urbanized environment singly 

accounted for the majority of the variation in per capita municipal water consumption 

when the joint influences of the other statistically significant landscape characteristics 

were considered.   

Differences in the composites of significant independent variables and the 

magnitudes of recurring significant variables between years, suggested that time 

influenced the landscape characteristics of per capita municipal water consumption.  The 

spatial analysis of municipal water consumption patterns and its landscape characteristics 

suggested that they both exhibited weak to moderate degrees of spatial non-stationarity in 

each year.  Furthermore, the measures of global and local spatial autocorrelation in the 

residuals of the multiple linear regression models suggested that spatial processes 

confounded the ability of a global model to adequately explain the significant driving 

landscape characteristics of per capita municipal water consumption.
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

Fresh water is a spatially dispersed, finite resource. Yet, reliable supplies of fresh 

water play an integral role in the health, welfare, and development of human 

communities.  Fresh water is not only essential for life itself; it is also an important 

component of economic activities such as agriculture, industrial processes, power 

generation, and waste disposal (McCarl 1995; TWDB 2011; Ward 2011).  From a 

development perspective, fresh water is potentially our most important natural resource, 

as it has strongly influenced the location, function, and growth of both human (Arbues et 

al. 2003) and ecological (Petersen et al. 2012) communities. 

 Sociopolitical disputes over access to fresh water resources are common and 

reflect the degree to which demand often outstrips supply (Arbues et al. 2003).  This 

mismatch is exacerbated by the spatial and temporal variability of fresh water resources 

and by the fact that, in general, municipal water consumption is not easily reduced 

through conservation initiatives (Arbues et al. 2003; Dingman 2002; Martinez-Espiniera 

and Naughes 2004; Petersen et al. 2012). Research also indicates that climate change, 

along with population growth and urbanization, will continue to alter the quantity, 

quality, and spatial distribution of global fresh water resources (Bednarek 2001; Dallman 
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and Spongberg 2011; Kundzewicz et al. 2008; Ward 2011), thus further complicating 

management of this precious resource.    

Simple population growth would seem to be the main contributor to increased 

water use, however previous studies have demonstrated that municipal water 

consumption is a function of both human and physical landscape factors (House-Peters et 

al. 2010; Kenney et al. 2008).  Furthermore, local differences within the human and 

physical factors may produce inequalities in municipal water consumption that disrupt 

the delicate supply and demand relationships of neighboring communities.  This 

interaction between the municipal consumption of one community and the municipal 

supply of another could potentially trigger political conflict or regional emigration with 

disastrous economic and environmental consequences (Ward 2011).  In addition to the 

influence of natural and anthropogenic drivers, changing management goals can also 

influence water use. Water conservation remains unpopular in many communities and 

further complicates management of municipal water. More often than not, increasing 

demand results in costly engineering solutions rather than conservation methods, which 

may, in turn, trigger changes in the physical environment such as the degradation of 

water quality and the loss of aquatic habitat (Bednarek 2001).  

The goal of this research is to discover the degree to which human and physical 

landscape characteristics significantly influence municipal water consumption.  In this 

research, municipal water consumption is a combination of both residential and 

commercial water use. Municipal water use managers will benefit from an improved 

understanding of significant landscape drivers for water consumption, while analytical 
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research into water resource patterns will benefit from further exploration of relevant 

landscape drivers for municipal water use in an ever changing, rapidly urbanizing world. 

Understanding the drivers of municipal water consumption is especially important 

in arid and semi-arid climatic regions with highly variable precipitation patterns and rapid 

population growth such as those found throughout the American Southwest.  Texas is no 

exception, with its mosaic of arid, semi-arid, and sub-tropical humid climates (Dixon and 

Moore 2011; Petersen et al. 2012) and booming urban populations.  According to the 

Texas Water Development Board (TWDB), the population of Texas is expected to grow 

80% between 2010 and 2060, and require an additional 8.3 million acre feet of water per 

year to meet projected demands for all water using groups (e.g. municipal, agriculture, 

industry, etc.).   

Water for Texas, the state’s 2011 summary of regional water plans,  reported that 

these additional 8.3 million acre feet will be created from a variety of sources throughout 

the state including the construction of new reservoirs, increased surface water 

withdrawals, water re-use, irrigation conservation, and municipal conservation  (TWDB 

2011).   Although the 2060 water consumption projections are based on historical water 

use, the municipal water use data do not reflect potential changes in the underlying 

factors that influence human water consumption such as climate and socio-demographic 

characteristics (House-Peters et al. 2010; Wentz and Gober 2007).  Failing to account for 

changes in these drivers, or influencing factors, of municipal water consumption could 

severely hamper the implementation of statewide and regional water plans, due to 

mismatches in demand and available supply.   
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This potential mismatch between municipal water consumption, and available 

water supply may be especially important in North Central and East Texas as they are 

home to four TWDB Planning Regions (Figure 1) that are expected to show a collective 

68% increase in water consumption, and an 86% increase in population between 2010 

and 2060 (Table 1).  Research has shown that municipal water consumption, like the 

location of fresh water, is also spatially variable (House-Peters et al. 2010; Wentz and 

Gober 2007), and that municipal water consumption is a function of human and 

geophysical factors (Carver and Boland 1980; Cochran and Cotton 1985; Kenney et al. 

2008).  The issue of spatial variability is further confounded by the fact that meeting fresh 

water demands is often accomplished through the expansion of existing water supplies, 

which has far-reaching environmental consequences.  For example, the construction of 

new reservoirs may trigger bank erosion and the degradation of water quality a 

considerable distance downstream from the new impoundment (Bednarek 2001).   

The purpose of this research is to improve our understanding of the quantitative 

synergies among social and physical environmental landscape characteristics relative to 

municipal water consumption, to characterize spatiotemporal changes among those 

characteristics, and to assess the degree to which municipal water consumption can be 

explained by a spatially stationary model.    These research purposes were 

operationalized through the spatiotemporal analysis of municipal water consumption 

patterns in Texas counties in comparison to social, urban, and physical landscape 

characteristics at three temporal slices over a twenty-year period.   The research questions 

addressed in this dissertation are:  
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1) Which social, urban, and physical landscape characteristics contribute 

significantly to municipal water consumption patterns at the county scale?;  

2) Do these driving characteristics vary over time?; and 

3) To what degree do municipal water consumption patterns exhibit spatial 

stationarity?  

Answering these questions will serve three purposes.  Firstly, this analysis 

addresses the larger question regarding the degree to which quantitative measures of 

human environments, physical environments, and the synergies between the two explain 

patterns of municipal water consumption.  Secondly, the increased understanding of 

human fresh water consumption in water-stressed environments extends the existing body 

of knowledge addressing interactions between humans and the Earth’s fragile fresh water 

resources.  Thirdly, this research extends the literature supporting the application and 

utility of GIScience in resolving water resource problems.  Additionally, this study added 

the explicit consideration of time to the investigation of municipal water consumption, 

using temporal slices to identify drivers of consumption that are consistently significant 

over multiple cross-sections of a period of record.  An awareness of significant influences 

on municipal water consumption that are temporally consistent could help water 

managers anticipate future needs, and improve the targeting of use-reduction campaigns.  

A conceptual overview of this research project is provided in Figure 2. 

Although the results of this study have the potential to greatly improve the 

management of municipal water, there are several important limitations that deserve 

attention.  The scale of spatial analysis, the short period of record, the confounding 

influence of the aggregated measure of municipal water consumption, and the inability of 
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quantitative analysis to fully capture the intangible variables that influence municipal 

water consumption limit the conclusions that may be drawn from this research.  These 

limitations are developed further in the Data section of the Research Methods chapter.  

However,  the inclusion of both time and spatial stationarity in this analysis offers an 

advancement over previous quantitative research relating to water consumption that have 

tended to focus exclusively on a limited number of dimensions driving demand.  

Understanding the role of space, spatial stationarity, and time in the evolution of 

municipal water demand will also aid current management and future planning for water 

resource development and conservation. 
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CHAPTER II 

 

 

 

LITERATURE REVIEW 

 

 

The high spatial and temporal variability (Dingman 2002; Petersen et al. 2012), 

and the ability of human use to influence the location, quantity, and quality of fresh water 

(Dallman and Spongberg 2012), make a compelling case to investigate the drivers of 

municipal water consumption at multiple temporal cross-sections and locations.  The 

relevant literature for this research will be addressed in three primary categories including 

previous investigations of municipal water consumption, local indicators of spatial 

association (LISA), and historical GIS.  The previous studies of municipal water 

consumption will be considered first, and help frame the contributions of this research 

project. Copious volumes of literature have been dedicated to water consumption patterns 

and water resource availability, and thus only those studies that apply most directly the 

present investigation will be reviewed here.  The reviews of LISA and historical GIS 

provide insight into the ways in which these techniques will facilitate the research goal of 

explaining the drivers of municipal water consumption across multiple temporal periods, 

as well as the degree to which patterns of municipal water consumption is spatially 

stationary.
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Municipal Water Consumption 

 The study of municipal water consumption patterns is essential to the health and 

longevity of human communities everywhere due to the important role that fresh water 

plays in daily human life.  More specifically, reliable fresh water supplies are imperative 

to meet the direct needs of the human population, as well as, many economic activities 

such as power generation and industrial processes (McCarl 1995; TWDB 2011; Ward 

2011).  The importance of reliable municipal water supplies in Texas is especially 

important in the face of rapid population growth, dwindling supplies of ground and 

surface water, and highly variable precipitation patterns (TWDB 2011). 

 Carver and Boland (1980) explored municipal water consumption in the context 

of demand sensitivities to changes in price, otherwise known as price elasticity of 

demand.  The study investigated the relationship between the price of water and water 

consumption for thirteen water utilities in Washington D.C. between 1969 and 1974 with 

a total of 390 observations derived from monthly water production records.   The 

explanatory variables in this study included socio-economic and climatic data such as 

household income, the average number of residents per water connection, and the price of 

water and moisture deficit (defined as effective precipitation) respectively.  Multiple 

linear regression was used to assess the relative and combined influence of the 

independent variables on municipal water consumption with separate models for seasonal 

and non-seasonal use.  Final results suggested that moisture deficit was a statistically 

significant predictor of water consumption for three out of five cases at the alpha level of 

0.05. Additionally, the study showed that the response of water consumption to changes 

in price (elasticity of demand) was higher over the long-run, defined as periods of one 
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year or more.  While this study contributed greatly to the understanding of socio-

economic and climatic influences on municipal water demand, the findings were limited 

by a short temporal period and a single geographic location. 

 A similar study comparing the municipal water consumptions of Oklahoma City 

and Tulsa, Oklahoma between 1961 and 1980 was completed by Cochran and Cotton 

(1985).  While price elasticities of water demand were not explicitly explored here, the 

price of water was included as a variable in several simple linear and logarithmic 

regression equations along with the number of households per 1000 people, per capita 

income, rainfall, and temperature.  The precipitation and temperature data were monthly 

averages obtained from the National Oceanic and Atmospheric Administration (NOAA).  

Cochran and Cotton (1985) ultimately found that the socio-economic variables greatly 

outweighed the climatic variables in terms of relative importance for both Oklahoma City 

and Tulsa using simple linear regression techniques.  The average price of water, per 

capita income, and the number of households per 1000 people all yielded R
2
 values over 

0.80 at a significance level of 0.01.  Additionally, temperature and precipitation were 

found to be largely statistically insignificant in both locations, with the exception of 

temperature in Tulsa which was significant at the 0.10 alpha level.  Final results from 

both the simple and logarithmic regression analyses suggested that per capita income 

exerted the strongest overall influence on water consumption in both cities, and that the 

climatic variables had little to no influence.  The authors concede, however, that the weak 

influence of climatic variables may be an artifact of the inability to remove several 

commercial and industrial use records from the municipal use data. 
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 Rather than attempting to explain the driving forces behind municipal water 

consumption, Zhou et al. (2000) focused their efforts specifically on the forecasting urban 

water demand over a twenty-four hour period for the city of Melbourne, Australia.  

Despite the difference in purpose, this study highlights the importance of considering 

temporal and spatial scale when examining municipal water consumption.  Zhou et al. 

(2000) only examined the influence of maximum daily temperature, and daily pan 

evaporation on per capita water consumption for the entire city of Melbourne.  The 

relative influence of population was controlled for in the use of per capita water 

consumption as a dependent variable, and other socio-economic variables such as water 

price and per capita income were deemed unimportant at the daily time step.  This 

omission of socio-economic data was supported by the fact that income and price effects 

typically change on an annual time scale (Cochran and Cotton 1985).   

Operating at the spatial scale of an individual city over a period of seven years 

(1989-1996), the researchers were also able to disaggregate water consumption into base 

and seasonal use.  Seasonal use was aggregated into the six month periods of summer and 

winter, and represented the portion of water consumption that was sensitive to climatic 

variables.  Final results suggested that precipitation, antecedent precipitation (the amount 

of precipitation occurring prior to an individual time step), and pan-evaporation were the 

strongest predictors of per capita water consumption at daily time steps.  Following a 

series of validation runs, seasonal disaggregation and nonlinear regressions improved 

overall model fit to an R
2
 of 0.896. 

 The influence of climatic variables on municipal water consumption was also 

explicitly investigated by Gutzer and Nims (2005).  This study examined the inter-annual 
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variability of precipitation, temperature, and humidity on seasonal municipal water use in 

Albuquerque, New Mexico.  Seasonal water use was used in favor of annual per capita 

consumption due to the fact that Albuquerque's water supply is drawn entirely from 

groundwater sources, which insulate the city's water supply from short-term climatic 

variation.  Although the influence of population and other socio-economic variables were 

not explicitly considered, the authors conceded that population growth drives long-term 

fresh water consumption.  Additionally, previous local studies had indicated that the 

highest water usage is concentrated during the summer months.  Forty-nine percent of all 

residential water use in Albuquerque occurred between June and September for the 

period of 1980-2001 (Gutzer and Nims 2005).   

Simple linear and multiple regression techniques were applied to the summer 

season data (June through September) with municipal water consumption as the 

dependent variable, and the climatic data as the independent variables.  Separate models 

were constructed for the periods 1980-1994, and 1995-2001 to capture the effects of pre- 

and post-water conservation initiatives.  Final results of the study found that both 

precipitation and temperature were strongly correlated with residential water 

consumption between years, and over the entire study period.  Despite the short seven-

year period of record for post-conservation data, final results for Albuquerque suggested 

that conservation measures had no short-term effect on municipal water demand. 

 Wentz and Gober (2007) solely considered socio-economic variables relative to 

municipal water consumption in Phoenix, Arizona.  This study was one of the first to 

explore the drivers of residential water consumption at a spatial resolution finer than that 

of an entire city, and to consider a variation in human land use.  Wentz and Gober (2007) 
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used average household size, lot size, the presence of a swimming pool, and landscaping 

type to explain the variation in average single family household water consumption at the 

census tract level for the year 2000.  These variations were explained using multiple 

linear (MLR) and geographically weighted regression (GWR) techniques to provide the 

estimates of relative and combined influences of the independent variables.   The GWR 

model was used to investigate the spatial dependence between water consumption in a 

given census tract and the corresponding values in neighboring tracts.  All dependent and 

independent variables were used in both models, with census tract centroids supplying 

the point inputs for the GWR model.   

The MLR regression analysis produced and overall R
2
 of 0.64 and suggested that 

lot size and the presence of swimming pools had the greatest influence on water 

consumption.  Landscape type and average household size were statistically significant, 

but accounted for much less of the overall variance.  The GWR model increased the 

overall model fit to 0.848 (mean R
2
 for all individual GWR models), and suggested that 

the presence of swimming pools, and household size are spatially dependent on 

neighboring tracts.  Aside from confirming the importance of urban land use, and 

population at the census tract scale, the major contribution of this study was to 

demonstrate the utility of GWR in municipal water consumption studies. 

Kenney et al. (2008) also employed a variant of multiple regression known as a 

fixed effect model to examine residential water demand for 10000 individual accounts for 

the City of Aurora Colorado between 1997 and 2005.  This study used an expanded array 

of socioeconomic variables including household income, the median age of the home 

owner, the percentage of owner occupied homes, the percentage of homes built after 
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1991, the percentage of homes built prior to 1970, and the median number of bedrooms.  

The climatic variables were limited to total precipitation per billing period, and average 

maximum temperature during the billing period.  Other variables such as the CPI adjusted 

price of water, the presence of water restrictions, the length of the billing period, smart 

water reader use, and participation in rebate programs were also analyzed.  Prior to 

analysis, the authors partitioned the data into two distinct segments to separate the 

drought and non-drought periods.  The data ranging from 1997 to 1999 represented 

relatively normal conditions, while the period from 2000 to 2005 experienced prolonged 

sequences of dry weather patterns.  Despite the short temporal period of the dataset, the 

comprehensive nature of the records allowed the research team to explore the relationship 

between class of user (high, medium, and low) in addition to drought period.  While 

much of the influences of the socio-demographic data are masked by the choice of 

regression technique, Kenney et al (2008) admit that the stratification of users by volume 

of use confirmed that the age, income, and housing stock age are related to municipal 

water consumption.  Additionally, the authors found both climatic variables to be 

strongly related to seasonal water consumption, with the highest demands occurring in 

the summer. 

Continuing the emphasis on the combined power of socio-demographic and 

physical housing characteristics variables to explain municipal water consumption, 

House-Peters et al. (2010) conducted a study of census blocks in Hillsboro, Oregon from 

2004 to 2007.  The researchers were interested principally in determining the significant 

drivers of municipal water use, the sensitivity of single family households to drought 

conditions, inter-annual climate variation, the magnitude of response to drought 
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conditions and inter-annual climate variability at the census block scale.  The water 

consumption dataset contained 21800 records at the scale of individual households which 

were aggregated to the census block scale for the entire city of Hillsboro.  These census 

block water records yielded seven dependent variables including base water use for 2004 

and 2006, seasonal water uses for 2004 and 2006, drought sensitivity defined as the ratio 

of 2006 seasonal use to 2004 seasonal use, and inter-annual climate variability for 2004 

and 2006.  The socio-demographic variables considered in this study were mean 

household size, median household income, average education level as a percentage of the 

population, and median population age.  Physical urban landscape variables included 

outdoor size, average year built, building size, and total property value. Both MLR and 

spatial regression methods were used to explore the individual and shared contributions 

of the independent variables to water consumption.  

Generally, the study indicated that socio-demographic and physical housing 

characteristics contributed differently to each dependent variable for both model types.  

However, the most statistically significant variables were shown to be mean household 

size, percentage of college education, and outdoor space (e.g. backyard, front yard, etc.).  

Mean household size was significant for both the MLR and spatial regression models of 

base use in 2004 and 2006; and the percentage of outdoor space, and the percentage of 

the population that has a college education were statistically significant for both models 

of seasonal use in 2004 and 2006.  The spatial regressions for the climate sensitivity 

variables indicated statistically significant spatial variation for all physical housing and 

socio-demographic variables, while the MLR regressions found that all physical housing 

variables were significant at the 0.05 level.  Likewise, the MLR regressions found that 
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the socio-economic variables were significant at the 0.05 level for inter-annual climate 

sensitivity in both years.  Despite the high spatial resolution of the water consumption 

dataset, the short temporal period and the two year interval between temporal slices may 

have masked the actual long-term influences of the socio-demographic variables that 

were evident in previous studies.  

This review of previous municipal water consumption studies suggests that my 

research is well positioned to contribute to the literature by employing both linear and 

spatial regression methods at multiple temporal slices over longer periods of record, and 

by examining the effect of scale on water consumption patterns.  Even when spatial 

interactions were considered in the cases of Wentz and Gober (2007), and House-Peters 

et al. (2010), the primary spatial unit of analysis was the census tracts, or census blocks 

for a given city.  The importance of this work cannot be understated, as the majority of 

water resources planning decisions in many regions of the country are made by 

municipalities (House-Peters et al. 2010; Wentz and Gober 2007).  However, I would like 

to add the consideration that water consumption patterns and water resource supply 

decisions may have impacts that extend beyond the unit at which they occur.  For 

example, the City of Dallas, Texas is located in the North Central region of the state, but 

draws a portion of its water supply from reservoirs in East Texas hundreds of miles away 

(Young 2012).  In this way, the consumption patterns of Dallas bleed into, and ultimately 

affect water availability in other regions of the state (TWDB 2011).  Similarly, the water 

consumption patterns of municipalities may potentially aggregate to affect future 

planning efforts to meet water needs at different spatial scales. The purpose of this 
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research is to test whether significant drivers of municipal water consumption are 

consistent across multiple temporal periods at the county scale. 

Local Indicators of Spatial Association 

Local Indicators of Spatial Association, or LISA, refers to a suite of metrics used 

to measure the spatial autocorrelation between individual observations within a given 

dataset.  The term was first coined by Anselin (1995) to distinguish a particular subset of 

local spatial statistics that conform to more stringent requirements than simple local 

measures of spatial autocorrelation such as the Gi and Gi
*
 statistics of Getis and Ord 

(1992).  In addition to analyzing the spatial autocorrelation of each individual 

observation, a LISA must provide an indication of the extent of significant spatial 

clustering of similar values around an observation, and be proportional to a global 

measure of spatial association when summed with the local estimate for all other 

observations (Anselin 1995).  These two properties of LISAs permit local indicators of 

spatial association to be used as inferential statistics with sufficiently large sample sizes, 

in addition to their primary role as exploratory spatial data analysis tools (Raty and 

Kangas 2007).  

Since their introduction in 1995, LISAs have grown in popularity as a means to 

account for the smoothing effects of global estimators of spatial autocorrelation, and have 

appeared in studies analyzing remotely sensed imagery (Wulder and Boots 1998), 

patterns of crime (Ratcliffe and McCullagh 1999), mine field delineation (Cressie and 

Collins 2001), regional distributions of European GDP (Le Gallo and Ertur 2003), the 

height structure of forests (Raty and Kangas 2007), and traffic accidents within 

transportation networks (Yamada and Thill 2007).  Wulder and Boots (1998) used the 
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Getis statistic to provide information about the spatial interrelationships between 

individual pixels in LANDSAT TM imagery, and found that LISA techniques were 

capable of generating fuzzy boundaries around individual image objects.  This ability to 

ascertain approximate boundaries for discrete objects in satellite imagery greatly 

decreases the ordeal of remotely sensed imagery classification (Jensen 2005).   

Ratcliffe and McCullagh (1999) found a modified version of the Getis Ord Gi and 

Gi
* 
statistics to aid police officers in the determination of vehicular crime hotspots in the 

UK where geocoded incident data had been disaggregated from zonal police beats.  

LISAs were used to separate concentrations of related incidents from background ‘noise’ 

created by global spatial autocorrelation measures.  The successful identification of these 

hotspots helped officers manage personnel deployments amidst increasingly scarce police 

resources.  Cressie and Collins (1999) used LISAs to examine simulated clusters of 

clutter and actual mines in coastal mine fields in remotely sensed imagery collected by 

UAV drones.  LISAs were found to significantly improve the analyst’s ability to 

differentiate between land mines and random clutter in the target area.  This particular 

application of LISA offered naval researchers the opportunity to reduce the mine-related 

loss of valuable human capital in combat situations. 

Le Gallo and Ertur (2003) used local implementations of Moran’s I and Moran 

scatterplots to assess the spatial non-stationarity of regional distributions of GDP 

throughout Europe between 1980 and 1995.  In this study the LISAs were able to 

successfully highlight the importance of spatial interactions and geographical location 

relative to GDP growth disparities.  LISAs were able to provide additional evidence that 



18 
 

 
 

the economic growth of an individual region in Europe was dependent on the growth of 

commercial activity in neighboring regions (Le Gallo and Ertur 2003).   

Raty and Kangas (2007) tested four different LISAs including a Local Moran’s I, 

Geary’s ci, and the Getis Gi and Gi
*
 statistics to localize multiple linear regression models 

for the heights of  individual trees in a southern Finnish forest.  Although the LISAs 

tested in this application failed to improve estimates of spatial non-stationarity amongst 

the heights of individual trees, the researchers were able to identify potential 

improvements to the original regression model.  Finally, Yamada and Thill (2007) 

applied LISA techniques to develop a local indicator of spatial association that responds 

to the analysis constraints imposed by a transportation network.  The authors combined 

LISAs with a local K function and the Geographical Analysis Machine (GAM) to detect 

hotspots of traffic accidents in Buffalo, New York during 1997.  The study ultimately 

found that the inclusion of LISAs exposed a latent pattern of high spatial variability in 

highway safety, which could be used to help target future analysis of dangerous areas. 

The synthesis of the aforementioned studies suggests that LISAs have a broad 

base of applications to human and physical environmental problems with moderate to 

high levels of success.  Despite the ability of LISAs to improve estimations of spatial 

non-stationarity in all cases, the inclusion of local indicators of spatial association 

consistently generated new insights into existing datasets or research methodologies.  

Additionally, the use of LISAs was able to successfully highlight the benefits of 

extending exploratory spatial data analysis beyond global measures of spatial 

autocorrelation.  Thus, local indicators of spatial association will be used to gain insight 

into the spatial stationarity of municipal water consumption patterns, and the efficacy of 
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global statistical models to explain the driving characteristics of the consumption of 

municipal water. 

Historical GIS 

 The discussion of Historical GIS given here is brief, as this research draws loosely 

on the organization of temporal data employed by historical geographers, and extends a 

recent vein of research that uses GIS to integrate historical human and physical 

environmental data.  In their comprehensive introduction to the emerging field of 

Historical GIS, Gregory and Ell (2007) describe it as the synthesis of historical research 

and GIS technology to analyze change over time.  They are careful to concede that GIS is 

not a panacea for all historical research problems, but remain strong advocates of the 

application of GIS techniques to historical data when the original source data allow.  One 

of the greatest considerations in any Historical GIS project, is the organization of 

temporal data since GIS was not natively designed to accommodate time.  Several 

primary strategies to account for this temporal deficiency include the temporal slice, base 

map with overlays, and the space-time composite models.   

The temporal slice model is useful for cross-sectional analysis and involves 

organizing and storing only spatial and attribute data for each specific snapshot of 

interest.  Under this model, the state of the selected variables at each time step, the 

change in a given variable between snapshots, and the frequency of change in a given 

variable may be assessed.  The temporal slice method is the simplest to implement, but 

suffers from a lack of temporal topology, and produces large amounts of data redundancy 

(Gregory and Ell 2007).  The base map with overlays model consolidates all of the 

original data into a single base map, and changes are represented as a cumulative 
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intersection of the data for all interceding periods.  This method is capable of assessing 

longitudinal changes in a given variable, but requires a finer temporal resolution than is 

often available from historical sources.  The space-time composite is essentially a 

variation on the base map with overlays approach in which the base map becomes a 

temporal composite built from accumulated geometric changes.  The primary advantage 

of the space-time composite model is that time may be treated atemporally, and space 

may be treated aspatially allowing both temporal and spatial changes to be analyzed 

simultaneously (Gregory and Ell 2007).  Additionally, this organizational structure can 

reduce storage requirements by eliminating most data redundancy.  The use of date 

stamps as attributes may also provide an alternative means of organizing temporal data 

(Gregory and Ell 2007). 

Given the nature of my research questions and the TWDB water consumption 

data, I will use the temporal slice model to organize all attribute and spatial data to 

conduct a cross-sectional analysis of municipal water consumption’s driving landscape 

characteristics across time at various spatial scales.  A more comprehensive longitudinal 

analysis will be reserved for future research.  In addition to borrowing temporal 

organization strategies from Historical GIS methods, my research will also extend the 

body of literature using GIS to combine human and physical environmental data over 

time.  Raymond (2011) used GIS to integrate personal accounts of urban change, 

historical photographs, county tax assessor records, and topographic data to reconstruct 

the re-grade of Denny Hill in Seattle, Washington.  A variety of sources were combined 

to produce a continuous record of urban morphology between 1893 and 2008 using 

building footprints.  Time stamps were applied to each digital representation of a 
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building's footprint to aggregate all building morphologies into a single GIS feature class 

that could be disaggregated at the will of the analyst.  Historical topographic surveys 

originally produced during the construction of Seattle's sewer system were digitized and 

georeferenced to produce records of historical topography prior to the Denny Hill re-

grade initiative.  The historical topography and building datasets were subsequently 

combined to construct several three dimensional models of Seattle's urban past.  Results 

of this study provided new insight into the definitive spatial extent of the area once 

occupied by Denny Hill, as well as the socio-demographic characteristics of the area over 

time. 

An earlier study by Pearson and Collier (1998) also combined historical human 

and physical environmental data to investigate agricultural landscape changes.  The study 

combined analog historical tithe maps with digital representations of Ordinance Survey 

maps of land use, soil type, and geology to examine changes in agricultural fields and 

land improvement practices in Newport, Pembrokeshire, UK.  Initial comparisons of 

historical tithe maps and modern Ordinance Survey data revealed that few boundary 

changes had occurred between 1845 and the present day, thus eliminating the need for the 

digitization and georeferencing of the original tithe maps.  Instead, field boundaries were 

digitized from the more recent Ordinance Survey maps using the UK's National Grid at a 

scale of 1:10000.  After reconciling the historical land use definitions with their modern 

equivalents, the digital agricultural field boundaries were combined with landownership 

records from the region's wealthy landowning families.  This compilation of data was 

used to recover fertilization and other land improvement strategies.  The "new" spatially 

informed dataset was processed using a Multi-level modeling procedure to further 
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explore the nested influences of owner versus renter occupation of specific agricultural 

fields.  When cross-referenced against available tax records, which were used as a 

surrogate for agricultural productivity, study results suggested that GIS was an effective 

means of synthesizing historical landscape change from human and physical 

environmental data.  

Both Raymond (2011) and Pearson and Collier (1998) used GIS to combine 

human and physical environmental data to provide detailed accounts of interactions 

between humans and the environment over time at a single spatial scale.  Raymond 

(2011) examined the urban morphology of a Seattle neighborhood, while Pearson and 

Collier (1998) investigated the effects of land use practices on agricultural productivity 

for an entire British village.  These studies provided internally consistent records of 

change over periods of more than 100 years for a single geographic scale.  This research 

applied similar standards of internal data consistency for multiple spatial scales over a 

shorter temporal period.  Trading time for space allowed this research to facilitate 

comparisons between larger numbers of discrete spatial entities (individual counties) and 

extract more generalized inferences about human-environment interactions from spatial 

and temporal patterns.  Linking the explicit consideration of time to generalizations about 

human-environment interactions may entice more environmental researchers to employ 

Historical GIS techniques, and further advance the sub-discipline. 
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RESEARCH METHODS 

 

 

Conceptual Research Overview 

 The purpose of this research is to improve our understanding of the quantitative 

synergies among social and physical environmental landscape characteristics relative to 

municipal water consumption, to characterize the spatiotemporal changes among those 

characteristics, and to assess the degree to which the municipal consumption of water can 

be explained by a spatially stationary model.  Figure 2 illustrates the relationship between 

the variables that were considered and the general analysis procedure.  The collective 

influences of the social, urbanized, and physical environments on municipal water 

consumption were analyzed at the county scale during three different temporal periods. 

 The county scale was selected for this analysis because it provided temporally 

complete and spatially contiguous coverage for the entire state of Texas that includes 

municipal water consumption estimates for both in-system and private wells (personal 

communication, Texas Water Development Board Historical Water Use Survey Manager 

Kevin Kluge, September 24, 2012).  The absence of private well data from the other 

spatial scales of data available from the Texas Water Development Board precluded a 

multi-scale analysis of municipal water consumption because equivalent comparisons 

cannot be made between scales.  Every county in Texas was used to develop a
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 multiple linear regression model for each temporal slice, while local indicators of spatial 

association were applied to regression model residuals, statistically significant driving 

landscape characteristics of municipal water consumption, and the original county scale 

municipal consumption patterns.   

Statistically significant drivers of municipal water consumption were identified by 

constructing separate models for temporal period (1990, 2000, and 2010) at the county 

scale.  The improved understanding of municipal water consumption drivers were derived 

from the comparison of the statistically significant drivers from the MLR model for each 

temporal slice.  Following the comparison of the statistically significant drivers in each 

temporal period, the spatial stationarity of the residuals from each MLR model, the 

statistically significant drivers of municipal water consumption, and the original 

municipal water consumption patterns were evaluated with LISA metrics. 

Site and Situation 

Municipal Water in Texas 

While municipal use is estimated to have the sharpest increase of all the water use 

groups in Texas (TWDB 2011), understanding the spatial drivers of this trend and their 

synergetic influences on consumption patterns have received limited attention among 

scholars.   The TWDB itself remains focused primarily on providing “leadership, 

planning, financial assistance, information, and education for the conservation and 

responsible development of water for Texas (TWDB 2010).”  As evidenced in this 

statement, the focus of the organization is on the responsible development of water 

resources, rather than management of water resource demand.  Conservation also appears 

in the mission statement, but has a much weaker influence on TWDB activities due to the 
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difficulties associated with implementing conservation policies, and current Texas water 

law.   

Water conservation measures are typically politically unpopular and difficult to 

enforce (Thompson 1999).  However, Texas bears the additional burden of a unique 

combination of prior appropriation, rule of capture, and riparian water law traditions that 

do not favor reductions in water consumption.  Under prior appropriation doctrine, the 

most senior surface water rights are served first, and are the most influential during times 

of drought.  The influence of prior appropriation on water conservation stems from the 

fact that the quantity of water guaranteed by a water right under this system is subject to 

revision over time (Thompson 1999).  A senior right will always be served first, but a 

failure to use a right’s allotted amount of water in its entirety may result in a permanent 

quantity reduction.  Similarly, the rule of capture applies to ground water, and declares 

that the ownership of water belongs to the party that removed it from the ground 

regardless of the water’s actual source.  Under this law, water rights may also be treated 

as property, allowing ground water to be traded or sold for profit (Thompson 1999).  

Despite these challenges, conservation initiatives may need to play a larger role in the 

future water management decisions in Texas due to continued industrialization and 

resource extraction,  pressure from population growth and urbanization, and potential 

changes in the physical environment. 

Industrialization and Resource Extraction 

Arranged from highest to lowest, the primary uses of water in Texas, are 

agriculture, urban populations (municipal), manufacturing, and the generation of 

electricity (McCarl 1995; TWDB 2011).   The competition that currently exists between 
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these four uses will continue to grow in response to changes in the aforementioned 

impacts on the water resources of Texas, but municipal water supplies may be the most 

heavily affected due to feedbacks between municipal water and water intensive industries 

such as electricity generation and hydraulic fracturing.  Texas’ energy mix is currently 

dominated by coal (37%) and natural gas (49%) fired power plants, both of which use a 

technique known as thermoelectric generation (Stillwell et al. 2011).  Thermoelectric 

generation plants require large volumes of water to create high pressure steam that moves 

turbines, and to re-condense that steam for reuse.  The average annual water consumption 

of thermoelectric generation is 595,000 ML (482,374.35 AF) which is roughly equivalent 

to the annual municipal consumption of three million people (Stillwell et al. 2011).     

The feedback component of thermoelectric generation in Texas is that while 

electricity creation requires large amounts of water, the purification and treatment of 

wastewater require large amounts of electricity.  The average annual electricity 

consumption of wastewater treatment plants is approximately 2.1 to 2.7 TWh (Stillwell et 

al. 2011).  Thus, the positive relationship between population growth and climate 

warming, and electricity consumption (Jones and Ozuna Jr. 1995), could potentially drive 

water consumption even higher and strengthen competition between electricity 

generation and municipal use. 

Hydraulic fracturing, commonly known as “fracking”, also threatens municipal 

water supplies due to the degradation of large volumes of water.  The average fracking 

operation consumes anywhere from 11.36 ML (9.21 AF) to 18.92 ML (15.34 AF) of 

water per well (Arthur et al. 2010), where water is combined with sand and chemical 

solvents prior to borehole injection.  The mixture of chemicals, water, and sand is used to 
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release raw petroleum products from underground shale deposits by inducing physical 

fractures caused by increases in pressure (Arthur et al. 2010).  Water is essential to the 

extraction process because it both increases subterranean pressure within the shale 

deposit, and lubricates the drill bit.  Fracking is threatening municipal water supplies near 

the Barnett Shale outcrop in North Texas via decreases in both water quality and 

quantity, as the extraction operation continues to encroach upon human settlements 

(Wiseman 2009).   These reductions in the quantity and quality of fresh water become 

especially acute during times of low stream flow which increases competition with 

municipal demand (Arthur et al. 2010).  This competition will also be strengthened by 

increases in population size and the spatial extent of urbanization processes. 

Population Growth and Urbanization 

Increasing population size and the spatial extent of urbanization increase the 

human use of water, as well as, altering its quantity, quality, and spatial distribution 

(Dallman and Spongberg 2012).  These expansion processes typically reduce water 

resource availability by increasing the demand for municipal water, as well as the 

demand for electricity (Hitchcock 2011; Murdoch et al. 2000).  The growth of electricity 

demand is especially important due to the amount of water that is consumed by the 

typical thermoelectric power plant, and the amount of energy consumed by water 

purification in treatment plants (Stillwell at al. 2011).  In this way, an increase in 

municipal water consumption could create a positive feedback loop.  Increasing 

municipal water consumption requires additional electricity which in turn requires 

additional water consumption.  Addressing these potential shortages created by 

population growth will be complicated by the fact that structural solutions such as the 
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construction of new reservoirs and the use of inter-basin transfers are much more difficult 

to implement than in the past.  In fact, nearly all of the sites in Texas that are amenable to 

reservoir construction are already in service (Schmandt 1995).  

Despite the TWDB’s efforts to encourage the inclusion of water conservation and 

reuse strategies in the recent revision of regional water plans, surface water alone 

accounts for slightly more than 50% of the anticipated increase (TWDB 2011).  At the 

state level, new reservoir construction and new connections to existing surface water 

supplies account for 16.7% and 33.9% of the projected 2060 demand respectively.  When 

considered from the scale of individual Planning Regions, however, the contribution of 

surface water to overall demand is considerably higher in some cases.  For example, 

Planning Regions C, D, H, and I, which collectively cover North Central Texas, all of 

East Texas, and the northernmost extent of Texas' Gulf Coast (Figure 1) all exceed the 

51% state average for total surface water use (Table 2).  Given the strong influences of 

population and urbanization on fresh water demand and the heavy reliance of these 

regions on surface water, increases in population size are likely to alter the character of 

fresh water and other aspects of the physical environment. 

Physical Environment 

In addition to increased demands on sparse and highly variable runoff in these 

areas (Ulery et al. 1993), the high proportion of additional surface water use via the 

construction of new reservoirs may have hydrological and geomorphic consequences on 

the rivers in Planning Regions C, D, H, and I.  For example, a sizeable body of literature 

exists on the hydrologic and geomorphic impacts of large dams on rivers.   According to 

the Texas Administrative Code (State of Texas 2009), a large dam is any dam that 
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impounds 50,000 acre feet of water or more, a definition that is generally consistent with 

the literature (Graf 2005).  Large dams, such as are often built during the construction of 

reservoirs, can profoundly alter the hydrology and geomorphology of rivers which may 

cause local or downstream problems due to changes in the timing of peak and minimum 

discharges, and changes in sediment budgets (Graf 2001).    

The shifts in the timing of peak and minimum discharges disrupt the natural 

hydrological cycle and reduce overall flow variability, which has implications for both 

river channel form, and riverine habitat (Bednarek 2001; Graf 2001).  Changes in the 

flow regime of river can cause a simplification of river planform such as the straightening 

of a previously meandering channel.  This shift from a meandering to a straight channel 

can alter the development of riffles and pools which provide vital habitat for fish and 

other riverine organisms (Bednarek 2001).  Potential changes in sediment budget due to 

impoundment may also drastically alter channel form through increased local or 

downstream erosion (Schmidt and Wilcock 2008).  Furthermore, a study of Livingston 

Dam in the Lower Trinity River Basin has documented some the aforementioned effects 

in Texas. The study found that the closure of Livingston Dam, located in Planning 

Region H (Figure 1), has reduced the natural variability in the planform of the river 

channel below the dam by approximately 42% (Wellmeyer et al. 2005).  Additionally, 

municipal water supplies in existing reservoirs may be compromised by Texas’ natural 

inter-annual climate variability, and potential climate warming. 

Texas is home to four primary climate types according to the Köppen-Geiger 

classification system including humid subtropical (Cfa), cold mid-latitude desert (BSk), 

cold mid-latitude steppe (BWk), and hot subtropical steppe (Bsh) (Dixon and Moore 
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2011).  The humid subtropical zone covers most of the state extending from North 

Central Texas south to the Gulf Coast, and east to the Louisiana border.  The cold mid-

latitude desert covers the bulk of the Texas panhandle, extending south to the Texas-

Mexico border.  The hot subtropical steppe lies south of the cold mid-latitude desert and 

west of the humid subtropical zone, extending both south and west to the Mexican 

border.  The cold mid-latitude steppe begins at the western border of the cold mid-

latitude desert in West Texas and extends south and west to the Texas-Mexico border, 

and north to southern New Mexico.  Temperature and precipitation patterns follow north-

south and east to west gradients respectively, with temperature increasing from north to 

south, and precipitation increasing from west to east.  In addition to the regional climate 

differences, Texas climates also experience high inter-annual variability in temperature 

and precipitation which complicate water planning efforts (North 1995).  Given the water 

management difficulties that exist under current climatic conditions, climate warming 

would only exacerbate Texas’ municipal water predicament. 

The Intergovernmental Panel on Climate Change has demonstrated that 

atmospheric concentrations of greenhouse gasses such as methane and carbon dioxide 

have increased dramatically since 1750 (IPCC 2007).  These increased concentrations of 

insulating gasses are likely to accelerate the natural component global climate change 

(IPCC 2007) and produce increased water availability in high, and wet tropical latitudes; 

and decreased water availability in mid, and dry tropical latitudes by the middle of the 

twenty-first century (Kundzewicz et al. 2008).  Following this global pattern, climate 

change is also expected to affect the water resources of the conterminous United States.  

Semi-arid regions such as the American Southwest may experience the greatest departure 
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from baseline levels, either gaining or losing approximately 50% of currently available 

water resources (Thomson et al. 2005). 

Texas is also expected to experience changes in climate that could potentially alter 

the character and distribution of its water resources.  Trend analysis of climate stations 

from the United States Climatology Network revealed statistically significant cooling, 

rather than warming temperatures; and increasing, rather than decreasing, precipitation 

trends for the North Central and East regions of Texas (Dixon and Moore 2011).  The 

temporal coincidence of periodic droughts with these trends of cooling temperatures and 

increasing precipitation, suggest that a shift towards warmer temperatures and lower 

precipitation volumes may further complicate existing water supply issues.   

The North Texas Municipal Water District, which serves the Dallas-Fort Worth 

metropolitan area as well as others in the TWDB Planning Region C, struggled to meet 

both municipal and agricultural demands in 2006 due to extremely low lake levels at 

Lavon Lake.  Over a period of two years, higher than average temperatures and low 

precipitation volumes decreased the fresh water storage of Lavon Lake to 36% of its 

conservation pool capacity (Appleton 2009).  Longer droughts could exponentially 

increase water shortages in river basins with ample precipitation.  A seven year drought 

similar to that of the 1950s would seriously impair the Upper Trinity basin (one of the 

wettest in Texas) under current climate conditions (Schmandt 1995).   In addition to 

periodic drought and potential changes in climate, Texas’ water resources will also likely 

be impacted by future population growth and urbanization processes.  The population of 

TWDB Planning Region C alone, home to Dallas, Tarrant, and Denton Counties among 

others, is projected to increase by 96% in 2060, and will spawn an 86% increase in 
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municipal water consumption (Table 1), and a corresponding stress on existing water 

supplies. 

Failing to meet the future water needs of Planning Region C alone could translate 

into an economic loss of approximately $2,336,000,000 (TWDB 2011).  Further 

investigation into the geographic drivers of municipal water consumption can be 

especially useful in helping water managers develop better conservation campaigns in the 

face of dwindling supplies.  A more thorough understanding of the factors that influence 

municipal water consumption could also improve the management of fresh water in semi-

arid regions due to the spatial linkages and complex process-response relationships that 

exist between the components of a hydrologic system (Charlton 2008; Giardino et al. 

1995). 

Furthermore, these linkages and patterns may be reflected in municipal water use 

patterns.  For example, drainage basin boundaries are the principal spatial unit of 

hydrology, and are rarely contained within a single administrative political boundary (e.g. 

city, county, etc.).  Thus, many different administrative units may share and influence a 

single source of water.  Similarly, the municipal water consumption of a single political 

unit could span the boundaries of multiple drainage basins, allowing the consumption in 

one basin to influence water availability in another.  The City of Dallas is located in the 

Trinity River drainage basin, and has been intermittently supplementing its municipal 

water supply for years with water from the Lake Texoma watershed (Young 2012).  In 

summary, the current scarcity and uneven spatial distribution of fresh water in Texas, 

coupled with the effects of potential changes in climate, population, energy production, 
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and hydrology make a compelling case to investigate the drivers of municipal water 

consumption at multiple geographic scales. 

Study Area 

 In addition to the counties in Texas Water Development Board Planning Regions 

C, D, H, that jointly represent approximately 57% of the Texas population (2010 and 

2060) and account for 30% and 42% of the total water demand for the entire state of 

Texas in the years 2010 and 2060 respectively (Table 1), the study area includes every 

county in the state of Texas to permit a temporally complete and spatially contiguous 

analysis (Figure 3).   Despite sharing the same Köppen climate type of sub-tropical 

humid (Cfa), moisture deficits and surpluses have historically varied within the Planning 

Regions C, D, H, and I (Ulery et al. 1993).  Similarly, the strong east-west precipitation 

and north-south temperature gradients that exist in all regions of Texas are responsible 

for variations in moisture surpluses and deficits within, as well as, between other Köppen 

climate types across the state (Muller and Faiers 1995). 

