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ABSTRACT

It was asked if one can find a bijective map between the following two objects:

binary necklaces with n black beads and k white beads and certain (n, k)-codes

whose weighted sum is 0 modulo n (Brauner et al.,2019 [9]; Chan, 2019 [10]).

The former object is one that has been studied for ages, whereas the latter one

was shown to be the states in a dollar game played on a cyclic graph (Corry &

Perkinson, 2018 [11]).

The case when n and k are coprime was shown in [9] and it is easily described

by using rotation. We show that in the general case, all that one needs to

construct the bijective map is to construct a rotation-invariant and weight

increasing map (riwi-map) on the codes. When n and k are coprime the simple

cyclic rotation works as a riwi-map. We show that when n or k is prime, a new

map called a slime migration works as a riwi-map and hence allows one to get a

bijective map as a result.

viii



I. INTRODUCTION

Review of Necklace Problems

In combinatorics, a q-ary necklace of length n is an equivalence class of words of

length n on q symbols, taking all rotations as equivalent. Thus, two necklaces are

inequivalent if they cannot be transformed from one to the other under the

circular shift. According to the research by Berstel and Perrin [5], circular words

or sequences are commonly produced in the process of analyzing periodic

phenomena that occur in many fields such as music, astronomy, and biology. In

combinatorics, circular words or necklaces have a wide range of applications and

interpretations in algebra, geometry, and combinatorial enumeration.

The cardinality of q-ary necklaces of length n has been known for a long time.

The formula for the number of q-ary necklaces of length n

Mq(n) =
1

n

X

d|n

'(d)qn/d

where '(d) is Euler’s totient function, is credited to C. Moreau (1872) (as cited

in [5]).

Stanley [16] showed in the problem 105(a) of Enumerative Combinatorics

(1986) that the number of binary necklaces of length n is

1

n

X

d|n

'(d)2n/d = f(n)

where f(n) denotes the number of subsets of Z/nZ whose elements sum to 0 in

Z/nZ, when n is odd.

For instance, the number of binary necklaces of length 5 is

1

5

X

d|5

'(d)25/d =
1

5
{'(1) · 25 + '(5) · 2} =

1

5
(32 + 4 · 2) = 8.

1



We can see that this cardinality equals

f(5) = |?, {0}, {1, 4}, {2, 3}, {0, 1, 4}, {0, 2, 3}, {1, 4, 2, 3}, {0, 1, 2, 3, 4}| = 8.

To give an example, we visualize f(5) by matching it to the configurations of

binary necklaces in Figure 1.1. Let us label the positions in a configuration from

0 to 4 starting from the topmost position and going around clockwise. Then, the

elements of each subset of Z/nZ whose elements sum to 0 (mod n) correspond to

the positions for white beads to be placed. For instance, ? corresponds to the

left-most configuration in the first row since there is no place for a white bead.

By the same way, we can map {2, 3} to the right-most configuration in the first

row and {0, 1, 4} to the left-most configuration in the second row.

B

v0

B

v1

B v2Bv3

B

v4 W

B

BB

B

B

W

BB

W

B

B

WW

B

W

W

BB

W

W

B

WW

B

B

W

WW

W

W

W

WW

W

Figure 1.1: f(5) configurations

Stanley [16] asked if there is a combinatorial proof for a bijection between the

set of binary necklaces of length n and the set of subsets of Z/nZ whose elements

sum to 0 (mod n). Chan [10] gave an answer to this question by specializing to

q = 2 by proving there is a bijection between the set of q-ary necklaces of length

n and the set of codes with n entries from {0, ..., q � 1} such that their weighted

sum equals 0 modulo n when n and q are coprime.

Also, Chan [10] asked if there is a bijection between the set of binary

necklaces of length n with k black beads, and the set of functions

f : Z/nZ 7! {0, 1} such that their weighted sum is divisible by n, and the

2



number of subsets of Z/nZ whose elements sum to k. Thereafter, Brauner, et al.,

[9] defined the set Nn,k of binary necklaces with n black beads and k white beads

and proved that in the case n and k are coprime there is a bijection between Nn,k

and the set Fn,k,0 of (n, k)-codes whose degree is k and weighted sum is divisible

by n based on the divisor theory of graphs.