 The mean precipitation across all planning regions in the study area is 

approximately 29.5 inches (750 mm) per year, and within region variation is controlled 

by the proximity to the Gulf of Mexico (Muller and Faiers 1995).  The majority of 

precipitation is delivered via thunderstorms of both the frontal and convective variety, 

providing infrequent but intense rainfall.  This pattern of precipitation contributes to the 

recurrence of droughts of varying severity.  The presence of recurring droughts is 

relevant to municipal water consumption patterns due largely to the difficulty in detecting 

drought signals.  The lag between the onset of prolonged dry conditions and the response 

of the physical landscape to the moisture deficit (e.g. crops, lake levels, etc.), can cause 
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delays in human adaptation to reduced water availability.  In other words, it is often too 

late to repair the damage caused by a drought once it has been formally recognized.  A 

deeper understanding of the strongest influences on municipal water demand may help 

water managers across Texas transition from supply management to demand management 

strategies by targeting areas for water use reductions more effectively and alleviating 

some of the drought related water supply shortages that plague arid and semi-arid 

regions. 

Data 

 The data required for this project were broadly grouped into three conceptual 

categories of independent variables obtained from various sources listed in Table 3.  The 

conceptual categories drawn from the relevant literature and the unique geographic 

setting of the study area were the social environment, the urban environment, and the 

physical environment.  The term environment is used here to describe a unique set of 

characteristics that comprise a specific type of surrounding (Petersen et al. 2012).  Each 

of these individual surroundings represents a component of the larger surrounding or 

‘environment’ that influences the municipal consumption of fresh water.  The social 

environment variables assessed the influence of human characteristics on municipal water 

consumption, and included the educational attainment, per capita household income, 

average household size, population age structure, occupancy type, the type of dwellings 

in a given county, and the work locations for county residents.  The urban environment 

variables accounted for the influence of urbanization processes on municipal water 

consumption including the level of urbanization, and population density.  The physical 

environment variables incorporated the physical aspects of surface water as they pertain 
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to its geographic distribution and potential use including drought conditions, 

precipitation, lake evaporation, and water source.  The dependent variable in the 

statistical analysis conducted here was annual per capita municipal water consumption to 

mitigate the bias of counties with larger population sizes. 

Per capita municipal water consumption was obtained from the Texas Water 

Development Board's Historical Water Use Database for the county scale (TWDB 

2009a).  Per capita water consumption was selected as a dependent variable in order to 

partially control for the well documented effects of population growth on municipal water 

use (Zhou et al. 2000), and its availability as historical data routinely collected by the 

Texas Water Development Board. The Historic Water Use Database is derived from the 

results of an annual Water Use Survey administered to all municipal water providers both 

public and private in the state of Texas.  These data have been collected consistently and 

reliably since 1984 by the TWDB due to the mandatory participation of all municipal 

water entities (TWDB 2009a).  Additionally, the historic water use data has been adjusted 

for leakages due to broken transmission networks, and clerical errors such as erroneous 

water meter readings (TWDB 2009a).  

Educational Attainment  was considered as a surrogate measure for the general 

awareness of water resource issues due to its demonstrated influence on residential water 

consumption at the city scale (Guhathakurta and Gober 2007; Syme et al. 2004).  The 

primary assumption underlying the education level variable was that higher levels of 

education equate to a greater likelihood that the population has been exposed to 

information addressing human-environment interactions, conservation, and water 

resources.  The National Historical Geographic Information System (NHGIS) produced 



36 
 

 
 

by the Minnesota Population Center (MPC) provided downloadable access to all 

available census tables for all previous and recent decennial U.S. censuses, while the U.S. 

Census Bureau’s (USCB) American Factfinder data download tool only contained data 

from the 2000 and 2010 census.   

Additionally, in response to feedback from the general public, the 2010 decennial 

Census used a modified short form survey that captured very limited information to 

lessen the burden of census participation.  The collection of the traditional long form 

sample data such as educational attainment and household income was also transferred to 

the U.S. Census Bureau's American Community Survey (ACS) during the 2010 Census. 

Consequently, the  educational attainment of the resident populations was measured using 

the Educational Attainment tables from the NHGIS for the years 1990 and 2000, and the 

ACS was used for 2010 due to changes in survey forms and the reporting structure of 

U.S. Census Bureau in 2010 (USCB 2010).  In order to establish a consistent measure of 

education level over time, the education variables were the percentage of the population 

that earned a four year college diploma, and the percentage of the population that 

completed high school for all persons twenty-five years and older.  These education data 

were collected at the county scale for each of the three temporal slices (1990, 2000, and 

2010).   

Per capita Household Income measured each county's level of affluence because 

affluence provides a surrogate for access to water saving technologies and consumer 

response to differences in the cost of municipal water.  Household income was selected 

as a measure of affluence instead of water price due to the short-term inelasticity of 

municipal water demand in response to changes in price (Martinez-Espiniera and 
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Naughes 2004).  Previous studies also support the inclusion of affluence when 

considering influences on the residential component of municipal water consumption. 

House-Peters et al. (2010) and Kenney et al. (2008) both found household income to be 

statistically significant drivers of residential water use.  The per capita income data for 

1990 and 2000 was obtained in a similar fashion to the education data; the 1990 and 2000 

data was extracted from the NHGIS Household Income tables, and the 2010 data was 

drawn from the ACS.  Actual values for per capita income were derived from household 

income to ensure consistent data integrity across all temporal periods, and to account for 

the absence of per capita income tabulations during the 1990 census.  The simple 

procedure for calculating per capita income is described in more detail in the Data 

Processing section. 

Average Household Size was used to partially account for the volume of 

residential water use that occurs indoors, as well as to acknowledge the relationship 

between municipal water consumption and population size.  The underlying assumption 

for this variable is that larger households consumed more residential indoor water than 

smaller households.  Although median household size lacks the sensitivity to extreme 

values that is embedded within the average household size, the average household size 

was chosen because the inclusion of the extreme values will provide an estimate that 

aligns more closely with the dependent variable of per capita municipal water 

consumption.  The average household size was obtained directly from the NHGIS 

Average Household Size tables for all years (1990, 2000, and 2010).  

Population Age Structure also considered indoor residential water use by 

capturing the influence of the amount of time spent inside the home.  The age structure 
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variable will be represented by the percentage of the population 65 years and older, and 

the percentage of the population 18 years and younger.  These age categories were 

selected under the assumption that they spend more time at home than those between 19 

years and 64 years old due to minimal external commitments such as formal employment.  

Additionally, the selection of the 65 years and older and 18 years and younger variables 

assumes that more time spent at home increases indoor water use.   The complete age 

structures were obtained from the Age tables in the NHGIS for each of the 1990, 2000, 

and 2010 decennial censuses.  The aggregation processes for the 65 years and older, and 

the 18 years and younger categories are explained in greater detail in the Data Processing 

section. 

Occupancy type was a surrogate for the influence of property ownership on 

outdoor residential water use, and was operationalized as the percentage of owner 

occupied dwellings, and the percentage of renter occupied dwellings.  Occupancy type 

has been shown to influence municipal water consumption due to the large proportion of 

water use that occurs outdoors (lawn irrigation, swimming pool use, etc.) (House-Peters 

et al. 2010; Wentz and Gober 2007).  The logic employed in the present investigation was 

that owner occupied dwellings were more likely to have higher levels of water 

consumption resulting from a vested interest in the maintenance of lawns and other 

outdoor areas.  Similarly, dwelling type was defined as the percentage of single family 

homes, and the percentage of multi-family homes based on similar hypothesized 

influences on water consumption. Single family dwellings were suspected to exhibit 

higher water consumption rates due to the increased likelihood that an outdoor area such 

as a lawn or other water based amenities will be present (Wentz and Gober 2007).  The 
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occupancy and the dwelling type data were taken from the NHGIS for the years 1990 and 

2000, while the 2010 data were extracted from the ACS.  The calculations of these 

measures are explained in greater detail in the Data Processing section. 

Work Location was used as a surrogate for the influence of commercial activity 

on municipal water consumption and account for the non-residential component of 

municipal water use.  The operational equivalents of the work location variable will be 

the percentage of the population working inside their county of residence, and the 

percentage of the population working outside their county of residence under the 

assumption that higher percentages of people working in a given county translates into a 

higher level of  commercial activity.  In turn, it was also assumed that increased levels of 

commercial activity increased municipal water consumption.   

While the percentages of people working inside or outside their county of 

residence fail to directly account for the influx of workers from other counties, these data 

were selected as the best available estimate of commercial influence on municipal water 

consumption.  The U.S. Census Bureau's County to County Workflow files would have 

offered a more precise estimate of the percentage of people working in a given county, 

but these data could not be used because they were not available for all three temporal 

periods (1990, 2000, and 2010) at the time of analysis.  The total numbers of workers for 

the inside and outside county of residence categories were obtained from the Place of 

Work census tables in the NHGIS for the years 1990, 2000, and 2010.  The calculation of 

the percentages of workers in each category will be described in greater detail in the Data 

Processing section. 
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The urbanized environment variables were intended to capture the extent of the 

human footprint on fresh water resources, and included urbanization level, total 

population, and population density.  The urbanization level was included in this analysis 

as a surrogate for the influence of urbanization processes on municipal water 

consumption under the assumption that urbanized areas have higher concentrations of 

population that require more municipal water.  Previous research has also suggested that 

urbanization processes significantly influence the municipal consumption of fresh water 

(Dallman and Spongberg 2012).  The urbanization level was measured as the percentages 

of urban and rural population for a given county respectively.  The percentages of urban 

and rural population were selected to represent urbanization processes because they have 

been calculated consistently during all three temporal slices (1990, 2000, and 2010), 

unlike the physical measurements of 'urbanized areas' provided by the U.S Census 

Bureau.  The total number of people residing in urban and rural areas was obtained from 

the NHGIS for 1990 and 2000, and the 2010 totals were drawn from the ACS.  The 

calculation of the urban and rural population percentages is discussed in the Data 

Processing section. 

The population variables were included in this study to provide an estimate of 

population pressure on municipal water consumption. The total population variable was 

not analyzed directly, but rather it was used to calculate population density.   Population 

density was included in this analysis as an alternative and more direct measure of 

population concentration in a given county following the assumption that higher 

concentrations of population use more municipal water than lower concentrations of 

population.  Population density also offered a standardized measure of population 
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concentration that accounts for areal differences between counties.  Additional support 

for the inclusion of population density may be found in the municipal water consumption 

literature.  The effects of population size have been long been recognized as a significant 

determinant of municipal water consumption (Carver and Boland 1980; Cooley and 

Gleick 2009; Wentz and Gober 2007), while population density has been relatively 

unexplored. Total population counts were obtained directly from the MPC's NHGIS 

(2011) Population Tables for all census years, while the population densities were 

calculated using the total population and area measurements for each county. 

No study of water consumption patterns is complete without a consideration of 

water availability via the physical environmental variables, as indicated by both common 

sense and the topical literature (Carver and Boland 1980; Cochran and Cotton 1985; 

Gutzer and Nims 2005; House-Peters et al. 2010; Wentz and Gober 2007).  The present 

investigation examined water availability using the climatic variables of annual average 

potential for drought conditions, annual average precipitation, annual average lake 

evaporation, and water source.  The potential for drought conditions was predicated on 

the assumption that water availability is generally lower during a drought, as well as, the 

fact that the literature has provided evidence of strong relationships between municipal 

water consumption and the related variables of temperature and precipitation (Gutzer and 

Nims 2005; House-Peters et al. 2010; Kenney et al. 2008).   

More generally, drought indices have been shown to be useful predictors of 

available surface water resources (Larsen 2000).  This study used the Palmer 

Hydrological Drought Index (PHDI) from the National Atmospheric and Oceanic 

Administration's (NOAA) National Climatic Data Center (NCDC) to estimate the 
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potential for drought conditions in each of the three census years (1990, 2000, and 2010) 

for all ten climate divisions in the state of Texas (NCDC 2012).  The advantages of the 

PHDI over other available indices is that the PHDI is slower to respond to moisture 

inputs from precipitation events, thus providing a better proxy for stream flow, 

groundwater, and reservoir response to climatic conditions (NOAA 2012).   

Average Annual Precipitation was included in this study as a surrogate for the 

influence of short-term moisture inputs that may affect the outdoor component of 

residential municipal water consumption via irrigation requirements.  The average annual 

precipitation for a given county was selected to match the temporal aggregation of all of 

the other independent variables, and smooth out the seasonal variations in moisture.  

Annual Average Lake Evaporation was used as a substitute for reductions in water 

availability that results from short-term moisture losses under the assumption that higher 

moisture losses reduce available water supplies.  Lake evaporation was selected because 

it offers a more direct measure of moisture loss than temperature despite the close 

association between the two metrics.  Additionally, annual lake evaporation closely 

approximates the pan evaporation; a hydrologic metric which is a generally accepted 

measure of moisture loss (Dingman 2002).   

The precipitation and lake evaporation variables, available from the TWDB for 

1990, 2000, and 2010 at a spatial resolution of 1 degree quadrangles, were examined for 

correlations with the PHDI prior to inclusion in the final analysis to avoid statistically 

significant multicollinearity of variance.  General climatic relationships suggest that there 

is a strong correlation between precipitation, lake evaporation, and the PHDI despite the 

PHDI's slower response to moisture inputs.  Water Source was included as a surrogate 
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measure for influences of geographic water location and source dependence on the 

consumption of municipal water.  In addition to capturing the spatial variability of 

surface and ground water, the water source variable will also account for the differential 

susceptibility of the two water sources to the evaporative losses that affect water supply 

availability.  The operational equivalents of the water source variable were the percentage 

of surface water and the percentage of ground water used by a given county.  These data 

were obtained directly from the TWDB's Historical Water Use Database at the county 

scale for each temporal slice (1990, 2000, and 2010). 

Data Limitations 

The limitations of this research are largely associated with the scale of the spatial 

analysis, the short period of record, the confounding influence of the aggregate measure 

of municipal water consumption, and the inability of quantitative analysis to capture 

intangible variables that may influence the consumption of municipal water.  The spatial 

scale of this study was limited to that of individual counties due to the quality of the 

original municipal water consumption data from the Texas Water Development Board, as 

well as the intent to analyze consumption patterns for the entire state of Texas.  

Analyzing the municipal water consumption of Texas required the inclusion of rural 

water users in addition to urban water users that are more easily measured.  The inclusion 

of rural water consumers dictated that private wells not connected directly to municipal 

systems be considered in order to provide a complete and spatially contiguous analysis of 

municipal water consumption patterns.  The county scale data available from the Texas 

Water Development Board was the only spatial scale that had been adjusted to account 

for the rural, or non-system, municipal water use.   
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The restrictions imposed by the county scale data include both the Modifiable 

Areal Unit Problem (MAUP) (Openshaw 1983) and the ecological fallacy problem.  The 

MAUP essentially states that observable spatial patterns are dependent on the scale of the 

analysis.  In the context of this research, the patterns of municipal water consumption, as 

well as, the driving human and physical landscape characteristics that influence those 

patterns may be different at a finer spatial scale due to the differences in areal boundaries.  

Similarly, the ecological fallacy (Piantadosi et al. 1988) describes the inability to draw 

conclusions about individual behaviors from patterns present at aggregated spatial scales.  

Thus, the patterns of municipal water consumption and their associated drivers at the 

county scale may not be entirely representative of the patterns and influences of 

individual consumers in a given municipality.  The advantage of using county boundaries 

as unit of spatial analysis was that the areas covered by these administrative units have 

not changed in recent history unlike the boundaries of municipalities that respond to the 

dual influences of growth and urbanization.  The lack of changes in county boundaries 

over time removes the need to interpolate municipal water consumption estimates and 

account for areal differences in the spatial unit of analysis over time. Additionally, the 

county scale is relevant to the analysis of municipal water consumption patterns in Texas 

because counties are the principal areal and administrative units that comprise the state's 

water planning regions which are used to assess statewide water availability and future 

needs. 

The short period of record, i.e. the three temporal slices that span a total of twenty 

years, limit the ability this research to describe the long term relationships that exist 

between municipal water consumption and components of the human and physical 
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environment.  The temporal slices selected for this project were chosen in response to the 

concurrent availability of municipal water consumption and census data on which the 

spatial and aspatial analyses relied.  Unfortunately, while the Texas Water Development 

Board's municipal water consumption data are relatively robust in the sense of data 

quality issues that plague similar datasets such as erroneous meter readings and 

transmission losses due to system leaks and broken pipes, the consumption data were not 

consistently collected prior to 1984.  Following the 2000 U.S. decennial census, estimates 

of many demographic variables such as population totals and household income were 

developed for inter-censual periods, but these data do not exist for previous time periods. 

Despite these limitations, however, the use of discrete temporal slices provided the 

opportunity to explicitly examine the influence of time on municipal water consumption 

patterns and driving characteristics whereas longitudinal analyses typically consider 

persistent trends and aggregate change during the period of record. 

Another limitation of this study relates to the measure of municipal water 

consumption as an aggregation of residential and commercial use which ultimately 

confounded the detection of relationships between consumption patterns and their driving 

human landscape characteristics.  For example, the percentage of single family homes in 

a county may exhibit a moderate to strong association with residential water consumption 

while only possessing a weak or no association with commercial water use.  In this case, 

the presence of the commercial water component in the municipal consumption metric 

could mask the true relationship between the dependent and independent variables.  

Although only considering residential water consumption would likely improve the 

quality of the consumption signal, an internal unpublished study conducted by the Texas 
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Water Development Board has suggested the commercial component of municipal water 

is significant and should not be ignored (personal communication with Kevin Kluge, 

TWDB Water Survey Manager on September 24, 2012).   

Finally, this research is limited by the inability of quantitative methods to 

completely capture the uniquely human and intangible characteristics that influence the 

consumption of municipal water such as attitudes toward conservation, political 

structures, and general awareness of water issues.  A deep understanding of the 

motivations for individual consumption behavior was not one of the goals of this study, 

but the influence individual decisions must be acknowledged because it may contribute to 

the residuals in the quantitative models.  Thus, the independent variables selected for this 

study were chosen as surrogates for some of these intangible human traits.   For example, 

educational attainment was selected as a surrogate for exposure to the consequences of 

environmental problems such as water supply shortages under the assumption that higher 

levels of education would translate into a greater degree of environmental awareness.  

Additionally, the use of quantitative rather than qualitative data facilitates the direct 

comparison of results from previous or future studies that employ a similar methodology 

across multiple locations. 

Data Acquisition 

 The methods in this study followed the outline provided in Figure 4, and were 

divided into the general phases of data collection, data cleaning, data processing, 

regression screening, model building, model evaluation, and the mapping of model 

results.  The data collection phase was separated into distinct veins to reflect the 

collection of both tabular and spatial datasets.  The tabular data collection began with the 
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social and urbanization components of the 1990, 2000, and 2010 decennial censuses.  

Census data such as total population, household income, educational attainment, owner 

occupancy, renter occupancy, and dwelling type were downloaded from the NGHIS 

project hosted by the University of Minnesota (MPC 2011) for 1990 and 2000. For 2010, 

the total population data were downloaded from the NHGIS (MPC 2011), and the 

remaining variables were obtained directly from the U.S. Census Bureau's ACS (USCB 

2010).  All census data were downloaded as comma delimited files at the county level. 

 Following the acquisition of the tabular census data, the water availability 

variables were obtained.  The Palmer Hydrological Drought Index (PHDI) data were 

downloaded from the NCDC (2012) for all climate divisions in Texas.  The annual lake 

evaporation and precipitation (TWDB 2012) were downloaded from the Texas Water 

Development Board.  The lake evaporation and precipitation data were available with a 

spatial resolution of 1 degree quadrangles, and the water source data was available for all 

counties in Texas. 

 The spatial data were collected through state or federal government agencies.  The 

county boundaries for 1990, 2000, and 2010 were downloaded as shapefiles from the 

National Historical Geographic Information System (MPC 2011).  The U.S. Climate 

Division boundaries for the tabular PHDI data were downloaded from the National 

Climatic Data Center.  Texas Water Development Board regional water planning 

boundaries and the one degree quadrangle grid for the precipitation and lake evaporation 

data were downloaded directly from the TWDB data warehouse (TWDB 2009b). 
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Data Cleaning 

Tabular Data 

 Tabular and spatial data sets were cleaned sequentially, with tabular data first and 

spatial data second.  The tabular census data were reorganized into a database friendly 

format where each geographic unit was a row, and each attribute (total population, per 

capita income, etc.) were represented as columns.  Following the data reorganization, the 

values for educational attainment, household income, age structure, owner occupancy, 

renter occupancy, and dwelling type were aggregated into their respective categories. The 

educational attainment data were aggregated into the binary categories of High School 

Diploma and Bachelor's Degrees for each year (1990, 2000, and 2010).  The High School 

Diploma category represented individuals that only completed high school and was 

extracted directly from the census counts without further manipulation, while the 

Bachelor's Degree category was derived by aggregating counts for holders of bachelor's 

degrees with persons that obtained advanced degrees (master's degrees and doctorates).  

This initial aggregation for the Bachelor's Degree category was necessary to provide a 

complete estimate for all holders of undergraduate degrees.  Post-graduate education was 

not considered separately, due to its relatively low percentage of the overall population 

statewide.  The statewide average percentages of the population with high school 

diplomas, bachelor's degrees, and graduate degrees are provided in Table 5. 

The Household Income data for 1990 and 2000 were initially aggregated to the 

income classes used by the 2010 ACS to provide a common scale for the measure of total 

income.  These income classes were less than $10000, $10000 to $14999, $15000 to 

$24999, $25000 to $34999, $35000 to $49999, $50000 to $74999, $75000 to $99999, 
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$100000 to $149999, and more than $150000.  In order to avoid introducing the bias of 

extreme values associated with averages (Earickson and Harlin 1994), the counts for each 

class of household income were multiplied by the median value for each class prior to 

aggregation to a single income value for county (see Equation 1).  The median values for 

each income class are available in Table 4.  A potential limitation of using the class 

medians rather than the averages to represent total income was that income may have 

been systematically underestimated in all classes except the less than $10000 category.  

The final cleaning step for the income data was to adjust the values for 1990 and 

2000 to reflect 2010 equivalents using the purchasing power calculation published by the 

U.S. Bureau Labor Statistics (BLS 2012).  The purchasing power equation is simply a 

ratio of annual Consumer Price Index (CPI) values that expresses the value of a given 

dollar amount for one year in terms of another.   The calculation of purchasing power 

places the Base Year CPI (the year for which equivalent dollars is desired) in the 

numerator, and the Original Year CPI (the year for which dollars are being converted) in 

the denominator.  The result of this ratio is then multiplied by the value of interest (See 

Equation 2 below). This inflation adjustment allowed the income data to be compared 

across all three temporal periods. 

Equation 1. Total Household Income = ∑ (income class count * median class 

value) 

 

Equation 2. Adjusted Income Value = (Base Year CPI/Original Year CPI) * 

Original Year Value (Perrins and Nilsen 2007) 

 

 The owner and renter occupancy data were collapsed into a single value for the 

total number of owner and renter occupied dwellings respectively.  Data pertaining to 

dwelling type were separated into two categories in a fashion similar to that of the 
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education data.  The Units in Structure census table was used to distinguish single family 

from multi-family dwellings.  Dwellings that had only one unit were classified as single 

family dwellings, and those that had more than one unit were classified as multi-family 

dwellings for each county. 

 Prior to aggregation of annual averages, the physical environmental data were be 

reorganized into a database friendly format similar to that of the tabular census data.  

Firstly, the data for PHDI, precipitation, and lake evaporation were rearranged such that 

the geographic units (e.g. climate divisions) were rows, and the attributes (e.g. PHDI 

values) were columns.  Secondly, the comma delimited files for all three datasets were 

converted to database (DBF) files that can be read by ESRI's ArcGIS 10. Thirdly, the 

ArcGIS database engine was used to extract data relevant only to the study area, and 

create new streamlined data tables.  Finally, the monthly values for PDHI, precipitation, 

and lake evaporation were aggregated to annual averages.  

Spatial Data 

 The first step in the cleaning process for the spatial data was to project all GIS 

datasets to a common coordinate system to prevent overlay problems such as boundary 

misalignment.  The target coordinate system for all GIS datasets was an adjusted version 

of the U.S. Contiguous Albers Equal Area Conic projection due to its ability to preserve 

areas, and apply minimal distortion to the remaining projection properties of distance, 

direction, and shape (Snyder 1987).  The selection of the Albers projection was also 

supported by the need to maintain consistent areal measurements for the analysis of 

spatial stationarity that were performed on the regression residuals, the statistically 

significant driving landscape characteristics of municipal water consumption, and the 
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original municipal water consumption patterns for 1990, 2000, and 2010.  The final 

coordinate system was the Texas Centric Mapping System/Albers Equal Area (State of 

Texas 2011) which adjusts the central meridian and standard parallels to preserve areas 

while minimally distorting the map properties of shape, distance, and direction for the 

entire state of Texas simultaneously.  The specific adjustments to the standard U.S. 

Albers Contiguous Equal Area Projection are stated in Table 6.  Following the conversion 

to a common coordinate system, all GIS data datasets were converted from shapefiles to 

geodatabase feature classes.  The conversion from shapefile to geodatabase feature class 

was necessary to ensure that attributes such as shape length and shape area are 

automatically updated during geoprocessing operations (clip, intersect, etc.) (Price 2011). 

 The second cleaning step for the spatial data was to extract only data relevant to 

the Texas study area using a series of attribute queries, spatial queries, and spatial overlay 

operations. The data extraction step was essential to reduce the volume of data that was 

processed, as well as, to conserve data storage space. After all the GIS data were  

projected and reduced to reflect the spatial extent of the study area (every county in  

Texas), the cleaned tabular data was joined to the appropriate feature class using ArcGIS 

10's Table Join function.  At this stage, attribute queries were used to cull the historical 

water use dataset, and remove counties that did not have water use records for all three 

temporal periods (1990, 2000, and 2010).  This culling process generated 254 (every 

county in Texas) temporally and spatially consistent historical water use records at the 

county scale. 
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Data Processing 

 The data processing stage involved the final calculation of tabular data values 

such as per capita income, the percentage of the population with a bachelor's degree, the 

percentage of the population with a high school diploma, the percentage of the population 

65 years and older, the percentage of the population18 years and younger, the percentage 

of owner occupied dwellings, the percentage of renter occupied dwellings, the percentage 

of single family homes, the percentage of multi-family homes, the percentage of the 

population working inside their county of residence, the percentage of the population 

working outside their county residence, the percentages of surface and groundwater, and 

the individual county values for the precipitation, lake evaporation, and PHDI.  Per capita 

income was calculated for each county by dividing the total household income in 2010 

dollars by the total population in each county.  The percentages of bachelor’s degree 

holders and high school diploma holders were calculated by dividing the counts in each 

category by the total population over twenty-five years of age, while the percentages of 

county residents 65 years and older and county residents 18 years and younger were 

calculated by dividing the counts in each category by the total population in each county. 

  The percentages of owner occupancy and renter occupancy were calculated by 

dividing the counts in each category by the total number of dwellings, and the 

percentages of single family and multi-family homes were calculated by dividing the total 

counts for each category by the total number of housing units.  Similarly, the percentages 

of county residents working inside and outside their county of residence were calculated 

by dividing the total counts in each category by the total working population.  The 

percentages of surface water and groundwater in each county were calculated by dividing 
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the total municipal water consumption in each category by the county’s total municipal 

water consumption. All final tabular calculations were performed with ArcGIS 10's Field 

Calculator operation to ensure referential integrity. 

 Calculating the remaining physical environmental variables of average annual 

precipitation, average annual lake evaporation, and average annual PHDI required several 

spatial overlay operations along with simple areal interpolation to account for the 

differences between the scales of data collection and the administrative county 

boundaries, and naming conventions used by the United States Geological Survey 

(USGS) and the Texas Water Development Board (TWDB).  Simple areal interpolation 

methods that assume a homogenous distribution of average annual precipitation, average 

annual lake evaporation, and PHDI were permissible here because all of these measures 

had been aggregated to their corresponding spatial units using more sophisticated 

methods such as Delaunay triangulations based on original climate station data (NOAA 

2012; TWDB 2012).  The steps involved in the calculation of these data are summarized 

in Figures 5 and 6.  Firstly, the Texas County boundaries were intersected with the USGS 

one degree quadrangles to determine the spatial correspondence between each quadrangle 

and its corresponding counties.  Secondly, the resulting intersection of the quadrangles 

and the county boundaries was used to reconcile the names of the USGS one degree 

quadrangles with the quadrangle nomenclature used by the TWDB to provide a means of 

joining the tabular precipitation and evaporation data to the quadrangle GIS feature class.   

Thirdly, the new quadrangle feature class containing the TWDB designations for 

each quadrangle was joined to the tabular data for average annual precipitation.  Fourthly, 

the quadrangle feature class containing the average annual precipitation data was 
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intersected with the original county boundary feature class to yield the areal contribution 

of each quadrangle to each individual county.  The areas of these new intersection 

polygons were subsequently used to calculate the areal weights for the interpolation 

process.  The areal weights were calculated by dividing the area shared by each county 

and a given quadrangle by the county’s original area.  Fifthly, the areal weights were 

multiplied by the average annual precipitation values for each quadrangle.  These 

calculations were performed with the Field Calculator in ESRI’s ArcGIS 10 to ensure 

referential integrity.  Finally, the individual precipitation values for each intersection 

polygon were aggregated to their corresponding counties using the Summarize tool in 

ESRI’s ArcGIS 10.  All six of these steps were repeated for average annual precipitation 

and average annual lake evaporation in each year (1990, 2000, and 2010).  

The calculation of each county’s average annual PHDI values followed a similar 

series of steps, substituting the NOAA Climate Division feature class for the USGS one 

degree quadrangles.  Firstly, the tabular PHDI data for each year was joined to the 

climate division feature class using the Table Join function in ESRI’s ArcGIS 10.  

Secondly, the climate division feature class containing the PHDI values for each year was 

intersected with the administrative boundary feature class to determine the areas of each 

climate division in each county.  Thirdly, the areal weights for each intersection polygon 

were determined by dividing the area shared by each county and climate division by the 

original area of the county.  Fourthly, the new areal weights were multiplied by the PHDI 

value of the corresponding climate division to yield the adjusted PHDI value for each 

intersection polygon.  Finally, the PHDI values for each intersection polygon were 

aggregated to their corresponding counties using ArcGIS 10’s Summarize tool. 
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In preparation for multiple linear regression data screening, ESRI’s ArcGIS 10 

database engine was used to consolidate all of the analysis variables for each year into a 

single comma delimited file that could be imported into IBM’s SPSS 20.  A series of 

table joins was used to combine the social, urbanized, and physical environmental data 

for each year to the feature class containing the administrative county boundaries.  The 

join operations were performed separately for each year in order to create temporally 

discrete data files for statistical screening.  After consolidating all of the analysis 

variables for a given year, the resulting attribute table was exported as a comma delimited 

file for further data cleaning in Microsoft Excel.  Using the Excel spreadsheet software, 

join artifacts such as redundant attributes and object-ids were removed to create files for 

direct import into SPSS 20. 

Data Screening for Multiple Linear Regression 

Multiple linear regression (MLR) was used in this analysis to determine the 

magnitude of the individual and joint relationships between the dependent variable 

(municipal water consumption) and the independent variables (the social, urbanized, and 

physical environments) for each year.  The joint consideration of multiple independent 

variables was essential to represent a close approximation of the real-world relationships 

between municipal water consumption and its driving characteristics, as well as account 

for the fact that municipal water consumption is influenced by more than a single factor.  

The standardized beta weights for each statistically significant independent variable 

assessed the magnitude of each driving characteristic’s influence on municipal water 

consumption when combined with other independent variables.  All of the independent 

variables listed in Table 3, except Total Population, were entered into multiple linear 
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regression equations, and required data screening procedures to ensure that the basic 

assumptions of MLR were not violated.  All assumptions of MLR were tested with a 

conservative alpha level of 0.05 to minimize the probability of detecting a relationship 

that did not actually exist (Type I error).   

In the interest of producing the most robust model possible, multiple permutations 

of the regression model for each year (1990, 2000, and 2010) were constructed with the 

addition of new independent variables, the substitution of new independent variables for 

existing independent variables, and a regionalization of counties relative to a climatic 

divide known as the dry line respectively.  A description of each model permutation and 

its corresponding sample size is available for reference in Table 7.  Models 2 and 3 added 

the Per Capita Commercial Businesses variable to the original variables listed in Table 3 

to improve the signal strength of commercial municipal water consumption present in the 

Percent Worked Inside County of Residence variable.  Models 4 and 5 used only the 

original variables from Table 3 and were constructed to remove the confounding 

influence of differences in climate east and west of the dry line respectively.  Models 6 

and 7 included the Per Capita Residential Building Permit variable to improve detection 

of a residential development signal.  Two models were required to accommodate the 

residential development variable due to a reduction in sample size that reflected the 

exclusion of counties without building permit data for all three years (1990, 2000, and 

2010).  Thus, Model 6 represented an adjusted baseline model using only the independent 

variables listed in Table 3, while Model 7 included both the original independent 

variables along with the Per Capita Residential Building Permit variable.  Model 8 

combined the all of the original independent variables except Percent Worked Inside 
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County of Residence with the Percent Lodging variable to capture the influence of 

temporary transient increases in population not reflected in decennial census estimates on 

the consumption of municipal water. 

Normality 

The assumptions of MLR include normality, homogeneity of variance, linearity, 

and a lack of collinearity between independent variables.  Firstly, all the independent 

variables were tested for normality, or the idea that each independent variable follows a 

normal (Gaussian) distribution where the mean is equal to zero, and the standard 

deviation is equal to one.  In addition to evaluating normality with the Shapiro-Wilk test 

which guarded against the extreme sensitivity to minor deviations from a normal 

distribution found in the more common F Max test, the skewness and kurotsis threshold 

of plus or minus one (1.0) was used to provide a more liberal estimate of normality 

(Meyers et al. 2006).   

This decision to use Shapiro-Wilk in concert with a kurtosis and skewness 

threshold instead of F Max was important because the degree to which data must conform 

to the normality assumption of linear regression varies according to the application of the 

technique.  Applying MLR techniques to predict quantities or outcomes requires more 

stringent adherence to the normality criterion than using MLR to determine the 

magnitude of relationships between dependent and independent variables (Pedhazur 

1997).  This analysis used MLR to examine the magnitude of the relationships between 

the independent variables (the social, urbanized, and physical environments) and the 

dependent variable (municipal water consumption).   Furthermore, the extreme sensitivity 
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of the F Max test could have prematurely required transformations for essential 

independent variables or excluded them altogether. 

The results of the Shapiro-Wilk test for the dependent and independent variables 

in every model permutation for each year are reported in Table 8 (1990), Table 9 (2000), 

and Table 10 (2010) at a significance level of 0.05.  Models 2 and 6 were omitted from 

Tables 8, 9, and 10 because their Shapiro-Wilk values were identical to those of Models 3 

and 7 respectively.  The distribution of each variable was tested against the null 

hypothesis that it was significantly different from a normal, or Gaussian, distribution.  A 

p-value less than 0.05 indicated that a variable was statistically different from the normal 

distribution, while a p-value greater than or equal to 0.05 indicated that was a variable 

was not statistically different from the normal distribution.  The Shapiro-Wilk test 

overwhelmingly suggested that the majority of data were not normally distributed.  The 

bolded values in Table 8, Table 9, and Table 10 indicate exceptions to these findings.  

For the year 1990 Annual Lake Evaporation, Percent 18 Years and Younger, and Percent 

65 Years and older were not significantly different from the normal distribution.  Annual 

Lake Evaporation was not significantly different from the normal distribution in models 

1, 3, 5, and 8.  Percent 18 Years and Younger was not significantly different from the 

normal distribution in model 5, and Percent 65 Years and Older was not significantly 

different from the normal distribution in model 4. 

In the year 2000, Average Annual Precipitation, Per Capita Income, Percent 18 

Years and Younger, Percent 65 Years and Older, and Percent High School Diploma were 

not significantly different from the normal distribution given a significance level of 0.05.  

Average Annual Precipitation and Per Capita Income were not significantly different 
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from the normal distribution in Model 5.  Percent 18 Years and Younger was not 

significantly different from the normal distribution in any of the models (1, 3, 4, 5, 7, and 

8), while Percent 65 Years and Older was not significantly different from the normal 

distribution in Model 4.  The Percent High School Diploma variable was significantly 

different from the normal distribution for all models except Model 5. 

For the year 2010, Per Capita Income, Percent 18 Years and Younger, Percent 65 

Years and Older, and Percent High School Diploma were not significantly different from 

the normal distribution.  Per Capita Income was not significantly different from the 

normal distribution in any of the models (1, 3, 4, 5, 7, and 8).  Percent 18 Years and 

Younger was not significantly different from the normal distribution in Model 7, and 

Percent 65 Years and Older was not significantly different from the normal distribution 

in Model 4.  The Percent High School Diploma variable was not significantly different 

from the normal distribution in Model 7. 

The results of the Shapiro-Wilk test required both the normality of the dependent 

and independent variables to be evaluated further with a skewness and kurtosis threshold 

of plus or minus 1.0 due to its lower sensitivity to deviations from the normal 

distribution.  Despite its more forgiving nature, the results of the skewness and kurtosis 

threshold revealed that few of the variables in any given model for each year conformed 

to the approximate bounds of statistical normality.  The skewness and kurtosis values are 

reported in Tables 11, 12, and 13 for the years 1990, 2000, and 2010 respectively.  

Bolded values indicate pairs of skewness and kurtosis values where both metrics are 

within the plus or minus 1.0 threshold. 
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In 1990, variables that whose distribution was approximately normal included 

Average Annual PHDI, Average Annual Precipitation, Average Annual Lake 

Evaporation, Percent 18 Years and Younger, Percent 65 Years and Older, Percent High 

School Diploma, Percent Urban, and Percent Worked Inside County of Residence.  

Average Annual PHDI was approximately normally distributed in Models 1, 3, 7, and 8.  

Average Annual Precipitation was approximately normally distributed in Models 1, 3, 5, 

7, and 8, while Average Annual Lake Evaporation followed an approximately normal 

distribution in all models (1, 3, 4, 5, 7, and 8).  Percent 18 Years and Younger was 

approximately normally distributed in Models 1, 3, 5, 7, and 8, while Percent 65 Years 

and Older followed an approximately normal distribution in all models (1, 3, 4, 5, 7, and 

8).  Percent High School Diploma was approximately normally distributed in all models 

(1, 3, 4, 5, 7, and 8).  Percent Urban was approximately normally distributed in Models 4 

and 7, while Percent Worked Inside County of Residence followed an approximately 

normal distribution in Models 1, 3, 4, and 7.  Actual skewness and kurtosis values for all 

variables in each 1990 model are presented in Table 11. 

For the year 2000, Average Annual PHDI, Average Annual Precipitation, 

Average Annual Lake Evaporation, Per Capita Commercial Businesses, Percent 18 Years 

and Younger, Percent 65 Years and Older, Percent High School Diploma, and Percent 

Worked Inside County of Residence were approximately normally distributed.  Average 

Annual PHDI was approximately normally distributed in Models 1, 3, 7, and 8.  Average 

Annual Precipitation followed an approximately normal distribution in Models 4 and 5, 

while Average Annual Lake Evaporation was approximately normally distributed in 

Models 1, 3, 5, 7, and 8.  Per Capita Commercial Businesses was approximately 
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normally distributed in Model 3 (the only model in which it was actively considered).  

Percent 18 and Younger was approximately normally distributed in Models 1, 3, 5, 7, and 

8, while Percent 65 and Older followed an approximately normal distribution in all 

models (1, 3, 4, 5, 7, and 8).  Percent High School Diploma was also approximately 

normally distributed in all models.  Percent Worked Inside County of Residence followed 

an approximately normal distribution in all models for it was actively considered (Models 

1, 3, 4, 5, and 7).  Actual skewness and kurtosis values for all variables in each 2000 

model are presented in Table 12. 

In 2010, the following variables were approximately normally distributed: 

Average Annual PHDI, Average Annual Precipitation, Average Annual Lake 

Evaporation, Per Capita Commercial Businesses, Per Capita Income, Percent 18 Years 

and Younger, Percent 65 Years and Older, Percent Bachelor’s Degree, Percent High 

School Diploma, and Percent Worked Inside County of Residence.  Average Annual 

PHDI was approximately normally distributed in Models 1, 3, 4, 7, and 8.  Average 

Annual Precipitation was approximately normally distributed in all models (1, 3, 4, 5, 7, 

and 8), while Average Annual Lake Evaporation only followed an approximately normal 

distribution in Models 4 and 5.  Per Capita Commercial Businesses was approximately 

normally distributed in Model 3 (the only model in which it was actively considered).  

Per Capita Income was approximately normally distributed in all models (1, 3, 4, 5, 7, 

and 8).  Percent 18 Years and Younger and Percent 65 Years and Over were both 

approximately normally distributed in all models.  Percent Bachelor’s Degree and 

Percent High School Diploma followed an approximately normal distribution in Models 

5 and 7 respectively.  Percent Worked Inside County of Residence was approximately 
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normally distributed in Models 1, 3, 4, 5, and 7.  The actual skewness and kurtosis values 

for all variables in each 2010 model are presented in Table 13. 

In summary, the Shapiro-Wilk test and the skewness and kurtosis threshold of 

plus or minus 1.0 both yielded similar results.  Nearly half of the independent variables in 

each model permutation for every year violated the assumption of normality required by 

Multiple Linear Regression.  These violations suggested that transformations would be 

necessary in all conceptual variable categories (the social, urbanized, and physical 

environments) prior to regression analysis.  Furthermore, the dependent variable, Per 

Capita Municipal Water Consumption, exhibited severe departures from the normal 

distribution using both normality metrics for all models in all years. 

Homogeneity of Variance 

Secondly, the homogeneity of variance for each independent variable and the 

dependent in each year was assessed with the Levene test.  The Levene test was selected 

in order to avoid increasing the probability of committing a Type II error by failing to 

detect an existing relationship between the dependent and independent variables.  The 

increased probability of committing a Type II error often results from using the FMax test 

which requires a more stringent alpha level (Meyers et al. 2006).  The homogeneity of 

variance test was only performed on the data for the original model (Model 1) listed in 

Table 3 due to the results of the Shapiro-Wilk and skewness and kurtosis threshold 

normality tests.  The extreme departures from normality present in the majority of 

independent variables in each model for every year had already suggested the necessity 

of variable transformations.  Thus, the results of the Levene test are presented in Table 14 

solely in the interest of completeness. 
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All of the independent variables in Table 3, along with the independent variable 

were subjected to Levene’s test of homogeneity of variance at a significance level of 

0.05.  The null hypothesis of the Levene Test states that variances between levels of the 

independent variables are equal, where p-values less than 0.05 indicate that the 

assumption of equal variances has been met.  In this case, the homogeneity of the 

variables was tested across the years 1990, 2000, and 2010.  Surprisingly, only four of the 

sixteen variables violated the assumption of equal variances.  The offending independent 

variables included Average Household Size, Percent 18 Years and Younger, Percent 

Single Family, and Population Density.  The values of the Levene statistic and their 

corresponding p-values are listed in Table 14. 

Linearity and Collinearity 

Thirdly, the linearity and collinearity of the independent variables was evaluated 

using non-parametric bivariate correlations and simple bivariate scatterplots.  The results 

of the normality tests suggested that non-parametric measures of association would 

provide a better approximation of the relationships between variables than Pearson’s r.  

Kendall’s Tau was selected over Spearman’s Rho for two reasons.  Firstly, Kendall’s Tau 

provides an unbiased estimate of the true population parameter, while Spearman’s Rho 

does not.  Secondly, the Kendall Tau statistic is better suited to intermediate sample sizes 

such as those used in this study (e.g. N = 254 for Models 1, 2, 3, and 8) (Daniels 1990). 

The linearity tests determined whether or not linear relationships existed between the 

dependent and each independent variable, as well as the strength of the association 

between independent variables (Draper and Smith 1998; Meyers et al. 2006).  Bivariate 

Kendall’s Tau correlations and scatterplots were examined for pairings of each 
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independent variable and the dependent variable, and correlation matrices were used to 

assess the collinearity among the independent variables.  The Kendall Tau correlations 

between each independent variable and Per Capita Municipal Water Consumption for the 

years 1990, 2000, and 2010 are reported in Tables 15, 16, and 17 respectively.  The 

bivariate correlations for Models 2 and 6 were omitted from the tables to avoid 

redundancy.  The correlations for Model 2 were identical to those of Model 1, and the 

correlations for Model 6 were identical to those of Model 7 with the exception of the Per 

Capita Building Permit variable which was not considered in Model 6.  The two-tailed 

significance of each independent variable is reported where two asterisks denote 

correlations that were statistically significant at an alpha level of 0.01, and a single 

asterisk denotes correlations that were statistically significant at the required alpha level 

of 0.05.  Below, the linearity of the independent variables is summarized for each year 

with special attention to similarities and differences between model permutations. 