However, a bijection between these two sets in the general case is still being

sought. We come up with one in the case n is prime via a so-called riwi -map. In

the particular case that n is an odd prime and not coprime to k, a slime

migration works as a riwi-map. Briefly speaking, a slime migration occurs in

an (n, k)-code where several slimes move in the same direction making the

weighted sum increased. The slime migration is realized as a key factor that

makes a bijection between Nn,k and Fn,k,0 viable under the condition n and k are

not coprime. Therefore, our primary goal is to articulate the scheme for the

construction of a slime migration and of a bijection determined by this

migration. First, let us describe the main objects and terminology that are going

be used throughout this thesis.

A New Bijection

The following sets are the main objects that we study here.

• The set Nn,k of binary necklaces (i.e. strings equivalent up to cyclic

rotations) of length n+ k using n black beads and k white beads.

• The set Fn,k of (n, k)-codes , functions f : [n]! Z�0, for which their sum

is k. The set Fn,k is further divided into sets Fn,k,t of (n, k, t)-codes for

t 2 {0, ..., n� 1}, where the weighted sum is t modulo n:

Fn,k,t :=
n
f |
X

i2[n]

f(i) = k,
X

i2[n]

i · f(i) ⌘ t (mod n)
o
.

Research by Chan [10] showed that the cardinality of Nn,k is equal to the

cardinality of Fn,k,0 in the case n is an odd positive integer. The cardinality of

Nn,k was computed by Ardila et al. [2] and the cardinality of Fn,k,0 is obtained

3



by a calculating method of Kitchloo and Parcher [13]; each cardinality equals

1

n+ k

X

m|n,m|k

'(m)

✓
(n+ k)/m

n/m

◆

where '(m) = #{p 2 N : 1  p  m, gcd(m, p) = 1} is Euler’s totient function.

A combinatorial bijection between Nn,k and Fn,k,0 is pretty easy to describe

when n and k are coprime. A rotation map gives a nice bijection in the case that

n and k are coprime. The weighted sum of an (n, k)-code increases by k upon

rotations. Hence, if n and k are coprime, k generates Z/nZ. This induces a
natural bijection between Nn,k and Fn,k,0 in the case n and k are coprime.

Take a look at the configurations of Figure 1.2 and give them codes f1, f2,

f3, f4 and f5, respectively. Then, under a rotation map c, c3(f1) = f4,

c2(f2) = f4, c1(f3) = f4, c0(f4) = f4, and c4(f5) = f4 where f4 2 F5,3,0. This

demonstrates that any code representing a necklace of N5,3 can be sent to a code

in F5,3,0 by rotating several times.

2

1

00

0

0

2

10

0

0

0

21

0

0

0

02

1

1

0

00

2

Figure 1.2: A binary necklace of N5,3

On the other hand, Figure 1.3 clearly shows that n does not need to be prime as

long as it is coprime to k. Rotating three times of a code f given to the first

configuration of N4,5 sends it to the code F4,5,0 representing the third

configuration.

3

0

0

2

2

3

0

0

0

2

3

0

2

0

0

3

Figure 1.3: A binary necklace of N4,5
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Unfortunately, this approach does not work when n and k are not coprime

since k does not generate Z/nZ in this case. Figure 1.4 illustrates this through

N4,6 necklaces. Let f be a code representing the leftmost configuration of

Figure 1.4. Then, f 2 F4,6,3, c(f) 2 F4,6,1, c2(f) 2 F4,6,3, and c3(f) 2 F4,6,1.

The weighted sum increases by 2 upon rotations but none of them belongs to a

set F4,6,0.

1

2

0

3 1

2

0

3

1

2

0

3 1

2

0

3

Figure 1.4: A binary necklace of N4,6

For another instance, let us consider a necklace of N5,10 in Figure 1.5. Give a

code f to the leftmost configuration of Figure 1.5, then f 2 F5,10,1. Upon

rotations, the weighted sum of f increases by k = 10 ⌘ 0 modulo 5. Thus, all

codes obtained from f by rotations belong to the same set F5,10,1. We see that

whether n is prime does not matter for a bijection between Nn,k and Fn,k,0.