In 1990, the strengths of linear association between the independent variables and 

the dependent variable varied by model in select cases, but the overwhelming majority of 

independent variables expressed a statistically significant linear relationship with Per 

Capita Municipal Water Consumption.  The conceptual variables of social, urbanized, 

and physical environment displayed statistically significant linear associations for all 

model permutations, but the strongest associations were not consistently concentrated in a 

single conceptual variable.  The physical and social environmental variables in Models 1, 

3, and 8 exhibited the strongest linear associations with Average Annual Precipitation (τ 

= -0.306, p < 0.001) and Percent Owner Occupied (τ = -0.243, p < 0.001) ranking among 

the highest independent variables.  Models 4, 5, and 7 showed the greatest differences in 
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the linear association strength of the conceptual variables with the strongest linear 

relationships being present in the urbanized and social, the social, and the social and 

physical environmental variables respectively.   

Percent Urban (τ = 0.346, p < 0.001) and Percent High School (τ = -0.328, p < 

0.001) had the strongest degree of linearity in Model 4, and Percent Worked Inside 

County of Residence (τ = 0.271, p < 0.001) and Percent Owner Occupied (τ = -0.204, p < 

0.001) displayed the greatest degree of linearity in Model 5.   Models 4 and 5 also 

showed weaker yet statistically significant linear relationships between Per Capita 

Municipal Water Consumption and Percent Surface Water.  Model 7 showed the 

strongest linear associations in the Percent Worked Inside County of Residence (τ = 

0.352, p < 0.001) and the Average Annual Precipitation (τ = -0.346, p < 0.001) variables.  

The new independent variables introduced in Models 3, 7, and 8 exhibited mixed 

strengths of linear association with the dependent variable.  Per Capita Commercial 

Businesses (τ = 0.225, p < 0.001) in Model 3 was relatively strong, while Percent 

Lodging (τ = 0.097, p = 0.023) in Model 8 was exceptionally weak.  Additionally, Per 

Capita Income and Per Capita Building Permits were the only independent variables that 

did not display a statistically significant linear relationship with Per Capita Municipal 

Water Consumption in any of the model permutations for 1990.  The Kendall's Tau 

bivariate correlations and their corresponding significance values (p-values) are given in 

Table 15. 

In 2000, the strengths of linear association between the independent variables and 

the dependent variable varied by model in select cases, but the overwhelming majority of 

independent variables expressed a statistically significant linear relationship with Per 
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Capita Municipal Water Consumption.  The conceptual variables of social, urbanized, 

and physical environment displayed statistically significant linear associations for all 

model permutations, but the strongest associations were not consistently concentrated in a 

single conceptual variable.  The physical and social environmental variables in Models 1, 

3, and 8 exhibited the strongest linear associations with Average Annual Precipitation (τ 

= -0.274, p < 0.001) and Percent Owner Occupied (τ = 0.-0.249, p < 0.001) ranking 

among the highest independent variables.  Models 4, 5, and 7 showed the greatest 

differences in the linear association strength of the conceptual variables with the strongest 

linear relationships being present in the urbanized and social, and the social and physical 

environmental variables respectively.   

Percent Urban (τ = 0.363, p < 0.001), Percent High School (τ = -0.334, p < 

0.001), and Percent Owner Occupied (τ = -0.334, p < 0.001) had the strongest degree of 

linearity in Model 4, and Percent Worked Inside County of Residence (τ = 0.277, p < 

0.001) and Percent Urban (τ = 0.213, p < 0.001) displayed the greatest degree of linearity 

in Model 5.   Models 4 and 5 also showed statistically significant linear relationships 

between Per Capita Municipal Water Consumption and Percent Surface Water. The 

linearity of Percent Surface Water was stronger in 2000 than in 1990.  Model 7 showed 

the strongest linear associations in the Percent Worked Inside County of Residence (τ = 

0.358, p < 0.001) and the Average Annual Precipitation (τ = -0.295, p < 0.001) variables.  

The new independent variables introduced in Models 3, 7, and 8 exhibited mixed 

strengths of linear association with the dependent variable.  Per Capita Commercial 

Businesses (τ = 0.212, p < 0.001) in Model 3 was relatively strong, while) and Percent 

Lodging (τ = -0.041, p = 0.335) in Model 8 was exceptionally weak.  Additionally, 
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Average Household Size, Annual Average PHDI, and Per Capita Building Permits did 

not display a statistically significant linear relationship with Per Capita Municipal Water 

Consumption in any of the model permutations for 2000.  The Kendall's Tau bivariate 

correlations and their corresponding significance values (p-values) are given in Table 16. 

In 2010, the strengths of linear association between the independent variables and 

the dependent variable varied by model in select cases, but the overwhelming majority of 

independent variables did not express a statistically significant linear relationship with 

Per Capita Municipal Water Consumption.  The conceptual variables of social, 

urbanized, and physical environment displayed statistically significant linear associations 

for all model permutations, but the strongest associations were not consistently 

concentrated in a single conceptual variable.  The physical and social environmental 

variables in Models 1, 3, and 8 exhibited the strongest linear associations with Average 

Annual Precipitation (τ = -0.222, p < 0.001) and Population Density (τ = -0.178, p < 

0.001) ranking among the highest independent variables.  Models 4, 5, and 7 showed the 

greatest differences in the linear association strength of the conceptual variables with the 

strongest linear relationships being present in the social, the physical, and the physical 

and social environmental variables respectively.   

Percent Worked Inside County of Residence (τ = 0.193, p < 0.001), and Percent 

High School (τ = -0.153, p = 0.013) had the strongest degree of linearity in Model 4, and 

Percent Surface Water (τ = -0.278, p < 0.001) and Average Annual Precipitation (τ = -

0.248, p < 0.001) displayed the greatest degree of linearity in Model 5.   The linearity of 

Percent Surface Water in Model 5 was the strongest of any model permutation in all 

three years (1990, 2000, and 2010).  Model 7 showed the strongest linear associations in 
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the Average Annual Precipitation (τ = -0.255, p < 0.001) and Percent Worked Inside 

County of Residence (τ = 0.213, p < 0.001) variables.  The new independent variables 

introduced in Models 3, 7, and 8 exhibited mixed strengths of linear association with the 

dependent variable.  Per Capita Commercial Businesses (τ = 0.013, p = 0.769) in Model 

3 and Per Capita Building Permits (τ = -0.025, p = 0.586) in Model 7 were not 

statistically significant, while Percent Lodging (τ = -0.134, p = 0.002) in Model 8 

displayed a weak yet statistically significant linear association with the dependent 

variable.  Additionally, Average Household Size,  Per Capita Income, Percent 18 Years 

and Younger, Percent 65 Years and Older, Percent Bachelor's Degree, Percent Single 

Family,  and Percent Urban did not display a statistically significant linear relationship 

with Per Capita Municipal Water Consumption in any of the model permutations for 

2010.  The Kendall's Tau bivariate correlations and their corresponding significance 

values (p-values) are given in Table 17. 

A review of the bivariate correlations between the independent variables and the 

dependent variable for all model permutations in every year resulted in a reduction of the 

total number of independent variables used in the MLR models.  Several variables 

including Percent Multi-Family, Percent Renter Occupied Dwellings, Percent Worked 

Outside County of Residence, Percent Rural, and Percent Groundwater were removed 

from further consideration to reduce redundancy and multicollinearity in any given 

model.  The relationships of these variables to Per Capita Municipal Water Consumption 

were perfectly symmetrical to those of Percent Single Family, Percent Owner Occupied 

Dwellings, Percent Worked Inside County of Residence, Percent Urban, and Percent 
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Surface Water respectively.  Thus, the latter independent variables were retained due to 

their greater conceptual value and interest. 

The collinearity between the independent variables in this analysis was assessed 

using the full Kendall's Tau correlation matrices that were generated for each set of 

variables in each model permutation for 1990, 2000, and 2010.  A threshold of +/-0.7 was 

used to identify variables with strong inter-variable associations due to the fact that 

moderate correlations were expected between certain sets of independent variables in 

each conceptual category (e.g. Annual Lake Evaporation and Annual Average PHDI, 

Population Density and Percent Urban, etc.).  Furthermore, the omission of a moderately 

collinear but practically significant variable may have undermined the explanatory goal 

of this research.   

The correlation matrices revealed the majority of the independent variables were 

well below the +/- 0.7 collinearity threshold for all model permutations in every year.  

One exception to this finding was the strong linear relationship between Percent Owner 

Occupied Dwellings and Percent Single Family in Model 4 for the year 2010 (τ = 0.709, 

p < 0.001).  Consequently, this relationship was scrutinized carefully during the MLR 

model building phase. 

The final results of the independent variable screening process yielded several 

important discoveries.  Firstly, the Shapiro-Wilk and skewness and kurtosis threshold 

tests indicated that more than half of the independent variables in any given model 

permutation for any given year violated the assumption of normality required by multiple 

linear regression analysis.  Secondly, the Levene test for homogeneity of variance 

revealed that only four out of the original sixteen independent variables displayed 



70 
 

 
 

unequal variances across all three years in the study period (1990, 2000, and 2010).  The 

variables whose variances were unequal included Average Household Size, Percent 18 

Years and Younger, Percent Single Family, and Population Density.  Thirdly, the 

majority of independent variables in every model for 1990 and 2000 had at least a weak 

statistically significant linear association with Per Capita Municipal Water Consumption.  

The number of independent variables with a statistically significant linear relationship to 

the dependent variable for most of the models in 2010 was much lower than the previous 

years, with Average Household Size,  Per Capita Income, Percent 18 Years and Younger, 

Percent 65 Years and Older, Percent Bachelor's Degree, Percent Single Family,  and 

Percent Urban expressing no statistically significant linearity. 

Due to these findings during the screening process, all of the independent 

variables in every model for each year were transformed to enable subsequent multiple 

linear regression analysis.  The standard square root, logarithm, and natural logarithm 

transformations were abandoned because they failed to adequately remove the violation 

of normality from the offending independent variables.  Furthermore, it quickly became 

apparent that using multiple transformations on such a large number of variables would 

confound the interpretation of the resulting regression model (Draper and Smith 1998; 

Meyers et al. 2006).  Thus, the Rank Transformation (Connover and Iman 1981) was 

applied uniformly to both the dependent and independent variables in every model 

permutation for each year prior to building the regression models.   

Despite a reduction in statistical power and marginal increases in the probability 

of falsely rejecting the null hypothesis with small datasets when compared to parametric 

ordinary least squares regression (Headrick and Rotou 2001), the Rank Transformation 
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can be safely applied to regression analysis under select circumstances.  Iman and 

Connover (1979) conceded that while multiple regression analysis performed on rank 

transformed variables provides a robust estimation of the strength and direction of 

relationships between a dependent variable and a set of independent variables, the 

technique is not appropriate for developing precise predictive mathematical models.  This 

research applied Multiple Linear Regression in the former context as a means to 

determine the joint influences of the independent variables on Per Capita Municipal 

Water Consumption. 

The Rank Transformation assigned the lowest ranks to the lowest values of the 

original continuous variables and the highest ranks to the largest values of the original 

continuous variables. This method of ranking the original data was selected for two 

reasons.  Firstly, assigning the highest and lowest ranks to the highest and lowest values 

of the original data respectively preserves the general direction (positive or negative) and 

the magnitude of the relationship between the continuous variables as in non-parametric 

measures of association (Daniel 1990).  Secondly, ranking the variables in this manner 

improves the visual interpretation of bivariate scatterplots by increasing the visual 

distance between individual observations.  Comparisons of the original and rank 

transformed bivariate scatterplots for each independent variable and Per Capita 

Municipal Water Consumption for Model 1 in 1990 are provided as examples in Figures 

7 through 36. 

Model Building 

Multiple linear regression (MLR) was used to explain the individual and 

combined influences of the independent variables on per capita municipal water 

consumption.  The technique has been widely applied in similar water resource studies 



72 
 

 
 

with moderate to high levels of success (Carver and Boland 1980; Cochran and Cotton 

1985; Wentz and Gober 2007; Zhou 2000).  Eight separate multiple linear regression 

models were built for each temporal slice using the pre-screened independent variables at 

the county scale, producing twenty-four equations in all.  A stepwise method was used to 

construct the regression models to ensure that only variables that were statistically 

significant at the 0.05 level were included (Meyers at al. 2006).   

Support for the stepwise method may be found in the weaker inclusion criterion 

(0.10) of the backward method, and the single entrance criterion (0.05) of the forward 

method.  Backward regression models often produce higher R Square values at the 

expense of a higher probability of committing a Type I Error, while forward regression 

models provide lower R Square values with lower Type I Error probabilities.  Although a 

forward model may have guarded against the premature exclusion of practically 

significant variables with statistically insignificant linear relationships, the inclusion of 

these statistically weak independent variables may have confounded the explanatory goal 

of this research.   For example, including statistically insignificant independent variables 

in a multiple linear regression model could potentially artificially reduce the relative 

influences of variables with stronger statistical relationships (Meyers et al. 2006).  In 

contrast to the forward method, stepwise methods employ an iterative reevaluation 

procedure where independent variables may be removed as new variables are considered, 

which reduces the likelihood that independent variables exhibiting exceptionally low 

associations with the dependent variable will be included in the final regression model.     

While MLR permits the individual and joint consideration of relationship 

magnitudes between the dependent and independent variables under analysis, it may also 
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produce exaggerated estimates of those relationships as a result of multicollinearity.  

Multicollinearity, a condition that arises when MLR models are constructed from 

independent variables that are strongly associated with each other, was addressed using 

the Variance Inflation Factor (VIF).  The VIF is a diagnostic that measures the degree of 

linear association between an independent variable and the remaining independent 

variables included in the model (Meyers et al. 2006).  A VIF threshold of 7.5 was used to 

determine the presence of significant multicollinearity to account for moderate 

associations between several pairs of independent variables (e.g. Percent Bachelor's and 

Degree and Per Capita Income (τ = 0.435, p < 0.001); Percent Single Family and 

Population Density (τ = -0.546, p < 0.001); and Average Annual Precipitation and 

Average Annual Lake Evaporation (τ = -0.504, p < 0.001)).  The choice of 7.5 also 

reflects a compromise between the respective conservative and liberal bounds of 5.0 and 

10.0 that appear in multivariate analysis literature (Meyers et al. 2006; Morrow-Howell 

1994).  Independent variables that met or exceeded the multicollinearity threshold were 

systematically removed to achieve the best model fit. 

Model Evaluation 

Model Comparison 

 After the models for each temporal slice were adjusted for multicollinearity 

concerns, the statistically significant independent variables (driving landscape 

characteristics of municipal water consumption) from the MLR models were compared to 

test for significant differences between years.  The squared semi-partial correlations, 

which provide the unique contribution of each independent variable to the variation in the 

dependent variable (Meyers et al. 2006), were used to identify pairs of statistically 
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significant independent variables whose values were statistically different between years 

(e.g. Average Household Size1990 and Average Household Size2000).  The squared semi-

partial correlations were compared for each pair-wise combination of common 

statistically significant drivers of municipal water consumption for every model in each 

year to ensure that all comparisons of independent variables were considered in the 

absence of a non-parametric post-hoc test.  This inter-year comparison of statistically 

significant independent variables helped explain the influence of time on certain drivers 

of municipal water consumption.  A difference between the magnitudes of the squared 

semi-partial correlations of a given driver in two different time periods suggested that 

time contributed to the change in that particular driving landscape characteristic.  

Conversely, the lack of a difference between the magnitudes of the squared semi-partial 

correlations of a given driver in two different time periods suggested that time did not 

play a role in the change in that particular driving landscape characteristic. 

Evaluation of Spatial Stationarity 

 Following the comparison of the statistically significant municipal water 

consumption drivers for each temporal period, the spatial stationarity of municipal water 

consumption was evaluated using measures of global and local spatial autocorrelation.  

The global spatial autocorrelation metric served two purposes.  Firstly, the presence of 

global spatial autocorrelation helped assess the efficacy of global statistical models such 

as MLR to explain the drivers of municipal water consumption at the county scale.  A 

statistically significant high positive global spatial autocorrelation value for the 

regression residuals in a given year suggested that a global statistical model may not 

sufficiently explain the contribution of the selected drivers of municipal water 
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consumption at the county scale.  The significance level for the global spatial 

autocorrelation test was set at 0.05 in order to maintain consistency with the entrance 

criteria for the original MLR models.   

Secondly, the presence of global spatial autocorrelation in the regression residuals 

may indicate misspecification in the original MLR model for a given year (ESRI 2012).  

The local spatial autocorrelation metric was used to provide insight into potential 

interactions between the drivers of municipal water consumption in neighboring counties, 

if high global spatial autocorrelation values had been detected in a given year.  These 

potential interactions between drivers in neighboring counties highlighted areas where 

formal investigations of physical fresh water resources or municipal water policies may 

help explain municipal water consumption patterns, and aid the development of demand 

management strategies. 

Global spatial autocorrelation was measured at the county scale using Moran’s I 

due to its longstanding acceptance as a spatial autocorrelation metric, as well as its use of 

z-scores that provide a standardized output which can be easily compared across multiple 

variables (Anselin 1995).  Likewise, in the presence of positive global autocorrelation 

Anselin’s Local I was used to investigate potential clusters of spatial non-stationarity at 

the county scale.  Anselin’s Local I was selected as the local measure of spatial 

autocorrelation because as a local indicator of spatial association (LISA) it can be 

statistically aggregated to provide a direct comparison with the results of the Global 

Moran’s I metric (Anselin 1995).  Additionally, the global Moran’s I and Anselin’s Local 

I will were used to examine spatial stationarity in this research because these metrics do 

not introduce multicollinearity into multiple regression analyses unlike the increasingly 
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popular technique of geographically weighted regression.  Previous research has shown 

that geographically weighted regression often introduces collinearity and 

multicollinearity into multivariate regression analyses due to the small sample sizes that 

are used to analyze individual observations (Paez et al. 2011). 

Prior to the implementation of the global and local spatial autocorrelation metrics, 

the inverse distance weighting conceptualization that was applied in these assessment 

tools required an appropriate distance threshold.  Inverse distance weighting was used to 

conceptualize the spatial relationship between the drivers and patterns of municipal water 

consumption to reflect real-world conditions.  For example, supplies of surface and 

groundwater are often consumed at a considerable distance from their source due to inter-

basin transfers, and remote water rights (Thompson 1999).  Ripley's K function was 

selected to determine the distance thresholds due to its ability to simultaneously analyze 

degrees of spatial association for a given point pattern over multiple spatial scales 

(O'Sullivan and Unwin 2010).  These ideas have two embedded implications for the 

spatial patterns of municipal water consumption and its driving landscape characteristics.  

Firstly, the presence of inter-basin transfers and remote water rights preclude adjacency 

as a defining spatial criterion for local municipal water consumption because the origin 

and destination counties involved in the transfer may not share an administrative 

boundary.  Secondly, the expense of transferring water serves as a defacto limit on the 

distance over which it is relocated.  Thus, the Ripley K function helped ensure that the 

measures of spatial autocorrelation were not confounded by the spatial distribution of the 

county centroids that were used in the global Moran’s I and the Anselin’s Local I 

calculations. 
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This explicit consideration of scale was necessary to distinguish between the 

spatial relationships inherent in the county centroids and the patterns in the actual data.  

Four different distance thresholds were determined to account for differences in spatial 

coverage and sample size between models.  A unique distance threshold was used for 

Models 1, 2, 3, and 8, Model 4, Model 5, and Models 6 and 7.  The results of the Ripley 

K function are summarized in Table 18 and presented graphically in Figures 37, 38, 39, 

and 40.  The Ripley K graphs provide several sources of important information, including 

the expected and observed values of the function over multiple distances, and the 

confidence interval for the given function run.   

The relationship between the observed and expected values of the K function at 

given distance indicates the degree to which a point pattern is clustered or dispersed, 

while the confidence interval provides an assessment of statistical significance.  For 

example, distances that result in the observed value exceeding the expected value of the 

K function indicate that level of clustering is greater than the level of clustering present in 

a completely spatially random distribution.  Observed K function values that exceed the 

expected values and are above the confidence interval threshold are considered to be 

statistically significant at the given level of significance.  Each Ripley K function was 

configured to produce 100 distance bands with a 99% confidence interval (a significance 

level of 0.01).  In all cases, the maximum difference in K values (observed minus 

expected) was selected to represent the shortest distance at which spatial processes 

promoted statistically significant clustering (ESRI 2012b; O’Sullivan and Unwin 2010).  

These threshold values were chosen deliberately to account for the inherent spatial 
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relationships between the county centroids, as well as to improve the detection of spatial 

associations between the values of individual variables.   

After the distance threshold had been determined using the Ripley K function, the 

global Moran’s I was applied to the MLR residuals for each year (1990, 2000, and 2010), 

as well as the original patterns and statistically significant driving landscape 

characteristics of municipal water consumption.  MLR residuals that exhibited 

statistically significant positive spatial autocorrelation were subjected to the Anselin’s 

Local I to examine potential clusters of model performance, i.e. clusters of model fits that 

were exceptionally weak or exceptionally strong.  Anselin’s Local I was also applied to 

the statistically significant driving characteristics and the original patterns of municipal 

water consumption for each year to examine the degree of spatial association between 

neighboring counties. 

Result Mapping 

After testing for statistically significant differences across temporal periods, the 

original municipal water consumption patterns, and the values of Anselin’s Local I 

(residuals, statistically significant driving landscape characteristics, and original 

consumption patterns) were mapped to visually assess any inherent spatial patterns.  

Mapping the original municipal water consumption patterns and the Anselin’s Local I 

values provided insight into the spatial stationarity of municipal water consumption 

processes, and the potential relationships between the consumption of municipal water in 

neighboring counties.  For example, a simple choropleth map of the original municipal 

water consumption values for each year permitted a cursory visual inspection for the 

locations of the highest and lowest consumers of municipal water, the proximity of high 
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and low consumers to each other, and visual clusters of similar values prior to a formal 

test of spatial autocorrelation.  Mapping the Anselin’s Local I values for the municipal 

water consumption values were then used to formalize the relationships visible in the 

original consumption patterns.  Similarly, the Local Anselin’s I maps of the statistically 

significant driving characteristics of municipal water consumption for each year indicated 

potential clusters of spatial non-stationarity amongst driving characteristics. 

Mapping the Anselin’s Local I values of the residuals for each MLR model by 

year exposed potential spatial patterns in model performance.   The spatial distribution of 

the Anselin’s Local I values for the MLR residuals in each year highlighted statistically 

significant zones of exceptionally strong or exceptionally weak model performance, as 

well as illuminating pockets of spatial non-stationarity in the overall performance of each 

model. Areas with large over or underestimations indicated either model misspecification 

or genuine spatial non-stationarity in the per capita consumption of municipal water.    

Model misspecification typically means that unnecessary independent variables have 

been included, or that important ones have been omitted (ESRI 2012a; Lavin and Clark 

1984), while a lack of spatial stationarity suggests that a global model may not best 

explain patterns of per capita municipal water consumption or its driving landscape 

characteristics due to the presence of spatial processes. 
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RESULTS AND DISCUSSION 

 

 

The results of this study are discussed in the following manner.  Firstly, the 

original patterns of per capita municipal water consumption for 1990, 2000, and 2010 are 

presented along with plausible explanations for their genesis and manifestation on the 

landscape.  Secondly, the bivariate Kendall Tau correlations of each independent variable 

for every year in Model 1 are presented again with special attention to the strength and 

direction of the relationship of each variable with per capita municipal water 

consumption, and the implications of these characteristics relative to the original 

consumption patterns.   Thirdly, a summary of the findings of the original multiple 

regression models (Model 1) is presented, followed by a detailed breakdown of the 

statistically significant independent variables for each year (1990, 2000, and 2010).    

Fourthly, the results and interpretations of the tuned multiple regression model 

permutations are presented by year for each model that improved the original model fit.   

In all cases, the results of the global and local spatial autocorrelation metrics are 

presented in concert with their landscape interpretations immediately following their 

corresponding global multiple regression models.  Finally, the results and interpretations 

for each model permutation in every year are discussed in the context of the original 

research questions.



81 
 

 
 

Original Patterns of Per Capita Municipal Water Consumption 

 The original patterns of county scale per capita municipal water consumption in 

Texas revealed several unexpected anomalies.  Firstly, high per capita consumptions of 

municipal water were not restricted to the urban corridor of Interstate Highway 35 in any 

of the three years analyzed.  In 1990, the traditional population centers of Dallas, Tarrant, 

Travis, Bexar, and El Paso counties had intermediate consumptions of municipal water 

ranging from approximately 224762 liters to 370409 liters per capita.  However, this 

same range of consumption values was also evident in west Texas along the Texas-

Mexico border and the Texas Panhandle (see Figure 41).  The highest municipal water 

consumptions occurred in the low population counties of Oldham and Jeff Davis.  The 

location of these relatively high municipal consumption values outside well established 

population centers starkly contrasted the 1990 distributions of total population throughout 

the state (see Figure 42).  A comparison of municipal water consumption patterns for 

1990, 2000, and 2010 in Figure 43 showed that while consumption remained high in the 

primary population centers, the panhandle and the Texas-Mexico border also continued to 

produce high levels of consumption.  These patterns are particularly strong in 2000 and 

2010.  Detailed maps of per capita municipal water consumption for 2000 and 2010 are 

provided in Figures 44 and 45 respectively.  The corresponding detailed maps of total 

population are available in Figure 46 for 2000, and Figure 47 for 2010. 

 While these initial patterns of municipal water consumption clearly support the 

idea that municipal water consumption is influenced by more than just population size, 

there are several plausible explanations that may partially account for the high 

consumption values along the Texas-Mexico border.  A series of conversations with 
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employees at the Texas Water Development Board suggested that the official decennial 

census counts were underestimating the true populations along the Texas-Mexico border 

due to illegal immigration and the presence of a sizable migratory agricultural workforce.  

Either of these situations could have potentially generated visible discrepancies, due to 

the assumption that the population value used in a per capita level measurement 

accurately reflects true landscape conditions.   In other words, if the transient or 

unofficial consumers of municipal water could be accounted for, the resulting per capita 

values may align more closely with the influence of population size. 

 Supporting data from illegal immigration activities were not pursued due to the 

inherent challenges associated with acquiring and using them, such as the subject’s fear 

of reprisal and self-reporting bias (Fowler Jr. 2009).  Estimates of seasonal migrant 

worker populations often suffer similar problems, but are slightly easier to obtain as a 

result of the legal migrant worker programs maintained by the U.S. Department of 

Agriculture, and the Migrant Health Care Program of the U.S. Department of Health and 

Human Services (Larson 2000).  Larson (2000) was contracted by the U.S. Department of 

Health and Human Services to prepare adjusted estimates of seasonal and migrant farm 

worker populations between 1994 and 1998.  These data were produced by combining 

existing national farm worker databases with surveys from the National Agricultural 

Worker Survey (NAWS) and the expert opinions of knowledgeable individuals involved 

in Texas agricultural operations.  The resulting estimates of migrant and seasonal farm 

worker populations reflect only those farm workers that would not have been recorded by 

decennial census counts, i.e. they are not permanent residents in their respective 

worksites.  Larson’s (2000) estimates of migrant and seasonal populations were not used 
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to adjust the population counts in this research due to the absence of comparable data for 

all study years.  However, a cursory comparison of the influence of migrant and seasonal 

farm worker populations on per capita municipal water consumption for the year 2000 in 

border counties was performed.  Table 19 suggested that transient populations were 

capable of influencing per capita municipal water use.  Hudspeth (-38.77%), Zavala (-

20.14%), and Presidio (-11.22%) counties all showed relatively high percentage changes 

in per capita municipal water consumption as a result of including transient populations 

in total population estimates. 

 The estimates of migrant and seasonal farm workers offered a plausible 

explanation for the pattern of high municipal water consumption values along the Texas-

Mexico border, but similar patterns along the western edge of the Texas Panhandle were 

better served by an alternate source of unrecorded transient populations.  A review of 

county histories provided by the Texas State Historical Association (2013) revealed that 

many of the panhandle counties and border counties shared an additional economic 

characteristic.  Between the end of the twentieth and the beginning of the twenty-first 

century, the contribution of tourism to the local economies of these counties had 

increased in response to declining incomes from agriculture and fossil fuel extraction.  

The nebulous nature of tourism creates difficulties in developing an operational measure 

of the variable, but the County Business Pattern data available from the U.S. Census 

Bureau (2013a) offered a viable alternative in concert with a simplifying assumption.  

The county business pattern data was used to develop a Percent Lodging variable as a 

surrogate for tourism activity under the assumption that counties with a higher percentage 
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of commercial businesses dedicated to lodging experienced higher levels of tourism 

activity. 

 The county business patterns for Texas were obtained from the U.S. Census 

Bureau (2013) by industry classification code for 1990, 2000, and 2010.  After adjusting 

for the conversion from Standard Industry Code (SIC) that was used in 1990 to the North 

American Standard Industry Classification System (NAICS) employed in 2000 and 2010 

with a concordance table (USCB 2013b),  the total number of hotels, motels, and other 

lodging establishments were extracted from the total number of commercial businesses.  

Commercial businesses were defined as the sum of retail and wholesale trade, and 

services (professional employment establishments, restaurants, entertainment, and 

lodging).   The total number of lodging establishments was divided by the total number of 

commercial businesses to provide the percentage of commercial businesses dedicated to 

temporary housing accommodations used by travelers (lodging). 

 Although not a perfect match, maps of lodging establishments as a percentage of 

commercial businesses in 1990 (Figure 48), 2000 (Figure 49), and 2010 (Figure 50) 

illustrate visual agreement with per capita municipal water consumption values in those 

same years.  The percent lodging data mirrored panhandle municipal water consumptions 

most closely in 2000 and 2010, with visible albeit weaker pattern similarities in 1990.  

The spatial distribution of lodging percentages in 2000 suggested relatively high 

concentrations of tourism along the Texas-Mexico border in Culberson, Jeff Davis, 

Brewster, Val Verde, and Zapata counties which also exhibited high per capita municipal 

water consumptions.  The visual agreement of lodging patterns in the western panhandle 

was not as strong as those along the border, but both the per capita municipal water 
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consumption and percent lodging values were high in Dallam and Oldham counties.  

Previously, these high municipal water consumptions defied possible explanation. 

 The visual match between per capita municipal water consumption (Figure 45) 

and percent lodging (Figure 50) in 2010 was similar to that of 2000 where the values of 

both variables were relatively high along the Texas-Mexico border and the western 

panhandle.  High value border counties included Brewster, Culberson, Jeff Davis, Val 

Verde, and Zapata, while the highest values for the panhandle counties were found in 

Oldham and Dallam counties.  In 1990, the visual agreement between high values of 

municipal water consumption and percent lodging was weaker, but apparent.  The spatial 

distribution of these variables suggested that tourism activity and its associated transient 

population most strongly influenced the consumption of municipal water in the border 

counties of Brewster, Jeff Davis, Terrell, Val Verde, and Zapata, and the panhandle 

counties Oldham and Dallam.  Additionally, the visual agreements between municipal 

water consumption and percent lodging were loosely supported by the Kendall Tau 

bivariate correlations for these variables in two of the three years.  Per Capita Municipal 

Water Consumption and Percent Lodging displayed weak yet statistically significant 

Kendall Tau correlations in 1990 (τ = 0.097, p = 0.023) and 2010 (τ = -0.134, p = 0.002).   

Thus, despite statistically weak explanatory power, it was possible that the temporary 

increases in population from tourism activity may have contributed to the seemingly 

erroneous patterns of municipal water consumption along the Texas-Mexico border and 

the western Texas Panhandle. 

 Secondly, the consistent differences in municipal water consumption between 

Dallas and Harris counties were equally puzzling.  Despite the fact that Harris County 
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had higher total populations than Dallas County in 1990, 2000, and 2010 (see Figures 42, 

46, and 47), Harris County’s per capita municipal water consumption was lower than that 

of Dallas County in each of the same years (Figure 43).   While this curious relationship 

was not explicitly explored in the context of this research, the consumption differences 

between Harris and Dallas counties may be partially explained through disparities in local 

water policies.  Unlike Dallas County, Harris County was forced to develop 

comprehensive water conservation measures to combat severe land subsidence problems 

(USGS 1999).  Land subsidence, or the sinking of the land, has plagued Harris, Fort 

Bend, and Galveston counties for decades due to the removal of incredibly large volumes 

of groundwater for municipal use and fossil fuel recovery (Gabrysch and Bonnet 1975).  

The unequal rates of groundwater withdrawal and recharge caused decreases in 

underground pressure which in turn caused the land surface to sink.   

Land subsidence has created multiple problems for Harris, Fort Bend and 

Galveston counties including decreased water quality resulting from shifts in the ‘bad 

water line’ that separates fresh and saline water supplies, and increased susceptibility to 

inundation during periods of high rainfall due to decreases in land surface elevation.  

While the water quality issues were important, it was the severity of land subsidence 

driven flooding events that eventually spurred policy changes.  In 1975, the Texas 

Legislature responded to the property damage concerns of citizens in Houston, and 

created the Harris-Galveston Coastal Subsidence District which had the power to restrict 

groundwater withdrawals (USGS 1999).  The regulatory power of the agency was 

strengthened following the destruction of the Brownwood subdivision in Baytown by 

Hurricane Alicia in 1983, and again in 1992 in response to the rising costs of substituting 
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surface water for groundwater (USGS 1999).  These increases in regulatory strength 

resulted in aggressive water conservation policies that are still in effect today.  Recent 

studies of land subsidence in northwest Houston further demonstrate the need for the 

continued management of groundwater resources and subsidence which likely reduce the 

per capita consumption of municipal water.  Engelkemeir et al. (2010) found that portions 

of Jersey Village, a city in northwest Harris County, were still sinking at rates of 45.7 to 

56.0 centimeters per year.   

Following the previous discussion of land subsidence and its potential influence 

on active water conservation policies in Harris County, it is safe to conclude that land 

subsidence may partially account for the consistent disparities between the per capita 

municipal water consumptions of Harris and Dallas counties.  Dallas County has suffered 

several severe municipal water shortages in recent years that have led to identification of 

new water supplies (Appleton 2009), but authoritative conservation measures have yet to 

be implemented.  Likewise, evidence has been provided to support the possibility that the 

per capita municipal consumption patterns along the Texas-Mexico border and the Texas 

Panhandle may be partially explained by the unrecorded fluxes in transient populations.  

This research stepped beyond these cursory explanations, and quantitatively explored the 

human and physical landscape characteristics that individually and jointly to contributed 

to these same patterns.  The results of this quantitative analysis are described and 

explained in the subsequent sections of this chapter. 
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Original Bivariate Kendall Tau Correlations 

1990 

In 1990, the Kendall Tau correlations indicated that independent variables in each 

of the conceptual categories, i.e. the social, urbanized, and physical environments, 

exhibited weak but statistically significant linear associations with Per Capita Municipal 

Water Consumption.  The set of independent variables in Model 1 (see Table 15) showed 

that the strongest correlations were present in the social and physical environmental 

variables.  Percent Worked Inside County of Residence had the highest degree of 

association (τ = 0.320, p < 0.001) followed by Average Annual Precipitation (τ = -0.306, 

p < 0.001).  The positive relationship between the percentage of the population that 

worked inside their county of residence and the per capita municipal water consumption 

suggested that county municipal water use increased in response to increases in the 

volume of commercial water consumers.  Conceptually, the direction and strength of this 

relationship suggested that increases in the amount of water used outside the home 

significantly increase the overall consumption of municipal water.  

The negative association between the annual average amount of precipitation that 

a county received and its per capita municipal water consumption suggested that water 

use decreased in response to increases in precipitation.  Conceptually, the direction and 

strength of this relationship suggested that short-term increases in available moisture 

significantly decreased the amount of outdoor municipal water consumption at the county 

scale.  Another possible interpretation of this association is that outdoor areas such as 

lawns are less likely to require additional water if more water is available from naturally 
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occurring sources.  This finding was generally consistent with previous studies conducted 

at finer spatial scales (Gutzer and Nims 2005; Kenney et al. 2008). 

The second highest associations were also present in the social and physical 

environmental variables with Percent Owner Occupied (τ = -0.243, p < 0.001) and 

Average Annual Lake Evaporation (τ = 0.226, p < 0.001).  The negative association 

between the percentage of the population that lived in a dwelling that they owned and per 

capita municipal water consumption suggested that the consumption of municipal water 

decreased in response to increases in the number of people residing in properties that they 

owned.  Conceptually, the strength and direction of this relationship suggested that 

increases in residential property ownership significantly decreased the residential 

component of municipal water consumption on a per capita basis.  This finding 

contradicted the supposition that a vested interest in the maintenance of outdoor areas 

such as lawns would increase water consumption.  One potential explanation for the 

direction of this relationship is that the county scale was obscuring the true association 

relative to individual consumer behavior which cannot be discerned here.  Another 

possibility is that the Percent Owner Occupied variable is reflecting an indoor rather than 

an outdoor consumption of water.  For example, research has shown that owner occupied 

dwellings are more likely to have energy and water efficient devices than renter occupied 

dwellings (Davis 2010).  In this case the negative relationship could indicate that the 

presence of more efficient appliances in an owner occupied dwelling decreased per capita 

indoor municipal water consumption. 

The positive association between the annual average amount of lake evaporation 

and per capita municipal water consumption suggested that the consumption of municipal 
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water increases in response to increases in evaporative processes that likely result from a 

combination of increases in average annual temperature and decreases in average annual 

precipitation.  Temperature was not considered in this analysis due to collinearity with 

evaporation, but the association between Annual Average Lake Evaporation and Average 

Annual Precipitation was moderately strong (τ = -0.504, p < 0.001).  Conceptually, the 

direction and strength of the relationship between Average Annual Lake Evaporation and 

Per Capita Municipal Water Consumption suggested that the consumption of municipal 

water at the county scale significantly increased in response to increases in short-term 

moisture loss.  Short-term moisture losses did not appear to affect the relative mix of 

municipal water sources at the county scale as evidenced by the exceptionally weak and 

statistically insignificant association between Annual Average Lake Evaporation and 

Percent Surface Water (τ = -0.005, p = 0.918). 

The statistical significance of the social environment variables continued with the 

educational attainment variables of Percent High School Diploma (τ = -0.213, p < 0.001) 

and Percent Bachelor’s Degree (τ = .194, p < 0.001) displaying moderately weak overall, 

yet moderately high associations with Per Capita Municipal Water Consumption 

compared to the complete set of  independent variables (see Table 15).  The negative 

association between per capita municipal water consumption and the percentage of the 

population that had completed high school suggested that municipal water consumption 

at the county scale decreased in response to increases in the completion of secondary 

education.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water significantly decreased in response to increases in the 

cursory exposure to environmental and water resource issues.  The positive association 
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between per capita municipal water consumption and the percentage of the population 

that had completed a Bachelor’s degree suggested that municipal water consumption at 

the county scale increased in response to increases in the attainment of a post-secondary 

degree.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water significantly increased in response to increases in the 

additional exposure to environmental and water resource issues.   

The opposite directions of the respective associations between Per Capita 

Municipal Water Consumption, Percent High School Diploma, and Percent Bachelor’s 

Degree contradict each other under the original assumption that higher levels of 

educational attainment would reduce municipal water consumption due to an increased 

awareness of environmental and water resource issues.  One possible explanation for this 

apparent contradiction is that the educational variables are reflecting a latent income 

effect rather than the influence of exposure to environmental information.  Previous 

studies have documented higher residential municipal water consumptions amongst 

wealthier and highly educated populations (House-Peters et al. 2010; Kenney et al. 2008).  

This research further supports the possibility that the education variables are reflecting 

the influence of income rather than exposure to environmental information in the Kendall 

Tau correlations between Per Capita Income and Percent High School Diploma (τ = 

0.086, p = 0.041), and Per Capita Income and Percent Bachelor’s Degree (τ = 0.435, p < 

0.001).  Although per capita income increases in response to both education variables, the 

attainment of a bachelor’s degree clearly has a stronger influence. 

The urbanized environment variables displayed statistically significant, but 

weaker associations with Per Capita Municipal Water Consumption where Percent 
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Urban (τ = 0.208, p < 0.001) was stronger than Population Density (τ = -0.128, p = 

0.002).   The positive association between the percentage of the population living in 

urban areas and per capita municipal water consumption suggested that the consumption 

of municipal water increased in response to increases in the size of urban populations.  

Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale significantly increased in response to 

increases in urbanization processes, or the redistribution of people from agricultural to 

non-agricultural communities with greater degrees of infrastructure and service 

availability (Weeks 1996).  This finding supports earlier research by Dallman and 

Spongberg (2012) that found increases in urbanization processes significantly increased 

fresh water consumption. 

The negative association between the density of a county’s population and its per 

capita municipal water consumption suggested that the consumption of municipal water 

decreased in response to increases in the concentrations of population on the physical 

landscape.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale significantly decreased in response to 

increases in the concentration of potential users in a given area.  While the opposite 

directions of the respective associations between Per Capita Municipal Water 

Consumption, Percent Urban and Population Density may appear initially contradictory, 

the finding is partially supported by the lower than expected association between the two 

variables in 1990.  The Kendall Tau correlation between Percent Urban and Population 

Density was high relative to bivariate correlations present in other variables, but low in an 

absolute sense (τ = 0.336, p < 0.001).   
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The remaining statistically significant independent variables belonged to the 

social and physical conceptual categories, and exhibited the weakest of the significant 

associations with Per Capita Municipal Water Consumption.  These variables included 

Percent 18 Years and Younger (τ = 0.112, p = 0.008), Percent Single Family (τ = 0.110, p 

= 0.009), Annual Average PHDI (τ = -0.093, p = 0.028), and Percent 65 years and Older 

(τ = -0.083, p = 0.050).  The positive association between the percentage of the 

population eighteen years of age or less in a county and its per capita municipal water 

consumption suggested that the consumption of municipal water increased in response to 

increases in indoor water use by children eighteen years or younger.  Conceptually, the 

strength and direction of this relationship suggested that the consumption of municipal 

water at the county scale significantly increased in response to an increase in the size of 

one of  the populations that was the most likely to spend the largest amount of time inside 

the home.   

The positive association between the percentage of the population residing in 

single family homes and per capita municipal water consumption suggested that 

municipal water consumption increased in response to an increase in the size of the 

residential population that was more likely to affect the use of both indoor and outdoor 

water (Wentz and Gober 2007).  Conceptually, the strength and direction of this 

relationship suggested that the consumption of municipal water at the county scale 

significantly increased in response to an increase in outdoor residential water use 

resulting from the increased likelihood that a lawn or similar water consuming amenity 

was present.  The true strength of the association between the percentage of single family 

homes and municipal water consumption may have been muted by the scale of 
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observation or the use of a per capita measurement, as Wentz and Gober (2007) and 

House-Peters et al. (2010) found stronger relationships between these variables at finer 

spatial resolutions. 

The positive association between the average annual hydrological drought index 

and per capita municipal water consumption suggested that municipal water consumption 

increased in response to decreases in moisture deficiencies.  The inverse relationship 

expressed by a positive association is derived from the fact that a positive value of PHDI 

indicates normal or wet conditions while a negative value of PHDI abnormally dry 

conditions (NOAA 2012). Examining the Kendall Tau correlations between Annual 

Average PHDI and the precipitation and evaporation variable helped clarify the initially 

confusing relationship between the long-term drought index and municipal water 

consumption.  For example, Average Annual Precipitation (τ = 0.320, p < 0.001) was 

positively associated with Average Annual PHDI, and Average Annual Lake Evaporation 

(τ = -0.133, p = 0.002) was negatively associated with Average Annual PHDI.  The 

direction of these associations means that wetter conditions were present with increases 

in precipitation, and that drier conditions were present with decreases in available 

moisture.   

Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale increased in response to decreases in 

long-term reductions in available moisture.  Although statistically significant, Average 

Annual PHDI exhibited the weakest association of with Per Capita Municipal Water 

Consumption of all of the physical environment variables, as well as the larger group of 

variables that were statistically significant (see Table 15).  While the long-term measure 
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of moisture deficiency very weakly influenced the per capita consumption of municipal 

water, it had a much stronger relative effect on water sourcing decisions.  The Kendall 

Tau correlation between Average Annual PHDI and Percent Surface Water (τ = 0.266, p 

< 0.001) suggested that the increased availability of moisture spurred increases in the use 

of surface water.  

This positive relationship between long-term moisture availability and municipal 

water consumption has not appeared elsewhere in the literature, but it is plausible if the 

municipal use of water is considered from the perspective of shared or common pool 

resources.  A common pool resource (CPR) is one in which public ownership of the 

resource accelerates its degradation or depletion due to a lack of individual accountability 

for the consequences associated with its use (Krause et al. 2003).  One problem 

commonly linked to CPRs, is the insensitivity to the interrelationships that exist between 

the consumption patterns of individual users, i.e. the decreased availability of the 

resource to user A that results from the consumption of user B (Krause et al. 2003, 

Ostrom et al. 1994).  Despite the highly private nature of water in Texas, the laws that 

encourage and protect the privatization of water create resource consumption patterns 

with CPR characteristics.  For example, the Rule of Capture incentivizes higher rather 

than lower uses of water without regard for the impacts of that use on other water users 

(Thompson 1999).  Under the Rule of Capture, which assigns ownership of water to the 

party that physically removed it from the ground, a water user whose well runs dry as the 

result of a neighbor’s heavy withdrawals is left without legal recourse (Thompson 1999).  

Similarly, Prior Appropriation of surface water preserves the seniority of water rights, but 

not the volume of water.  Under this doctrine, water rights that do not use their full 
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allotment may be subject to future reduction (Thompson 1999).  Thus, it is possible that 

an increase in the availability of water could result in increased consumption of surface 

water. 