3

1

33

0

0

3

13

3

3

0

31

3

3

3

03

1

1

3

30

3

Figure 1.5: A binary necklace of N5,10

Therefore, one approach would be to construct a new map that is di↵erent

from rotation, but still provides a nice bijection between Fn,k,t’s regardless

whether n is coprime to k. To construct such a bijective map, we lay down a

two-step scheme. The first step is to construct a bijective map that is rotation

invariant and sends a code in Fn,k,t to code in Fn,k,t+1 (excluding one object from

Fn,k,0); that is a riwi-map. If such a map is realized, we can build up a bijection

between Nn,k and Fn,k,0 by applying it enough times. For this reason, a rotation

map can work as a riwi-map in the case n and k are coprime. The slime

migration that we construct successfully meets these conditions so that it can

take a role as a riwi-map when n is an odd prime and not coprime to k. Upon a
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slime migration, the weighted sum of an (n, k)-code increases by a certain

number that is coprime to n. Therefore, a slime migration e↵ectively works as a

bijection. The next step is to systematize a new bijection between Nn,k and

Fn,k,0 based on such a riwi-map. In this process, a notable phenomenon is found.

A bijection realized by a slime migration sends a set of codes in Fn,k,0 to a set of

(n, k)-codes given to the di↵erent necklaces of Nn,k whereas a bijection

established by a rotation map sends a single code in Fn,k,0 to code representing a

necklace of in Nn,k.

Recall that the slime migration occurs in an (n, k)-code, which generally

means a code given to a necklace of Nn,k. Thus, the slime migration seems to be

more related to Nn,k than Fn,k,0. For this reason, it is suitable to hold up the set

Fn,k,0 before going further to a slime migration on an (n, k)-code and a bijection

between Nn,k and Fn,k,0. We found that there is a bijection between Fn,k,0 and a

set of out-of-debt chip-firing states while going through the review of a

chip-firing game and a dollar game. Furthermore, this review facilitates a

multilayered understanding of and insight to the weighted sum, linearly

equivalent divisors, and a�liated graphs.

Out-of-Debt Chip-Firing States

A brief history of a chip-firing game

According to the overview by Biggs [6], a chip-firing game on a graph G is run

by a sequence of firing chips at the vertices where a pile of chips is placed. A

vertex v fires when the number of chips on it is at least its degree. This action is

called a legal move . By a legal set-move, one chip is sent from v to each

adjacent vertex. The process of firing is continued until a stable state is reached

where a stable state means one for which no further legal firing is available at

every vertex of G.

Klivans [14] provides a brief overview of the origin of a chip-firing game as a

combinatorial game. The following is mainly based on her research. Spencer [15]

began to study a balancing game from a combinatorial point of view. He initially

placed chips at the origin of R and considered to move the same number of chips

to its neighboring sites. It is said that Spencer’s motivation was to “balance a

6



collection of vectors in the max norm” (as cited in [14], p.9). Following this

work, Anderson et al., [1] investigated the diverse properties of firing chips from

the origin, the final stable configurations, and the exact number of fires required

at each site. Thereafter, properties of chip-firing on arbitrary undirected or

directed graphs, consideration of the arbitrary initial configurations, and

fundamentals of the finite and infinite process according to the initial number of

chips have been broadly explored by Björner and Loász [7] and Björner et al. [8].

Biggs [6] came up with the concept of the group of critical configuration of a

graph. A configuration is critical when it is both stable and recurrent. A

configuration r is recurrent when the configurations generated from r through

a series of firing at vertices reach r. The idea of this group is connected to the

lattices of cuts and flows of the graph by Bacher et al. [3].

A dollar game

The legal moves in a dollar game stick to the same rules of a chip-firing game in

general. Thus, the total amount of wealth does not change by a legal set-move

throughout the game. A vertex with negative dollars is said to be debt . The

goal of the game is to have all the vertices of the graph out-of-debt by a

sequence of legal moves. A dollar game is winnable if it can reach such a state.

In Biggs’ invariant [6], a vertex q designated as a government is allowed to go

into debt. A government q issues more dollars if and only if no more legal firing

is available at vertices on the graph. The states where only q can fire are called

to be stable.

Baker’s (2015) study [4] proved the following concerning the dollar game on a

graph G:

If the game is winnable, then it can always be won using only borrowing

moves. A dollar game is always winnable if the total number of dollars in

the game is at least the Euler number. If two configurations are

equivalent (meaning that one can get from one to the other by a sequence

of legal moves), then they obviously have the same degree (the total

number of dollars in the configuration). The converse is false. For each

positive integer k, there exist distinct equivalent debt-free configurations

7



D and E of degree k if and only if G can be disconnected by removing at

most k edges. The dollar game is closely related to the famous

Riemann-Roch theorem in algebraic geometry. (p.2-3)

It turns out that a sequence of chip-firing move does not a↵ect the outcome in

the dollar game. Corry & Perkinson [11] refer to this as the abelian property. A

commutative diagram in Figure 1.6 illustrates this property.

2

v0

2 v1

�1 v20v3

0v4

{v0}. & {v1}

0

3

�10

1

3

0

00

0

{v1}& . {v0}

1

1

00

1

Figure 1.6: A commutative diagram of the chip-firing move

Chip-firing move on a graph G can occur not only at a single vertex but also

on a set of vertices simultaneously. It is obvious that the reverse chip-firing move

from a vertex set W ⇢ V is the same as a set-chip-firing move from V �W .

A divisor on a graph G is

Div(G) = ZV =
�X

v2V

f(v)v|f(v) 2 Z
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where f(v) represents the number of chips on a vertex v. In other words, a

divisor f represents the distribution of chips on a graph G. The degree of a

divisor f equals
P

v2V f(v).

Two divisors f and f 0 are ‘linearly equivalent’ if f 0 is obtained from f by a

sequence of a legal set-move. The divisor class [f ] is the collection of linearly

equivalent divisors determined by f on G as following

[f ] = {f 0 2 Div(G) | f 0 ⇠ f}.

A chip-firing game on a circular graph

According to Corry & Perkinson [11], two divisors f and f 0 on a circular graph

Cn with the same degree are linear equivalent if and only if

f · (0, 1, . . . , n� 1) ⌘ f 0 · (0, 1, . . . , n� 1) mod n.

where each f and f 0 is identified with a vector in Zn.

We provide the following as a sketch of this bijection.

Proof. ()) Identify a divisor f with a vector in Zn such that

f = (f(v0), . . . , f(vi�1), f(vi), f(vi+1), . . . , f(vn�1))

where f(vi) 2 Z represents the amount of wealth at a vertex vi. Then, a

chip-firing move at vi causes a change in the distribution of wealth around vi.

Let f 0 be a divisor obtained from f by a chip-firing move from vi such that

f 0 = (f(v0), . . . , f(vi�1) + 1, f(vi)� 2, f(vi+1) + 1, . . . , f(vn�1)).

This shows that

f · (0, 1, . . . , n� 1)� f 0 · (0, 1, . . . , n� 1)

⌘ (i� 1)� 2i+ (i+ 1) ⌘ 0 mod n.

9



Therefore,

f · (0, 1, . . . , n� 1) ⌘ f 0 · (0, 1, . . . , n� 1) mod n.

(() Let a divisor on a circular graph Cn with the degree k be identified with an

(n, k)-code in a set Fn,k,t mod n. Provided that two divisors f and f 0 on a graph

Cn satisfy
f · (0, 1, . . . , n� 1) ⌘ f 0 · (0, 1, . . . , n� 1) mod n,

the weighted sums of f and f 0 are equal. This implies that f and f 0 are in the

same set Fn,k,t mod n. Without losing the generality, let f and f 0 be in Fn,k,0.

According to the definition of a set Fn,k,0 mod n, it is equivalent to a set of the

out-of-debt chip-firing game states starting with k chips at a vertex on a circular

graph Cn. This means that a code in a set Fn,k,0 mod n is obtained from the

other in the same set by a legal set-firing move. Therefore, we can conclude that

f and f 0 is linearly equivalent.

Figure 1.7 illustrates this property. Let f be a divisor representing the

leftmost configuration of Figure 1.7. In addition, let f1 be a divisor obtained

from f by firing at v0 and let f2 obtained from f1 by firing on the set of {v0, v1}.
Then, each dot products gives that

f · (0, 1, . . . , 4) ⌘ (3, 0, 0, 0, 0) · (0, 1, . . . , 4) ⌘ 0 (mod 5)

f1 · (0, 1, . . . , 4) ⌘ (1, 1, 0, 0, 1) · (0, 1, . . . , 4) ⌘ 0 (mod 5),

f2 · (0, 1, . . . , 4) ⌘ (0, 0, 1, 0, 2) · (0, 1, . . . , 4) ⌘ 0 (mod 5).