The negative association between the percentage of the population 65 years and 

older and per capita municipal water consumption suggested that municipal water 

consumption decreases in response to increases in indoor water use by adults 65 years or 

older.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale significantly decreased in response to 

an increase in the size of one of the populations that was the most likely to spend the 

largest amount of time inside the home.  The negative association between the elderly 

population and per capita uses of municipal water may be reflecting age-related 

differences in the attitudes towards water consumption and frequency of common indoor 

water consuming activities, rather than simply the amount of time spent inside the home 

(Corbella and Pujol 2009).  Naughes and Thomas (2002) found that the percentage of the 

population 65 years and older tended to use less water for showers, laundry, and 

dishwashing than other segments of the population, including the percentage of the 

population that was 18 years of age or younger. 

The following independent variables demonstrated very weak associations with 

Per Capita Municipal Water Consumption that were not statistically significant: Average 

Household Size (τ = 0.071, p = 0.094), Per Capita Income (τ = -0.063, p = 0.137), and 

Percent Surface Water (τ = -0.018, p = 0.684).  The strength of the respective 

relationships between per capita municipal water consumption and independent variables 

of average household size and per capita income may be partially attributed to the level 
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of spatial aggregation for each variable.  The use of individual consumer records in 

Aurora, Colorado produced slightly stronger associations for these variables (Kenney et 

al. 2008).  The direction of the relationship between municipal water consumption and 

average household size was intuitive, as one would assume water consumption to 

increase with larger household sizes.   

The direction of the relationship between per capita income and per capita 

municipal water use was initially counterintuitive, but this finding was supported by 

previous studies.  House-Peters et al. (2010) and Kenney et al. (2008) both found that 

average and median household incomes exhibited positive associations with municipal 

water consumption, while per capita incomes displayed negative associations. The 

strength and direction of the relationship between the percentage of surface water and per 

capita municipal water consumption was neither expected nor unexpected since it has not 

been explored in previous research.  The Kendall Tau correlations and their 

corresponding significance values for all of the independent variables in each model are 

listed in Table 15. 

2000 

In 2000, the Kendall Tau correlations indicated that independent variables in each 

of the conceptual categories, i.e. the social, urbanized, and physical environments, 

exhibited weak but statistically significant linear associations with Per Capita Municipal 

Water Consumption.  The set of independent variables in Model 1 (See Table 16) showed 

that the strongest correlations were present in the social and physical environmental 

variables.  Percent Worked Inside County of Residence had the highest degree of 

association (τ = 0.329, p < 0.001) followed by Average Annual Precipitation (τ = -0.274, 
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p < 0.001).  The positive relationship between the percentage of the population that 

worked inside their county of residence and the per capita municipal water consumption 

suggested that county municipal water use increased in response to increases in the 

volume of commercial water consumers.  Conceptually, the direction and strength of this 

relationship suggested that increases in the amount of water used outside the home 

significantly increase the overall consumption of municipal water.  

The negative association between the annual average amount of precipitation that 

a county received and its per capita municipal water consumption suggested that water 

use decreased in response to increases in precipitation.  Conceptually, the direction and 

strength of this relationship suggested that short-term increases in available moisture 

significantly decrease the amount of outdoor municipal water consumption at the county 

scale.  Another possible interpretation of this association is that outdoor areas such as 

lawns are less likely to require additional water if more water is available from naturally 

occurring sources. This finding was similar to the finding in 1990 and maintained 

consistency with previous studies conducted at finer spatial scales (Gutzer and Nims 

2005; Kenney et al. 2008).  

While the levels of statistical significance for Percent Worked Inside County of 

Residence and Average Annual Precipitation both remained constant between 1990 and 

2000 (p < 0.001), the relationship strengths for these variables was different in each year.  

The strength of the association between per capita municipal water consumption and the 

percentage of the population working inside their county of residence increased from 

0.320 in 1990 to 0.329 in 2000.  Conversely, the strength of the association between the 

per capita municipal water consumption and the average annual amount of precipitation 
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that a county received decreased from -0.306 in 1990 to -0.274 in 2000.  These 

differences in association strength suggest that the relationship between municipal water 

consumption and non-residential water uses and the relationship between municipal water 

consumption and short-term moisture inputs are influenced by time. 

The second highest associations were also present in the social and physical 

environmental variables with Percent Owner Occupied (τ = -0.249, p < 0.001) and 

Average Annual Lake Evaporation (τ = 0.245, p < 0.001).  The negative association 

between the percentage of the population that lived in a dwelling that they owned and per 

capita municipal water consumption suggested that the consumption of municipal water 

decreased in response to increases in the number of people residing in properties that they 

owned.  Conceptually, the strength and direction of this relationship suggested that 

increases in residential property ownership significantly decreased the residential 

component of municipal water consumption on a per capita basis.  This finding 

contradicted the supposition that a vested interest in the maintenance of outdoor areas 

such as lawns would increase water consumption.  One potential explanation for the 

direction of this relationship is that the county scale was obscuring the true association 

relative to individual consumer behavior which cannot be discerned here.  Another 

possibility is that the Percent Owner Occupied variable is reflecting an indoor rather than 

an outdoor consumption of water.  For example, research has shown that owner occupied 

dwellings are more likely to have energy and water efficient devices than renter occupied 

dwellings (Davis 2010).  In this case the negative relationship could indicate that the 

presence of more efficient appliances in an owner occupied dwelling decreased per capita 

indoor municipal water consumption. 



100 
 

 
 

The positive association between the annual average amount of lake evaporation 

and per capita municipal water consumption suggested that the consumption of municipal 

water increases in response to increases in evaporative processes that likely result from a 

combination of increases in average annual temperature and decreases in average annual 

precipitation.  Temperature was not considered in this analysis due to collinearity with 

evaporation, but the association between Annual Average Lake Evaporation and Average 

Annual Precipitation was moderately strong (τ = -0.560, p < 0.001).  The strength of the 

association between lake evaporation and precipitation also increased from 1990 when its 

value was -0.504 at the same level of statistical significance, suggesting that increases in 

short-term moisture inputs reduced short-term moisture deficits more quickly.  

Conceptually, the direction and strength of the relationship between Average Annual 

Lake Evaporation and Per Capita Municipal Water Consumption suggested that the 

consumption of municipal water at the county scale significantly increased in response to 

increases in short-term moisture loss.  Short-term moisture losses did not appear to affect 

the relative mix of municipal water sources at the county scale as evidenced by the 

exceptionally weak and statistically insignificant association between Annual Average 

Lake Evaporation and Percent Surface Water (τ = -0.026, p = 0.555). 

The strength and direction of the respective relationships between per capita 

municipal water consumption, the percentage of the population that lived in a dwelling 

that they owned, and the average annual short-term loss of moisture were identical to 

those expressed in 1990 (see Tables 15 and 16).  The lack of change in the associations of 

these variables with municipal water consumption suggested that their relationships were 

not influenced by time between 1990 and 2000.  While the direction and statistical 
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insignificance of the association between annual short-term moisture losses and the 

percentage of surface water used as a source of municipal water remained consistent 

between 1990 and 2000, the relationship strength increased from -0.005 in 1990 to -0.026 

in 2000.  This change in association strength suggested that the relationship between 

these variables was influenced by time between 1990 and 2000. 

The third highest associations with Per Capita Municipal Water Consumption 

were found in the social and urbanized environment variables with Percent High School 

Diploma (τ = -0.244, p < 0.001) and Percent Urban (τ = 0.220, p < 0.001) displaying 

moderately weak overall, yet moderately high associations compared to the complete set 

of  independent variables in Model 1 (see Table 16).  The negative association between 

per capita municipal water consumption and the percentage of the population that had 

completed high school suggested that municipal water consumption at the county scale 

decreased in response to increases in the completion of secondary education.  

Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water significantly decreased in response to increases in the 

cursory exposure to environmental and water resource issues.  The positive association 

between per capita municipal water consumption and the percentage of the population 

living in urban areas suggested that municipal water consumption at the county scale 

increased in response to increases in the size of urban populations.  Conceptually, the 

strength and direction of this relationship suggested that the consumption of municipal 

water at the county scale significantly increased in response to increases in urbanization 

processes, or the redistribution of people from agricultural to non-agricultural 

communities with greater degrees of infrastructure and service availability (Weeks 1996).  
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This finding closely resembles the relationship between per capita municipal water 

consumption and the percentage of the population living in urban areas in 1990, and also 

supports earlier research by Dallman and Spongberg (2012) that found increases in 

urbanization processes significantly increased fresh water consumption. 

The direction of the respective relationships between municipal water 

consumption and the independent variables of Percent High School Diploma and Percent 

Urban was the same as in 1990, but the association strengths increased between 1990 and 

2000 in both cases. The strength of the relationship between per capita municipal water 

consumption and the percentage of the population that had completed high school 

increased from -0.213 in 1990 to -0.243 in 2000.  Similarly, the strength of the 

relationship between per capita municipal water consumption and the percentage of the 

population living in urban areas increased from 0.208 in 1990 to 0.220 in 2000.  This 

change in association strength suggested that the relationships between these independent 

variables and municipal water consumption were influenced by time between 1990 and 

2000. 

The fourth strongest associations with Per Capita Municipal Water Consumption 

were present in social and urbanized environment variables with Percent 18 Years and 

Younger (τ = 0.168, p < 0.001) and Population Density (τ = -0.164, p < 0.001) displaying 

weak statistical relationships overall.  The positive association between the percentage of 

the population eighteen years of age or less in a county and its per capita municipal water 

consumption suggested that the consumption of municipal water increased in response to 

increases in indoor water use by children eighteen years or younger.  Conceptually, the 

strength and direction of this relationship suggested that the consumption of municipal 
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water at the county scale significantly increased in response to an increase in the size of 

one of  the populations that was the most likely to spend the largest amount of time inside 

the home. 

The negative association between the density of a county’s population and its per 

capita municipal water consumption suggested that the consumption of municipal water 

decreased in response to increases in the concentrations of population on the physical 

landscape.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale significantly decreased in response to 

increases in the concentration of potential users in a given area.  Following the pattern 

established in the first three pairs of independent variables that expressed statistically 

significant associations with per capita municipal water consumption, the percentage of 

the population 18 years and younger and population density maintained relationships 

with the same direction in both 1990 and 2000.  Additionally, the association strengths of 

these relationships were stronger in 2000 than in 1990.  The strength of the relationship 

between Per Capita Municipal Water Consumption and Percent 18 Years and Younger 

increased from 0.112 in 1990 to 0.168 in 2000, while the relationship between Per Capita 

Municipal Water Consumption and Population Density increased from -0.128 to -0.164 

over the same period.  The increased strength of these associations between 1990 and 

2000 suggested that the respective relationships between the independent variables and 

the dependent variable were influenced by time. 

Once again Percent Urban and Population Density correlated with Per Capita 

Municipal Water Consumption in opposite directions which appeared contradictory until 

considering the statistical relationship between the two independent variables.  The 
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Kendall Tau correlation between Percent Urban and Population Density was high 

relative to bivariate correlations present in other variables, but low in an absolute sense (τ 

= 0.385, p < 0.001).   

The remaining statistically significant independent variables belonged to the 

social conceptual category, and exhibited the weakest of the significant associations with 

Per Capita Municipal Water Consumption.  These variables included Per Capita Income 

(τ = -0.135, p = 0.001), Percent 65 Years and Older (τ = -0.111, p = 0.009), and Percent 

Bachelor’s Degree (τ = 0.096, p = 0.023).    The negative association between the per 

capita income of a county and its per capita municipal water consumption suggested that 

municipal water consumption decreased in response to an increase in an equal 

distribution of total household income across the total population.  Conceptually, the 

strength and direction of this relationship suggested that the consumption of municipal 

water at the county scale significantly decreased in response to an increase in the 

affluence level of the county.   

This negative relationship between income and municipal water consumption in 

2000 may be partially explained in the same manner as the relationship between 

municipal water consumption and the percentage of owner occupied dwellings in 1990.  

Counties with high per capita incomes may be more likely to also have high incidences of 

property owners occupying their own dwellings.  In turn, this higher percentage of owner 

occupied dwellings may reduce the residential component of municipal water 

consumption through the increased ownership of water efficient appliances such as 

clothes washing machines, and dishwashers (Davis 2010).  The positive statistically 

significant association between Per Capita Income and Percent Owner Occupied 
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Dwellings (τ = 0.116, p = 0.006) supported this possible explanation despite a weak 

relationship strength. 

The negative association between the percentage of the population 65 years and 

older and per capita municipal water consumption suggested that municipal water 

consumption decreases in response to increases in indoor water use by adults 65 years or 

older.  Conceptually, the strength and direction of this relationship suggested that the 

consumption of municipal water at the county scale significantly decreased in response to 

an increase in the size of one of the populations that was the most likely to spend the 

largest amount of time inside the home.  The negative association between the size of the 

elderly population and the consumption of municipal water in 2000 mirrors the 

relationship between these two variables in 1999 and may be partially explained in a 

similar fashion.  Despite the increased likelihood that persons aged sixty-five years an 

older to spend more time inside the home than other segments of the larger population, 

their attitudes towards resource consumption and water use preferences may result in 

lower consumptions of municipal water (Corbella and Pujol 2009; Naughes and Thomas 

2002). 

The positive association between per capita municipal water consumption and the 

percentage of the population that had completed a Bachelor’s degree suggested that 

municipal water consumption at the county scale increased in response to increases in the 

attainment of a post-secondary degree.  Conceptually, the strength and direction of this 

relationship suggested that the consumption of municipal water significantly increased in 

response to increases in the additional exposure to environmental and water resource 

issues.  While the strength of the association between these two variables in 2000 was 
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weaker than in 1990, its direction remained the same.  Thus, the positive relationship 

between Per Capita Municipal Water Consumption and Percent Bachelor’s Degree in 

2000 may also be partially attributed to a latent income effect where higher incomes 

coincide with increased access to water consuming devices such as swimming pools 

(Wentz and Gober 2007; House-Peters et al. 2010).  This potential explanation is 

supported by the strength and direction of the statistically significant association between 

Per Capita Income and Percent Bachelor’s Degree (τ = 0.474, p < 0.001). 

The relationships between Per Capita Municipal Water Consumption and the 

independent variables of Per Capita Income, Percent 65 Years and Older, and Percent 

Bachelor’s Degree all maintained the same direction in 1990 and 2000, while the strength 

of each association was different.  The strength of the relationship between per capita 

municipal water consumption and per capita income increased from an insignificant -

0.063 in 1990 to a statistically significant -0.135 in 2000 (see Tables 15 and 16).  

Similarly, the strength of the relationship between per capita municipal water 

consumption and the percentage of the population aged sixty-five years and older 

increased from -0.083 in 1990 to -0.111 in 2000.  Unlike the previous two independent 

variables, the strength of the relationship between per capita municipal water 

consumption and the percentage of the population that earned a bachelor’s degree 

decreased from 0.194 in 1990 to 0.096 in 2000.  The differences in the strengths of these 

associations between years suggested that time influenced the relationships between the 

dependent variable and the independent variables were influenced by time. 

The following independent variables demonstrated very weak associations with 

Per Capita Municipal Water Consumption that were not statistically significant in 2000: 
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Average Household Size (τ = 0.057, p = 0.175), Percent Single Family (τ = -0.051, p = 

0.226), Percent Surface Water (τ = -0.025, p = 0.575), and Average Annual PHDI (τ = -

0.022, p = 0.611) .  The strength of the respective relationships between per capita 

municipal water consumption and independent variables of average household size and 

percent single family may be partially attributed to the level of spatial aggregation for 

each variable just like in 1990.  The use of individual consumer records in Aurora, 

Colorado produced slightly stronger associations for these variables (Kenney et al. 2008).  

The direction of the relationship between municipal water consumption and average 

household size was intuitive, as one would assume water consumption to increase with 

larger household sizes.  The direction of the relationship between per capita municipal 

water consumption and the percentage of single family homes was counterintuitive, but 

may be partially explained by the likelihood that single family homes share the 

propensity of owner occupied dwellings to have water efficient appliances (Davis 2010).  

This potential explanation is also supported by the strength and direction of the 

association between Percent Single Family and Percent Owner Occupied Dwellings (τ = 

0.245, p < 0.001) in 2000. 

The strengths of the respective associations between per capita municipal water 

consumption, the percentage of surface water used to meet municipal water demands, and 

the average annual long-term loss of moisture were weaker in 2000 than in 1990.  These 

relationships were also statistically significant in 1990 and statistically insignificant in 

2000.  The directions of these relationships in 2000 were opposite their original directions 

in 1990.  Taken together, the differences in association strength and direction between 

Per Capita Municipal Water Consumption and Percent Surface Water, and Per Capita 
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Municipal Water Consumption and Average Annual PHDI suggested that these 

relationships were influenced by time. 

The positive association between the average annual hydrological drought index 

and per capita municipal water consumption suggested that municipal water consumption 

increased in response to decreases in moisture deficiencies.  The inverse relationship 

expressed by a positive association is derived from the fact that a positive value of PHDI 

indicates normal or wet conditions while a negative value of PHDI abnormally dry 

conditions (NOAA 2012). Examining the Kendall Tau correlations between Annual 

Average PHDI and the precipitation and evaporation variable helped clarify the initially 

confusing relationship between the long-term drought index and municipal water 

consumption.  For example, Average Annual Precipitation (τ = 0.320, p < 0.001) was 

positively associated with Average Annual PHDI, and Average Annual Lake Evaporation 

(τ = -0.133, p = 0.002) was negatively associated with Average Annual PHDI.  The 

direction of these associations means that wetter conditions were present with increases 

in precipitation, and that drier conditions were present with decreases in available 

moisture.   

2010 

In 2010, the Kendall Tau correlations indicated that independent variables in each 

of the conceptual categories, i.e. the social, urbanized, and physical environments, 

exhibited weak but statistically significant linear associations with Per Capita Municipal 

Water Consumption.  The set of independent variables in Model 1 (see Table 17) showed 

that the strongest correlations were present in the social and physical environmental 

variables.  Percent Worked Inside County of Residence had the highest degree of 
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association (τ = 0.226, p < 0.001) followed by Average Annual Precipitation (τ = -0.222, 

p < 0.001).  The positive relationship between the percentage of the population that 

worked inside their county of residence and the per capita municipal water consumption 

suggested that county municipal water use increased in response to increases in the 

volume of commercial water consumers.  Conceptually, the direction and strength of this 

relationship suggested that increases in the amount of water used outside the home 

significantly increased the overall consumption of municipal water.  

The negative association between the annual average amount of precipitation that 

a county received and its per capita municipal water consumption suggested that water 

use decreased in response to increases in precipitation.  Conceptually, the direction and 

strength of this relationship suggested that short-term increases in available moisture 

significantly decreased the amount of outdoor municipal water consumption at the county 

scale.  Another possible interpretation of this association is that outdoor areas such as 

lawns are less likely to require additional water if more water is available from naturally 

occurring sources. This finding was similar to the finding in 1990 and 2000 and was 

consistent with previous studies conducted at finer spatial scales (Gutzer and Nims 2005; 

Kenney et al. 2008).  

While the levels of statistical significance for Percent Worked Inside County of 

Residence and Average Annual Precipitation both remained constant between 1990, 

2000, and 2010 (p < 0.001), the relationship strengths for these variables were different in 

each year.  The strength of the association between per capita municipal water 

consumption and the percentage of the population working inside their county of 

residence increased from 0.320 in 1990 to 0.329 in 2000, and decreased to 0.226 in 2010.  
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Conversely, the strength of the association between the per capita municipal water 

consumption and the average annual amount of precipitation that a county received 

consistently decreased from -0.306 in 1990 to -0.274 in 2000, and to -0.222 in 2010.  

These differences in association strength suggested that the relationship between 

municipal water consumption and non-residential water uses and the relationship between 

municipal water consumption and short-term moisture inputs were influenced by time. 

The second highest associations were present in the urbanized and physical 

environmental variables with Population Density (τ = -0.178, p < 0.001) and Average 

Annual Lake Evaporation (τ = 0.146, p < 0.001).  The negative association between the 

density of a county’s population and its per capita municipal water consumption 

suggested that the consumption of municipal water decreased in response to increases in 

the concentrations of population on the physical landscape.  Conceptually, the strength 

and direction of this relationship suggested that the consumption of municipal water at 

the county scale significantly decreased in response to increases in the concentration of 

potential users in a given area.   

Given the statistically insignificant association between Percent Urban and Per 

Capita Municipal Water Consumption (τ = 0.064, p = 0.137) in 2010, a comparison 

between the size of a county’s population living in an urban area and its concentrations of 

population on the physical landscape was not made for that year.  However, the direction 

of the relationship between population density and per capita municipal water 

consumption may be partially explained by the fact that urban areas often contain a 

mixture of both high and low population densities that reflect inverse levels of resource 

consumption.  Wentz and Gober (2007) and House-Peters et al. (2010) found similar 
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relationships between municipal water consumption and population density, although 

their research did not explicitly consider the concentrations of population on the physical 

landscape.  Both studies linked the highest consumptions of municipal water to lower 

density urban areas where lot sizes were larger and more outdoor water consuming 

devices such as swimming pools were present. 

The positive association between the annual average amount of lake evaporation 

and per capita municipal water consumption suggested that the consumption of municipal 

water increases in response to increases in evaporative processes that likely result from a 

combination of increases in average annual temperature and decreases in average annual 

precipitation.  Temperature was not considered in this analysis due to collinearity with 

evaporation, but the association between Annual Average Lake Evaporation and Average 

Annual Precipitation was moderately strong (τ = -0.531, p < 0.001) in 2010.  The 

strength of the association between lake evaporation and precipitation also increased 

from 1990 when its value was -0.504, and decreased from 2000 when its value was -

0.560 at the same level of statistical significance in all three years.  These differences 

suggested that increases in short-term moisture inputs reduced short-term moisture 

deficits more quickly in 2000 than in 1990, and that short-term moisture deficits 

responded more slowly to short-term moisture inputs in 2010 than in 2000.  

 Conceptually, the direction and strength of the relationship between Average 

Annual Lake Evaporation and Per Capita Municipal Water Consumption suggested that 

the consumption of municipal water at the county scale significantly increased in 

response to increases in short-term moisture loss.  Short-term moisture losses did not 

appear to affect the relative mix of municipal water sources at the county scale as 
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evidenced by the exceptionally weak and statistically insignificant association between 

Annual Average Lake Evaporation and Percent Surface Water in 2010 (τ = -0.071, p = 

0.106). 

The direction of the respective relationships between per capita municipal water 

consumption, the concentrations of  population in the physical landscape, and the average 

annual short-term loss of moisture were identical to those expressed in 1990 and 2000 

(see Tables 15, 16, and 17).  However, the association strength of each relationship was 

different in every year.  The strength of the association between Per Capita Municipal 

Water Consumption and Population Density consistently increased from -0.128 in 1990 

and -0.164 in 2000, to -0.178 in 2010.  The strength of association between Per Capita 

Municipal Water Consumption and Average Annual Lake Evaporation increased from 

0.226 in 1990 to 0.245 in 2000, but decreased to 0.146 in 2010.  These changes in 

association strength suggested that the relationships between these independent variables 

and per capita municipal water consumption were influenced by time between 1990, 

2000, and 2010. 

The remaining statistically significant independent variables belonged to the 

social conceptual category, and exhibited the weakest of the significant associations with 

Per Capita Municipal Water Consumption.  These variables included Percent High 

School Diploma (τ = -0.123, p = 0.003), and Percent Surface Water (τ =- 0.117, p = 

0.008).  The negative association between per capita municipal water consumption and 

the percentage of the population that had completed high school suggested that municipal 

water consumption at the county scale decreased in response to increases in the 

completion of secondary education.  Conceptually, the strength and direction of this 
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relationship suggested that the consumption of municipal water significantly decreased in 

response to increases in the cursory exposure to environmental and water resource issues.  

Just like in 1990 and 2000, the negative association between per capita municipal water 

consumption and the percentage of the population that completed high school is likely 

best explained through a latent income effect embedded in educational attainment rather 

than exposure to environmental information.   

House-Peters et al. (2010) and Kenney et al (2008) both reported that the highest 

municipal water consumptions occurred amongst the wealthier and more highly educated 

segments of the population.  Despite the negative association the between Percent High 

School Diploma and Per Capita Income (τ = -0.091, p = 0.032) in 2010, the latent income 

effect is plausible based on the relationships between Percent High School and Percent 

Bachelor’s Degree (τ = -0.346, p < 0.001), and Percent Bachelor’s Degree and Per 

Capita Income (τ = 0.427, p < 0.001).  The negative association between the percentage 

of the population that only completed high school and the percentage of the population 

that attained at least a bachelor’s degree suggested that the size of the population whose 

formal education ceased at the secondary level decreased in response to an increase in the 

size of the population that completed a post-secondary education.  Likewise, the positive 

association between the percentage of the population that attained at least a bachelor’s 

degree and per capita income suggested that per capita income increased in response to 

an increase in the completion of a post-secondary education.  Thus, an application of the 

transitive property suggested that the segment of the population possessing only a high 

school education would earn lower incomes and use less water than their more highly 

educated counterparts. 
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The negative association between per capita municipal water consumption and the 

percentage of surface water used for municipal purposes suggested that municipal water 

consumption increased in response to a decrease in the amount of surface water used to 

meet county scale municipal water demands.  Conceptually, the strength and direction of 

this relationship suggested that the consumption of municipal water significantly 

increased in response to a decrease in the surface water component of municipal water 

sources.  One potential explanation for the negative association between per capita 

municipal water consumption and the percentage of surface water used for municipal 

purposes may be a reduced consumption of outdoor residential water.   

This explanation is plausible based on the statistically significant negative 

relationship between Per Capita Municipal Water Consumption and Annual Average 

Precipitation (τ = -0.222, p < 0.001) in 2010, as well as the spatial distribution of average 

annual PHDI values for the same year.  The negative association between precipitation 

and per capita municipal water consumption suggested that the outdoor residential 

component of municipal water consumption decreased in response to increases in 

precipitation.  Hence, an increase in precipitation may have reduced the amount of 

surface water used to satisfy the residential component of outdoor municipal water 

demands.  Similarly, Figure 51 illustrated that despite the presence of regionally varying 

hydrological drought index values across the state, the average moisture conditions for 

2010 were generally wet.  East Texas experienced a normal range of moisture; west 

Texas and the eastern panhandle were mildly wet; the western panhandle along with 

north and central Texas were moderately wet; the southern Texas-Mexico border was 

extremely wet; and the northern gulf coast counties experienced the onset or early stages 
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of prevailing wet conditions.  This prevalence of normal to wet moisture availabilities 

may have also contributed to a reduced need for additional surface water. 

The direction of the associations between the percentage of the population that 

only completed high school and per capita municipal water consumption, and per capita 

municipal water consumption and percent surface water were both consistently negative 

in 1990, 2000, and 2010.  The strengths of the associations between the dependent 

variable and each independent variable, however, were different in every year.  The 

association strength between Per Capita Municipal Water Consumption and Percent 

High School Diploma increased from -0.213 in 1990 to -0.244 in 2000, and decreased to -

0.123 in 2010.  The association between Per Capita Municipal Water Consumption and 

Percent Surface Water was only statistically significant in 2010 (see Tables 15, 16, and 

17), but increased in strength from -0.018 in 1990 to -0.025 in 2000, and increased to -

0.117 in 2010.  These changes in association strength suggested that the relationships 

between these independent variables and per capita municipal water consumption were 

influenced by time between 1990, 2000, and 2010. 

The majority of independent variables demonstrated very weak associations with 

Per Capita Municipal Water Consumption that were not statistically significant in 2010. 

The statistically insignificant independent variables included Per Capita Income (τ = -

0.080, p = 0.058), Percent Owner Occupied (τ = -0.064, p = 0.131), Percent Urban (τ = 

0.064, p = 0.134), Percent Single Family (τ = -0.054, p = 0.199), Percent Bachelor’s 

Degree (τ = -0.027, p = 0.529), Percent 18 Years and Younger (τ = 0.019, p = 0.655), 

Percent 65 Years and Older (τ = -0.014, p = 0.744), Average Household Size (τ = - 0.003, 

p = 0.175), and Average Annual PHDI (τ = 0.002, p = 0.968).  The negative association 
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between per capita income and municipal water consumption in 2010 may be partially 

explained in the same manner as the relationship between municipal water consumption 

and the percentage of owner occupied dwellings in 1990 and 2000.  Counties with high 

per capita incomes may be more likely to also have high incidences of property owners 

occupying their own dwellings.  In turn, this higher percentage of owner occupied 

dwellings may reduce the residential component of municipal water consumption through 

the increased ownership of water efficient appliances such as clothes washing machines, 

and dishwashers (Davis 2010).  The positive statistically significant association between 

Per Capita Income and Percent Owner Occupied Dwellings (τ = 0.141, p = 0.001) 

supported this possible explanation despite a weak relationship strength. 

The strength and direction of the association between per capita municipal water 

consumption and the percentage of the population living in urban areas were addressed in 

the previous discussion of population density in 2010, and are not mentioned here.  The 

strength of the respective relationships between per capita municipal water consumption 

and the independent variables of average household size and percent single family may 

be partially attributed to the level of spatial aggregation for each variable just like in 1990 

and 2000.  Kenney et al. (2008) used individual consumer records in Aurora, Colorado 

which produced slightly stronger associations for these variables.  The direction of the 

relationship between municipal water consumption and average household size was 

counterintuitive, as one would assume water consumption to increase with larger 

household sizes.   

The negative association of this relationship may be partially explained by an 

economy of scale effect that surfaces in average households sizes larger than 2.5 (Arbues 
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et al. 2003).  In 2010, 160 of Texas’ 254 counties (approximately 63%) met this criterion.  

The direction of the relationship between per capita municipal water consumption and the 

percentage of single family homes was counterintuitive, but may be partially explained 

by the likelihood that single family homes share the propensity of owner occupied 

dwellings to have water efficient appliances (Davis 2010).  This potential explanation is 

also supported by the strength and direction of the association between Percent Single 

Family and Percent Owner Occupied Dwellings (τ = 0.511, p < 0.001) in 2010. 

The direction of the association between per capita municipal water consumption 

and the percentage of the population that attained a bachelor’s degree suggested that 

municipal water consumption decreased in response to an increase in the completion of a 

post-secondary degree.  Although it is possible that holders of bachelor’s degrees 

possessed an increased awareness of environmental and water resource issues in 2010, it 

is equally likely that the reversal of the association direction is spurious due to the 

moderately high probability that the correlation between Per Capita Municipal Water 

Consumption and Percent Bachelor’s Degree (p = 0.529) occurred by random chance in 

that year.  Likewise, the directions of the associations between per capita municipal water 

consumption, the percentage of the population eighteen years of age and younger, the 

percentage of the population aged sixty-five years and older, and hydrological drought 

index are not discussed here due to exceptionally high probabilities that the relationships 

occurred by random chance.  The p-values for Percent 18 Years and Younger, Percent 65 

Years and Older, and Average Annual PHDI were 0.655, 0.744, and 0.968 respectively. 
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Summary 

 While at least one independent variable in each conceptual category (the social, 

urbanized, and physical environment) expressed a statistically significant bivariate 

correlation with per capita municipal water consumption, the highest associations were 

not consistently concentrated in a single conceptual variable.  The following rankings of 

conceptual variables and their corresponding operational counterparts are listed from 

highest to lowest strength.  In 1990, the strongest statistically significant bivariate 

relationships with Per Capita Municipal Water Consumption were found in the social and 

physical environmental variables (Percent Worked Inside County of Residence and 

Annual Average Precipitation in Table 15).  The second strongest statistically significant 

bivariate relationships were present in the social and physical environmental variables 

(Percent Owner Occupied, Average Annual Lake Evaporation in Table 15).  The third 

strongest bivariate relationships were expressed in the social and urbanized 

environmental (Percent High School Diploma, Percent Urban, and Percent Bachelor’s 

Degree in Table 15).  The weakest statistically significant bivariate relationships were 

found in the urbanized and social environmental variables (Population Density, Percent 

18 Years and Younger, and Percent 65 Years and Older in Table 15). 

 In 2000, the strongest statistically significant bivariate relationships were identical 

to the strongest bivariate associations in 1990.  The second strongest statistically 

significant bivariate relationships were expressed in the social and physical 

environmental variables (Percent Owner Occupied, Annual Average Lake Evaporation, 

and Percent High School in Table 16).  The third strongest statistically significant 

bivariate relationships were present in the urbanized and social environmental variables 
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(Percent Urban, Percent 18 Years and Younger, and Population Density in Table 16).  

The weakest statistically significant relationships were confined to the social 

environmental variables (Per Capita Income, Percent 65 Years and Older, and Percent 

Bachelor’s Degree in Table 16). 

 The statistically significant bivariate relationships in 2010 were similar to those in 

1990 and 2000 in that all three conceptual variables were represented.  The major 

differences between 2010 and the previous years were that the groupings of strong and 

weak correlations were larger, and that fewer operational variables expressed statistically 

significant relationships with per capita municipal water consumption overall.  The 

strongest statistically significant bivariate relationships were found in the social, physical 

and urban environmental variables (Percent Worked Inside County of Residence, Average 

Annual Precipitation, and Population Density in Table 17).  Conversely the weakest 

statistically significant bivariate relationships were found in the physical and social 

environmental variables (Annual Lake Evaporation, Percent High School, and Percent 

Surface Water in Table 17).  Additionally, the differences in the strength and direction of 

the statistically significant variables between years suggested that the relationships 

between the independent variables and per capita municipal water consumption were 

influenced by time.  The bivariate associations discussed in this section reflect the 

individual relationship between each independent variable and per capita municipal water 

consumption. 

Original Model Results 

 The results of the stepwise multiple regression models (MLR) are presented here 

because they produced more robust models than the forward method, and had a lower 
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tendency to include statistically insignificant independent variables in the final model.  

This decision was made to maintain consistency with the research goal of examining the 

significant driving human and physical landscape characteristics behind per capita 

municipal water consumption patterns in 1990, 2000, and 2000.  Additionally, the 

practical significance typically gained through the inclusion of statistically insignificant 

independent variables in regression models was outweighed by the exceptionally small 

improvements in overall model fit achieved by leaving these variables in the model.   

A limitation of the results presented in the following sections is that the regression 

models were built using the ranks of the dependent and independent variables rather than 

the original values themselves.  The important implications here are that the ranks of the 

independent variables are ‘predicting’ the ranks of the dependent variable, and that the 

units of the standard error of the estimate are ranks rather than the original units of the 

dependent variable.  The use of the Rank Transformation (Connover and Iman 1981) was 

permissible in this research due to its explanatory rather than predictive goal.  Essentially, 

the Rank Transformation can be used in MLR models under select circumstances because 

the ranks preserve the strength and direction of the original relationships between 

variables when assigned appropriately (Iman and Connover 1979).  This relationship 

preserving attribute of the Rank Transformation is also the principle behind non-

parametric measures of association such as Spearman’s Rho and Kendall’s Tau (Daniels 

1990).  

Model 1 considered the entire collection of independent variables list in Table 3 

with the exception of Percent Renter Occupied, Percent Multifamily Dwellings, Percent 

Worked Outside County of Residence, Percent Rural and Percent Groundwater.  These 
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independent variables were removed during the regression screening stage to alleviate 

multicollinearity concerns.  The Model 1 results are presented by year, and include the 

overall model fits, and the standardized beta weights and p-values of the statistically 

significant independent variables.  Following the description of the regression model 

results, the numerical output is discussed and the output from the spatial analysis 

conducted for each year is presented and discussed.  The spatial analysis examined the 

spatial stationarity of the original patterns of municipal water consumption, each 

statistically significant independent variable, and the standardized residuals for each 

model using measures of global spatial autocorrelation (Moran’s I) and local indicators of 

spatial association (Anselin’s Local I). 

1990 MLR Model 1 

 The overall MLR model fit was moderately weak in 1990 with an adjusted R-

Square value of 0.385 (F = 40.517, p < 0.001, Df = 249).  The adjusted R-Square value is 

reported here because it accounts for inflation of model fit that occurs as an artifact of 

increasing the number of independent variables in the model (Meyers et al. 2006).  

Despite a relatively high standard error of the estimate (Std Err = 57.637), which is 

functionally equivalent to the univariate standard deviation (Earickson and Harlin 1994), 

the results of Model 1 may be considered robust due to the fact that the adjusted R-

Square is statistically significant at the alpha level of 0.05 (p < 0.001).  The robustness of 

Model 1 was also supported by the approximately normal distribution of the standardized 

residuals (Figure 52). The integrity of Model 1 was preserved due to the absence of 

multicollinearity amongst the independent variables in the final model.  The Variance 

Inflation Factor (VIF) values for Percent Bachelor’s Degree (1.276), Average Annual 
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Precipitation (1.189), Percent Worked Inside County of Residence (1.736), and Per 

Capita Income (1.765) were all well below the previously established 7.5 threshold 

described in the Research Methods chapter.   

Model 1 accounted for 38.5% of the variation in per capita municipal water 

consumption in 1990 using Percent Bachelor’s Degree, Average Annual Precipitation, 

Percent Worked Inside County of Residence, and Per Capita Income as predictors.  

Conversely, Model 1 failed to account for 62.5% of the variation in the 1990 per capita 

municipal water consumption pattern, suggesting that additional variables besides short-

term moisture inputs, income, post-secondary educational attainment, and commercial 

activity were influencing the consumption of municipal water.  The model fit and 

diagnostics for Model 1 are given in Table 20, and the standardized beta weights and p-

values for each statistically significant independent variable are provided in Table 21. 

 Additional insight into the relative influences of statistically significant 

independent variables on per capita municipal water consumption was gained by 

calculating the beta ratio matrix in Table 22.  The standardized beta ratio expresses the 

influence of a stronger independent variable in terms of a weaker one by removing the 

signs, placing the largest beta weight of the pair in the numerator, and dividing the two 

values (Meyers et al. 2006).  The rows and columns of Table 22 are organized from left 

to right in descending order from largest to smallest standardized beta weights.  The 

values along the diagonal are similar to the diagonal values in a correlation matrix, i.e. 

they represent an independent variable’s relationship to itself.  For example, while the 

influence of Percent Bachelor’s Degree is only slightly stronger than Annual Average 

Precipitation, the influence of Percent Bachelor’s Degree is nearly 1.75 times as strong 
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as Per Capita Income. Additionally, Table 20 suggests that the physical environment is 

an important conceptual variable to consider when investigating drivers of municipal 

water consumption despite the stronger representation of the social environment (three 

statistically significant independent social variables compared to one physical variable). 

 Percent Bachelor’s Degree (β = 0.383, p < 0.001) exerted the strongest influence 

on per capita municipal water consumption in 1990 and expressed a positive association 

with the dependent variable which suggested that the consumption of municipal water 

increased in response to increases in the percentage of the population that attained post-

secondary education.  Conceptually, this relationship suggested that the social 

environmental variables influenced municipal water consumption the most heavily, as 

well as that increased levels of education increased water use.  The positive relationship 

between Percent Bachelor’s Degree and Per Capita Municipal Water Consumption was 

likely the result of a latent income effect rather than an increased exposure to 

environmental and water resource issues.  This explanation was supported by the strength 

and direction of the association between Percent Bachelor’s Degree and Per Capita 

Income in 1990 (τ = 0.435, p = 0.001).  A more detailed discussion is available in the 

original bivariate correlation section of this chapter, and is not repeated here.  Combining 

the percentage of the population that earned a bachelor’s degree with the suite of other 

statistically significant independent variables also increased the strength of its 

relationship with per capita municipal water consumption relative to its individual 

association (see Table 15).  This increased relationship strength due to inclusion in the 

MLR model suggested that the ability of Percent Bachelor's Degree to explain increases 

in the consumption of municipal water was increased by interacting with multiple 
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physical and human landscape characteristics.  In other words, the relative influence of 

postsecondary educational attainment on municipal water consumption became more 

important than it was individually due to interactions with other driving human and 

physical landscape characteristics. 

Average Annual Precipitation (β = -0.310, p < 0.001) exerted the second strongest 

influence on per capita municipal water consumption in 1990 and expressed a negative 

association with the dependent variable which suggested that the consumption of 

municipal water decreased in response to increases in precipitation.  Conceptually, this 

relationship suggested that the physical environment significantly contributed to 

municipal water consumption despite being outweighed by the social environment, as 

well as that the residential component of residential outdoor municipal water 

consumption decreased in response to increases in short-term moisture inputs.  The 

relative influence of Average Annual Precipitation on Per Capita Municipal Water 

Consumption also increased from its bivariate correlation of -0.306 which suggested that 

the interaction of the independent variables increased the ability of changes in short-term 

moisture inputs to explain the consumption of municipal water consumption patterns.  In 

other words, the influence of precipitation was slightly stronger under real world 

conditions where multiple factors combine to drive municipal water consumption than 

when it was considered individually. 

Percent Worked Inside County of Residence (β = 0.267, p < 0.001) exerted a 

moderately weak influence on per capita municipal water consumption in 1990 and 

expressed a positive association with the dependent variable which suggested that the 

consumption of municipal water increased in response to increases in the size of the 
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population consuming water outside the home in a given county.  Conceptually, this 

relationship suggested that municipal water consumption increased in response to 

increases in commercial activity, as well as that the influence of commercial activity on 

the consumption of municipal water consumption was less than that of short-term 

moisture inputs under circumstances where multiple human and physical landscape 

characteristics interacted with each other.  Including the percentage of the population that 

worked inside their county of their county of residence in the MLR model also decreased 

its relative influence on municipal water consumptions in 1990 from its bivariate 

association of 0.320.  This decrease in association strength suggested that the interactions 

that occur between human and physical driving characteristics in the real world decreased 

the ability of commercial activity to explain increases in municipal water consumption.  

In simpler terms, non-residential uses of municipal water were less important to overall 

municipal water consumption patterns when its interaction with other driving 

characteristics were considered. 

Per Capita Income (β = -0.220, p = 0.001) exerted the weakest influence on per 

capita municipal water consumption in 1990, and expressed a negative association with 

the dependent variable which suggested that the consumption of municipal water 

decreased in response to increases in the equal distribution of a county's total income 

across the total population.  Conceptually, this relationship suggested that municipal 

water consumption decreased in response to increases affluence, as well as that the 

influence of affluence on the consumption of municipal water was less than that of 

postsecondary educational attainment, short-term moisture inputs, and commercial 

activity when multiple human and physical landscape characteristics interacted with each 
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other.  The negative association between Per Capita Income and Per Capita Municipal 

Water Consumption in the MLR model was consistent with the bivariate correlation 

between the two variables, and likely reflected the increased presence of water efficient 

appliances in higher income counties (Davis 2010).  A full discussion of this potential 

explanation is provided in the bivariate correlation section of this chapter.  

Including the Per Capita Income in the MLR model also dramatically increased 

its relative influence on municipal water consumptions in 1990 from its statistically 

insignificant bivariate association of -0.063 (p = 0.137).  This increase in association 

strength suggested that the interactions that occur between human and physical driving 

characteristics in the real world increased the ability of income to explain decreases in 

municipal water consumption. In other words, income was more important to overall 

municipal water consumption patterns when its interaction with other driving 

characteristics were considered. This finding also suggested statistically insignificant 

bivariate correlations may not completely justify the exclusion of an independent variable 

from a multivariate model. 

2000 MLR Model 1 

 The overall MLR model fit was moderate in 2000 with an adjusted R-square 

value of 0.410 (F = 36.098, p < 0.001, Df = 248).  The adjusted R-Square value is 

reported here because it accounts for inflation of model fit that occurs as an artifact of 

increasing the number of independent variables in the model (Meyers et al. 2006).  

Despite a relatively high standard error of the estimate (Std Err = 56.453), the results of 

Model 1 may be considered robust due to the fact that the adjusted R-Square is 

statistically significant at the alpha level of 0.05 (p < 0.001).  The robustness of Model 1 
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was also supported by the approximately normal distribution of the standardized residuals 

(Figure 53). The integrity of Model 1 was preserved due to the absence of 

multicollinearity amongst the independent variables in the final model.  The Variance 

Inflation Factor (VIF) values for Population Density (1.792), Percent Urban (2.465), 

Percent Worked Inside County of Residence (1.556), Percent Bachelor’s Degree (1.070), 

and Percent 65 Years and Older (1.476) were all well below the previously established 

7.5 threshold described in the Research Methods chapter.   

Model 1 accounted for 41% of the variation in per capita municipal water 

consumption in 2000 using Population Density, Percent Urban, Percent Worked Inside 

County of Residence, Percent Bachelor’s Degree, and Percent 65 Years and Older as 

predictors.  Conversely, Model 1 failed to account for 59% of the variation in the 2000 

per capita municipal water consumption pattern, suggesting that additional variables 

besides the concentration of population on the physical landscape, the size of the 

population living in urban areas, commercial activity, post-secondary educational 

attainment, and the size of the elderly population were influencing the consumption of 

municipal water.  The model fit and diagnostics for Model 1 are given in Table 23, and 

the standardized beta weights and p-values for each statistically significant independent 

variable are provided in Table 21. 

Additional insight into the relative influences of statistically significant 

independent variables on per capita municipal water consumption was gained by 

calculating the beta ratio matrix in Table 24.  The rows and columns of Table 24 are 

organized from left to right in descending order from largest to smallest standardized beta 

weights.  The values along the diagonal are similar to the diagonal values in a correlation 
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matrix, i.e. they represent an independent variable’s relationship to itself.  For example, 

the dominant influence of the urban environment in 2000 is clear from the relationship 

between Population Density and the remaining independent variables.  The influence of 

Population Density on Per Capita Municipal Water Consumption was almost 1.5 times 

as strong as of Percent Urban, slightly more than 2 times as strong as Percent Worked 

Inside County of Residence, slightly more than 2.75 times as strong as Percent Bachelor's 

Degree, and 3 times stronger than Percent 65 Years and Older.  Additionally, Table 23 

suggested that the urbanized environment played a more important in driving the 

municipal water consumption patterns in 2000 than the social environment despite the 

stronger representation of the social environment (three statistically significant 

independent social variables compared to two urbanized variables). 