On the contrary, let us find a divisor g with degree 3 satisfies the following.

f · (0, 1, . . . , 4) ⌘ g · (0, 1, . . . , 4) ⌘ 0 (mod 5) .

where f is the leftmost divisor in Figure 1.7. If we identify g with a vector

(a, b, c, d, e) in Z5,

(3, 0, 0, 0, 0) · (0, 1, . . . , 4) ⌘ (a, b, c, d, e) · (0, 1, . . . , 4) ⌘ 0 (mod 5) .

10



Then, b+ 2c+ 3d+ 4e ⌘ 0 (mod 5) and a+ b+ c+ d+ e = 3 . We see that

a = 1, b = 1, c = 0, d = 0, e = 1 is a solution satisfying both equations. Then,

g is identical to f1 of Figure 1.7. This immediately means that g 2 [f ] as

f1 2 [f ].
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Figure 1.7: Several equivalent divisors on C5

A bijection for the out-of-debt chip-firing states

We already mentioned that a set Fn,k,t of (n, k)-codes mod n is equivalent to a

set of out-of-debt chip-firing game states starting with k chips at a vertex on a

circular graph Cn. Now let us show how it is obtained.
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Recall that the total number of chips and the weighted sum given by a divisor

on a circular graph Cn are preserved throughout a sequence of set-firings on

vertices. Besides, the codes whose weighted sums are equal belong to the same

set Fn,k,t mod n (Corry & Perkinson, [11]). At first, take into account a divisor f

in an out-of-debt chip-firing game on Cn starting with k chips on a fixed vertex.

Additionally, let f(i) stand for the number of chips piled at a vertex vi, then a

vector in Zn identified with f consists of non-negative integers. On that ground

we can denote f such that

X

i2[n]

f(i) = k, f = (k, 0, . . . , 0), and f : [n]! Z�0.

Since each legal move on f does not give negative value at any vertex, every

linearly equivalent divisor f 0 obtained from f by chip-firings also has

non-negative values on each vertex. It is certain that the number of chips on the

configuration of f 0 is also k. Consequently,

f 0 : [n]! Z�0 and
X

i2[n]

f 0(i) = k for f 0 2 [f ].

The representation f = (k, 0, . . . , 0) implies that the weighted sum given by f on

Cn is 0. According to a bijection of Corry & Perkinson [11], each element of the

divisor class [f ] has the same weighted sum 0. Thus, we can go further for a set

of divisors equivalent to f as following:

n
f 0|

X

i2[n]

f 0(i) = k,
X

i2[n]

i · f 0(i) ⌘ 0 (mod n)
o
where f 0 : [n]! Z�0.

This representation is the same as the definition of a set Fn,k,0 of (n, k)-codes

mod n. This explicitly shows that there is a bijection between Fn,k,0 and the

out-of-debt chip-firing states starting with k chips on a fixed vertex on Cn.

Let f be a divisor corresponding to the leftmost configuration of Figure 1.7.

Then, Figure 1.7 shows the divisor class [f ] obtained by a set-firing move whereas

Figure 1.8 illustrates F5,4,0. It is observed that these two sets are equivalent.
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Figure 1.8: Every code in F5,3,0
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II. CODES AND SLIMES

Slimes

We always envision [n] := {1, . . . , n} to be having the cyclic structure of Zn. A

cyclic interval [i, j] in [n] denotes {i, i+ 1, . . . , j} in Zn. All intervals we consider

in this thesis will be cyclic intervals. Let f be an (n, k)-code and let mf denote

the largest among sum of two (position-wise) consecutive entries in f . For a

cyclic interval [i, j] in [n] of size at least 2, the corresponding sequence fi, . . . , fj

is a weak-slime of f if fi + fi+1 = · · · = fj�1 + fj = mf . A weak-slime is a

slime if fi�1 + fi and fj + fj+1 are both strictly less than mf (that is, if it is

inclusion-wise maximal among weak-slimes). Notice that slime has size at least 2

according to its definition. Any weak-slime has to have its entries alternating: it

has to be of form a, b, a, b, . . . , a or a, b, a, b, . . . , b unless they are constant codes.