 Population Density (β = -0.534, p < 0.001) exerted the strongest influence on per 

capita municipal water consumption in 2000 and expressed a negative association with 

the dependent variable which suggested that the consumption of municipal water 

decreased in response to increases in the percentage of the concentration of population on 

the physical landscape.  Conceptually, this relationship suggested that the urbanized 

environment influenced municipal water consumption the most heavily, as well as that 

increased concentrations of population in a county decreased municipal water use.  The 

negative relationship between Population Density and Per Capita Municipal Water 

Consumption was likely the result of an increased presence of water efficient appliances 

in owner occupied dwellings (Davis 2010).  This explanation was supported by the 

statistical significance and direction of the association between Population Density and 

Percent Owner Occupied in 1990 (τ = -0.151, p < 0.001), which suggested low 
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population densities contained higher percentages of the population that lived in a home 

that owned. 

  Combining a county's population density with the suite of other statistically 

significant independent variables also increased the strength of its relationship with per 

capita municipal water consumption relative to its individual association (see Table 15).  

This increased relationship strength due to inclusion in the MLR model suggested that the 

ability of Population Density to explain decreases in the consumption of municipal water 

was increased by interacting with multiple physical and human landscape characteristics.  

In other words, the relative influence of the concentration of a county's population on the 

physical landscape on municipal water consumption became more important than it was 

individually due to interactions with other driving human and physical landscape 

characteristics. 

Percent Urban (β = 0.363, p < 0.001) exerted the second strongest influence on 

per capita municipal water consumption in 2000 and expressed a positive association 

with the dependent variable which suggested that the consumption of municipal water 

increased in response to increases in the size of the population living in urban areas.  

Conceptually, this relationship provided additional support for the suggestion that the 

urbanized environment significantly contributed to municipal water consumption despite 

being outnumber by the social environment, as well as that the residential component of 

municipal water consumption decreased in response to increases in the size of the 

county's population that resided in urban areas.  The relative influence of Percent Urban 

on Per Capita Municipal Water Consumption also increased from its bivariate correlation 

of 0.220 which suggested that the interaction of the independent variables increased the 
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ability of changes in a county's urban population to explain the municipal water 

consumption patterns.  In other words, the influence of the size of a county's urban 

population was slightly stronger under real world conditions where multiple factors 

combine to drive municipal water consumption than when it was considered individually. 

Percent Worked Inside County of Residence (β = 0.262, p < 0.001) exerted a 

moderately weak influence on per capita municipal water consumption in 2000 and 

expressed a positive association with the dependent variable which suggested that the 

consumption of municipal water increased in response to increases in the size of the 

population consuming water outside the home in a given county.  Conceptually, this 

relationship suggested that municipal water consumption increased in response to 

increases in commercial activity, as well as that the influence of commercial activity on 

the consumption of municipal water consumption was less than that of concentrations of 

population on the physical landscape and the size of the urban population in a given 

county under circumstances where multiple human and physical landscape characteristics 

interacted with each other.  Including the percentage of the population that worked inside 

their county of residence in the MLR model also decreased its relative influence on 

municipal water consumptions in 2000 from its bivariate association of 0.329.  This 

decrease in association strength suggested that the interactions that occur between human 

and physical driving characteristics in the real world decreased the ability of commercial 

activity to explain increases in municipal water consumption.  In simpler terms, non-

residential uses of municipal water were less important to overall municipal water 

consumption patterns when its interaction with other driving characteristics was 

considered. 
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Percent Bachelor’s Degree (β = 0.193, p < 0.001) exerted a moderately weak 

influence on per capita municipal water consumption in 2000 and expressed a positive 

association with the dependent variable which suggested that the consumption of 

municipal water increased in response to increases in the percentage of the population 

that attained post-secondary education.  Conceptually, this relationship suggested that the 

social environmental variables influenced municipal water consumption the most heavily, 

as well as that increased levels of education increased water use.  The positive 

relationship between Percent Bachelor’s Degree and Per Capita Municipal Water 

Consumption was likely the result of a latent income effect rather than an increased 

exposure to environmental and water resource issues.  This explanation was supported by 

the strength and direction of the association between Percent Bachelor’s Degree and Per 

Capita Income in 1990 (τ = 0.474, p = 0.001).  A more detailed discussion is available in 

the original bivariate correlation section of this chapter, and is not repeated here.   

Combining the percentage of the population that earned a bachelor’s degree with 

the suite of other statistically significant independent variables also decreased the 

strength of its relationship with per capita municipal water consumption relative to its 

individual association (see Table 16).  This decreased relationship strength due to 

inclusion in the MLR model suggested that the ability of Percent Bachelor's Degree to 

explain increases in the consumption of municipal water was decreased by interacting 

with multiple physical and human landscape characteristics.  In other words, the relative 

influence of postsecondary educational attainment on municipal water consumption 

became less important than it was individually due to interactions with other driving 

human and physical landscape characteristics. 
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Percent 65 Years and Older (β = -0.178, p < 0.001) also exerted a moderately 

weak influence of Per Capita Municipal Water Consumption in 2000, and expressed a 

positive association with the dependent variable which suggested that the consumption of 

municipal water decreased in response to increases in the size of a county's elderly 

population.  Conceptually, this relationship suggested that municipal water consumption 

decreased in response to an increase in the residential water consuming activities of the 

segment of the county's population that was most likely to spend the most time inside the 

home.  The negative relationship between Percent 65 Years and Older and Per Capita 

Municipal Water Consumption was likely due to the reduced frequency of indoor water 

consuming activities such as showers, dish washing, and clothes washing (Corbella and 

Pujol 2009). 

Including the size of the elderly population in the MLR model for 2000 with the 

suite of other statistically significant independent variables slightly increased the strength 

of its relationship with per capita municipal water consumption relative to its individual 

association (see Table 16).  This increased relationship strength suggested that the ability 

of Percent 65 Years and Older to explain decreases in the consumption of municipal 

water was increased by interacting with multiple physical and human landscape 

characteristics.  In other words, the relative influence of the residential water use 

activities on municipal water consumption became slightly more important than it was 

individually due to interactions with other driving human and physical landscape 

characteristics. 
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2010 MLR Model 1 

 The overall MLR model fit was weak in 2010 with an adjusted R-Square value of 

0.187 (F = 20.358, p < 0.001, Df = 250).  The adjusted R-Square value is reported here 

because it accounts for inflation of model fit that occurs as an artifact of increasing the 

number of independent variables in the model (Meyers et al. 2006).  Despite a relatively 

high standard error of the estimate (Std Err = 66.256), the results of Model 1 may be 

considered robust due to the fact that the adjusted r-square is statistically significant at the 

alpha level of 0.05 (p < 0.001).  The robustness of Model 1 was also supported by the 

approximately normal distribution of the standardized residuals (Figure 54).  The 

integrity of Model 1 was preserved due to the absence of multicollinearity amongst the 

independent variables in the final model.  The Variance Inflation Factor (VIF) values for 

Population Density (1.113), Percent Worked Inside County of Residence (1.148), and 

Percent High School Diploma (1.207) were all well below the previously established 7.5 

threshold described in the Research Methods chapter.   

Model 1 accounted for 18.7% of the variation in per capita municipal water 

consumption in 1990 using Population Density, Percent Worked Inside County of 

Residence, and Percent High School Diploma as predictors.  Conversely, Model 1 failed 

to account for 82.3% of the variation in the 2010 per capita municipal water consumption 

pattern, suggesting that additional variables besides concentrations of population 

commercial activity, and secondary educational attainment, and were strongly 

influencing the consumption of municipal water.  The model fit and diagnostics for 

Model 1 are given in Table 25, and the standardized beta weights and p-values for each 

statistically significant independent variable are provided in Table 21. 
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Additional insight into the relative influences of statistically significant 

independent variables on per capita municipal water consumption was gained by 

calculating the standardized beta ratio matrix in Table 26.  The rows and columns of 

Table 26 are organized from left to right in descending order from largest to smallest 

standardized beta weights.  The values along the diagonal are similar to the diagonal 

values in a correlation matrix, i.e. they represent an independent variable’s relationship to 

itself.  For example, while neither the urbanized or social environment dominantly 

influenced municipal water consumption, the relative strength of the urbanized 

environment may be discerned from the relationship between Population Density and the 

remaining independent variables.  The influence of Population Density on Per Capita 

Municipal Water Consumption was only slightly stronger than Percent Worked Inside 

County of Residence, and more than 1.5 times stronger than Percent High School 

Diploma.  Additionally, Table 25 suggested that the urbanized environment played a 

more important in driving the municipal water consumption patterns in 2010 than the 

social environment despite the stronger representation of the social environment (two 

statistically significant independent social variables compared to one urbanized 

variables). 

Population Density (β = -0.291, p < 0.001) exerted the strongest influence on per 

capita municipal water consumption in 2010 and expressed a negative association with 

the dependent variable which suggested that the consumption of municipal water 

decreased in response to increases in the percentage of the concentration of population on 

the physical landscape.  Conceptually, this relationship suggested that the urbanized 

environment influenced municipal water consumption the most heavily, as well as that 
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increased concentrations of population in a county decreased municipal water use.  The 

negative relationship between Population Density and Per Capita Municipal Water 

Consumption was likely the result of an increased presence of water efficient appliances 

in owner occupied dwellings (Davis 2010).  This explanation was supported by the 

statistical significance and direction of the association between Population Density and 

Percent Owner Occupied in 2010 (τ = -0.141, p = 0.001), which suggested that low 

population densities contained higher percentages of the population that lived in a home 

that they owned. 

  Combining a county's population density with the suite of other statistically 

significant independent variables also increased the strength of its relationship with per 

capita municipal water consumption relative to its individual association (see Table 17).  

This increased relationship strength due to inclusion in the MLR model suggested that the 

ability of Population Density to explain decreases in the consumption of municipal water 

was increased by interacting with multiple physical and human landscape characteristics.  

In other words, the relative influence of the concentration of a county's population on the 

physical landscape on municipal water consumption became more important than it was 

individually due to interactions with other driving human and physical landscape 

characteristics. 

Percent Worked Inside County of Residence (β = 0.246, p < 0.001) exerted a 

moderately weak influence on per capita municipal water consumption in 2000 and 

expressed a positive association with the dependent variable which suggested that the 

consumption of municipal water increased in response to increases in the size of the 

population consuming water outside the home in a given county.  Conceptually, this 
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relationship suggested that municipal water consumption increased in response to 

increases in commercial activity, as well as that the influence of commercial activity on 

the consumption of municipal water was less than that of concentrations of population on 

the physical landscape in a given county under circumstances where multiple human and 

physical landscape characteristics interacted with each other.   

Including the percentage of the population that worked inside their county of 

residence in the MLR model also increased its relative influence on municipal water 

consumptions in 2010 from its bivariate association of 0.226.  This increase in 

association strength suggested that the interactions that occur between human and 

physical driving characteristics in the real world increased the ability of commercial 

activity to explain increases in municipal water consumption.  In simpler terms, non-

residential uses of municipal water were more important to overall municipal water 

consumption patterns when its interaction with other driving characteristics was 

considered. 

Percent High School Diploma (β = -0.183, p = 0.004) exerted a moderately weak 

influence on per capita municipal water consumption in 2010 and expressed a negative 

association with the dependent variable which suggested that the consumption of 

municipal water decreased in response to increases in the percentage of the population 

that attained secondary education.  Conceptually, this relationship suggested that 

increases in the size of a county's population that completed high school decreased water 

use.  The negative relationship between Percent High School Diploma and Per Capita 

Municipal Water Consumption was likely the result of a latent income effect rather than 

an increased exposure to environmental and water resource issues.  This explanation was 
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supported by the strength and direction of the association between Percent High School 

Diploma and Per Capita Income in 2000 (τ = -0.091, p = 0.032).  A more detailed 

discussion is available in the original bivariate correlation section of this chapter, and is 

not repeated here.   

Combining the percentage of the population that completed high school with the 

suite of other statistically significant independent variables also increased the strength of 

its relationship with per capita municipal water consumption relative to its individual 

association (see Table 17).  This increased relationship strength due to inclusion in the 

MLR model suggested that the ability of Percent High School Diploma to explain 

decreases in the consumption of municipal water was increased by interacting with 

multiple physical and human landscape characteristics.  In other words, the relative 

influence of completing a secondary education on municipal water consumption became 

more important than it was individually due to interactions with other driving human and 

physical landscape characteristics. 

Summary MLR Model 1 

 The independent variables used in Model 1, otherwise known as the original 

model, are listed in Table 27, Table 28, and Table 29 for the years 1990, 2000, and 2010 

respectively.  The gray cells in each table indicate that a given independent variable was 

deliberately excluded from a model and was not actively considered.  For example, in 

1990 all of the independent variables except Per Capita Building Permits, Per Capita 

Commercial Businesses, and Percent Lodging had an equal chance of being statistically 

retained in Model 1.  The cells marked with an "x" indicate that an independent variable 
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was statistically included, or retained, in a given model while the cells marked with a "0" 

indicate that an independent variable was statistically excluded from a given model. 

There were three operational independent variables that were statistically 

significant in more than one year for the Model 1 specification.  Percent Bachelor’s 

Degree was statistically significant in 1990 and 2000, and exerted the strongest influence 

on Per Capita Municipal Water Consumption in 1990 (β = 0.383, p < 0.001).  Percent 

Worked Inside County of Residence was statistically significant in 1990, 2000, and 2010, 

and exerted the strongest influences on Per Capita Municipal Water Consumption in 

1990 (β = 0.267, p < 0.001) and 2000 (β = 0.262, p < 0.001) respectively.  Population 

Density was statistically significant in 2000 and 2010, and exerted the strongest influence 

on Per Capita Municipal Water Consumption in 2000 (β = -0.534, p < 0.001). 

Only two of the three conceptual variables were statistically significant in any 

given year under the Model 1 specification.  The social and physical environments were 

statistically significant in 1990, and the urbanized and social environments were 

statistically significant in 2000 and 2010.  In 1990, the social environmental variables 

were both the most numerous, and the most helpful in explaining per capita municipal 

water consumption (Table 22).  In 2000, the urbanized environmental variables were the 

most helpful in explaining per capita municipal water consumption, despite their smaller 

frequency (Table 24).  The urbanized environment was the most helpful conceptual 

variable in 2010 (Table 26). 

The Model 1 MLR specification performed the best in 2000, when it accounted 

for 41% of the variation in the county scale per capita municipal water consumption 

patterns (Adjusted R-Square = 0.410, F = 36.098, p < 0.001, Df = 248).  Model 1 
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produced a slightly weaker model fit in 1990 when it accounted for 38.5% of the 

variation in per capita county scale municipal water consumption (Adjusted R-Square = 

0.385, F = 40.517, p < 0.001, Df = 249).  The Model 1 specification performed the worst 

in 2010 and only accounted for a scant 18.7% of the variation in per capita municipal 

water consumption patterns (Adjusted R-Square = 0.187, F = 20.358, p < 0.001, Df = 

250).  Full model diagnostics for each year are listed in Tables 20 (1990), 23 (2000), and 

25 (2010). 

 There were several potential explanations for the exceptionally weak performance 

of Model 1 in 2010.  Firstly, the MLR model could have been grossly miss-specified for 

the per capita municipal water consumption data in 2010, i.e. important explanatory 

variables may have been excluded or unimportant explanatory variables may have been 

included (Draper and Smith 1998; Meyers et al. 2006). This explanation is unlikely given 

the moderate model fits in 1990 and 2000 using the same set of independent variables, as 

well as the fact that the standardized residuals were approximately normally distributed 

(see Figure 54).   

Secondly, it was possible that an external force was reducing the variation in per 

capita municipal water consumption at the county scale.  Such a reduction in variation 

would impair the ability of a linear regression model to detect existing relationships 

between the dependent and independent variables (Draper and Smith 1998).  A cursory 

visual inspection of the per capita municipal water patterns in 2010 (Figure 45), 

suggested that lack of variation was not a problem, but the coefficient of variation (CV) 

revealed that there was very little variation between the consumption of municipal water 

in individual counties.  The CV provides a measure of relative variability between 
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datasets where larger values indicate higher degrees of variation and vice versa.  The CV 

is calculated by dividing the standard deviation of a variable by its mean (Earickson and 

Harlin 1994).  The CV for Per Capita Municipal Water Consumption declined from 

82.977% in 1990 to 28.037% in 2010 (Table 30). 

This reduced variation in the 2010 county scale per capita municipal water 

consumption patterns may be plausibly explained by the changes that occurred in the 

development of Texas’ State Water Plans between 2000 and 2010.  The State of Texas 

has prepared statewide plans to address present water issues and future water needs every 

five years since 1961 (TWDB 1997).  Prior to the 2002 State Water Plan, water allocation 

and management strategies were developed relative to Texas’ fifteen major river basins.  

While this unit of analysis is intuitive from the hydrologic perspective, using drainage 

basins to develop water plans created an administrative nightmare for planners charged 

with balancing the needs of the myriad county and local agencies involved.  For example, 

the Brazos River Basin extends from the western panhandle to the Gulf of Mexico and 

covers parts of seventy-four counties (TWDB 1990).   

In response to this administrative issue, the Texas Water Development Board 

collaborated with multiple agencies to redesign the unit of analysis for state water plans 

to better reflect the combined influences of different economic, cultural, climatic, 

physiographic, and hydrologic characteristics throughout the state.  The new 

administrative units divided the entire state into sixteen Planning Regions that were first 

implemented in the 2002 Water for Texas plan (see Figure 5).  Under the new Planning 

Region model, each region develops its own suite of solutions to existing problems, and 

strategies to meet future demands.  Approved regional plans are then aggregated to 
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develop the statewide water plan.  The connection between the changeover from drainage 

basins to Planning Regions and the decrease in the 2010 CV proposed here is that the 

change in the water management strategy contributed to a decrease in the variation of 

municipal water consumption between individual counties.  The plausibility of this 

explanation is further supported by the fact that the per capita municipal water 

consumption of 153 out 254 (60.24%) counties decreased between 1990 and 2010. 

In an effort to improve the overall fit of the MLR model, seven additional model 

permutations were built for each year using three new social environment variables, and 

partitioning the municipal water consumption data east and west of the dry line.  A full 

listing of the variables included in each model permutation is available in Tables 27, 28, 

and 29 for the years 1990, 2000 and 2010 respectively.  The new social environment 

variables included Per Capita Commercial Businesses, Per Capita Commercial Building 

Permits, and Percent Lodging.  Per Capita Commercial Businesses and Per Capita 

Commercial Building Permits were included as independent variables to help improve 

the explanatory power of commercial activity captured by Percent Worked Inside County 

of Residence.  These specific variables were selected for two reasons.   

Firstly, the commercial component of municipal water consumption was the only 

independent variable that was statistically significant in all three years. This temporal 

consistency suggested that improving its relationship with municipal water consumption 

stood the best chance of improving the model’s explanatory power.  Secondly, an internal 

unpublished Texas Water Development Board study revealed that the consumption of 

municipal water increased sharply in response to the proliferation of low-density 

shopping establishments such as strip malls (Personal Communication, Kevin Kluge on 
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February 25, 2013).  Counties were partitioned east and west of the dry line to account 

for the influence of climate, as well as to informally test the spatial stationarity of 

municipal water consumption patterns in each year.  An improvement in the fit of model, 

east or west, would have suggested that there were underlying spatial relationships in 

Texas’ per capita municipal water consumption patterns.  The extent to which the 

bivariate correlations, overall model fits, statistically significant independent variables, 

and spatial analysis of each model permutation differ from Model 1 in each year are 

presented and discussed following the presentation and discussion of Model 1’s spatial 

analysis. 

Model 1 Spatial Analysis 

 The spatial analysis of the Model 1 results examined the spatial stationarity of the 

initial patterns of per capita municipal water consumption, the statistically significant 

independent variables, and the standardized residuals in each year using Moran’s I as a 

measure of global spatial autocorrelation, and Anselin’s Local I as a local measure of 

spatial association.  A statistically significant value of Moran’s I suggested that spatial 

processes were present across the entire dataset, while a statistically significant value of 

Anselin’s Local I suggested that spatial processes were present between individual 

counties.  Furthermore, a statistically significant value for either spatial metric suggested 

that the given variable was not spatially stationary.  In other words, the variable’s value at 

one location was related to the value at another location.  All Moran’s and Anselin’s 

Local I statistics for Model 1were calculated with a Euclidean distance threshold of 

171966.75 meters to minimize the distance at which statistically significant clustering 
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was detectable.  The results and discussion in this section are organized by rather than by 

year in order to maintain consistency with the existing format of previous sections. 

 The per capita municipal water consumption patterns for 1990 exhibited weak, yet 

statistically significant global spatial autocorrelation (I = 0.028, z = 2.409, p = 0.016).  

The I, z, and p for the global spatial autocorrelation metric represent the value of the 

Moran’s I index, the z-score, and the p-value of a given dataset respectively.  The 

Moran’s I results suggested that the per capita municipal water consumption of any 

county was weakly related to the per capita municipal water consumption of any other 

county within the established distance threshold. The Anselin’s Local I metric indicated 

that spatial clusters and spatial outliers were present in the 1990 per capita municipal 

water consumption patterns.  The presence of these clusters and outliers suggested that 

the patterns of per capita municipal water consumption were not completely spatially 

random.  Oldham and Knox counties were identified as high-high clusters, or areas of 

high municipal water consumption values surrounded by counties that also had high 

municipal consumption values.  Hudspeth County was identified as a low-high spatial 

outlier, or an area of low municipal water consumption values surrounded by high 

municipal water consumption values (Figure 55).  A visual comparison of the Local 

Anselin’s I output and the original per capita municipal water consumption patterns in 

Figure 43 suggested that the local spatial association metric was reflecting actual 

landscape patterns. 

 In 1990, The Percent Bachelor’s Degree patterns expressed a weak degree of 

global spatial autocorrelation that was statistically significant (I = 0.080, z = 4.551, p < 

0.001).  The strength of the Moran’s I value suggested that the patterns of postsecondary 
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educational attainment in any given county were weakly related to postsecondary 

education patterns in any other county within the established distance threshold.  The 

local spatial association metric corroborated the Moran’s I value and further suggested 

that the spatial processes were influencing the distribution of the more highly educated 

segment of the population. High concentrations of bachelor’s degree holders lived along 

the Interstate 35 corridor in Central and North Texas in 1990, and spatial outliers (high-

low) were found in Jeff Davis, Lubbock, Midland, and Nacogdoches counties   Bexar and 

El Paso counties did not produce statistically significant concentrations of population that 

had completed a postsecondary education, and several counties along the southern Texas-

Mexico border and the Texas-Louisiana border contained low levels of postsecondary 

education surrounded by high postsecondary education levels (See Figure 56). 

 The Average Annual Precipitation for 1990 was expressed an almost perfect 

degree of spatial autocorrelation (I = 0.905, z = 48.528, p < 0.001).  The extremely high 

level of global spatial autocorrelation suggested that rainfall in any county was highly 

dependent on rainfall in another county within the established distance threshold.  The 

local measure of spatial association metric produced very sharp divides between clusters.  

East Texas from the Oklahoma border in the north, to the Louisiana border in the east, 

and out the gulf coast in the south was occupied by a large cluster of high average 

precipitation.  The majority of the panhandle, the northern Texas-Mexico border to 

Hudspeth County, and the southernmost tip of the Texas-Mexico border, formed two 

large clusters of low precipitation values (Figure 57).  The strong spatial relationships 

between the precipitation patterns in neighboring counties may have reduced the ability 

of the 1990 MLR model to detect the true strength of the relationship between average 
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annual precipitation and per capita municipal water consumption at the county scale 

(Earickson and Harlin 1994; O’Sullivan and Unwin 2010).  

 In 1990, Percent Worked in County of Residence expressed a moderate degree of 

global spatial autocorrelation (I = 0.196, z = 10.695, p < 0.001).  The moderate strength 

of the Moran’s I value suggested that the size of the population that worked in their 

county of residence was dependent on the size of a population with a similar work 

location in another county.  The local measure of spatial association produced a small 

checkerboard pattern in the lower panhandle with alternating counties of high-high and 

statistically insignificant Local I values, a concentration of high values surrounded by 

high values below the checkerboard on the northern Texas-Mexico border, and a row of 

alternating spatial outliers along the Interstate 35 corridor (Figure 58).  The urban 

population centers e.g. Bexar, Travis, Dallas, etc., were all high value areas surrounded 

by low value areas.  This pattern of outliers likely reflected the commuting patterns of the 

workforce along the Interstate corridor, where the high-high counties (job centers) 

received additional workers from the low-high counties (residential areas). 

 The Per Capita Income in 1990 expressed a strong degree of global spatial 

autocorrelation (I = 0.315, z = 17.154, p < 0.001).  The strong Moran’s I value suggested 

that the per capita income in any given county was highly dependent on the per capita 

income in another county within the established distance threshold.  The local measure of 

spatial association indicated clusters of low (low-low) per capita income values along the 

southern Texas-Mexico border from stretching from Val Verde County to Hidalgo 

County with a smaller cluster in Presidio County.  Clusters of high per capita incomes 

were evident in the northern panhandle along the Texas-Oklahoma border, in north Texas 
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extending for several counties in all directions from the Dallas-Fort Worth Metroplex and 

north to the Oklahoma border, and in the northern gulf coast around Houston.  Travis 

County was also designated as a concentration of high per capita incomes surrounded by 

other counties with high per capita income values, while Coryell and McMullen counties 

were low-high and high-low spatial outliers respectively (Figure 59).   

The clusters of low per capita incomes may be partially explained by the 

seasonality of incomes in the border counties that respond to the fluxes in the agriculture 

and tourism industries on which their economies relied (TSHA 2013).  Likewise, the 

high-low spatial outlier in McMullen County may be reflecting the influence of the 

natural gas industry that was still played an active role in the local economy in addition to 

seasonal tourism activity (TSHA 2013).  The clusters of high values around Dallas-Fort 

Worth and Houston likely reflect the more stable incomes generated by the technology 

and petroleum industries respectively in addition to the large volumes of services that 

accompany urban populations (Irwin 2004). 

The standardized regression residuals for 1990 expressed a weak yet statistically 

significant degree of global spatial autocorrelation (I = 0.042, z = 2.464, p < 0.014).  The 

low value of Moran’s I suggested that the overall model fit for Model 1 in a given county 

was weakly related to the overall model fit in another county within the distance 

threshold.  In the sense of overall model fit and integrity, the low level of global spatial 

autocorrelation suggested that the composite of independent variables in Model 1was not 

strongly confounded by spatial processes.  The local measure of spatial association 

indicated several small high-high clusters where Model 1 strongly over or underestimated 

per capita municipal water consumption in the northwest corner of the panhandle along 
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the Texas-New Mexico border, along the Texas-Mexico border in Kinney County, and 

west of Dallas and Denton counties (Figure 60).  Conversely, Anselin’s Local I indicated 

low-low clusters where Model 1 weakly over or underestimated per capita municipal 

water consumption in the southern tip of Texas, and in the central panhandle west of 

Lubbock County.  In other words,  the performance of Model 1 was exceptionally weak 

in the high-high clusters and exceptionally strong in the low-low clusters.  Spatial outliers 

of exceptionally weak model performance surrounded by exceptionally strong model 

performance (high-low) were identified in the northern panhandle and along the southern 

gulf coast.  Spatial outliers of exceptionally strong model performance surrounded by 

exceptionally weak model performance (low-high) were detected on the northern Texas-

New Mexico border, and the southern Texas-Mexico border south of Kinney County. 

In 2000, the per capita municipal water consumption patterns expressed a 

moderate degree of global spatial autocorrelation (I = 0.165, z = 7.491, p < 0.001) which 

suggested that the consumption of municipal water in any given county was moderately 

dependent on the consumption of municipal water in another county.  This moderate 

degree of spatial association between per capita municipal water consumption patterns 

may have slightly confounded the ability of Model 1 to estimate the contributions of the 

driving landscape characteristics.  The local measure of spatial association identified a 

large cluster of high per capita municipal water consumption values along the central 

Texas-Mexico border and west Texas east of Jeff Davis and Brewster counties, and in the 

northern panhandle along the Texas-New Mexico border.  Several isolated high-high 

clusters were also found in the eastern panhandle in Childress, Motley, King, and Kent 

counties (Figure 61). The high value clusters along the Texas-Mexico border closely 
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resemble the original patterns of municipal water consumption in 2000, and suggest a 

north-south spatial relationship between those counties.  Similarly, the northwestern 

panhandle cluster of high per capita municipal values aligned closely aligned with the 

original municipal water consumption map, and suggested a north-south chain of spatial 

dependence between counties. 

Clusters of low per capita municipal water values surrounded by other low values 

were located in the northern gulf coast along the Texas-Louisiana border, in the central 

gulf coast west of Fort Bend County, and west of Tarrant County in north Texas.  These 

concentrations of low values reflected the original map patterns in Figure 42 and 

suggested that the per capita municipal water consumptions in these counties may 

influenced by their proximity to the relatively higher consumption patterns in the adjacent 

more urbanized metropolitan counties.  This influence may reflect the commuting flows 

from the less urbanized residential counties into the more highly urbanized economic 

centers of Tarrant, Dallas, and Harris counties. The commercial component of municipal 

water consumption may be lower in the clusters of low values because residents in these 

counties work in the economic centers rather than their county of residence.  The 

statistically significant driving landscape characteristics  supported this potential 

explanation as Percent Worked in County of Residence was the third strongest influence 

on Per Capita Municipal Water Consumption in 2000 (Table 24). 

In 2000, Population Density expressed a weak, yet statistically significant degree 

of global spatial auto correlation (I = 0.079, z = 48.351, p < 0.001) which suggested the 

physical concentrations of population on the landscape in any county were loosely 

influenced by the physical concentrations of population on the landscape in another 
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county within the distance threshold.  The local measure of spatial association identified 

two distinct clusters of high population densities that mirror the approximate footprints of 

the Dallas-Fort Worth and Houston metroplexes (Figure 62).  Bexar County was 

identified as a spatial outlier with high population densities surrounded by low population 

densities. 

The global spatial autocorrelation value for Percent Urban in 2000 was also 

weak, yet statistically significant (I = 0.053, z = 3.053, p < 0.001) which suggested that 

the percentage of the population residing in urban areas in one county was weakly 

dependent on the percentage of the population residing in urban areas in another county 

within the distance threshold.  The local measure of spatial association indicated clusters 

of high urban percentages in the southern tip of Texas along the Texas-Mexico border 

from Webb County south to Hidalgo County, in the southwest corner of the panhandle 

with Winkler, Ector, and Andrews counties, and in Galveston County in the northern gulf 

coast (Figure 63).  Clusters of low percent urban values were identified in north-south 

pattern in the eastern panhandle, and along the Texas-Louisiana border.  The local 

measure of spatial association also detected high-low spatial outliers in El Paso County, 

Sutton, Tom Green and Taylor counties, and adjacent to the large cluster of low values in 

the panhandle.  Low-high clusters were indentified in the vicinity of the southwestern and 

southern Texas-Mexico border clusters of high values.  The absence of the highly 

urbanized cores of Dallas-Fort Worth and Houston from the local cluster map was due to 

the fact that the urban percentages of these counties were not statistically similar or 

different enough from each other to be detected within the bounds of the distance 

threshold of 171966.75 meters (Anselin 1995; Le Gallo and Ertur 2003). 
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The concentrations of high urban percentages in the southwestern panhandle 

suggested that they may be the result of their proximity to the city of Midland and its 

dominant petroleum industry (TSHA 2013).  Likewise, the cluster of high urban 

percentages in the southern tip of Texas may have reflected the development of 

infrastructure to accommodate the maquiladoras along the border (TSHA 2013).  The 

concentrations of low urban percentages in the eastern panhandle may likely be the result 

of exceptionally low resident populations since all the counties are rural counties with 

urban percentages of zero. This lack of urban population further suggests that dominant 

land use was agriculture or ranching in 2000 (TSHA 2013).  In general, the strong 

representation of either high or low clusters of urban percentages (68.89%), suggested 

that local spatial processes were influencing the urban percentages at the county scale in 

2000.  The implication here for per capita municipal water consumption is that the local 

spatial relationships present in the percent urban variable may have affected the global 

MLR model’s ability to detect its true influence on municipal water consumption 

patterns. 

In 2000, Percent Worked Inside County of Residence expressed a moderate degree 

of global spatial autocorrelation in (I = 0.144, z = 7.096, p < 0.001).  The moderate 

strength of this spatial association suggested that the percentage of the population that 

worked inside their county of residence in one county was moderately spatially 

dependent on the percentage of the population that worked inside their county of 

residence in another county within the distance threshold.  This finding is important 

because Percent Worked Inside County of Residence was the only driving landscape 

characteristic of Per Capita Municipal Water Consumption that was statistically 
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significant in all three years for Model 1 (see Tables 22, 24, and 26).  Although the 

influence of this independent variable fluctuated from one year to the next, its global 

spatial association likely affected the MLR model’s ability to detect its true relationship 

to per capita municipal water consumption. 

The local measure of spatial association for 2000 (Figure 64) produced a pattern 

very similar to that of 1990 (Figure 58).  The distribution of the low clusters and high-

low spatial outliers was identical to 1990 and likely reflected the economic draw of 

Dallas, Travis, Bexar, and Harris counties.  The major difference between the two years 

was the location of the high percentage clusters.  Comparing the 1990 and 2000 maps 

suggested that the relative composition of worker locations remained largely stable in 

west Texas and along the northern Texas-Mexico border, while the greatest shifts 

occurred in the northern panhandle.  Counties that were previously identified as high 

clusters were not statistically different from their surrounding counties in 2000, e.g. Hall, 

Motley, Cottle, King, Kent and Stonewall counties.  This shift indicates that the work 

locations in these counties became less similar, but not different enough to become 

outliers (high-low, or low-high). 

Percent Bachelor’s Degree expressed a moderate degree of global spatial 

autocorrelation (I = 0.127, z = 7.055, p < 0.001) in 2000 which suggested that the size of 

the population holding bachelor’s degrees in one county was moderately dependent on 

the size of the population holding bachelor’s degrees in another county within the 

established distance threshold.  The global spatial association between the percentage of 

bachelor degree holders in each county increased from its weak value in 1990 (I = 0.080, 
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z = 4.551, p < 0.001).  This increase suggested that on average, the holders of bachelor’s 

degree became more geographically concentrated.  

The Local Anselin’s I measure of spatial association produced a pattern of 

clusters that was nearly identical to the 1990 pattern (Figure 65).  High clusters of 

bachelor’s degree holders were found along the Interstate 35 corridor in central Texas 

(Comal County through Williamson County) and north Texas (Dallas, Tarrant, Denton 

and Collin counties), along the northern gulf coast (Harris County and Fort Bend 

County), and Brewster County in west Texas.  Low clusters of bachelor’s degree holders 

were found in the southern tip of Texas along the Texas-Mexico border, and on the 

southern Texas-Louisiana border in Newton County.  The spatial outliers also occupied 

the same relative positions as in 1990.  The high-low clusters were located in Jeff Davis 

County (west Texas); Midland County, Lubbock County, and King County (the 

panhandle), and Nacogdoches County (east Texas).   

The differences between the 1990 (Figure 56) and 2000 (Figure 65) patterns of 

spatial association were the additional increases of high clusters in central Texas in 2000.  

The central Texas cluster expanded to include Blanco, Llano, and Bexar counties which 

suggested that the influence of the existing 1990 cluster may have diffused into these 

adjacent counties.  The low clusters in the southern tip of Texas also expanded slightly to 

include La Salle, Jig Hogg, and Brooks counties which suggested that the strength of 

spatial processes driving the concentration of low values in south Texas increased.  

Overall, the results of the Local Anselin’s I suggested that local spatial processes strongly 

influenced the distribution of bachelor’s degree holders in 2000.  Twenty-six out of 

thirty-one counties that produced statistically significant values of Anselin’s Local I were 
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clusters of either high or low values (83.87%) which suggested that these spatial 

association were likely undermined the global linear relationship between Percent 

Bachelor’s Degree and Per Capita Municipal Water Consumption. 

In 2000 Percent 65 Years and Older expressed a moderate degree of global 

spatial autocorrelation (I = 0.144, z = 7.096, p < 0.001), which suggested that the size of 

the elderly population in one county was moderately influenced by the size of the elderly 

population in another county within the distance threshold.  The local measure of spatial 

association identified a large cluster of high elderly population values stretching from the 

northeastern panhandle along the Texas-Oklahoma border south into central Texas just 

west of the Interstate 35 corridor (Figure 66).  Clusters of low elderly population values 

were found in the north Texas metroplex of Dallas, Tarrant, Denton, and Collin counties, 

along the northern gulf coast in the vicinity of the Houston metro area including Harris, 

Fort Bend, Brazoria, Galveston, Chambers, Liberty, and Montgomery counties, and along 

the southern Texas-Mexico border.   

These patterns of high clusters of elderly citizens in predominantly rural counties 

and low clusters near the highly urbanized cores of Dallas and Houston may reflect a 

labor migration pattern to some degree.  The younger age structure around the economic 

centers of Dallas and Houston are likely due to the employment migrations of the  more 

youthful working population, while the elderly concentrations in the panhandle may 

represent either family members left behind in family homesteads or retirees seeking to 

escape the influence of the city (Weeks 1996).  The low clusters of elderly populations 

along the southern Texas-Mexico border may be due an increased presence of young 

families with small children, or a lack of amenities that  older segments of the population 
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typically require, such as advanced medical care and a reliable public transportation 

infrastructure (Weeks 1996).  In any case, the pronounced north-south cluster that 

extends from the panhandle into central Texas is likely to have influenced the 

contribution of the elderly population to per capita municipal water consumption in the 

original MLR model. Additionally, the influence of spatial processes on the distribution 

of the size of the elderly population was relatively strong given that 91.23% (fifty-two 

out of fifty-seven) of all counties with statistically significant Local Anselin I values were 

clusters of either high or low elderly populations. 

The Standardized Residuals for the 2000 Model 1 MLR specification expressed a 

weak, yet statistically significant degree of global spatial autocorrelation (I = 0.054, z = 

3.108, p < 0.001), which suggested that the model fits in one county were weakly 

spatially associated with the model fits in another county within the distance threshold.  

The Anselin’s Local I results indicated clusters of high standardized residual values in the 

northwestern corner of the panhandle, the western base of the panhandle in west Texas 

(Winkler, Ector, and Ward counties), and in the northeastern corner of the state near the 

Texas-Louisiana border (Figure 67).  Clusters of low standardized residual values were 

identified in north central Texas west of Denton and Dallas counties (Jack, Young, 

Stephens, and Erath counties), and southwest of Fort Bend County (Wharton, Matagorda, 

Jackson, Victoria, Calhoun, and Goliad counties).  The clusters of high and low residuals 

suggested that the performance of the Model 1 MLR specification was exceptionally 

weak or exceptionally strong in these areas respectively.   

The high-low clusters were located west of the north central Texas low cluster 

(Shackleford and Taylor counties), and on the northern, eastern, and southwestern flanks 
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of the gulf coast low cluster (Fort Bend, Gonzales, and Jim Wells counties).  The low-

high clusters were located west and southwest of Collingsworth County (Donley County 

and Floyd County), and east of the west Texas cluster of high values (Martin County and 

Glasscock County).  The high percentage of counties with statistically significant Local 

Anselin’s I values that were clusters of either high or low standardized residuals (71.88%, 

23 out of 32) suggested that local spatial relationships between county model fits may 

have been strong enough to influence the overall MLR model fit for the Model 1 

specification.  Additionally, the distribution of clusters in Figure 67 suggested a 

southeasterly north-south gradient of model fits, with weak model performances in the 

northern portion of the state transitioning to strong model performances along the gulf 

coast.  This apparent gradient further suggested a potentially strengthened influence of 

local climatic conditions on per capita municipal water consumption in 2000. 

The per capita municipal water consumption patterns in 2010 expressed a 

moderate degree of global spatial autocorrelation (I = 0.144, z = 7.096, p < 0.001), which 

suggested that the consumption of municipal water in one county was moderately 

influenced by the consumption of municipal water in another county within the distance 

threshold.  The degree of global spatial association between the municipal water 

consumption patterns in neighboring counties was slightly lower than 2000 (I = 0.165, z 

= 9.159, p < 0.001), and much higher than 1990 (I = 0.028, z = 2.409, p = 0.016).  This 

decrease in the Moran’s I index suggested that on average, the influence of spatial 

processes on municipal water consumption became weaker between 2000 and 2010.  

Conversely, the increased Moran’s I index suggested that on average, the influence of 
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spatial processes on municipal water consumption dramatically increased between 1990 

and 2010. 

The local measure of spatial association identified clusters of high per capita 

municipal water consumption values along the northern Texas-Mexico border extending 

east to include Winkler, Ward, Crane, and Upton counties, and in the northern panhandle 

in the vicinity of Amarillo.  Clusters of low per capita municipal water consumption 

values were found east and southeast of Tarrant County, and along the northeastern 

Texas-Louisiana border north of Gregg County (Figure 68).  The clusters of high values 

reflect the original 2010 per capita municipal water consumption patterns in Figure 45 to 

varying degrees, with the northern panhandle exhibiting a nearly perfect visual match.  

The high cluster in west Texas and the northern Texas-Mexico border did not visually 

match the original pattern of consumption values quite as closely, but it clearly illustrated 

that the spatial relationships between western and northern border counties exerted a 

considerable influence on the performance of the Model 1 MLR specification in 2010.  

 The greatest change in cluster locations and volume were evident in comparisons 

between 1990 and 2000, and 1990 and 2010.  Comparing the number of clusters in each 

year to the total number of counties that produced a statistically significant value of 

Anselin’s Local I, the relative influences of local spatial processes on per capita 

municipal water consumption increased over time.  The percentage of clusters increased 

from 66.67% (two out of three) in 1990, to 86.96% (forty out of forty-six) in 2000, and 

again to 92.11% (35 out of 38) in 2010.  One potential explanation for these increased 

spatial influences is that they may partially reflect the transition of the primary planning 

unit from major drainage basins to planning regions implemented by the Texas Water 
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Development Board in the 2002 state water plan (TWDB 1997).   If further research 

demonstrated that this change in administrative planning units was partially responsible 

for the intensification of spatial relationships between counties and the reductions in per 

capita municipal water consumption that occurred between 2000 and 2010 (Figure 69), it 

would suggest that changes in water management influenced the municipal water 

consumption patterns. 

In 2010, Population Density expressed a weak, yet statistically significant degree 

of global spatial autocorrelation (I = 0.095, z = 48.351, p < 0.001), which suggested that 

the physical concentration of population on the landscape in one county was weakly 

associated with the physical concentration of population on the landscape in another 

county within the distance threshold.  The local measure of spatial association detected 

clusters of high population densities in north Texas that encompassed the Dallas-Fort 

Worth metro area, and along the northern gulf coast in the vicinity of the Houston 

metroplex (Figure 70).  These clusters of high population densities clearly reflect the 

physical footprint of the major metropolitan areas that they contain.  The only difference 

between the population density clusters in 2000 and 2010 is the statistical insignificance 

of Bexar County in 2010.  This change is more closely related to population density 

changes in the counties that surround Bexar County, rather than population density 

changes in Bexar County itself.  The statistical insignificant Anselin’s Local I value for 

Bexar County in 2010 suggested that the differences in population density between Bexar 

County and those counties surrounding it were not statistically different.  In other words, 

the population densities in the immediate vicinity of Bexar County became more 

homogenous between 2000 and 2010.  Additionally, the presence of only two clusters of 



158 
 

 
 

high population densities suggested that these contributed exclusively to the global 

spatial autocorrelation in the Population Density variable for 2010. 

Percent Worked Inside County of Residence expressed a moderate degree of 

global spatial autocorrelation in 2010 (I = 0.154, z = 8.4162, p < 0.001), which suggested 

that the size of the population that worked in their own county in one county was 

moderately dependent on the size of the population that worked in their own county in 

another county within the distance threshold.  The degree of global spatial association in 

2010 was stronger than in 2000 (I = 0.144, z = 7.906, p < 0.001), but weaker than in 1990 

(I = 0.196, z = 10.694, p < 0.001).  This comparison of results between years suggested 

that on average the commercial component of per capita municipal water consumption 

may have confounded the Model 1 MLR specification in all three years to varying 

degrees with the strongest influences occurring in 1990 and 2010.  This relevance of this 

observation lies in the fact that Percent Worked Inside County of Residence was the only 

driving landscape characteristic of per capita municipal water consumption that was 

statistically significant in all three years. 

The local measure of spatial association produced a pattern of clusters and spatial 

outliers similar to that of 2000 (Figure 71).  The patterns of high-low spatial outliers 

matched 2000 pattern, but there were several small changes to the distribution of low 

value clusters.  The low clusters gained Fannin, Red River, and Brazoria counties, and 

lost Hood and Coryell counties.  The low-low spatial outliers lost the northern panhandle 

counties of Roberts, Randall, and Jones, and gained Martin County.  The high clusters 

remained concentrated in west Texas along the northern Texas-Mexico border, and 

gained Webb, Zavala, Starr, and Hidalgo counties in the southern tip of Texas.  The high 
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clusters also experienced a mild shift in the panhandle, gaining Dickens and King 

Counties, and losing Dawson, Scurry, Howard, Lubbock, Childress, and Ector Counties. 

The general pattern of both clusters (high and low) and outliers was generally 

consistent with the original per capita municipal water consumption in Figure 45, and the 

greatest influences on the global spatial autocorrelation of Percent Worked Inside County 

of Residence were located along the Texas-Mexico border, and along the urban corridors 

of central and northern coastal Texas. The percentage of counties with statistically 

significant values of Anselin’s Local I that were identified as high or low clusters 

(76.32%, 58 out of 76) also suggested that the spatial relationships between counties may 

have influenced the ability of the Model 1 MLR specification to detect the true strength 

of the relationship between Percent Worked Inside County of Residence and Per Capita 

Municipal Water Consumption. 

In 2010, Percent High School Diploma expressed a moderate degree of spatial 

autocorrelation (I = 0.133, z = 11.727, p < 0.001), which suggested that the size of the 

population with a high school diploma was moderately dependent on the size of the 

population with a high school diploma in another county within the distance threshold.  

The local measure of spatial association indicated clusters of high percentages of high 

school diploma holders in the southeast corner of the Texas-Louisiana border, and 

approaching the panhandle in the northwestern portion of the state (Figure 72).  Clusters 

of low values were identified along the urban corridor between Bexar County and Travis 

County, and the along northern, central, and southern Texas-Mexico border.  The cluster 

of high values on the Texas-Louisiana border extends both north-south and east-west, and 

likely reflected the employment opportunities available in these counties (natural 
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resource extraction, tourism, and retail), as well as the fact that greater than 60% of 

residents work inside their counties of residence in seven out of fourteen (50%) of the 

counties in the cluster (TSHA 2013).   

The cluster of low values along the Bexar County-Travis County urban corridor 

was probably a response to the concentration of higher education institutions (The 

University of Texas at San Antonio, Texas State University-San Marcos, and The 

University of Texas at Austin, etc.) rather than a low percentage of high school graduates 

in the area.  The percentage of bachelor’s degree holders for Bexar, Comal, Hays, and 

Travis Counties were 25.3%, 32.6%, 35%, and 43.5% respectively.  The cluster of low 

values along the Texas-Mexico border was likely the result of the available job 

opportunities (tourism, retail, and agriculture), and high percentages of residents working 

in their own counties (TSHA 2013).  All of the counties in the border cluster of low 

values recorded at least 60% of residents working inside their own counties.  Overall, the 

high percentage of counties with statistically significant Local Anselin I values that were 

identified as either high or low clusters (88.10%, 37 out of 42) suggested that the 

distribution of high school diploma holders was influenced by local spatial processes. 

These spatial processes, in turn, may have confounded the MLR Model 1 specification. 

The Standardized Residuals for the 2010 Model 1 MLR specification expressed a 

weak yet statistically significant degree of global spatial autocorrelation (I = 0.085, z = 

4.752, p < 0.001), which suggested the model fit in a given county was weakly influenced 

by the model fit in another county within the distance threshold.  The local measure of 

spatial association indicated clusters of high standardized residuals in the northern 

panhandle along the Texas-Oklahoma border, in west Texas northwest of Pecos County,  
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northeast of Williamson County in central Texas (Milam and Falls Counties), and in east 

Texas approaching the Texas-Louisiana border (Figure 73).  The clusters of low values 

formed a ring around Lubbock County, and extended eastwardly towards north central 

Texas.  Spatial outliers were detected in Coke County (high-low) and Angelina County 

(low-high).  These spatial distributions of clusters and outliers suggested that the 

performance of the MLR Model 1 specification was exceptionally weak in high 

consumption locations such as the northwestern panhandle, and exceptionally strong in 

low consumption locations such as the peripheral counties of Lubbock County (see 

Figure 45).  Additionally, the high percentage of counties with statistically significant 

values of Local Anselin’s I that were identified as high or low clusters (92.31%, 36 out of 

39) suggested that spatial processes may have contributed to the poor fit of the global 

MLR Model 1 specification. 

Summary Spatial Analysis of MLR Model 1 

 The original per municipal water consumption patterns in each of the three years 

in this study expressed at least a weak statistically significant of degree global spatial 

autocorrelation at the county scale.  The strongest global, or average, spatial 

autocorrelation value was present in the spatial distribution of per capita municipal water 

consumption for 2000 (I = 0.165, z = 9.159, p < 0.001), and the weakest global spatial 

association occurred in 1990 (I = 0.028 z = 2.409, p = 0.016).  The statistical significance 

of these Moran’s I values (p < 0.050) strongly suggested that the spatial associations were 

not detected by random chance.  Each of the statistically significant driving landscape 

characteristics of per capita municipal water consumption also expressed at least a weak 

statistically significant degree of global spatial autocorrelation.   
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The most noteworthy driving landscape characteristic was Percent Worked Inside 

County of Residence which belonged to the social environmental conceptual variable, and 

represented the commercial component of municipal water consumption.  This variable 

expressed a moderate degree of statistically significant global spatial autocorrelation, and 

was the only independent variable that exerted a temporally consistent influence on per 

capita municipal water consumption despite variations in relationship strength (see Table 

20), and spatial association.  The degree of statistically significant global spatial 

autocorrelation for Percent Worked Inside County of Residence was the strongest in 1990 

(I = 0.196, z = 10.694, p < 0.001), the second strongest in 2010 (I = 0.154, z = 8.416, p < 

0.001), and the weakest in 2000 (I = 0.144, z = 7.906, p < 0.001).  The implication here is 

that the driving landscape characteristic that should likely be considered in all county 

scale global models of per capita municipal water consumption patterns is also likely to 

seriously confound the model results. 

Weak yet statistically significant degrees of global spatial autocorrelation were 

also present in the standardized residuals of the Model 1 MLR specification for each 

year.  The global spatial associations of the regression residuals increased steadily from 

1990 (I = 0.042, z = 2.465, p = 0.014), to 2000 (I = 0.054, z = 3.108, p = 0.002), and 

through 2010 (I = 0.085, z = 4.753, p < 0.001).  This increase in spatial association over 

time suggested that the ability of the global MLR model to explain the statistically 

significant driving landscape characteristics of consistently degraded every year between 

1990 and 2010.  Additionally, local measures of spatial association revealed influential 

locations that contributed the most strongly to the global spatial association of each per 

capita municipal water consumption pattern, each statistically significant driving 
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landscape characteristic of municipal water consumption, and each model fit for all three 

years.  Overall, the relatively high percentages of spatial clusters of high or low values 

suggested that while the degree to which spatial processes influenced varied over time in 

the Model 1 specification, the patterns and driving landscape characteristics of per capita 

municipal water consumption are largely spatially non-stationary. 

MLR Model Tuning and Adjustments 

 The weak to moderate model fits for the original MLR Model 1 specification in 

1990, 2000, and 2010 resulted in the development of seven additional models for each 

year.  Models 2, 3, 7, and 8 experimented with additional independent variables to 

improve the strength of the relationship between commercial water use and per capita 

municipal water consumption at the county scale, while Models 4 and 5 explored the 

effects of regionalizing the original dataset based on a physiographic and climatic divide.  

The decision to improve the relationship strength of the commercial component of 

municipal water consumption was made because Percent Worked Inside County of 

Residence (the commercial water variable), was the only driving landscape characteristic 

that was statistically significant in all three years.  Similarly the decision to explore the 

effects of a regionalization was a dual attempt to improve overall model fit, as well as to 

informally test the spatial stationarity of per capita municipal water consumption patterns 

at the county scale.  A complete list of every model permutation is available in Table 7. 

  Model 2 added the Per Capita Commercial Businesses independent variable to 

the original suite of independent variables in Model 1 (Table 3) to capture commercial 

water use more directly.  The underlying assumption with the addition of this 

independent variable was that a greater number of commercial businesses would translate 
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into a higher consumption of municipal water.  Model 3 retained all of the independent 

variables from Model 1 except Percent Worked Inside County of Residence, which was 

replaced by Per Capita Commercial Businesses.  Models 4 and 5 used the original set of 

independent variables from Model 1, but divided all of the counties in Texas into regions 

east and west of the dry line respectively.  Interstate 35 was used to approximate the 

average position of dry line, due to the freeway’s north-south orientation through the 

entire state of Texas and its location along the Balcones Escarpment which serves an 

approximate climatic divide.   

Model 6 also used the original variables from Model 1, and provided a baseline of 

municipal water consumption patterns for comparison with Model 7 which introduced the 

Per Capita Building Permits variable.  This baseline was required to account for the 

removal of twenty-five counties that did not collect data on residential building permits 

during the study period.  Model 8 substituted Percent Lodging for the Percent Worked 

Inside County of Residence and retained all of the other independent variables from 

Model 1.  The Percent Lodging independent variable attempted to capture the influence 

of transient tourism activity on per capita municipal water consumption, where the 

number of businesses dedicated to accommodations was expressed as a percentage of the 

total number of commercial businesses.  In the following sections, the overall 

performance of each model permutation and its influence on the statistically significant 

landscape characteristics that drive per capita municipal water consumption are briefly 

discussed by year.  Special attention is given to the models that improved the fit of the 

original Model 1 specification.  The spatial analyses of model residuals are presented 

following the discussion of the global MLR results for each model.    
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1990 

 In 1990, Model 2 left the overall model fit of the original specification unchanged 

(Table 20).  The strength of the original bivariate correlations between Per Capita 

Municipal Water Consumption and Percent Worked Inside County of Residence (τ = 

0.320, p < 0.001), and between Per Capita Municipal Water Consumption and Per 

Capita Commercial Businesses (τ = 0.225, p < 0.001) suggested that the influence of the 

latter variable may have been masked by the former.  This suggestion proved correct 

when the substitution of per capita commercial businesses for the percentage of the 

population working in their own county increased the overall global model fit in Model 3 

(Adjusted R-Square = 0.411, F = 26.191, p < 0.001, Df = 246).   Model 3 accounted for 

41.1% of the variation in per capita municipal consumption, while Model 1 only 

accounted for 38.5%.  Additionally, this substitution of independent variables altered the 

character of the statistically significant driving landscape characteristics, as well as the 

relative importance of the conceptual variables. 

 Model 3 suggested that Population Density (β = -0.346, p < 0.001) exerted the 

greatest influence on per capita municipal water consumption, followed by, Percent 

Bachelor’s Degree (β = 0.339, p < 0.001), Average Annual Precipitation (β = -0.246, p < 

0.001) and Per Capita Income (β = -0.224, p < 0.001).  In addition to the physical 

concentration of population on the landscape, the Model 3 specification also identified 

three other driving characteristics that were not previously statistically significant in 1990 

including Percent Single Family (β = -0.222, p = 0.017), Percent Urban (β = 0.164, p = 

0.026), and Per Capita Commercial Businesses (β = 0.155, p = 0.004).  The directions of 

the relationship between each of the statistically significant independent variables in 
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Model 3 and per capita municipal water consumption were consistent with Model 1 

despite changes in relationship strength between models.  The standardized beta weights 

and significance values for each statistically significant driving landscape characteristic 

for Models 1 and 3 may be directly compared in Table 21. 

 All three conceptual variables (the social, urbanized, and physical environments) 

demonstrated statistically significant influences on municipal water consumption in 

Model 3 unlike the exclusion of the urbanized environment from Model 1.  Model 3 also 

altered the relative influence of each conceptual variable.  The urbanized and social 

environment were the most the important influences on municipal water when considered 

from the perspective of magnitude, but the social environment was most important by 

quantity (57.14%, 4 out of 7 variables).  Model 1 suggested that the social and physical 

environments (Table 22) were the most influential by magnitude, but the social 

environment dominated in terms of quantity. 

 The standardized residuals for Model 3 expressed a moderate degree of global 

spatial autocorrelation (I = 0.247, z = 13.429, p < 0.001), which suggested that the fit of 

Model 3 in one county was moderately dependent on the fit of Model 3 in another county 

within the distance threshold.  This moderate value of Moran’s I was more than five 

times higher than that of Model 1 ((I = 0.042, z = 2.465, p = 0.014), which suggested that 

the increased model fit may have resulted from a small amount of collinearity between 

some of the variables in the model.  An inspection of the Variance Inflation Factor (VIF) 

for the independent variables in Model 3 suggested that while collinearity was stronger 

than in Model 1, all values were well below the minimum 5.0 value of concern (Meyers 

et al. 2006; Pedhazur 1997).  The highest VIF was 3.627 for Percent Single Family. 
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 The local measure of spatial association indicated clusters of high standardized 

residuals (weak model performance) in north Texas east of Denton County (Collin, 

Rockwall, Hunt, Rains, and Franklin Counties), and along the central Texas-Mexico 

border in Kinney County (Figure 74).  Clusters of low standardized residual values 

(strong model performance) were detected in the central panhandle south of Lubbock 

County (Lynn County), in the southern tip of Texas oriented east-west between Zapata 

and Willacy Counties (Jim Hogg, Brooks, and Kennedy Counties), and southwest of 

Tarrant County (Erath and Hood Counties).  Spatial outliers of low residual values 

(strong model performance) surrounded by high residual values were found along the 

northern Texas-New Mexico border in Loving County, in the northern panhandle 

northeast of Amarillo (Hutchinson County), and in north Texas northeast and southeast of 

Dallas County (Delta and Hutchinson Counties).  Spatial outliers of high residual values 

(weak model performance) surrounded by low residual values were identified in central 

Texas north sandwiched between San Saba and Lampasas Counties (Mills County), along 

the southern gulf coast in Calhoun, Nueces, and Willacy Counties, and along the southern 

Texas-Mexico border in Zapata County.  The moderate percentage of counties with 

statistically significant values of Local Anselin’s I that were identified as clusters of 

exceptionally strong or weak model performance (54.55%, 12 out of 22) suggested that 

the influence of local spatial processes were weaker than in Model 1 which supported the 

increased fit of Model 3.   

 Models 4 (32.0%) and 5 (36.4%) explained less of the variation in per capita 

municipal water consumption patterns than Model 1 (38.5%) in 1990, and are not 

discussed in detail here.  However, Models 4 and 5 did produce useful insights in 1990.  
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Regionalizing the original dataset into segments east and west of the dry line, suggested 

that the original Model 1 specification performed better in drier climates than in wetter 

climates for 1990. The different model fits produced by the data regionalization also 

suggested that per capita municipal water consumption patterns in 1990 were not 

spatially stationary across multiple scales.  Table 20 provides the actual Adjusted R-

Square values, values of F, significance values, and degrees of freedom for Models 4 and 

5. 

 Models 6 and 7 improved the amount of variation accounted for from 38.5% in 

Model 1 to 44.0%.  This improvement, however, was due to the removal of outliers rather 

than the inclusion of a more powerful explanatory variable.  The twenty-five counties that 

were removed from the model due to the absence of residential building permit data were 

scattered throughout the state and shared several common characteristics.  Seventy-six 

percent of these counties had population densities of less than one person per square 

kilometer, and 80% had a percent urban value of zero.   

A review of the bivariate correlations in Table 15 suggested the removal of these 

twenty-five counties improved the strength of the relationships between Per Capita 

Municipal Water Consumption, Population Density, and Percent Urban respectively.  

The strength of the association between Per Capita Municipal Water Consumption and 

Population Density increased from -0.128 (p = 0.002) in Model 1 to -0.148 (p = 0.001) in 

Model 7.  Likewise, the association strength between Per Capita Municipal Water 

Consumption and Percent Urban increased from 0.208 (p < 0.001) in Model 1 to 0.243 (p 

< 0.001) in Model 7.  The values for Model 6 were identical to those of Model and are 

not reported.  These increases in the strength of the bivariate association may have 
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contributed to the statistical significance of Population Density in Model 7 which helped 

increase the overall model fit. 

Model 7 suggested that Population Density (β = -0.318, p < 0.001), Average 

Annual Precipitation (β = -0.313, p < 0.001), and Percent Single Family (β = -0.281, p = 

0.001) were the most influential statistically significant driving landscape characteristics 

of Per Capita Municipal Water Consumption.  The slightly weaker statistically 

significant influences included Percent Worked In County of Residence (β = 0.238, p < 

0.001), and Percent Bachelor’s Bachelor Degree (β = 0.186, p = 0.002).  These results 

further suggested that the importance of consumption reducing drivers was greater than 

that of consumption increasing drivers.   

The relative influences of the conceptual variables were also altered by the 

exclusion of the counties without building permit data.  The urbanized and physical 

environments were the most important influences on per capita municipal water 

consumption by magnitude, but the social environment provided the greatest quantity of 

statistically significant driving landscape characteristics.  Model 1 shared Model 7’s 

dominance of the social environment as gauged by the quantity of  its significant 

variables, as well as the high relative importance of the physical environment (Table 21). 

The standardized residuals for Model 7 expressed no statistically significant 

global spatial autocorrelation (I = 0.023, z = 1.337, p = 0.181) which suggested that the 

spatial associations that may exist between the model fits in any county were not 

statistically different from a random pattern within the distance threshold.  The local 

measure of spatial association detected clusters of exceptionally weak model performance 

along a northeasterly diagonal stretching from Dallas County to Lamar County on the 
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northeastern border of Texas and Oklahoma, and a short northeasterly diagonal from 

Dimmit County to Frio County on the southern Texas-Mexico border (Figure 75).  

Clusters of exceptionally strong model performance were located in the central panhandle 

south and southwest of Lubbock County, and in Erath County.  Spatial outliers of model 

weak model performance surrounded by strong model performance were found west and 

north of the Dimmit-Frio cluster of weak model fits, and northeast of the Dallas-Lamar 

cluster of strong model fits. A single spatial outlier of weak model performance was 

found in Shackleford County.  The moderate percentage of counties with statistically 

significant values of Anselin’s Local I that were identified as clusters of weak or strong 

model performances (63.16%, 12 out of 19) suggested that local spatial processes were 

confounding Model 7’s ability to explain the consumption patterns of municipal water in 

1990.  This moderate percentage of clusters may also be combined with the suggestion of 

complete spatial randomness provided by the Moran’s I metric to clearly illustrate that 

the modifiable areal unit problem may impact global MLR models.  

Model 8 improved the overall model fit from 0.385 (F = 40.517, p < 0.001, Df = 

249) to 0.393 (F = 36.806, p < 0.001, Df = 223).  Although the increased explanatory 

power of Model 8 was marginal (0.8%) and the Percent Lodging variable was not 

statistically significant, the model did shift the relative importance of both the operational 

and conceptual landscape characteristics that drive municipal water consumption.  Model 

8 suggested that Population Density (β = -0.384, p < 0.001), Percent Bachelor’s Degree 

(β = 0.358, p < 0.001), and Average Annual Precipitation (β = -0.260, p < 0.001) were 

the most influential statistically significant explanatory variables for per capita municipal 

water consumption.  Percent Urban (β = 0.197, p = 0.008) and Per Capita Income (β = -
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0.192, p = 0.005) were also statistically significant driving landscape characteristics with 

weaker influences (Table 20).  Conceptually, Model 8 suggested that the urbanized and 

social environments held the greatest degree of influence over per capita municipal water 

consumption from the perspectives of both magnitude and quantity.  The importance of 

the physical environment was greatly reduced as the contribution of Annual Average 

Precipitation decreased from -0.310 (p < 0.001) in Model 1 to -0.260 (p < 0.001) in 

Model 8.  However, the fact that the contribution of Average Annual Precipitation 

remained statistically significant despite this explanatory loss suggested that its influence 

on the patterns of municipal water consumption should not be ignored.  In other words, 

the persistence of precipitation in multiple model permutations for 1990 suggested that it 

was a relatively robust indicator of per capita municipal water consumption. 

The standardized residuals for Model 8 expressed an exceptionally weak degree 

of global spatial autocorrelation that was not statistically significant (I = 0.023, z = 1.430, 

p = 0.153), which suggested that the model fit in one county was not significantly 

influenced by the model fit of any other county within the distance threshold.  In other 

words, the global spatial distribution of the standardized residuals was not statistically 

different from a random pattern.  The local measure of spatial association indicated 

clusters of exceptionally weak model performance (high residuals) along a northeasterly 

diagonal stretching from Rockwall County east of Dallas County to Lamar County on the 

Texas-Oklahoma border (Figure 76).  Clusters of exceptionally strong model 

performance (low residuals) were detected in Lynn County south of Lubbock County, in 

Erath County southwest of Tarrant County, and along an east-west transect in the 

southern tip of Texas from the Texas-Mexico border to the Gulf of Mexico.  Spatial 



172 
 

 
 

outliers of weak model performance surrounded by strong model performance were 

located along the southern gulf coast, and on the western and southern edges of the 

southern Texas cluster of model overestimates.  Spatial outliers of strong model 

performance were found in the northern panhandle (Hutchison and Wheeler Counties), in 

west Texas west of Midland County (Loving County), and in the vicinity of the cluster of 

weak model performance in northeast Texas.   

The percentage of counties with a statistically significant value of Anselin’s Local 

I that were clusters of weak or strong model performance (high-high or low-low) was 

52.38% (11 out of 21).  This moderate percentage of statistically significant clusters 

supported the weak spatial relationships detected by the Moran’s I global spatial 

autocorrelation, but also reinforced the importance of scale in spatial analysis.  The 

moderate percentage of  high-high and low-low clusters suggested that the standardized 

residuals were influenced by local spatial processes, and that the clustered counties may 

share a group of characteristics that produced similar model performances. 

2000 

 Models 2 and 3 did not enhance the overall performance of the Model 1 

specification in 2000 and are not discussed further.  The model fit and diagnostics for all 

model permutations in 2000 are available in Table 23.  Model 4, which contained only 

the counties east of the dry line, increased the overall model fit from Model 1’s 0.410 (F 

= 34.059, p < 0.001, Df = 248) to 0.422 (F = 18.380, p < 0.001, Df = 114).   This increase 

in model fit suggested that per capita municipal water consumption estimates in 2000 

were sensitive to broad climatic differences, and provided further support for the spatial 

non-stationarity of municipal water consumption patterns.  The three-way differences 
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between Models 1, 4, and 5 (Adjusted R-Square = 0.360, F = 14.641, p < 0.001, Df = 

129), also suggested that changing the scale of analysis altered the ability of a global 

model to explain the variation in per capita municipal water consumption as well as the 

which driving landscape characteristics were the most influential. 

 Model 4 suggested that the greatest influence on the 2000 patterns of per capita 

municipal water consumption east of the dry line were Population Density (β = 0-.557, p 

< 0.001), Percent Urban (β = 0.495, p < 0.001), and Percent Bachelor’s Degree (β = 

0.421, p < 0.001).  Percent Surface Water (β = 0.226, p = 0.001) and Percent Worked 

Inside County of Residence (β = 0.152, p = 0.077) also played important but weaker roles 

in explaining the consumption patterns of municipal water.  Despite, being statistically 

insignificant at α = 0.05, the Percent Worked Inside County of Residence  variable was 

included in Model 4 due to the 0.100 significance of the removal threshold in the 

stepwise regression algorithm.  Similarly, the independent variable was not manually 

removed from the model because its temporal consistency suggested that it may contain 

practical significance to the consumption of municipal water. 

 A noteworthy anomaly present in the 2000 version of Model 4 was the statistical 

significance of Percent Surface Water and the reversal of direction from its 2000 

bivariate correlation with Per Capita Municipal Water Consumption in Model 1 (Table 

16).  The initial associations suggested, albeit weakly and without statistical significance, 

that the per capita consumption of municipal water decreased in response to increases in 

the percentage of surface water used in municipal water supplies.  However, the 

regionalization of the 2000 per capita municipal water consumption patterns suggested 

that counties east of the dry line increased their consumption of municipal water in 
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response to using a greater proportion of surface water to meet municipal demands.  

Explaining this relationship in detail required further research that was beyond the scope 

of this study, but it generally resembled the depletion problems associated with common 

pool resources or public resources with shared access (CPR).  

Depletion becomes a problem with CPR resources due to the prevailing attitude 

towards conservation, which asserts that reduced resource consumption by one party in 

the present results in resource hoarding by another party in the future (Krause et al. 2003; 

Ostrum et al. 1994).  Under the most extreme case of this scenario, the hoarding party 

may continue to accumulate resources to the exclusion of the conserving party.  Texas 

water laws such a Prior Appropriation could unintentionally create this type of situation if 

holders of surface water rights were supremely interested in maintaining their present 

allotment in perpetuity (Thompson 1999). 

 All three conceptual variables (the social, urbanized, and physical environments) 

were represented in Model 4, but the urbanized and social environment variables were 

clearly the most influential by magnitude of association.  When viewed from the 

perspective of quantity, the urbanized and physical environments exerted approximately 

equal influences on the consumption of municipal water.  The physical environment was 

among the lowest in terms of both magnitude and quantity. 

The standardized residuals for Model 4 in 2000 expressed a weak degree of global 

spatial autocorrelation (I = 0.060, z = 1.750, p = 0.080), which suggested that over or 

underestimates of per capita municipal water consumption in one county were weakly 

influenced by over or underestimations of per capita municipal water consumption in 

another county within the distance threshold. This weak degree of global or average, 
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spatial association between the standardized residuals of individual counties may have 

confounded the Model 4 MLR specification’s ability to detect the true relationships 

between per capita municipal water consumption and its statistically significant driving 

landscape characteristics due to a lack of independence between observations. 

The local measure of spatial association indicated clusters of high standardized 

residual values (exceptionally weak model performance) east of the Texas-Mexico border 

and north of Webb County (La Salle and McMullen Counties) (Figure 77).  Clusters of 

low residuals (exceptionally strong model performance) were identified in a north-south 

strip along the central gulf coast in between Fort Bend County and Nueces County.  A 

lone high-low spatial outlier (weak model performances surrounded by strong model 

performances) was detected north of the low clusters on the gulf coast (Fort Bend 

County).  Low-high spatial outliers (strong model performances surrounded by weak 

model performances) were found approaching east Texas north of Harris County (Leon 

County), and on the northern gulf coast southeast of Harris County (Galveston County).  

The high percentage of counties with statistically significant values of Anselin’s Local I 

that were identified as clusters of either weak or strong model performance (76.92%, 10 

out of 13) supported the presence of global spatial influences, and suggested that local 

spatial processes were influencing the distribution of model performances. 

 Model 5 decreased the overall model fit from 0.410 (F = 34.059, p < 0.001, Df = 

248) to 0.360 (F = 14.641, p < 0.001, Df = 129), and thus is mentioned only as further 

evidence that spatial and geographic processes contribute to and influence the per capita 

consumption of municipal water.  Models 6 and 7 increased the overall model fit from 

Model 1 to 0.424 (F = 42.933, p < 0.001, Df = 224).  As in 1990, this increase in model 
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fit was due largely to the exclusion of the twenty-five counties without residential 

building permit data during the study period (1990, 2000, and 2010), because the 

experimental independent variable was not statistically significant. 

 Models 6 and 7 suggested that Population Density (β = -0.417, p < 0.001), and 

Percent Urban (β = 0.332, p < 0.001) were the most influential driving landscape 

characteristics of Per Capita Municipal Water Consumption in 2000.  Percent Worked 

Inside County of Residence (β = 0.234, p < 0.001) and Percent High School Diploma (β = 

-0.219, p < 0.001) were also important to lesser degrees.  The directions of association for 

the driving landscape characteristics were evenly represented with two characteristics that 

increased per capita municipal water consumption and two characteristics that decreased 

per capita municipal water consumption, which was a rare occurrence between years or 

models. 

 Only two out the three conceptual variables were included in Model 7, and the 

physical environment was not among them.  The urbanized environment was the most 

important explanatory conceptual variable for Model 7 in 2000 in the sense of magnitude, 

but was evenly matched from the perspective of the quantity of operational variables.  As 

evidenced in Table 23, the 2000 version of Model 8 did not increase the overall model fit 

of Model 1 (Adjusted R-Square = 0.410, F = 26.107, p < 0.001, Df  = 246), and its 

experimental independent variable was not statistically significant.  Therefore, the 

statistically significant variables are not discussed here. 

The standardized residuals for Model 7 in 2000 expressed a weak degree of global 

spatial autocorrelation (I = 0.072, z = 3.713, p < 0.001), which suggested that over or 

underestimates of per capita municipal water consumption in one county were weakly 
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influenced by over or underestimations of per capita municipal water consumption in 

another county within the distance threshold. This weak degree of global or average, 

spatial association between the standardized residuals of individual counties may have 

confounded the Model 7 MLR specification’s ability to detect the true relationships 

between per capita municipal water consumption and its statistically significant driving 

landscape characteristics due to a lack of independence between observations. 

The local measure of spatial association indicated clusters of high standardized 

residual values (exceptionally weak model performance) in the northern panhandle 

stretching eastward from the northern Texas-New Mexico border towards the eastern 

Texas-Oklahoma border, south and southeast of Midland County, and north of Dallas 

County stretching eastward towards the eastern Texas-Louisiana border (Figure 78).  

Clusters of low residuals (exceptionally strong model performance) were identified in a 

north-south strip along the central gulf coast in between Fort Bend County and Nueces 

County, on the southern Texas-Mexico border sandwiched between Starr and Cameron 

Counties, and a north-south column west of Tarrant County and east of Shackleford 

County.  High-low spatial outliers (weak model performances surrounded by strong 

model performances) were detected on the northern Texas-Oklahoma border in Wichita 

County, west of the high cluster that was west of Tarrant County (Shackleford, Taylor, 

and Kent Counties), and Gonzales County in central Texas.  Low-high spatial outliers 

(strong model performances surrounded by weak model performances) were found north 

of Midland County (Martin County), and in the northern panhandle southeast of the 

panhandle high cluster (Donley County).  The high percentage of counties with 

statistically significant values of Anselin’s Local I that were identified as clusters of 
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either weak or strong model performance (74.36%, 29 out of 39) supported the presence 

of global spatial influences, and suggested that local spatial processes were influencing 

the distribution of model performances.   

2010 

 The especially poor overall fit of Model 1 in 2010 (Adjusted R-Square =0.187, F 

= 20.358, p < 0.001, Df = 250) provided much of the impetus for the subsequent 

development of the eight model permutations explored in this section of the present 

chapter.  As in both 1990 and 2000, the addition of Per Capita Commercial Businesses to 

the existing suite of independent variables Model 2 did not improve the Model 1 results. 

Hence, the model fit and diagnostics for Model 2 are available in Table 25, and the 

standardized beta and significance values for each statistically significant driving 

landscape characteristic are provided in Table 21 without further explanation here.  

Model 3 decreased the overall model fit of Model 1 from 0.187 to 0.186 (F = 20.358, p < 

0.001, Df = 249) and is not discussed here. 

 Model 4 also failed to improve the Model 1 results, and only accounted for 7.6% 

(Adjusted R-Square = 0.076, F =10.775, p < 0.001, Df = 118) of the variation in per 

capita municipal water consumption in 2010 compared to 18.7% in Model 1.  This 

exceptionally low fit for Model 4 suggested that the original suite of independent 

variables from Model 1 poorly explained the variation in per capita municipal 

consumption in relatively wet or humid climates in 2010.  Model 5 provided the best 

model fit of any model in 2010 and accounted for 37.6% of the variation of per capita 

municipal water consumption (Adjusted R-Square = 0.376, F = 14.352, p < 0.001, Df = 

127).   
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Model 5 suggested that Population Density (β = -0.458, p < 0.001), and Percent 

Single Family (β = -0.421, p < 0.001), were the most influential explanatory variables for 

per capita municipal water consumption in 2010, followed by Percent Owner Occupied 

(β = 0.367, p < 0.001), and Percent Surface Water (β = -0.328, p < 0.001).  Percent 

Urban (β = 0.266, p < 0.001) and Percent Worked Inside County of Residence (β = -

0.176, p < 0.053) also contributed to per capita municipal water consumption to a lesser 

degree.  Although in violation of the required significance level of this study (α = 0.05), 

the commercial component of municipal water consumption was retained in the model 

because it was the only independent variable that was statistically or very near 

statistically significant (α = 0.05) in all three years for every model permutation in which 

it was included. 

Model 5’s statistically significant driving landscape characteristics behaved 

similarly to those of most other models with several notable exceptions.  The association 

directions of Percent Owner Occupied, and Percent Worked Inside County of Residence 

were opposite of the directions of these variables in all other model permutations.  Model 

5 displayed a positive association between Per Capita Municipal Water Consumption and 

Percent Owner Occupied, which suggested that per capita municipal water consumption 

at the county scale increased in response to increases in the size of the population that 

lived in a home that they owned.  The direction and strength of this relationship 

suggested that the Percent Owner Occupied variable may have been reflecting an 

increased use of residential outdoor water to maintain lawns and other outdoor areas.  

This explanation is plausible based on the strength and direction of the association 

between Average Annual Precipitation and Per Capita Municipal Water Consumption in 



180 
 

 
 

2010 (τ = -0.248, p < 0.001) which suggested that reductions in the short-term moisture 

supply increased the consumption of municipal water.   

Model 5 also displayed a negative association between Per Capita Municipal 

Water Consumption and Percent Worked Inside County of Residence which suggested 

that per capita municipal water consumption at the county scale increased in response to 

decreases in the size of the population that worked in their own county.  This reversal of 

association direction cannot be reasonably explained via currently available data and 

requires further research.  Conceptually, Model 5 suggested that all three conceptual 

variables (the social, urbanized, and physical environments) contributed to the patterns of 

per capita municipal water consumption in counties west of the dry line in 2010. The 

urbanized and social environments were the most influential explanatory variables in 

terms of magnitude and quantity.  As in previous years, the differences in model 

performance that occurred as a result of dividing the original dataset into groups of 

counties east and west of the dry line suggested that patterns of per capita municipal 

water consumption were not spatially stationary at the county scale. 

The standardized residuals for Model 5 in 2010 expressed a moderately weak 

degree of global spatial autocorrelation (I = 0.087, z = 4.426, p < 0.001), which suggested 

that the model performances in one county were moderately dependent the model 

performances in another county within the distance threshold. This moderately weak 

degree of global or average, spatial association between the standardized residuals of 

individual counties may have confounded the Model 5 MLR specification’s ability to 

detect the true relationships between per capita municipal water consumption and its 
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statistically significant driving landscape characteristics due to a lack of independence 

between observations. 

The local measure of spatial association indicated clusters of high standardized 

residual values (exceptionally weak model performance) in the northern panhandle 

northeast of Amarillo (Hutchison, Carson, and Wheeler Counties), in west Texas along 

northern Texas-New Mexico border (Reeves and Ward Counties), and a triangle in north 

Texas including Dallas, McLennan, and Anderson Counties (Figure 79).  Clusters of low 

residuals (exceptionally strong model performance) were identified in an east-west 

diagonal stretching from the western Texas-New Mexico border towards north central 

Texas. This low cluster completely enclosed Lubbock County, which suggested that the 

Model 5 estimate for Lubbock County was close to its actual value, while Model 5 

significantly overestimated or underestimated the counties on Lubbock County’s 

periphery.   High-low spatial outliers (weak model performances surrounded by strong 

model performances) were detected on the western Texas-New Mexico border west of 

Lubbock County, and in central Texas north of Bexar County (Comal County).  Low-

high spatial outliers (strong model performances surrounded by weak model 

performances) were found in east Texas east of the southern edge of the high cluster 

triangle (Angelina County), and on the southern gulf coast (Kennedy County).  The high 

percentage of counties with statistically significant values of Anselin’s Local I that were 

identified as clusters of either weak or strong model performance (87.1%, 27 out of 31) 

supported the presence of global spatial influences, and suggested that local spatial 

processes were influencing the distribution of model performances. 
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Models 6 and 7 both increased the overall model fit of Model 1 from 0.187 (F = 

20.358, p < 0.001, Df = 250) to 0.205 (F = 20.557, p < 0.001, Df = 225) and 0.210 (F = 

16.128, p < 0.001, Df = 224) respectively.  The removal of the twenty-five counties 

without residential building permit data in Model 6 increased the percentage of explained 

per capita municipal water consumption variation by 2.3%, while the addition of the Per 

Capita Business Permit independent variable produced a net explanatory power increase 

0.5% (the difference between Model 6 baseline 20.5% and Model 7 21.0%).  Despite the 

marginal increase in model fit and explanatory power, the statistically significant driving 

landscape characteristics for Model 7 are presented here rather than those of Model 6.   

Model 7 suggested that Population Density (β = -0.317, p < 0.001) was the most 

important explanatory variable for per capita municipal water consumption at the county 

scale in 2010, followed by Percent High School Diploma (β = -0.219, p < 0.001) and 

Percent Worked Inside County of Residence (β = 0.212, p = 0.001).  Per Capita Building 

Permits (β = 0.182, p < 0.016) and Annual Average Precipitation (β = -0.169, p < 0.030) 

were also important to a lesser degree.  The directions of the associations between the 

driving landscape characteristics of per capita municipal water consumption were 

consistent across time periods, as well as with all other model permutations that 

considered every county in the dataset.  The positive association between Per Capita 

Municipal Water Consumption and Per Capita Building Permits suggested that the 

consumption of municipal water increased in response to an increase in the average 

number of residential building permits per county resident.  Another interpretation of this 

relationship is that growth in residential development increased the residential component 

of municipal water consumption. 
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The social, urbanized, and physical environments were all statistically significant 

driving landscape characteristics of per capita municipal water consumption in 2010.  

The urbanized environment was the most important explanatory conceptual variable in 

terms of magnitude, but the social environment accounted for most of the explanatory 

power in terms of quantity of variables.  The physical environment was the weakest 

conceptual explanatory variable in 2010 for Model 7.  Model 8 decreased the overall 

model fit of Model 1from 0.187 (F = 20.358, p < 0.001, Df = 250) to 0.186 (F = 15.456, p 

< 0.001, Df = 249), and thus its statistically significant driving landscape characteristics 

are not discussed here.  Model 8’s experimental variable, Percent Lodging, failed to 

significantly contribute to per capita municipal water consumption, which suggested that 

the transient population fluxes associated with tourism activities did not influence the 

consumption of municipal water in 2010. 

The standardized residuals for Model 7 in 2010 expressed a moderate degree of 

global spatial autocorrelation (I = 0.103, z = 3.060, p = 0.002), which suggested that over 

or underestimates of per capita municipal water consumption in one county were 

moderately dependent on over or underestimations of per capita municipal water 

consumption in another county within the distance threshold. This moderate degree of 

global, or average, spatial association between the standardized residuals of individual 

counties may have confounded the Model 7 MLR specification’s ability to detect the true 

relationships between per capita municipal water consumption and its statistically 

significant driving landscape characteristics due to a lack of independence between 

observations. 



184 
 

 
 

The local measure of spatial association indicated clusters of high standardized 

residual values (weak model performance) in the northwestern panhandle along the Texas 

borders with New Mexico and Oklahoma, a group of north-south clusters along the 

eastern panhandle border with Oklahoma, and a lone cluster in Coryell County (Figure 

80).  Clusters of low residuals (strong model performance) were identified in the central 

panhandle north of Lubbock County (Hale), east of Midland County (Howard, Nolan, 

and Irion Counties), and El Paso County in west Texas.  A lone high-low spatial outlier 

(weak model performances surrounded by strong model performances) was detected 

towards the edge of the study area in Palo Pinto County, and low-high spatial outliers 

(strong model performances surrounded by weak model performances) were found at the 

center of the northern panhandle cluster of model underestimates and on the southern 

border northern Texas-New Mexico border.  The high percentage of counties with 

statistically significant values of Anselin’s Local I that were identified as clusters of 

either weak or strong model performance (85%, 17 out of 20) supported the presence of 

global spatial influences, and suggested that local spatial processes were influencing the 

distribution of model performances. 

Summary: MLR Model Tuning and Adjustments 

 The results of the model tuning process suggested that the greatest improvements 

in model performance were achieved through the regionalization of the original Model 1 

specification into counties east and west of the dry line, or the exclusion of outliers.  The 

regionalization of the original Model 1 specification suggested that controlling for 

climatic differences within a region often improved the overall fit of the global model, 

and altered the relative importance of the driving landscape characteristics.  The results of 
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the regionalization (Models 4 and 5) also suggested that the analysis of per capita 

municipal water consumption patterns was sensitive to changes in scale.  

The influence of scale was loosely supported by the fact that the counties east and 

west of the dry line produced different model fits within the same year, and altered the 

statistical significance and relative importance of the driving landscape characteristics.  

The model improvements that occurred as a result of outlier removal were not surprising 

as the effects of outliers on global models such as multiple linear regression have been 

extensively documented (Earickson and Harlin 1994; Draper and Smith 1998; Kleinbaum 

et al. 1988; Meyers et al. 2006).  However, the removal of outliers may be problematic in 

geographical analysis because the excluded entities often have important practical 

significance or represent real world locations.  For example, while excluding specific 

counties from a per capita municipal water consumption model may improve the global 

model fit, it may also complicate spatial analysis by creating artificial gaps between 

observations.  

The differences in model fit and statistical significance of driving landscape 

characteristics within years as a result of changes in scale, and the improvements gained 

from the removal of outliers suggested that patterns of municipal water consumption 

were not spatially stationary.  Exploratory spatial analysis of the standardized residuals 

for each global model permutation that improved the overall model fit of the original 

Model 1 specification further supported the spatial non-stationarity of per capita 

municipal water consumption.  All models that improved the original Model 1 

specification in each year expressed at least a weak degree of global spatial 

autocorrelation as estimated by Moran’s I.  The Local Anselin’s I values for these same 
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models suggested that model fits in each model in each year were influenced by local 

spatial processes.  A brief summary of specific model improvements is given below. 

In 1990, Models 3, 8, and 7 improved the overall model fit of the original Model 

1 specification.  Models 3 and 7 increased the amount of explained variation in the 

pattern of per capita municipal water consumption by 2.6%, 0.8%, and 5.5% respectively.  

The improvements of Models 3 and 8 were the attained through changes in the 

independent variables, while the improvements of Model 7 resulted from the removal 

outliers.  The model improvements in 2000 were attributed to the regionalization of the 

original per capita municipal water consumption dataset in Model 4, and the removal of 

outliers in Model 7.  Model 4 improved the amount of explained variation in the pattern 

of per capita municipal water consumption by 1.2%, and Model 7 increased the explained 

variation by 2.4%.   Regionalization of the original dataset in Model 5 made the greatest 

improvement to the original Model 1 specification in 2010, increasing the amount of 

explained variation in the pattern of per capita municipal water consumption by 18.9%. 

Overall Summary of Results 

Research Question 1 

 The first research question in this study aimed to determine which social, 

urbanized, and physical environmental landscape characteristics significantly contributed 

to municipal water consumption patterns at the county scale.  The results indicated that 

the social and urbanized environment exerted a greater degree of influence on the 

consumption of municipal water than the physical environment in all three years.  The 

original model specification (Model 1) suggested that the social environment was the 

most important explanatory variable in 1990, while the urbanized environment was the 
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most important explanatory variable in 2000 and 2010.  Detailed information on the 

relative influences of each statistically significant driving landscape characteristic is in 

Table 22 (1990), Table 24 (2000), and Table 26 (2010). 

 The  significant landscape characteristics varied by year and included Percent 

Bachelor’s Degree, Average Annual Precipitation, Percent Worked Inside County of 

Residence, Per Capita Income, Population Density, Percent Urban, Percent 65 Years 

and Older, and Percent High School.  In 1990, municipal water consumption was best 

explained by the combination of Percent Bachelor’s Degree, Average Annual 

Precipitation, Percent Worked Inside County of Residence, and Per Capita Income.  The 

landscape characteristics for 2000 included Population Density, Percent Urban, Percent 

Worked Inside County of Residence, Percent Bachelor’s Degree, and Percent 65 Years 

and Older.  In 2010, the following landscape characteristics significantly influenced per 

capita municipal water consumption: Population Density, Percent Worked Inside County 

of Residence, Percent High School Diploma. 

 Permutations of the original model specification suggested that the Per Capita 

Commercial Businesses (Model 3) variable was a statistically significant driving 

landscape characteristic in 1990 and 2010, and that Percent Surface Water (Model 4) was 

an important explanatory variable in 1990 and 2000.  Model 5 also suggested that 

Percent Surface Water was a significant landscape characteristic in 2000 and 2010.  

Model 7 suggested that Per Capita Building Permits was an important contributor to per 

capita municipal water consumption in 2010.  Overall, the experimental independent 

variables introduced in Models 3, 7, and 8 marginally improved the explanatory power of 

the commercial component of per capita municipal water consumption. 
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Research Question 2 

 The second research question in this study aimed to determine whether or not any 

of the significant driving landscape characteristics varied over time.  This study found 

that the significant driving characteristics were not temporally static between years 

despite the presence of several recurring significant independent variables.  This finding 

suggested that given adequate data, cross-sectional or temporal slice methodologies 

would make useful companions to longitudinal studies which examine aggregate change 

over time but ignore the factors responsible for the genesis of an individual observation.  

Furthermore, the examination of temporal slices added the ability to identify changes in 

the influence of specific driving landscape characteristics in different periods, as well as 

identify independent variables that were significant in more than one time period.   

The identification of recurring significant driving landscape characteristics of per 

capita municipal water consumption suggested that these operational independent 

variables should be considered in future explanatory models or water planning efforts.  

Similarly, the lack of temporal stability in the annual composites of statistically 

significant independent variables suggested that the influences on municipal water 

consumption shift over time.  Thus, pending available data, frequent cross-sectional 

analyses of municipal water consumption patterns and their driving landscape 

characteristics may aid long-range water planning efforts by providing a larger pool of 

empirical relationships from which to generalize consistent influences on municipal 

water.   

The importance of time was formally examined by comparing the squared semi-

partial correlations of each pair of common statistically significant driving landscape 
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characteristics between years.  Comparisons between the squared semi-partial 

correlations of a pair of independent variables is analogous to comparing the bivariate 

coefficients of determination for a pair of independent variables, i.e. the measures of 

association have been standardized to facilitate direct comparison (Meyers et al. 2006). 

Thus, any difference between the squared semi-partial correlations of a pair of 

statistically significant independent variables may be considered statistically significant 

itself.  Following this logic, a difference of any magnitude between a pair of statistically 

significant driving landscape characteristics suggested that time played a role in of the 

change in values between years. 

This study found that the commercial component of municipal water 

consumption, represented by Percent Worked Inside County of Residence, was a 

statistically significant driving landscape characteristic in all three years for sixteen out 

eighteen (88.89%) of the model permutations that used it.  The relative importance of the 

commercial component of municipal water varied over time in response to its individual 

association with the consumption of municipal water in each period, as well as the other 

independent variables in the composite for a given year.  The amount of variation 

accounted for by squared semi-partial correlations for 1990 (5.59%), 2000 (4.38%), and 

2010 (5.29%) in Model 1 suggested that time influenced the magnitude of the 

contribution of Percent Worked Inside County of Residence to per capita municipal water 

consumption. 

Although Percent Worked Inside County of Residence was the only driving 

landscape characteristic that was statistically significant in all three years, there were 

several other recurring independent variables that were statistically significant in more 
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than one year including Average Annual Precipitation, Percent Single Family, Percent 

Bachelor's Degree, Per Capita Income, and Per Capita Commercial Businesses.  

Average Annual Precipitation was a statistically significant driving landscape 

characteristic in 1990 and 2010 for Models 1 and 8.  The Model 1 results suggested that 

precipitation was more important in 1990 when it accounted for 8.06% of the variation in 

per capita municipal water consumption than in 2010 when it only accounted for 1.57% 

of the variation. The Model 8 results agreed with the relative importance of Average 

Annual Precipitation and suggested that precipitation was more important in 1990 when 

it accounted for 3.93% of the variation in per capita municipal water consumption, than 

in 2010 when it only accounted for 1.67% of the variation. 

Model 8 suggested that Percent Single Family was more important in 2010 when 

it accounted for 3.90% of the total variation in per capita municipal water consumption, 

than in 1990 it only accounted for 1.17% of the total variation.  Percent Bachelor's 

Degree was a statistically significant driver of per capita municipal water consumption in 

Models 1 and 8.  Model 1 suggested that Percent Bachelor's Degree was more important 

in 2000 when it accounted for 3.48% of the total variation in per capita municipal water 

consumption, than when it accounted for only 2.74% of the variation in 1990.  Model 8 

reported slightly higher squared semi-partial correlations for Percent Bachelor's Degree 

than Model 1 in both years, and suggested that post-secondary education was more 

important in 1990 when it accounted for 6.10% of the total variation in per capita 

municipal water consumption, than in 2000 when it only accounted for 4.04% of the 

variation. 
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Per Capita Income and Per Capita Commercial Businesses were each statistically 

significant driving landscape characteristics of Per Capita Municipal Water Consumption 

in two different years for a single model.  Model 8 suggested that Per Capita Income was 

more important in 2000 when it accounted for 2.08% of the total variation in per capita 

municipal water consumption, than in 1990 when it accounted for 1.93% of the variation.  

Similarly, Model 3 suggested that Per Capita Commercial Businesses was more 

important in 2000 when it accounted for 2.04% of the total variation in per capita 

municipal water consumption, than in 1990 when it only accounted for 1.96%. 

The differences between the contributions of these driving landscape 

characteristics to per capita municipal water consumption for the years in which they 

were statistically significant suggested that time influenced which landscape 

characteristics were important, as well as the magnitude of their contribution.   These 

findings also supported the idea that time should explicitly considered in the analysis of 

per capita municipal consumption in order to improve long-range water planning 

projects.  Additionally, a Kruskal-Wallis one-way ANOVA performed on the original per 

capita municipal water consumption values suggested that time also influenced the 

patterns of municipal water consumption themselves.  The Kruskal-Wallis ANOVA 

suggested that differences between the consumption of municipal water at the county 

scale were statistically significant at α = 0.05 between 1990 and 2000 (χ
2
 = 6.053, p = 

0.014, N = 508, Df = 1), 1990 and 2010 (χ
2
 = 4.375, p = 0.036, N = 508, Df = 1), and 

2000 and 2010 (χ
2
 = 19.044, p < 0.001, N = 508, Df = 1). 
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Research Question 3 

 The third research question in this study investigated the degree to which patterns 

of per capita municipal water consumption were spatially stationary.  Spatial analysis of 

the original per capita municipal water consumption patterns for all 254 counties in each 

year (1990, 2000, and 2010) suggested that spatial processes actively influenced the 

consumption of municipal water both globally and locally at the county scale.  Formal 

tests of global spatial autocorrelation with Moran's I suggested that the consumption of 

municipal water in one county was weakly to moderately dependent on the consumption 

of municipal water in neighboring counties within the established distance threshold of 

171996.75 meters.  This distance threshold was determined using the Ripley's K function 

to ensure that statistically significant spatial processes were detected with a minimal 

degree of bias from the spatial relationships inherent in the spatial distribution of the 

county centroids.  Additionally, this distance represented the smallest distance over 

which statistically significant global spatial autocorrelation was maximized.  Anselin's 

Local I was used to identify the locations that exerted the strongest influence on the 

measure of global spatial autocorrelation, as well as to identify counties for more detailed 

analysis of local water policies and consumer scale per capita consumptions of municipal 

water.  

 The per capita municipal water consumption patterns for 1990 expressed a weak 

degree of global spatial autocorrelation (I= 0.028, z = 2.409, p = 0.016), which suggested 

that the per capita municipal water consumption in one county was weakly influenced by 

the consumption of municipal water in another county within the distance threshold.  

Local measures of spatial association identified clusters of high (high-high) per capita 
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municipal water consumption in the northwest panhandle on the western Texas-New 

Mexico border (Oldham County), and approaching  north central Texas east of Lubbock 

County and northwest of Denton County (Figure 55).  A lone spatial outlier of low per 

capita municipal water consumption surrounded by high municipal water consumptions 

was identified in on the northern Texas-Mexico border east of El Paso County (Hudspeth 

County).  The high percentage of counties with a statistically significant value of 

Anselin's Local I that were identified as clusters of high values (66.67%, 2 out of 3) 

suggested that local spatial processes were actively influencing municipal water 

consumption patterns, albeit weakly.   

Both the clusters of high values and the spatial outlier of low values surrounded 

by high values also reflected the original 1990 consumption patterns in Figure 39, where 

Oldham and Knox counties had relatively high per capita consumptions of municipal 

water, and Hudspeth County had a relatively low per capita consumption of municipal 

water.  The local measure of spatial association also suggested that Oldham and Knox 

Counties were the locations that most strongly influenced the global (average) measure of 

spatial auto correlation (Anselin 1995; Le Gallo and Ertur 2003).  In other words, these 

counties uniquely influenced the overall per capita consumption of municipal water at the 

county scale which would have made them good candidates for a formal study of local 

water policies and consumer scale water consumption patterns. 

In 2000, the per capita municipal water consumption patterns expressed a 

moderate degree of global spatial autocorrelation (I = 0.165, z = 9.159, p < 0.001), which 

suggested that the municipal water consumption of one county was moderately dependent 

on the municipal water consumption of another county within the established distance 
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threshold.  Local measures of spatial association indicated clusters of high per capita 

municipal water consumption (high-high)  in a northeast-southeast track along the Texas-

Mexico border stretching from Reeves County in the north to Kinney County in the 

south, on the southern Texas-Mexico border in an east-west configuration (Dimmit and 

La Salle Counties), a north-south three county column in the northern panhandle along 

the Texas borders with New Mexico and Oklahoma (Dallam, Hartley, and Oldham 

Counties), and a parallel diagonal in the eastern panhandle beginning on the southeastern 

Texas-Oklahoma border and stretching south toward the large cluster of high values 

along the Texas-Mexico border (Figure 61).   Clusters of low per capita municipal water 

consumption were identified in a northwest-southeast diagonal west of Tarrant County in 

north Texas (Jack and Wise Counties), east of Dallas County (Van Zandt County), 

northeast of Harris County reaching from the Harris county border east to the Texas-

Louisiana border, east of the large cluster reaching the Texas-Louisiana border and north 

of Harris County (Leon County),on the western border of Harris County (Waller County), 

and on the northern gulf coast southwest of Fort Bend County (Wharton, Jackson, and 

Calhoun Counties).   

Spatial outliers of high per capita municipal water consumption surrounded by 

low per capita municipal water consumption were located east of the large Texas-Mexico 

border cluster of high values (McCulloch County), on the eastern border of the Texas-

Mexico high cluster north of Webb County (McMullen County), and in the northeastern 

corner of the state on the Texas borders with Oklahoma and Louisiana (Bowie County).  

Spatial outliers of low per capita municipal water consumption values surrounded by high 

municipal consumption values were identified along a northwest-southeast diagonal 
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along the eastern border of the large high consumption cluster along the Texas-Mexico 

border (Martin, Glasscock, and Irion Counties).  The very high percentage of counties 

with statistically significant values of Local Anselin's I that were identified as clusters of 

either high or low per capita municipal water consumption (86.96%, 40 out of 46) 

supported the moderate degree of global spatial autocorrelation at the county scale and 

suggested that local spatial processes were influencing per capita municipal water 

consumption patterns.  The spatial distribution of high and low clusters reflected the 

original 2000 municipal water consumption patterns in Figure 44, and suggested that 

these counties were worthy of a more detailed formal investigation of local water policies 

and consumer scale municipal water consumption patterns. 

The 2010 per capita municipal water consumption patterns expressed a moderate 

degree of global spatial autocorrelation that was slightly weaker than that of 2000 (I = 

0.133, z = 7.409, p < 0.001), which suggested that the per capita municipal water 

consumptions in one county were moderately dependent on the per capita consumption of 

municipal water in another county within the distance threshold.  The local measure of 

spatial association indicated clusters of high per capita municipal water consumption in a 

northwest-southeast track along the northern Texas-Mexico border stretching from 

Culberson County south to Kinney County, in an east-west transect in the northern 

panhandle stretching eastward from the Texas borders with New Mexico and Oklahoma 

(Dallam and Sherman Counties), in a northeast-southwest diagonal southeast of the New 

Mexico and Oklahoma border cluster (Hutchison and Olchitree Counties), in an east-west 

transect in the northern panhandle northeast of Amarillo stretching from Carson County 

east to the Texas-Oklahoma border, in the northern panhandle northwest of Amarillo 
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(Oldham County), and in a north panhandle north-south column stretching from 

Collingsworth County to Mottle Motley County (Figure 68).  Clusters of low per capita 

municipal water consumption were identified in north Texas west of Tarrant County 

(Jack, Parker, Erath, Comanche, and Callahan Counties), in an east-west transect north of 

Gregg County stretching east from Upshur County to the Texas-Louisiana border, and on 

the central gulf coast southeast of Harris County (Jackson County). 

A lone spatial outlier of high per capita municipal consumption surrounded by 

low per capita municipal water consumptions was found in central Texas northwest of 

Blanco County.  Spatial outliers of low per capita municipal water consumptions 

surrounded by high per capita municipal water consumptions were located in west Texas 

on the northern Texas-New Mexico border, and in the southern tip of Texas (Jim Hogg 

County).  The spatial distribution of high and low clusters of per capita municipal water 

consumption reflected the original map patterns in Figure 45, and suggested that these 

counties exerted the strongest influence on the global measure of spatial autocorrelation.  

In other words, these locations of these high and low clusters contributed to the moderate 

degree of spatial autocorrelation suggested by the Moran's I value.  The very high 

percentage of counties with statistically significant values of Anselin's Local I that were 

identified as clusters of either high or low per capita municipal water consumption 

(92.11%, 35 out of 38), suggested that local spatial processes influenced the county scale 

per capita municipal water consumptions in 2010. 

The presence of at least weak global spatial autocorrelation combined with the  

large percentages of high and low clusters of per capita municipal water consumption in 

all three years strongly suggested that the consumption of municipal water was not 
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spatially stationary at the county scale.  The spatial distribution of the high and low 

clusters of per capita municipal water consumption reflected the original map patterns in 

all three years, and identified locations that most strongly influenced the global spatial 

autocorrelation metric.  Additionally, the local measure of spatial association identified 

locations where formal investigations of local water policies may inform regional and 

state water plans.  Understanding the connections between municipal water consumption 

in neighboring spatial units are likely to become more important in the future as fresh 

water supplies continue to dwindle in response to depletion and changes in climate.  
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CONCLUSIONS AND FUTURE RESEARCH 

 

 

Conclusions 

This study analyzed the relationships between per capita municipal water 

consumption and its social, urban, and physical environmental landscape characteristics 

in Texas at the county scale.  Global multiple linear regression models and measures of 

global and local spatial association were combined to determine which  landscape 

characteristics significantly influenced county scale per capita municipal water 

consumption patterns, to determine whether or not the statistically significant landscape 

characteristics varied over time, and to assess the degree to which the consumption of 

municipal water was spatially stationary.  The unique contribution of this research was 

the simultaneous consideration of spatial and temporal patterns of municipal water 

consumption, as well as the analysis of municipal water’s landscape characteristics at a 

small spatial scale with temporally stable units of analysis.   

Previous research by House-Peters et al. (2010) and Wentz and Gober (2007) 

analyzed patterns and drivers of residential water consumption at very fine spatial scales 

such as census blocks and census tracts for a single city or metropolitan area respectively.  

These studies demonstrated that spatial analysis techniques such as spatial regression 

specifications and geographically weighted regression could be successfully applied to 
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understand residential water consumption patterns in concert with high resolution water 

consumption data such as individual consumer records at relatively fine spatial scales and 

longitudinal or single cross-section research designs.  In contrast, this research used a 

cross-sectional research design with multiple temporal slices at a relatively coarse spatial 

scale to examine the statistically significant driving landscape characteristics of the 

residential and commercial components of municipal water consumption both within and 

between temporal periods for an entire state.  While large scale high resolution studies 

enable a detailed understanding of individual consumer behavior, they may inadvertently 

overlook interactions that occur at smaller scales which may influence coordinated water 

planning decisions.  Similarly, understanding how the significant driving landscape 

characteristics of municipal water consumption vary over time may help improve long-

range water planning and the development of demand management strategies that are 

likely to become necessary in the future as reliable fresh water supplies continue to 

dwindle (Kundzewicz et al. 2008). 

The results of this research suggested that each of the conceptual environmental 

variables (social, urbanized and physical) contributed significantly to the per capita 

consumption of municipal water to varying degrees.  The urbanized and social 

environments consistently exerted the strongest influences on per capita municipal water 

consumption, while the physical environment largely played a supporting role.  The 

social environmental variables had the greatest cumulative influence in all three years as 

evidenced by the quantity of statistically significant operational variables in each of the 

three years.  However, the urbanized environmental variables singly accounted for the 

majority of the variation in per capita municipal water consumption when the joint 
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influences of other independent variables were considered.  The commercial component 

of municipal water consumption, measured by the Percent Worked Inside County of 

Residence  variable, was the most temporally consistent driving landscape characteristic 

of per capita municipal water consumption as it was statistically significant in at least two 

of the three years in the study period for any model in which it was considered.  This 

finding suggested that the commercial component of municipal should not be ignored in 

county scale water planning efforts.  The frequent statistical significance of Population 

Density in multiple years and model permutations, also suggested that it exerted a 

temporally consistent influence on county scale per capita municipal water consumption. 

Despite the presence of several temporally consistent conceptual and operational 

variables, the standardized beta ratios and squared semi-partial correlations generated by 

the MLR models suggested the statistically significant driving landscape characteristics 

varied significantly over time.  This temporal variation was highlighted by both changes 

in a driving landscape characteristic’s magnitude of influence and the composite of 

drivers that were statistically significant in any model permutation in any given year.  

The implication of this temporal variability in significance is that single cross-sectional 

studies or longitudinal studies with short periods of record may not adequately reflect the 

long-term influences on municipal water consumption patterns.   Additionally, the 

temporal variability in statistically significant drivers suggested that the best 

understanding of county scale municipal water patterns may be obtained by combining 

multiple cross-sectional and longitudinal analyses pending available data. 

The regionalization of counties east and west of the dry line in Models 4 and 5, 

and the moderate degree of global spatial autocorrelation present in the standardized 
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residuals of the majority of model permutations for 2000 and 2010, suggested that global 

models such as multiple linear regression may not be the best tools to explain the driving 

landscape characteristics and patterns of municipal water consumption at the county 

scale.  The regionalization results (Models 4 and 5) suggested that county level municipal 

water consumption patterns were sensitive to changes in scale due to differences between 

the eastern and western regions, and the differences between the regional and original 

model specifications.  These differences included significant differences in the magnitude 

of influence for a statistically significant driving landscape characteristic, and the overall 

fit of the model.  Similarly, the moderate degree of global spatial association between the 

standardized residuals in 2000 and 2010 for nearly all model permutations suggested that 

the per capita municipal water consumptions were influences by spatial processes.  These 

spatial associations between the consumption patterns of neighboring counties may have 

confounded the ability of the MLR model to detect the true relationships between 

municipal water consumption and its driving landscape characteristics. 

In summary, this study generated several important contributions to inform 

municipal water consumption research.  Firstly, the tendency of county municipal water 

consumption patterns and its driving landscape characteristics to exhibit spatial non-

stationarity suggested that global models may not adequately capture or explain the 

variability in the consumption of municipal water.  Spatially informed regression 

methods that do not induce multicollinearity may prove more useful in explaining these 

patterns and uncovering more precise spatial relationships between the municipal water 

consumptions of neighboring administrative entities.  Secondly, the temporal variation in 

the significant human and physical influences on municipal water consumption suggested 
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that the best understandings of residential and commercial water use may be gained from 

a combination of multiple cross-sectional and longitudinal analyses for a given location.  

Combining these research designs may aid the development of demand management 

strategies for municipal water by identifying temporally consistent influences in concert 

with aggregate change in overall consumption patterns. 

Thirdly, this study suggested that commercial water use significantly influenced 

overall municipal water consumption patterns at the county scale, which further 

suggested it should be actively considered in municipal water planning efforts.  Fourthly, 

the regionalization of spatially coarse municipal water consumptions suggested that the 

significant influences on the use of municipal water was sensitive to changes in scale.  In 

turn, this sensitivity to scale suggested that analyses of municipal water consumption 

should match the scale at which water planning decisions are made to ensure adequate 

representation of interactions between the municipal water consumptions of neighboring 

administrative units.  Additionally, it may be useful to investigate patterns and driving 

landscape characteristics of municipal water consumption at a variety of different scales 

to determine whether or not scale invariant influences on municipal water exist.  The 

identification of scale invariant influences on municipal water consumption would 

suggest that they should be included in all municipal water models for a given study area. 

Future Research 

 This study spawned several new research avenues related to the consumption of 

municipal water.  Firstly, the investigation of small scale municipal water consumption 

patterns should be performed for other arid and semi-arid locations using a similar 

methodology to compare results.  Comparing the results of this research to another 
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location with similar climatic characteristics would help determine which human or 

physical factors were consistently important across multiple geographies.  Secondly, the 

influence of scale on the patterns and drivers of municipal water consumption should be 

investigated more thoroughly to determine the degree to which scale affects conclusions 

drawn from municipal water research.  Such an investigation could also be used to 

compare the scales of municipal water management against various scales of 

consumption.  This study suggested that changes in the scale of fresh water management 

may have influenced the consumption patterns of municipal water.  Finally, these 

investigations of municipal water consumption over multiple scales and geographies 

should combine quantitative and qualitative analysis to enhance the understanding of 

actual influences on municipal water use.  The addition of qualitative data may provide 

insight into intangible yet influential water consumption drivers such as attitudes toward 

conservation and the water requirements of natural systems. 
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Table 1. Changes in Population and Water  Demand in the Study Area Between 2010 and 

2060.  Water demands are expressed in acre feet (AF). Source: TWDB (2011). 

 
 2010 2060 Percent Change 

Region Population Water Demand Population Water Demand Population Water Demand 

C 6670493 1761352 13045592 3272460 96% 86% 

D 772163 561076 1073570 838977 39% 50% 

H 6020078 2376414 11346082 3524666 88% 48% 

I 1090382 730911 1482448 1490596 36% 104% 

Total 14553116 5429753 26947692 9126699 85% 68% 

Texas 25388403 18010599 46924167 21952198 85% 22% 

Percent 

of Texas 
57% 30% 57% 42% 0% 38% 

 

 

 

 

Table 2. Relative Contribution of Surface Water to  

2060 Water Requirements for Selected TWDB  

Planning Regions. Source: TWDB (2011). 

 
Region Other 

Surface 

Water 

New Major 

Reservoir 

Total Surface 

Water 

C 45.1% 30.8% 75.9% 

D 93.1% 0.0% 93.1% 

H 38.7% 16.5% 55.2% 

I 73.0% 15.4% 85.4% 
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Table 3. List of Conceptual and Operational Variables with Primary Data Sources. 
 

Conceptual Variable Operational Equivalents Primary Data Source 

Social Environment   

 Educational Level: 

1. Percentage of Population with a 

bachelor's degree * 

2. Percentage of Population with a 

high school diploma* 

* 25 Years and older 

 

1. National Historic 

Geographic Information 

System (NHGIS) 

2. U.S. Census Bureau 

American Community 

Survey (ACS) 

 Income: 

1. Per Capita Income 

1. NHGIS 

2. U.S. Census Bureau ACS 

 Average Household Size: 

1. County Scale 

1. NHGIS 

 Population Age Structure: 

1. Percentage of Population 18 years 

and younger 

2. Percentage of Population 65 years 

and older 

1. NHGIS 

2. U.S. Census Bureau ACS 

 Occupancy: 

1. Percentage of Owner Occupied 

dwellings 

2. Percentage of Renter Occupied 

dwellings 

1. NHGIS 

2. U.S. Census Bureau ACS 

 Dwelling Type: 

1. Percentage Single Family 

dwellings 

2. Percentage Multi-Family dwellings 

1. NHGIS 

2. U.S. Census Bureau ACS 

 Work Location: 

1. Percentage of Population working 

inside county of residence 

2. Percentage of Population working 

outside county of residence 

1. NHGIS 

Urbanized Environment   

 Total Population 1.  NHGIS 

 Population Density: 

1. County level 

1. Derived from Total 

Population and County area 

 Urbanization Level: 

1. Percentage of Urban Population 

2. Percentage of Rural Population 

1. NHGIS 

Physical Environment   

 Drought Conditions: 

1. Palmer Hydrological Drought 

Index (PHDI) 

1. U.S. National Climatic 

Data Center (NCDC) 

 Precipitation: 

1. Annual Precipitation 

1. Texas Water Development 

Board (TWDB) 

 Lake Evaporation: 

1. Annual Lake Evaporation 

1. TWDB 

 Water Source: 

1. Percentage Surface Water 

2. Percentage Groundwater 

1. TWDB 

 

  



206 
 

 
 

Table 4. Median Values for Income  

Classes in 1990, 2000, and 2010 

 

Income Class Median Value 

Less than $10000 $5500 

$10000 to $14999 $12500 

$15000 to $24999 $20000 

$25000 to $34999 $30000 

$35000 to $49999 $42500 

$50000 to $74999 $62500 

$75000 to $99999 $87500 

$100000 to $149000 $125000 

More than $150000 $175000 

 

 

Table 5. Statewide Average Percentages for 

Educational Attainment in 1990, 2000, and 2010. 

(Source: U.S. Census Bureau) 

 

Education Level Year 

 
1990 2000 2010 

High School Diploma 29.46 30.66 32.66 

Bachelor's Degree 12.87 15.34 12.23 

Graduate Degree 4.06 5.94 5.19 
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Table 6. Projection Parameters for the Texas Centric  

Mapping System/Albers Equal Area Projection.   

Longitude and Standard Parallels are given in decimal  

degrees, and Eastings and Northings are provided in  

meters (Source: State of Texas 2011). 

 
Projection Parameter Value 

Longitude of Origin -100 

Latitude of Origin 18 

Lower Standard Parallel 27.5 

Upper Standard Parallel 35 

False Easting 1500000 

False Northing 6000000 

Datum North American Datum of 1983 

Linear Unit of Measure Meters 

 

 

Table 7. Description of Regression Model Permutations 

for All Years.  Model 1 is considered to be the original  

model and includes only the independent variables listed  

in Table 3. 

 

Model Description N 

1 Original Model for All Years 254 

2 
Per Capita Commercial Businesses Added 

to Original Model 254 

3 

Per Capita Commercial Businesses 

Replacing Percent Worked Inside County of 

Residence 254 

4 Counties East of the Dry Line 120 

5 Counties West of the Dry Line 134 

6 
Original Model for All Years with Counties 

Missing Building Permit Data Removed 229 

7 
Building Permit Data Added to Original 

Model 229 

8 
Percent Lodging Replacing Percent Worked 

In County of Residence 254 



 
 

 
 

Table 8. Results of the Shapiro-Wilk Test for Normality for 1990.  The SW column contains the 

value of the test statistic, and the P column contains the P Value.  All variables were tested against 

the null hypothesis that the distribution of a given variable was statistically different from a  

normal distribution (α = 0.05).  Variables with P Values greater than 0.05 are highlighted in bold, 

and are considered to follow a normal distribution.  Gray cells indicate that a variable was 

excluded from a given model. 

 

  Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Annual Average 

PHDI  
0.897 0.000 0.897 0.000 0.841 0.000 0.801 0.000 0.891 0.000 0.897 0.000 

Annual Average 

Precipitation 

(mm) 

0.964 0.000 0.964 0.000 0.960 0.001 0.968 0.003 0.967 0.000 0.964 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

0.990 0.065 0.990 0.065 0.961 0.001 0.984 0.120 0.988 0.048 0.990 0.065 

Average 

Household Size 
0.907 0.000 0.907 0.000 0.856 0.000 0.924 0.000 0.898 0.000 0.907 0.000 

Per Capita 

Building Permits 
                0.535 0.000     

Per Capita 

Commercial 

Businesses 

    0.528 0.000                 

Per Capita 

Income (2010 

Dollars) 

0.955 0.000 0.955 0.000 0.944 0.000 0.973 0.010 0.944 0.000 0.955 0.000 

  

2
0
8
 



 
 

 
 

Table 8 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Per Capita 

Municipal 

Water 

Consumption 

(L) 

0.270 0.000 0.270 0.000 0.873 0.000 0.293 0.000 0.448 0.000 0.270 0.000 

Percent 18 

Years and 

Younger 

0.979 0.001 0.979 0.001 0.952 0.000 0.981 0.063 0.975 0.000 0.979 0.001 

Percent 65 

Years and 

Older 

0.980 0.001 0.980 0.001 0.982 0.118 0.962 0.001 0.978 0.001 0.980 0.001 

Percent 

Bachelor's 

Degree 

0.802 0.000 0.802 0.000 0.779 0.000 0.856 0.000 0.778 0.000 0.802 0.000 

Percent High 

School 

Diploma 

0.968 0.000 0.968 0.000 0.965 0.003 0.967 0.003 0.957 0.000 0.968 0.000 

Percent 

Lodging 
                    0.573 0.000 

Percent Owner 

Occupied 
0.853 0.000 0.853 0.000 0.846 0.000 0.881 0.000 0.925 0.000 0.853 0.000 

Percent Single 

Family 

Dwellings 

0.829 0.000 0.829 0.000 0.839 0.000 0.859 0.000 0.825 0.000 0.829 0.000 

Percent Surface 

Water 
0.831 0.000 0.831 0.000 0.850 0.000 0.811 0.000 0.846 0.000 0.831 0.000 

Percent Urban 0.930 0.000 0.930 0.000 0.969 0.007 0.863 0.000 0.952 0.000 0.930 0.000 

2
0
9
 



 
 

 
 

Table 8 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Percent 

Worked Inside 

County of 

Residence 

0.909 0.000 0.909 0.000 0.970 0.009 0.811 0.000 0.913 0.000     

Population 

Density 

(Square km) 

0.310 0.000 0.310 0.000 0.391 0.000 0.334 0.000 0.323 0.000 0.310 0.000 

 

2
1
0
 



 
 

 
 

Table 9. Results of the Shapiro-Wilk Test for Normality for 2000.  The SW column contains the 

value of the test statistic, and the P column contains the P Value.  All variables were tested against 

the null hypothesis that the distribution of a given variable was statistically different from a  

normal distribution (α = 0.05).  Variables with P Values greater than 0.05 are highlighted in bold, 

and are considered to follow a normal distribution.  Gray cells indicate that a variable was 

excluded from a given model. 

 

  Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Annual Average 

PHDI  
0.887 0.000 0.887 0.000 0.801 0.000 0.830 0.000 0.887 0.000 0.887 0.000 

Annual Average 

Precipitation 

(mm) 

0.957 0.000 0.957 0.000 0.904 0.000 0.982 0.079 0.960 0.000 0.957 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

0.953 0.000 0.953 0.000 0.931 0.000 0.926 0.000 0.943 0.000 0.953 0.000 

Average 

Household Size 
0.908 0.000 0.908 0.000 0.836 0.000 0.944 0.000 0.896 0.000 0.908 0.000 

Per Capita 

Building Permits 
                0.612 0.000     

Per Capita 

Commercial 

Businesses 

    0.983 0.005                 

Per Capita 

Income (2010 

Dollars) 

0.960 0.000 0.960 0.000 0.944 0.000 0.981 0.056 0.953 0.000 0.960 0.000 

  

2
1
1
 



 
 

 
 

Table 9 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Per Capita 

Municipal Water 

Consumption (L) 

0.803 0.000 0.803 0.000 0.680 0.000 0.871 0.000 0.842 0.000 0.803 0.000 

Percent 18 Years 

and Younger 
0.989 0.052 0.989 0.052 0.967 0.005 0.983 0.084 0.990 0.119 0.989 0.052 

Percent 65 Years 

and Older 
0.983 0.005 0.983 0.005 0.993 0.826 0.955 0.000 0.983 0.009 0.983 0.005 

Percent 

Bachelor's 

Degree 

0.849 0.000 0.849 0.000 0.797 0.000 0.934 0.000 0.827 0.000 0.849 0.000 

Percent High 

School Diploma 
0.986 0.013 0.986 0.013 0.971 0.011 0.988 0.307 0.984 0.013 0.986 0.013 

Percent Lodging                     0.663 0.000 

Percent Owner 

Occupied 
0.877 0.000 0.877 0.000 0.892 0.000 0.858 0.000 0.940 0.000 0.877 0.000 

Percent Single 

Family 

Dwellings 

0.680 0.000 0.680 0.000 0.869 0.000 0.540 0.000 0.669 0.000 0.680 0.000 

Percent Surface 

Water 
0.828 0.000 0.828 0.000 0.854 0.000 0.799 0.000 0.844 0.000 0.828 0.000 

Percent Urban 0.920 0.000 0.920 0.000 0.965 0.004 0.857 0.000 0.940 0.000 0.920 0.000 

Percent Worked 

Inside County of 

Residence 

0.957 0.000 0.957 0.000 0.975 0.025 0.923 0.000 0.954 0.000     

  

2
1
2
 



 
 

 
 

Table 9 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Population 

Density (Square 

km) 

0.320 0.000 0.320 0.000 0.411 0.000 0.333 0.000 0.335 0.000 0.320 0.000 

  

2
1
3
 



 
 

 
 

Table 10. Results of the Shapiro-Wilk Test for Normality for 2010.  The SW column contains the 

value of the test statistic, and the P column contains the P Value.  All variables were tested against 

the null hypothesis that the distribution of a given variable was not statistically different from a  

normal distribution (α = 0.05).  Variables with P Values greater than 0.05 are highlighted in bold, 

and are considered to follow a normal distribution.  Gray cells indicate that a variable was 

excluded from a given model. 

 

  Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Annual Average 

PHDI  
0.879 0.000 0.879 0.000 0.844 0.000 0.750 0.000 0.869 0.000 0.879 0.000 

Annual Average 

Precipitation 

(mm) 

0.966 0.000 0.966 0.000 0.972 0.014 0.976 0.020 0.962 0.000 0.966 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

0.954 0.000 0.954 0.000 0.968 0.006 0.928 0.000 0.947 0.000 0.954 0.000 

Average 

Household Size 
0.942 0.000 0.942 0.000 0.869 0.000 0.974 0.013 0.933 0.000 0.942 0.000 

Per Capita 

Building Permits 
                0.691 0.000     

Per Capita 

Commercial 

Businesses 

    0.983 0.004                 

Per Capita 

Income (2010 

Dollars) 
0.996 0.671 0.996 0.671 0.987 0.337 0.994 0.861 0.995 0.621 0.996 0.671 

  

2
1
4
 



 
 

 
 

Table 10 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Per Capita 

Municipal Water 

Consumption (L) 

0.909 0.000 0.909 0.000 0.948 0.000 0.922 0.000 0.849 0.000 0.909 0.000 

Percent 18 Years 

and Younger 
0.988 0.037 0.988 0.037 0.973 0.017 0.980 0.042 0.991 0.148 0.988 0.037 

Percent 65 Years 

and Older 
0.973 0.000 0.973 0.000 0.980 0.067 0.958 0.000 0.973 0.000 0.973 0.000 

Percent 

Bachelor's 

Degree 

0.883 0.000 0.883 0.000 0.832 0.000 0.938 0.000 0.879 0.000 0.883 0.000 

Percent High 

School Diploma 
0.937 0.000 0.937 0.000 0.967 0.005 0.867 0.000 0.991 0.188 0.937 0.000 

Percent Lodging                     0.672 0.000 

Percent Owner 

Occupied 
0.905 0.000 0.905 0.000 0.907 0.000 0.911 0.000 0.951 0.000 0.905 0.000 

Percent Single 

Family 

Dwellings 

0.908 0.000 0.908 0.000 0.870 0.000 0.962 0.001 0.896 0.000 0.908 0.000 

Percent Surface 

Water 
0.833 0.000 0.833 0.000 0.867 0.000 0.795 0.000 0.849 0.000 0.833 0.000 

Percent Urban 0.920 0.000 0.920 0.000 0.959 0.001 0.849 0.000 0.939 0.000 0.920 0.000 

Percent Worked 

Inside County of 

Residence 

0.961 0.000 0.961 0.000 0.974 0.019 0.944 0.000 0.958 0.000     

  

2
1
5
 



 
 

 
 

Table 10 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

SW P SW P SW P SW P SW P SW P 

Population 

Density (Square 

km) 

0.337 0.000 0.337 0.000 0.442 0.000 0.320 0.000 0.354 0.000 0.337 0.000 

 

  

2
1
6
 



 
 

 
 

Table 11. Skewness and Kurtosis for All Models 1990.  The Skew column contains the skewness value, and the  

K column contains the kurtosis value.  Variables with both Skew and K values that are below the +/-1.0 threshold  

are highlighted in bold, and are considered to follow a normal distribution.  Gray cells indicate that a variable was  

deliberately excluded from a given model. 

 

  Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew K Skew K Skew K Skew K 

Annual Average 

PHDI  
-0.481 -0.563 -0.481 -0.563 

-

0.489 
-1.224 0.483 -1.489 

-

0.523 
-0.641 -0.481 -0.563 

Annual Average 

Precipitation 

(mm) 
0.449 -0.474 0.449 -0.474 0.008 -1.091 

-

0.034 
-0.777 0.359 -0.582 0.449 -0.474 

Average Annual 

Lake 

Evaporation 

(mm) 

0.039 -0.320 0.039 -0.320 0.395 0.041 
-

0.135 
0.418 0.161 -0.232 0.039 -0.320 

Average 

Household Size 
1.344 2.433 1.344 2.433 1.663 3.318 1.173 1.827 1.411 2.612 1.344 2.433 

Per Capita 

Building Permits 
                5.229 41.255     

Per Capita 

Commercial 

Businesses 

    6.236 53.794   

  
      

  
    

Per Capita 

Income (2010 

Dollars) 

0.645 2.743 0.645 2.743 0.850 2.602 0.070 1.550 0.707 3.322 0.645 2.743 

Per Capita 

Municipal Water 

Consumption (L) 

10.505 130.013 10.505 130.013 1.950 7.748 7.986 72.883 7.757 79.947 10.505 130.013 

2
1
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Table 11 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew K Skew K Skew K Skew K 

Percent 18 Years 

and Younger 
0.493 0.456 0.493 0.456 0.858 1.301 0.279 0.001 0.537 0.638 0.493 0.456 

Percent 65 Years 

and Older 
0.373 -0.386 0.373 -0.386 0.053 -0.812 0.410 -0.585 0.381 -0.371 0.373 -0.386 

Percent 

Bachelor's 

Degree 

2.090 5.432 2.090 5.432 2.012 4.197 1.598 3.208 2.215 5.885 2.090 5.432 

Percent High 

School Diploma 
-0.645 0.447 -0.645 0.447 

-

0.574 
0.133 

-

0.707 
0.851 

-

0.745 
0.542 -0.645 0.447 

Percent Lodging                     4.214 22.546 

Percent Owner 

Occupied 
-2.138 8.645 -2.138 8.645 

-

2.042 
7.084 

-

1.899 
7.665 

-

1.194 
1.999 -2.138 8.645 

Percent Single 

Family 

Dwellings 

-1.803 3.745 -1.803 3.745 
-

1.569 
2.252 

-

1.550 
2.551 

-

1.787 
3.552 -1.803 3.745 

Percent Surface 

Water 
0.387 -1.442 0.387 -1.442 0.413 -1.338 0.371 -1.533 0.285 -1.494 0.387 -1.442 

Percent Urban -0.082 -1.125 -0.082 -1.125 0.133 -0.605 
-

0.091 
-1.510 

-

0.167 
-0.906 -0.082 -1.125 

Percent Worked 

Inside County of 

Residence 
-0.904 -0.077 -0.904 -0.077 

-

0.376 
-0.644 

-

1.647 
2.240 

-

0.850 
-0.217     

Population 

Density (Square 

km) 

6.795 53.600 6.795 53.600 4.924 26.879 6.995 59.764 6.471 48.440 6.795 53.600 

 

  

2
1
8
 



 
 

 
 

Table 12. Skewness and Kurtosis for All Models 2000.  The Skew column contains the skewness value, and the  

K column contains the kurtosis value.  Variables with both Skew and K values that are below the +/-1.0 threshold  

are highlighted in bold, and are considered to follow a normal distribution.  Gray cells indicate that a variable was  

deliberately excluded from a given model. 

 

  Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew K Skew K Skew K Skew K 

Annual Average 

PHDI  
-0.482 -0.817 -0.482 -0.817 -1.075 0.306 -0.265 -1.437 -0.552 -0.668 -0.482 -0.817 

Annual Average 

Precipitation 

(mm) 

0.141 -1.121 0.141 -1.121 -0.937 0.118 0.000 -0.517 0.022 -1.126 0.141 -1.121 

Average Annual 

Lake 

Evaporation 

(mm) 

0.574 -0.206 0.574 -0.206 0.838 2.650 0.506 -0.993 0.680 0.008 0.574 -0.206 

Average 

Household Size 
1.433 3.588 1.433 3.588 1.935 5.118 0.991 1.617 1.538 3.988 1.433 3.588 

Per Capita 

Building Permits 
                2.756 8.307     

Per Capita 

Commercial 

Businesses 

    0.134 0.756   

  
      

  
    

Per Capita 

Income (2010 

Dollars) 

0.687 2.372 0.687 2.372 0.735 2.405 0.318 0.929 0.732 2.765 0.687 2.372 

Per Capita 

Municipal Water 

Consumption (L) 

2.364 8.370 2.364 8.370 3.900 22.588 1.800 5.321 2.082 7.437 2.364 8.370 

2
1
9
 



 
 

 
 

Table 12 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew K Skew K Skew K Skew K 

Percent 18 Years 

and Younger 
0.199 0.435 0.199 0.435 0.677 1.167 -0.055 0.024 0.226 0.416 0.199 0.435 

Percent 65 Years 

and Older 
0.446 0.096 0.446 0.096 0.060 -0.391 0.608 -0.192 0.452 0.145 0.446 0.096 

Percent 

Bachelor's 

Degree 

1.856 4.800 1.856 4.800 1.983 4.371 1.118 1.764 2.008 5.453 1.856 4.800 

Percent High 

School Diploma 
-0.379 0.167 -0.379 0.167 -0.505 0.058 -0.284 0.044 -0.400 0.244 -0.379 0.167 

Percent Lodging                     3.535 18.261 

Percent Owner 

Occupied 
-1.801 5.746 -1.801 5.746 -1.542 3.596 -2.162 9.640 -1.055 1.529 -1.801 5.746 

Percent Single 

Family 

Dwellings 

-4.455 35.549 -4.455 35.549 -1.594 3.108 -5.842 47.979 -4.506 35.256 -4.455 35.549 

Percent Surface 

Water 
0.371 -1.459 0.371 -1.459 0.202 -1.500 0.535 -1.362 0.245 -1.523 0.371 -1.459 

Percent Urban -0.096 -1.227 -0.096 -1.227 0.006 -0.849 -0.048 -1.545 -0.203 -1.042 -0.096 -1.227 

Percent Worked 

Inside County of 

Residence 
-0.499 -0.656 -0.499 -0.656 -0.046 -0.925 -0.971 0.464 -0.477 -0.750     

Population 

Density (Square 

km) 

6.577 50.570 6.577 50.570 4.728 25.020 7.136 62.396 6.261 45.678 6.577 50.570 

 

  

2
2
0
 



 
 

 
 

Table 13. Skewness and Kurtosis for All Models 2010.  The Skew column contains the skewness value, and the  

K column contains the kurtosis value.  Variables with both Skew and K values that are below the +/-1.0 threshold  

are highlighted in bold, and are considered to follow a normal distribution.  Gray cells indicate that a variable was  

deliberately excluded from a given model 

 

  Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew K Skew K Skew K Skew K 

Annual Average 

PHDI  
0.146 0.529 0.146 0.529 0.450 -0.811 2.030 9.062 0.003 0.397 0.146 0.529 

Annual Average 

Precipitation 

(mm) 
-0.667 0.409 -0.667 0.409 0.261 0.047 -0.536 0.468 -0.735 0.706 -0.667 0.409 

Average Annual 

Lake 

Evaporation 

(mm) 

-0.066 -1.219 -0.066 -1.219 0.292 -0.778 -0.876 0.194 0.000 -1.286 -0.066 -1.219 

Average 

Household Size 
1.096 2.630 1.096 2.630 1.702 4.393 0.614 0.462 1.189 2.989 1.096 2.630 

Per Capita 

Building Permits 
                2.350 6.733     

Per Capita 

Commercial 

Businesses 

    0.273 0.386                 

Per Capita 

Income (2010 

Dollars) 
-0.038 0.219 -0.038 0.219 -0.172 0.465 0.097 0.006 0.036 0.271 -0.038 0.219 

Per Capita 

Municipal Water 

Consumption (L) 

1.410 4.868 1.410 4.868 0.301 1.790 1.310 3.468 1.131 2.238 1.410 4.868 

  2
2
1
 



 
 

 
 

Table 13 Continued 

 
Model 

Variable 
1 3 4 5 7 8 

Skew K Skew K Skew P Skew P Skew P Skew P 

Percent 18 Years 

and Younger 
0.015 0.805 0.015 0.805 0.423 0.962 -0.163 0.547 0.303 -0.026 0.015 0.805 

Percent 65 Years 

and Older 
0.550 -0.141 0.550 -0.141 0.435 -0.100 0.571 -0.420 0.589 0.053 0.550 -0.141 

Percent 

Bachelor's 

Degree 

1.487 2.687 1.487 2.687 1.714 3.033 0.963 0.791 1.540 3.027 1.487 2.687 

Percent High 

School Diploma 
0.673 6.828 0.673 6.828 -0.750 1.007 2.034 12.965 -0.317 0.021 0.673 6.828 

Percent Lodging                     3.593 18.909 

Percent Owner 

Occupied 
-1.514 4.244 -1.514 4.244 -1.430 3.342 -1.513 5.026 -0.929 1.262 -1.514 4.244 

Percent Single 

Family 

Dwellings 

-1.355 2.699 -1.355 2.699 -1.432 2.061 -0.604 -0.034 -1.445 2.919 -1.355 2.699 

Percent Surface 

Water 
0.436 -1.375 0.436 -1.375 0.296 -1.394 0.578 -1.309 0.354 -1.418 0.436 -1.375 

Percent Urban -0.064 -1.258 -0.064 -1.258 0.080 -0.883 -0.025 -1.596 -0.174 -1.090 -0.064 -1.258 

Percent Worked 

Inside County of 

Residence 
-0.441 -0.716 -0.441 -0.716 -0.054 -0.968 -0.792 0.122 -0.426 -0.783     

Population 

Density (Square 

km) 

5.953 40.937 5.953 40.937 4.228 19.713 7.382 66.304 5.660 36.871 5.953 40.937 

 

2
2
2
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Table 14. Results for Levene's  

Homogeneity of  Variance Test. 

The Levene column contains the  

value of the test statistic.  The P- 

Value column contains the  

probability that the value of the  

test statistic occurred by chance. 

Bolded values indicate variables 

whose variances are approximately 

equal. 

 

  Model 

Variable 

1 

Levene 
P 

Value 

Annual Average 

PHDI  
27.080 0.000 

Annual Average 

Precipitation 

(mm) 

44.209 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

46.881 0.000 

Average 

Household Size 
2.218 0.084 

Per Capita 

Building Permits 
    

Per Capita 

Commercial 

Businesses 

    

Per Capita 

Income (2010 

Dollars) 

215.119 0.000 

Per Capita 

Municipal Water 

Consumption (L) 

21.929 0.000 

Percent 18 Years 

and Younger 
0.406 0.748 

Percent 65 Years 

and Older 
4.859 0.002 

Percent 

Bachelor's 

Degree 

213.089 0.000 

Percent High 

School Diploma 
7.953 0.000 

Percent Lodging     
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Table 14 Continued 

 
Model 

Variable 

1 

Levene 
P 

Value 

Percent Owner 

Occupied 
274.485 0.000 

Percent Single 

Family 

Dwellings 
0.403 0.751 

Percent Surface 

Water 
282.517 0.000 

Percent Urban 80.938 0.000 

Percent Worked 

Inside County of 

Residence 

139.863 0.000 

Population 

Density (Square 

km) 
2.238 0.082 



 
 

 
 

Table 15. Bivariate Kendall Tau Correlations for All Models 1990. The P Value column contains the probability that the  

correlation value (τ) occurred by random chance.  A single asterisk denotes statistical significance at α = 0.05.  A double  

asterisk denotes statistical significance at α = 0.01.  Gray cells indicate that a variable was deliberately excluded from a  

given model  Models 2 and 6 are not reported here due to redundancy with other models.  

 

  Model 

Independent 

Variable 

1 3 4 5 7 8 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Annual Average 

PHDI  
-.093* 0.028 -.093* 0.028 -0.071 0.252 -.136* 0.021 -.115* 0.010 -.093* 0.028 

Annual Average 

Precipitation 

(mm) 

-.306** 0.000 -.306** 0.000 -.263** 0.000 -.187** 0.001 -.346** 0.000 -.306** 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

.226** 0.000 .226** 0.000 .211** 0.001 .117* 0.044 .265** 0.000 .226** 0.000 

Average 

Household Size 
0.071 0.094 0.071 0.094 .203** 0.001 0.045 0.445 .094* 0.035 0.071 0.094 

Per Capita 

Building Permits 
                0.038 0.398     

Per Capita 

Commercial 

Businesses 

    .225** 0.000   

  
      

  
    

Per Capita 

Income (2010 

Dollars) 

-0.063 0.137 -0.063 0.137 0.016 0.792 -0.094 0.107 -0.075 0.090 -0.063 0.137 

Percent 18 Years 

and Younger 
.112** 0.008 .112** 0.008 0.105 0.091 0.095 0.103 .147** 0.001 .112** 0.008 

Percent 65 Years 

and Older 
-.083* 0.050 -.083* 0.050 -.180** 0.004 -0.089 0.128 -.117** 0.008 -.083* 0.050 

2
2
5
 



 
 

 
 

Table 15 Continued 

 
Model 

Independent 

Variable 
1 3 4 5 7 8 

 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Percent 

Bachelor's 

Degree 

.194** 0.000 .194** 0.000 .214** 0.001 .176** 0.003 .171** 0.000 .194** 0.000 

Percent High 

School Diploma 
-.213** 0.000 -.213** 0.000 -.328** 0.000 -.161** 0.006 -.232** 0.000 -.213** 0.000 

Percent Lodging                     .097* 0.023 

Percent Owner 

Occupied 
-.243** 0.000 -.243** 0.000 -.307** 0.000 -.204** 0.000 -.262** 0.000 -.243** 0.000 

Percent Single 

Family 

Dwellings 

-.110** 0.009 -.110** 0.009 -.305** 0.000 -.118* 0.042 -.125** 0.005 -.110** 0.009 

Percent Surface 

Water 
-0.018 0.684 -0.018 0.684 .175** 0.006 -.179** 0.003 -0.030 0.508 -0.018 0.684 

Percent Urban .208** 0.000 .208** 0.000 .346** 0.000 .148* 0.014 .243** 0.000 .208** 0.000 

Percent Worked 

Inside County of 

Residence 

.320** 0.000     .234** 0.000 .271** 0.000 .352** 0.000     

Population 

Density (Square 

km) 

-.128** 0.002 -.128** 0.002 .156* 0.011 -.140* 0.017 -.148** 0.001 -.128** 0.002 

 

  

2
2
6
 



 
 

 
 

Table 16. Bivariate Kendall Tau Correlations for All Models 2000. The P Value column contains the probability that the  

correlation value (τ) occurred by random chance.  A single asterisk denotes statistical significance at α = 0.05.  A double  

asterisk denotes statistical significance at α = 0.01.  Gray cells indicate that a variable was deliberately excluded from a  

given model  Models 2 and 6 are not reported here due to redundancy with other models.  

 

  Model 

Independent 

Variable 

1 3 4 5 7 8 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Annual Average 

PHDI  
-0.022 0.611 -0.022 0.611 -0.031 0.617 -0.041 0.488 -0.018 0.682 -0.022 0.611 

Annual Average 

Precipitation 

(mm) 

-.274** 0.000 -.274** 0.000 -.139* 0.025 -.202** 0.001 -.295** 0.000 -.274** 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

.245** 0.000 .245** 0.000 .129* 0.037 .163** 0.005 .269** 0.000 .245** 0.000 

Average 

Household Size 
0.057 0.175 0.057 0.175 0.120 0.053 0.114 0.051 0.073 0.101 0.057 0.175 

Per Capita 

Building Permits 
                -0.055 0.224     

Per Capita 

Commercial 

Businesses 

    .212** 0.000   

  
      

  
    

Per Capita 

Income (2010 

Dollars) 

-.135** 0.001 -.135** 0.001 0.011 0.852 -.175** 0.003 -.149** 0.001 -.135** 0.001 

Percent 18 Years 

and Younger 
.168** 0.000 .168** 0.000 .165** 0.007 .187** 0.001 .178** 0.000 .168** 0.000 

Percent 65 Years 

and Older 
-.111** 0.009 -.111** 0.009 -.207** 0.001 -.178** 0.002 -.103* 0.021 -.111** 0.009 

2
2
7
 



 
 

 
 

Table 16 Continued 

 
Model 

Independent 

Variable 
1 3 4 5 7 8 

 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Percent 

Bachelor's 

Degree 

.096* 0.023 .096* 0.023 .245** 0.000 -0.041 0.480 0.077 0.084 .096* 0.023 

Percent High 

School Diploma 
-.244** 0.000 -.244** 0.000 -.334** 0.000 -.172** 0.003 -.268** 0.000 -.244** 0.000 

Percent Lodging                     -0.041 0.335 

Percent Owner 

Occupied 
-.249** 0.000 -.249** 0.000 -.334** 0.000 -.201** 0.001 -.253** 0.000 -.249** 0.000 

Percent Single 

Family 

Dwellings 

-0.051 0.226 -0.051 0.226 -.139* 0.025 -0.073 0.212 -0.066 0.139 -0.051 0.226 

Percent Surface 

Water 
-0.025 0.575 -0.025 0.575 .236** 0.000 -.201** 0.001 -0.010 0.831 -0.025 0.575 

Percent Urban .220** 0.000 .220** 0.000 .363** 0.000 .213** 0.000 .263** 0.000 .220** 0.000 

Percent Worked 

Inside County of 

Residence 

.329** 0.000     .316** 0.000 .277** 0.000 .358** 0.000     

Population 

Density (Square 

km) 

-.164** 0.000 -.164** 0.000 .126* 0.041 -.137* 0.019 -.165** 0.000 -.164** 0.000 

 

  

2
2
8
 



 
 

 
 

Table 17. Bivariate Kendall Tau Correlations for All Models 2010. The P Value column contains the probability that the  

correlation value (τ) occurred by random chance.  A single asterisk denotes statistical significance at α = 0.05.  A double  

asterisk denotes statistical significance at α = 0.01.  Gray cells indicate that a variable was deliberately excluded from a  

given model  Models 2 and 6 are not reported here due to redundancy with other models.  

 

  Model 

Independent 

Variable 

1 3 4 5 7 8 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Annual Average 

PHDI  
0.002 0.968 0.002 0.968 0.026 0.673 -.136* 0.021 -0.005 0.902 0.002 0.968 

Annual Average 

Precipitation 

(mm) 

-.222** 0.000 -.222** 0.000 -0.112 0.070 -.248** 0.000 -.255** 0.000 -.222** 0.000 

Average Annual 

Lake 

Evaporation 

(mm) 

.146** 0.001 .146** 0.001 .129* 0.037 0.013 0.819 .166** 0.000 .146** 0.001 

Average 

Household Size 
-0.003 0.952 -0.003 0.952 -0.008 0.895 0.033 0.569 -0.006 0.889 -0.003 0.952 

Per Capita 

Building Permits 
                -0.025 0.586     

Per Capita 

Commercial 

Businesses 

    0.013 0.769   

  
      

  
    

Per Capita 

Income (2010 

Dollars) 

-0.080 0.058 -0.080 0.058 -0.117 0.057 -0.044 0.447 -.099* 0.026 -0.080 0.058 

Percent 18 Years 

and Younger 
0.019 0.655 0.019 0.655 -0.075 0.225 0.105 0.072 0.030 0.502 0.019 0.655 

Percent 65 Years 

and Older 
-0.014 0.744 -0.014 0.744 -0.066 0.288 -0.031 0.594 -0.019 0.674 -0.014 0.744 

2
2
9
 



 
 

 
 

Table 17 Continued 

 
Model 

Independent 

Variable 
1 3 4 5 7 8 

 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Kendall 

τ 
P Value 

Percent 

Bachelor's 

Degree 

-0.027 0.529 -0.027 0.529 -0.040 0.514 -0.036 0.533 -0.053 0.229 -0.027 0.529 

Percent High 

School Diploma 
-.123** 0.003 -.123** 0.003 -.137* 0.027 -0.108 0.065 -.094* 0.035 -.123** 0.003 

Percent Lodging                     -.134** 0.002 

Percent Owner 

Occupied 
-0.064 0.131 -0.064 0.131 -.153* 0.013 0.020 0.735 -0.058 0.194 -0.064 0.131 

Percent Single 

Family 

Dwellings 

-0.054 0.199 -0.054 0.199 -0.114 0.064 -0.080 0.170 -0.049 0.271 -0.054 0.199 

Percent Surface 

Water 
-.117** 0.008 -.117** 0.008 .130* 0.040 -.278** 0.000 -.125** 0.007 -.117** 0.008 

Percent Urban 0.064 0.137 0.064 0.137 0.083 0.180 0.086 0.156 0.070 0.120 0.064 0.137 

Percent Worked 

Inside County of 

Residence 

.226** 0.000     .193** 0.002 .223** 0.000 .213** 0.000     

Population 

Density (Square 

km) 

-.178** 0.000 -.178** 0.000 -0.033 0.592 -.179** 0.002 -.203** 0.000 -.178** 0.000 

 

2
3
0
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Table 18.  Ripley’s K Distance 

Thresholds for All Model 

Permutations. The distance  

threshold represents the  

distance in meters at which  

clustering is maximized for the  

county centroids in the study  

area covered by each model. 

 

Model(s) N 

Distance 

Threshold 

(m) 

1, 2, 3, 8 254 171996.75 

4 120 107962.05 

5 134 132336.78 

7 229 175482.88 

 



 
 

 
 

Table 19. Migrant and Seasonal Farm Worker Populations and Per Capita Municipal Water. The  

MFW Estimate column reflects the adjusted population estimates of transient agricultural workers, 

and the Census Population column contains official population counts from the 2000 U.S. Decennial 

Census.  MWC and PC MWC denote Municipal Water Consumption and Per Capita Municipal Water 

Consumption  respectively.  Water consumption values are given in liters. (Sources: MFW Estimate: 

Larson (2000), Census Population: U.S. Census Bureau, Total MWC: Texas Water Development 

Board). 

 

County 
 MFW 

Estimate 

Census 

Population  

Adjusted 

Population  

Total MWC 

(L) 

Adjusted 

PC MWC 

(L)  

Original 

PC MWC 

(L) 

Difference 

in PC 

MWC (L) 

Percent 

Change 

PC 

MWC 

Brewster 56 8866 8922 2790132800 312725.04 314700.29 1975.25 -0.63 

Cameron 9219 335227 344446 83963014892 243762.49 250466.15 6703.66 -2.68 

Culberson 83 2975 3058 688282097 225075.90 231355.33 6279.43 -2.71 

Dimmit 769 10248 11017 3863260800 350663.59 376977.05 26313.46 -6.98 

Hidalgo 40500 569463 609963 103073327654 168982.92 181000.92 12018.00 -6.64 

Hudspeth 2117 3344 5461 463788653 84927.42 138692.78 53765.36 -38.77 

Kinney 52 3379 3431 1683700827 490731.81 498283.76 7551.95 -1.52 

Maverick 2859 47297 50156 9892513287 197234.89 209157.31 11922.42 -5.70 

Presidio 923 7304 8227 2050044524 249184.94 280674.22 31489.28 -11.22 

Reeves 842 13137 13979 4599648634 329039.89 350129.30 21089.41 -6.02 

Starr 5045 53597 58642 11211103898 191178.74 209174.09 17995.35 -8.60 

Val 

Verde 
2221 44856 47077 20214277774 429387.55 450648.25 21260.70 -4.72 

Webb 944 193117 194061 51439835611 265070.44 266366.17 1295.73 -0.49 

Zapata 122 12182 12304 2529868423 205613.49 207672.67 2059.18 -0.99 

Zavala 2925 11600 14525 3601762942 247969.91 310496.81 62526.90 -20.14 

2
3
2
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Table 20. Model Fit and Diagnostics for All Models 1990. All 

models were statistically significant at α = 0.05 as seen below in 

the P Values of F.  The Degrees of Freedom (Df) listed in this table are 

the residual degrees of freedom. 

 

Model 

Diagnostic 

Model 

1 2 3 4 5 6 7 8 

R Square 0.394 0.394 0.427 0.320 0.364 0.452 0.452 0.407 

Adjusted R 

Square 
0.385 0.385 0.411 0.303 0.339 0.440 0.440 0.393 

Std. Error 57.637 57.637 56.397 29.049 31.567 49.584 49.584 57.239 

F 40.517 40.517 26.191 18.211 14.641 36.806 36.806 28.300 

P Value of F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Df 249 249 246 116 128 223 224 247 



 
 

 
 

Table 21. Standardized Beta Coefficients and P-Values for all Models in All Years.  The Beta column contains the standardized  

contribution of each independent variable to its respective model.  The P column contains the p-value which represents the probability 

that a given standardized beta coefficient occurred by random chance.  Independent variables with a p-value less than 0.05 were 

considered to be statistically significant.  

 

    Model 

Independent 

Variable 

  1 2 3 4 5 6 7 8 

Year Beta P Beta P Beta P Beta P Beta P Beta P Beta P Beta P 

Annual 

Average 

Precipitation 

(mm) 

1990 
-

0.310 
0.000 

-

0.310 
0.000 

-

0.246 
0.000 

-

0.275 
0.002 

-

0.177 
0.032 

-

0.313 
0.000 

-

0.313 
0.000 

-

0.260 
0.000 

 
2000 X X X X X X X X X X X X X X X X 

 
2010 X X X X 

-

0.162 
0.028 X X X X 

-

0.239 
0.001 

-

0.169 
0.030 

-

0.162 
0.028 

Average 

Household 

Size 

1990 X X X X X X X X X X X X X X X X 

 
2000 X X X X X X X X X X X X X X 

-

0.375 
0.000 

 
2010 X X X X X X X X X X X X X X X X 

Per Capita 

Building 

Permits 

1990                         X X     

 
2000                         X X     

 
2010                         0.182 0.016     

Per Capita 

Commercial 

Businesses 

1990     X X 0.155 0.004             X X X X 

 
2000     X X 0.237 0.000             X X X X 

 
2010     X X X X             X X X X 

2
3
4
 



 
 

 
 

Table 21 Continued 

    Model 

Independent 

Variable 

  1 2 3 4 5 6 7 8 

Year Beta P Beta P Beta P Beta P Beta P Beta P Beta P Beta P 

Per Capita 

Income (2010 

Dollars) 

1990 
-

0.220 
0.001 

-

0.220 
0.001 

-

0.224 
0.001 X X 

-

0.287 
0.001 X X X X 

-

0.192 
0.005 

 
2000 X X X X X X X X X X X X X X 

-

0.215 
0.003 

 
2010 X X X X X X X X X X X X X X X X 

Percent 18 

Years and 

Younger 

1990 X X X X X X X X X X X X X X X X 

 
2000 X X X X X X X X X X X X X X 0.263 0.002 

 
2010 X X X X X X X X X X X X X X X X 

Percent 65 

Years and 

Older 

1990 X X X X X X X X X X X X X X X X 

 
2000 

-

0.178 
0.003 

-

0.178 
0.003 

-

0.250 
0.000 X X X X X X X X 

-

0.209 
0.014 

 
2010 X X X X X X X X X X X X X X X X 

Percent 

Bachelor's 

Degree 

1990 0.383 0.000 0.383 0.000 0.339 0.000 X X 0.411 0.000 0.186 0.002 0.186 0.002 0.358 0.000 

 
2000 0.193 0.000 0.193 0.000 X X 0.421 0.000 X X X X X X 0.275 0.000 

 
2010 X X X X X X X X X X X X X X X X 

  

2
3
5
 



 
 

 
 

Table 21 Continued 

    Model 

Independent 

Variable 

  1 2 3 4 5 6 7 8 

Year Beta P Beta P Beta P Beta P Beta P Beta P Beta P Beta P 

Percent High 

School 

Diploma 

1990 X X X X X X X X X X X X X X X X 

 
2000 X X X X X X X X X X 

-

0.219 
0.000 

-

0.219 
0.000 X X 

 
2010 

-

0.183 
0.004 

-

0.183 
0.004 

-

0.139 
0.038 X X X X X X X X 

-

0.139 
0.038 

Percent 

Lodging 
1990                             X X 

 
2000                             X X 

 
2010                             X X 

Percent 

Owner 

Occupied 

1990 X X X X X X X X X X X X X X X X 

 
2000 X X X X 

-

0.138 
0.027 X X X X X X X X X X 

 
2010 X X X X X X X X 0.367 0.000 X X X X X X 

Percent 

Single Family 

Dwellings 

1990 X X X X 
-

0.222 
0.017 X X X X 

-

0.281 
0.001 

-

0.281 
0.001 

-

0.248 
0.008 

 
2000 X X X X X X X X X X X X X X X X 

 
2010 X X X X 

-

0.258 
0.001 X X 

-

0.421 
0.000 

-

0.271 
0.000 X X 

-

0.258 
0.001 

  

2
3
6
 



 
 

 
 

Table 21 Continued 

    Model 

Independent 

Variable 

  1 2 3 4 5 6 7 8 

Year Beta P Beta P Beta P Beta P Beta P Beta P Beta P Beta P 

Percent 

Surface 

Water 

1990 X X X X X X 0.197 0.022 
-

0.193 
0.017 X X X X X X 

 
2000 X X X X X X 0.266 0.001 

-

0.184 
0.022 X X X X X X 

 
2010 X X X X X X X X 

-

0.328 
0.000 X X X X X X 

Percent 

Urban 
1990 X X X X 0.164 0.026 0.340 0.000 X X X X X X 0.197 0.008 

 
2000 0.363 0.000 0.363 0.000 0.346 0.000 0.495 0.000 0.533 0.000 0.332 0.000 0.332 0.000 0.512 0.000 

 
2010 X X X X X X X X 0.266 0.013 X X X X X X 

Percent 

Worked 

Inside County 

of Residence 

1990 0.267 0.000 0.267 0.000     X X 
-

0.287 
0.001 0.238 0.000 0.238 0.000     

 
2000 0.262 0.000 0.262 0.000     0.152 0.077 0.179 0.036 0.234 0.000 0.234 0.000     

 
2010 0.246 0.000 0.246 0.000     0.289 0.001 0.176 0.053 X X 0.212 0.001     

Population 

Density 

(Square km) 

1990 X X X X 
-

0.346 
0.000 X X X X 

-

0.318 
0.000 

-

0.318 
0.000 

-

0.384 
0.000 

 
2000 

-

0.534 
0.000 

-

0.534 
0.000 

-

0.572 
0.000 

-

0.557 
0.000 

-

0.462 
0.000 

-

0.417 
0.000 

-

0.417 
0.000 

-

0.504 
0.000 

 
2010 

-

0.291 
0.000 

-

0.291 
0.000 

-

0.365 
0.000 X X 

-

0.458 
0.000 

-

0.332 
0.000 

-

0.317 
0.000 

-

0.365 
0.000 

 

 

2
3
7
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Table 22. Standardized Beta Ratio Matrix for Model 1 1990.  The rows and  

columns are organized in descending order of relationship strength from left to 

 right and top to bottom respectively.  The values are expressed in terms of the  

stronger variable.  For example, the value in the second column of the first row 

indicates that Percent Bachelor’s Degree was 1.235 times stronger than 

Average Annual Precipitation. 

 

Independent 

Variable 

  

Percent 

Bachelor's 

Degree 

Average 

Annual 

Precipitation 

(mm) 

Percent 

Worked In 

County of 

Residence 

Per Capita 

Income 

(2010 

Dollars) 

Conceptual 

Variable 

(Environment) 

Social  Physical  Social  Social  

  Standardized Beta Ratio 

Percent 

Bachelor's 

Degree 

Social  1.000 1.235 1.434 1.741 

Average 

Annual 

Precipitation 

(mm) 

Physical  1.235 1.000 1.161 1.409 

Percent 

Worked In 

County of 

Residence 

Social  1.434 1.161 1.000 1.214 

Per Capita 

Income 

(2010 

Dollars) 

Social  1.741 1.409 1.214 1.000 
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Table 23. Model Fit and Diagnostics for All Models 2000. All 

models were statistically significant at α = 0.05 as seen below in 

the P Values of F.  The Degrees of Freedom (Df) listed in this table are 

the residual degrees of freedom. 

 

Model 

Diagnostic 

Model 

1 2 3 4 5 6 7 8 

R Square 0.421 0.421 0.407 0.446 0.379 0.434 0.434 0.426 

Adjusted R 

Square 
0.410 0.410 0.395 0.422 0.360 0.424 0.424 0.410 

Std. Error 56.453 56.453 57.137 26.445 31.068 50.287 50.287 56.436 

F 36.098 36.098 34.059 18.380 14.641 42.933 42.933 26.107 

P Value of 

F 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Df 248 248 248 114 129 224 224 246 
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Table 24. Standardized Beta Ratio Matrix for Model 1 2000.  The rows and columns are 

organized in descending order of relationship strength from left to right and top to bottom 

respectively.  The values are expressed in terms of the stronger variable.  For example, 

the value in the second column of the first row indicates that Population Density was 

1.471 times stronger than Percent Urban. 

 

Independent 

Variable 

  

Population 

Density        

(Sq Km) 

Percent 

Urban 

Percent 

Worked In 

County of 

Residence 

Percent 

Bachelor's 

Degree 

Percent 65 

Years and 

Older 

Conceptual 

Variable 

(Environment) 

Urbanized  Urbanized  Social  Social  Social  

  Standardized Beta Ratio 

Population 

Density   (Sq 

Km) 

Urbanized  1.000 1.471 2.427 2.767 3.000 

Percent 

Urban 
Urbanized  1.471 1.000 1.385 1.881 2.039 

Percent 

Worked In 

County of 

Residence 

Social  2.038 1.385 1.000 1.358 1.472 

Percent 

Bachelor's 

Degree 

Social  2.767 1.881 1.358 1.000 1.084 

Percent 65 

Years and 

Older 

Social  3.000 2.039 1.472 1.084 1.000 
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Table 25. Model Fit and Diagnostics for All Models 2010. All 

models were statistically significant at α = 0.05 as seen below in 

the P Values of F.  The Degrees of Freedom (Df) listed in this table are 

the residual degrees of freedom. 

 

Model 

Diagnostic 

Model 

1 2 3 4 5 6 7 8 

R Square 0.196 0.196 0.199 0.084 0.404 0.215 0.224 0.199 

Adjusted R 

Square 
0.187 0.187 0.186 0.076 0.376 0.205 0.210 0.186 

Std. Error 66.256 66.256 66.283 33.439 30.673 59.084 58.895 66.283 

F 20.358 20.358 15.456 10.775 14.352 20.557 16.128 15.456 

P Value of 

F 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Df 250 250 249 118 127 225 224 249 
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Table 26. Standardized Beta Ratio Matrix for Model 1 2010.  The  

rows and columns are organized in descending order of relationship  

strength from left to right and top to bottom respectively.  The values  

are expressed in terms of the stronger variable.  For example, the  

value in the second column of the first row indicates that Population  

Density was 1.183 times stronger than Percent Worked In County 

of Residence 

 

Independent 

Variable 

  

Population 

Density       

(Sq Km) 

Percent 

Worked In 

County of 

Residence 

Percent 

High 

School 

Diploma 

Conceptual 

Variable 

(Environment) 

Urbanized Social  Social  

Standardized Beta Ratio 

Population 

Density  (Sq 

Km) 

Urbanized  1.000 1.183 1.635 

Percent 

Worked In 

County of 

Residence 

Social  1.183 1.000 1.382 

Percent High 

School 

Diploma 

Social  1.635 1.382 1.000 
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Table 27. Statistically Significant Independent Variables by Model  

1990. Cells marked with a ‘0’ indicate that a variable was  

statistically excluded from a model.  Cells marked with an ‘x’ indicate 

that a variable was statistically included in a model.  Gray cells 

indicate that a variable was excluded from a model by the analyst.  

 

  Model 

Independent Variable 1 2 3 4 5 6 7 8 

Annual Average PHDI 0 0 0 0 0 0 0 0 

Annual Average Precipitation (mm) x x x x x x x x 

Average Annual Lake Evaporation (mm) 0 0 0 0 0 0 0 0 

Average Household Size 0 0 0 0 0 0 0 0 

Per Capita Building Permits             x   

Per Capita Commercial Businesses   0 x           

Per Capita Income (2010 Dollars) x x x 0 x 0 x x 

Percent 18 Years and Younger 0 0 0 0 0 0 0 0 

Percent 65 Years and Older 0 0 0 0 0 0 0 0 

Percent Bachelor's Degree x x x 0 x x x x 

Percent High School Diploma 0 0 0 0 0 0 0 0 

Percent Lodging               0 

Percent Owner Occupied 0 0 0 0 0 0 0 0 

Percent Single Family Dwellings 0 0 x 0 0 x x x 

Percent Surface Water 0 0 0 x 0 0 0 0 

Percent Urban 0 0 x x 0 0 0 x 

Percent Worked Inside County of Residence x x   0 x x x   

Population Density (Square km) 0 0 x 0 0 0 0 x 
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Table 28. Statistically Significant Independent Variables by Model  

2000. Cells marked with a ‘0’ indicate that a variable was  

statistically excluded from a model.  Cells marked with an ‘x’ indicate 

that a variable was statistically included in a model.  Gray cells 

indicate that a variable was excluded from a model by the analyst.  

 

  Model 

Independent Variable 1 2 3 4 5 6 7 8 

Annual Average PHDI 0 0 0 0 0 0 0 0 

Annual Average Precipitation (mm) 0 0 0 0 0 0 0 0 

Average Annual Lake Evaporation (mm) 0 0 0 0 0 0 0 0 

Average Household Size 0 0 0 0 0 0 0 x 

Per Capita Building Permits             0   

Per Capita Commercial Businesses   0 x           

Per Capita Income (2010 Dollars) 0 0 0 0 0 0 0 x 

Percent 18 Years and Younger 0 0 0 0 0 0 0 x 

Percent 65 Years and Older x x x 0 0 0 0 x 

Percent Bachelor's Degree x x 0 x 0 0 0 x 

Percent High School Diploma 0 0 0 0 0 x x 0 

Percent Lodging               0 

Percent Owner Occupied 0 0 x 0 0 0 0 0 

Percent Single Family Dwellings 0 0 0 0 0 0 0 0 

Percent Surface Water 0 0 0 x x 0 0 0 

Percent Urban x x x x x x x x 

Percent Worked Inside County of Residence x x   x x x x   

Population Density (Square km) x x x x x x x x 
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Table 29. Statistically Significant Independent Variables by Model  

2010. Cells marked with a ‘0’ indicate that a variable was  

statistically excluded from a model.  Cells marked with an ‘x’ indicate 

that a variable was statistically included in a model.  Gray cells 

indicate that a variable was excluded from a model by the analyst.  

 

  Model 

Independent Variable 1 2 3 4 5 6 7 8 

Annual Average PHDI 0 0 0 0 0 0 0 0 

Annual Average Precipitation (mm) 0 0 x 0 0 x x x 

Average Annual Lake Evaporation (mm) 0 0 0 0 0 0 0 0 

Average Household Size 0 0 0 0 0 0 0 0 

Per Capita Building Permits             x   

Per Capita Commercial Businesses   0 0           

Per Capita Income (2010 Dollars) 0 0 0 0 0 0 0 0 

Percent 18 Years and Younger 0 0 0 0 0 0 0 0 

Percent 65 Years and Older 0 0 0 0 0 0 0 0 

Percent Bachelor's Degree 0 0 0 0 0 0 0 0 

Percent High School Diploma x x x 0 0 0 0 x 

Percent Lodging               0 

Percent Owner Occupied 0 0 0 0 x 0 0 0 

Percent Single Family Dwellings 0 0 x 0 x 0 0 x 

Percent Surface Water 0 0 0 0 x x 0 0 

Percent Urban 0 0 0 0 x 0 0 0 

Percent Worked Inside County of Residence x x   x x 0 x   

Population Density (Square km) x x x 0 x x x x 
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Table 30. Coefficients of Variation for Selected Variables All Years. 

 

Variable 
Year 

1990 2000 2010 

Population Density (Sq Km) 295.951 294.567 290.617 

Percent 18 Years and Younger 13.279 13.042 14.754 

Percent 65 Years and Older 34.783 29.901 28.037 

Average Household Size 10.305 9.386 9.419 

Percent Surface Water 100.588 100.374 102.332 

Per Capita Municipal Water Consumption 82.977 35.264 28.037 

Percent Single Family 8.492 10.303 7.903 

Percent Worked Inside County Of 

Residence 
21.192 23.602 24.169 

Percent High School Diploma 15.168 17.076 7.903 

Percent Bachelor's Degree 41.172 40.515 40.222 

Per Capita Income (2010 Dollars) 19.763 20.835 20.326 

Percent Owner Occupied 11.107 0.102 0.100 

Percent Urban 69.687 71.029 71.726 

Average Annual Precipitation (mm) 42.096 44.674 26.450 

Average Annual Lake Evaporation (mm) 9.719 17.762 13.363 
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Figure 1. TDWB Planning Regions C, D, H, and I. Collectively these regions expect a 

68% increase in water consumption, and an 86% increase in population between 2010 

and 2060.  
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Figure 2. Conceptual Research Overview. Note that the Global designation refers to the 

mechanics of the multiple linear regression model.  A global driver refers to a variable 

whose significance applies to all locations used to produce the model. 
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Figure 3. Study Area with TWDB Planning Regions and selected Major Cities.  
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Figure 4. Dissertation Workflow. 

  



251 
 

 
 

 
 

Figure 5. Calculation Workflow for Average  

Annual Precipitation and Average Annual  

Lake Evaporation. 
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Figure 6. Calculation Workflow for Average  

Annual PHDI. 
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Figure 7. Original Scatterplot for Per Capita Municipal Water  

Consumption and Annual Lake Evaporation 1990. 

 

 

  
Figure 8. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Annual Lake Evaporation 1990. 
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Figure 9.Original Scatterplot for Per Capita Municipal Water  

Consumption and Average Annual Precipitation 1990. 

 

 

 
Figure 10.Rank Transformed Scatterplot for Per Capita Municipal  

Water Consumption and Average Annual Precipitation 1990. 
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Figure 11. Original Scatterplot for Per Capita Municipal Water 

Consumption and Average Annual PHDI 1990. 

 

 

 
Figure 12. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Average Annual PHDI 1990. 
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Figure 13. Original Scatterplot for Per Capita Municipal Water  

Consumption and Average Household Size 1990. 

 

 

 
Figure 14. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Average Household Size 1990. 
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Figure 15. Original Scatterplot for Per Capita Municipal Water  

Consumption and Per Capita Income 1990. 

 

 

 
Figure 16. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Per Capita Income 1990. 
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Figure 17. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Owner Occupied 1990. 

 

 

 
Figure 18. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent Owner Occupied 1990. 
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Figure 19. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent 18 Years and Younger 1990. 

 

 

 
Figure 20. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent 18 Years and Younger 1990. 
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Figure 21. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent 65 Years and Older 1990. 

 

 

 
Figure 22. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent 65 Years and Older 1990. 
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Figure 23. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Bachelor’s Degree 1990. 

 

 

 
Figure 24. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent Bachelor’s Degree 1990. 
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Figure 25. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent High School Graduate 1990. 

 

 

 
Figure 26. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent High School Graduate 1990. 
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Figure 27. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Single Family 1990. 

 

 

 
Figure 28. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent Single Family 1990. 
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Figure 29. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Surface Water 1990. 

 

 

 
Figure 30. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent Surface Water 1990. 
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Figure 31. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Urban 1990. 

 

 

 
Figure 32. Rank Transformed Scatterplot for Per Capita Municipal 

Water Consumption and Percent Urban 1990. 
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Figure 33. Original Scatterplot for Per Capita Municipal Water  

Consumption and Percent Worked  Inside County of Residence 1990. 

 

 

 
Figure 34. Rank Transformed Scatterplot for Per Capita Municipal Water  

Consumption and Percent Worked Inside County of Residence 1990. 
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Figure 35. Original Scatterplot for Per Capita Municipal Water  

Consumption and Population Density 1990. 

 

 

 
Figure 36. Rank Transformed Scatterplot for Per Capita Municipal Water  

Consumption and Population Density 1990. 
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Figure 37. Ripley’s K  Graph for Models 1, 2, 3, and 8.  This graph shows the results of 

the Ripley K Function for all 254 Texas county centroids based on the generation of 100 

distance bands and 99 permutations of the K Function.  The confidence envelope 

represents the 99% confidence interval or α = 0.01.  Outside the confidence interval,  

clustering is statistically significant when the observed value of K exceeds the expected 

value of K.  The maximum difference for this function was 171996.75 meters which 

represented the shortest distance over which spatial processes maximized clustering in 

the original point pattern.   
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Figure 38. Ripley’s K  Graph for Model 4..  This graph shows the results of the Ripley K 

Function for all 120 Texas county centroids east of the dry line based on the generation of 

100 distance bands and 99 permutations of the K Function.  The confidence envelope 

represents the 99% confidence interval or α = 0.01.  Outside the confidence interval,  

clustering is statistically significant when the observed value of K exceeds the expected 

value of K.  The maximum difference for this function was 107962.05 meters which 

represented the shortest distance over which spatial processes maximized clustering in 

the original point pattern 
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Figure 39. Ripley’s K  Graph for Models 5.  This graph shows the results of the Ripley K 

Function for all 134 Texas county centroids west of the dry line based on the generation 

of 100 distance bands and 99 permutations of the K Function.  The confidence envelope 

represents the 99% confidence interval or α = 0.01.  Outside the confidence interval, 

clustering is statistically significant when the observed value of K exceeds the expected 

value of K.  The maximum difference for this function was 132336.78 meters which 

represented the shortest distance over which spatial processes maximized clustering in 

the original point pattern 
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Figure 40. Ripley’s K  Graph for Models 6 and 7.  This graph shows the results of the 

Ripley K Function for all 229Texas county centroids with residential building permit data 

for 1990, 2000, and 2010 based on the generation of 100 distance bands and 99 

permutations of the K Function.  The confidence envelope represents the 99% confidence 

interval or α = 0.01.  Outside the confidence interval, clustering is statistically significant 

when the observed value of K exceeds the expected value of K.  The maximum 

difference for this function was 175482.88 meters which represented the shortest distance 

over which spatial processes maximized clustering in the original point pattern 
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Figure 41. 1990 Per Capita Municipal Water Consumption Patterns.  Note that the 

highest levels of per capita consumption are not confined to the established population 

centers of El Paso, Bexar, Travis, Dallas and Tarrant Counties.  The highest per capita 

consumptions are in the panhandle and along the Texas-Mexico border. 
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Figure 42. 1990 Total Population with Natural Breaks Classification. Note that the 

established population centers of El Paso, Bexar, Harris, Tarrant, and Dallas Counties 

are clearly visible.  Additionally, Harris County has the highest population of all 

Counties. 
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Figure 43. Comparison of Per Capita Municipal Water Patterns in 1990, 2000, and 2010.  

Note the consistently high consumption values in the panhandle and along the Texas-

Mexico border. 
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Figure 44. 2000 Per Capita Municipal Water Consumption Patterns.  The highest 

consumption levels were in the panhandle and along the Texas-Mexico border rather than 

the established population centers.  Per capita consumption levels are also higher in 

Dallas, Tarrant, Denton, and Collin Counties than in Harris County. 
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Figure 45. 2010 Per Capita Municipal Water Consumption Patterns.  The high 

consumption levels in the panhandle and along the Texas-Mexico border persisted from 

1990 and 2000.  Consumption levels in Dallas, Tarrant, Denton, and Collin Counties also 

remained higher than Harris County. 
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Figure 46. Total 2000 Population with a Natural Breaks Classification.  Note that the 

general concentrations of population remain concentrated in the established population 

centers, rather than the locations of highest per capita municipal water consumption in 

Figure 42.  Harris County also continued to exceed the population of the north Texas 

metroplex. 
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Figure 47. Total 2010 Population with Natural Breaks Classification. The general 

concentrations of population remained relatively consistent between 2000 and 2010, with 

the highest total populations in established population centers.  Again, Harris County’s 

population exceeded the north Texas core of Dallas, Denton, Tarrant and Collin Counties. 
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Figure 48. 1990 Lodging as a Percentage of Commercial Businesses.  The counties with 

the highest percentages of lodging shared the same approximate locations as the counties 

with the highest per capita municipal water consumptions in 1990 (see Figure 41). 
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Figure 49. 2000 Lodging as a Percentage of Commercial Businesses.  The counties with 

the highest percentages of lodging shared the same approximate locations as the counties 

with the highest per capita municipal water consumptions in 2000 (see Figure 44). 
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Figure 50. 2010 Lodging as a Percentage of Commercial Businesses.  The counties with 

the highest percentages of lodging shared the same approximate locations as the counties 

with the highest per capita municipal water consumptions in 2010 (see Figure 45). 
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Figure 51. 2010 Palmer Hydrological Drought Index. Despite variation in the map 

pattern, all counties in Texas were generally wet in 2010 which may have reduced the 

variation in the residential outdoor component of per capita municipal water 

consumption.  
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Figure 52. 1990 Model 1Distribution of Standardized Residuals.  Note that the Model 1 

standardized residuals follow an approximately normal distribution. 
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 Figure 53. 2000 Model 1Distribution of Standardized Residuals.  Note that the Model 1 

standardized residuals follow an approximately normal distribution. 
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Figure 54. 2010 Model 1Distribution of Standardized Residuals.  Note that the Model 1 

standardized residuals follow an approximately normal distribution. 
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Figure 55. 1990 Local Anselin’s I Clusters for Per Capita Municipal Water Consumption.  

The HH counties represent statistically significant clusters of high per capita municipal 

water consumption.   The LH counties represent spatial outliers where low municipal 

water consumptions are surrounded by high municipal water consumptions. 
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Figure 56. 1990 Local Anselin’s I Clusters for Percent Bachelor’s Degree.  The HH and 

LL counties represent clusters with statistically significant high and low percentages of 

bachelor’s degree holders respectively.  The HL counties represent spatial outliers. 
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Figure 57. 1990 Local Anselin’s I Clusters for Average Annual Precipitation.   The HH 

and LL counties represent clusters with statistically significant high and low precipitation 

amounts respectively.  
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Figure 58. 1990 Local Anselin’s I Clusters for Percent Worked In County of Residence. 

The HH and LL counties represent clusters with statistically significant high and low 

percentages of the population that worked in their own county respectively.  Likewise, 

the HL and LH counties represent spatial outliers. 
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Figure 59. 1990 Local Anselin’s I Clusters for Per Capita Income.  The HH and LL 

counties represent clusters with statistically significant high and low per capita incomes 

respectively.  Likewise, the HL and LH counties represent spatial outliers. 
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Figure 60. 1990 Local Anselin’s I Clusters for Model 1’s Standardized Residuals.  The 

HH and LL counties represent clusters with statistically significant under and 

overestimations of per capita municipal water consumption respectively.  Likewise, the 

HL and LH counties represent spatial outliers. 
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Figure 61. 2000 Local Anselin’s I Clusters for Per Capita Municipal Water Consumption. 

The HH and LL counties represent statistically significant clusters of high and low per 

capita municipal water consumption respectively.   The LH and HL counties represent 

spatial outliers relative to surrounding municipal water consumptions. 
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Figure 62. 2000 Local Anselin’s I Clusters for Population Density.  The HH counties 

represent statistically significant clusters of high population density.  The LH and HL 

counties represent spatial outliers relative to surrounding population densities. 
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Figure 63. 2000 Local Anselin’s I Clusters for Percent Urban.  The HH and LL counties 

represent statistically significant clusters of high and low percentages of urban population 

respectively.   The LH and HL counties represent spatial outliers relative to surrounding 

percentages of urban populations. 
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Figure 64. 2000 Local Anselin’s I Clusters for Percent Worked In County of Residence. 

The HH and LL counties represent clusters with statistically significant high and low 

percentages of the population that worked in their own county respectively.  Likewise, 

the HL and LH counties represent spatial outliers. 
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Figure 65. 2000 Local Anselin’s I Clusters for Percent Bachelor’s Degree..  The HH and 

LL counties represent clusters with statistically significant high and low percentages of 

bachelor’s degree holders respectively.  The HL counties represent spatial outliers. 
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Figure 66. 2000 Local Anselin’s I Clusters for Percent 65 Years and Older..  The HH and 

LL counties represent clusters with statistically significant high and low percentages of 

elderly populations respectively.  The HL and LH counties represent spatial outliers. 
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Figure 67. 2000 Local Anselin’s I Clusters for Model 1Standardized Residuals.  The HH 

and LL counties represent clusters with statistically significant under and overestimations 

of per capita municipal water consumption respectively.  Likewise, the HL and LH 

counties represent spatial outliers. 
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Figure 68. 2010 Local Anselin’s I Clusters for Per Capita Municipal Water Consumption. 

The HH and LL counties represent statistically significant clusters of high and low per 

capita municipal water consumption respectively.  The LH and HL counties represent 

spatial outliers relative to surrounding municipal water consumptions. 
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Figure 69. Percent Change in Per Capita Municipal Water Consumption 2000 to 2010.  

The overwhelming majority of per capita municipal water consumptions either decreased 

or remained similar to 2000 levels, which suggested than an external forcing was 

reducing per capita municipal water consumption at the county scale in 2010. 
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Figure 70. 2010 Local Anselin’s I Clusters for Population Density.  The HH counties 

represent statistically significant clusters of high population density.    
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Figure 71. 2010 Local Anselin’s I Clusters for Percent Worked In County of Residence. 

The HH and LL counties represent clusters with statistically significant high and low 

percentages of the population that worked in their own county respectively.  Likewise, 

the HL and LH counties represent spatial outliers 
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Figure 72. 2010 Local Anselin’s I Clusters for Percent High School Diploma.  The HH 

and LL counties represent clusters with statistically significant high and low percentages 

of high school diploma holders respectively.  The HL and LH counties represent spatial 

outliers. 
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Figure 73. 2010 Local Anselin’s I Clusters for Model 1’s Standardized Residuals.  The 

HH and LL counties represent clusters with statistically significant under and 

overestimations of per capita municipal water consumption respectively.  Likewise, the 

HL and LH counties represent spatial outliers. 
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Figure 74. 1990 Local Anselin’s I Clusters for Model 3 Standardized Residuals.  The HH 

and LL counties represent clusters with statistically significant under and overestimations 

of per capita municipal water consumption respectively.  Likewise, the HL and LH 

counties represent spatial outliers. 
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Figure 75. 1990 Local Anselin’s I Clusters for Model s 6 and 7 Standardized Residuals.  

The HH and LL counties represent clusters with statistically significant under and 

overestimations of per capita municipal water consumption respectively.  Likewise, the 

HL and LH counties represent spatial outliers. 

  



307 
 

 
 

 
Figure 76. 1990 Local Anselin’s I Clusters for Model 8 Standardized Residuals.  The HH 

and LL counties represent clusters with statistically significant under and overestimations 

of per capita municipal water consumption respectively.  Likewise, the HL and LH 

counties represent spatial outliers 

  



308 
 

 
 

 
Figure 77. 2000 Local Anselin’s I Clusters for Model 4 Standardized Residuals.  The HH 

and LL counties represent clusters with statistically significant under and overestimations 

of per capita municipal water consumption respectively.  Likewise, the HL and LH 

counties represent spatial outliers 
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Figure 78. 2000 Local Anselin’s I Clusters for Models 6 and 7 Standardized Residuals.  

The HH and LL counties represent clusters with statistically significant under and 

overestimations of per capita municipal water consumption respectively.  Likewise, the 

HL and LH counties represent spatial outliers 
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Figure 79. 2010 Local Anselin’s I Clusters for Model 5 Standardized Residuals.  The HH 

and LL counties represent clusters with statistically significant under and overestimations 

of per capita municipal water consumption respectively.  Likewise, the HL and LH 

counties represent spatial outliers 
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Figure 80. 2010 Local Anselin’s I Clusters for Models 6 and 7 Standardized Residuals.  

The HH and LL counties represent clusters with statistically significant under and 

overestimations of per capita municipal water consumption respectively.  Likewise, the 

HL and LH counties represent spatial outliers 
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