For instance, for a (11, 11)-code f representing the configuration of Figure 2.1,

if we index the topmost position with 1 and keep on doing clockwise,

{11, 1}, {2, 3}, {3, 4}, {2, 3, 4}, {7, 8}, {8, 9}, and {7, 8, 9} are weak slimes of f .

Among these weak slimes, only {11, 1}, {2, 3, 4}, and {7, 8, 9} are slimes since

f2 + f3 = f3 + f4 = 3 and f7 + f8 = f8 + f9 = 3 where mf = 3.

2
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1

v1

1

v2

2 v3

1
v40

v5

1

v6

0
v7

3v8

0

v9
0

v10

Figure 2.1: Slimes of a code

Given a slime s of size l, its weight w(s) is defined as
⌅
l
2

⇧
. We denote the

weight of the code w(f) to be the sum of the weights of all slimes inside the

code. Thus, for f in Figure 2.1 w(f) =
⌅
2
2

⇧
+
⌅
3
2

⇧
+
⌅
3
2

⇧
= 3.
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We say that the slime is invalid if it is the entire [n] without a cuto↵: the

sequence f1, . . . , fn is an invalid slime when fi + fi+1 = mf for all i 2 [n]. We say

that the code is valid if it doesn’t contain an invalid slime. A constant code (a

code where f1 = f2 = · · · = fn) would have an invalid slime [n] (without a cuto↵)

and hence be an invalid code. Since odd slimes have to be of form a, b, . . . , a with

same entries on its endpoints, it is not hard to see the following:

Lemma 2.1. When n is odd, the only invalid codes of length n are the constant

codes.

1
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2
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2
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v1

1

v2

2 v3

1
v42

v5

1
v6

2v7

1v8

Figure 2.2: A code of length 11 vs. A code of length 10

The length of the left code in Figure 2.2 is 11 and it has {10, 11} as its slime.

Since there is a cuto↵ between v10 and v11, the left code is valid. The weight of it

is 5 which is the maximum weight of codes whose lengths are 11. Hence, the only

codes which are invalid when the lengths of codes are odd are constant. Whereas

the right code whose length is 10 is not constant but there is no cuto↵ in it.

Thus, the right code is invalid. This infers that a code whose length is even

might be invalid even when it is not a constant code.

Remark 2.1. Given an (n, k)-code f , its weight w(f) and weighted sum
P

i · f(i)

(mod n) are di↵erent. The weighted sum changes by k upon rotation. The

weight, on the other hand, does not change upon rotation. In other words, the

weighted sum is not rotation invariant whereas the weight is rotation invariant.

For instance, the weights of codes of Figure 2.3 are all b22c+ b
2
2c = 1.
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Figure 2.3: (7, 11)-codes

However, the weighted sum of the leftmost code is 4, of the middle code is 1, and

of the rightmost code is 5 modulo 7.

Slime Migrations

Given a valid slime that has even size, it has to be of the form

a, b, . . . , a, b.

The (forward) move on this slime transforms it to

a� 1, b+ 1, . . . , a� 1, b+ 1,

whereas the backward move transforms the sequence to

a+ 1, b� 1, . . . , a+ 1, b� 1.

These moves are well-defined since neither a nor b can be 0. Otherwise, a or b will

be mf and the sequence can’t have both a and b at its endpoint to be a slime.

The move transforms a slime into a weak slime which can be extended to slime

by potentially adding one more position to the right (left for a backward move).

For a valid slime that has an odd size, it has to be of the form

a, b, . . . , a, b, a.
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The (forward) move on this slime transforms the sequence to

a, b� 1, a+ 1, b� 1, . . . , a+ 1, b� 1, a+ 1,

whereas the backward move transforms the sequence to

a+ 1, b� 1, . . . , a+ 1, b� 1, a.

The move cuts o↵ the leftmost element (rightmost element for a backward move)

and the resulting weak slime can be extended to a slime by potentially adding

one more position to the right (left for a backward move).

Given an (n, k)-code f , let �!(f) be the code you get from f by doing a

forward move on all slimes of f at the same time. We call this the (forward)

migration of all slimes. Similarly, let � (f) be the code you get from f by

doing a backward move on all slimes of f at the same time and call this the

backward migration of all slimes. The migration changes
P

i · f(i) modulo n

by the weight of the code.

Take a look at Figure 2.4. If we do the forward migration on the leftmost

code, we get the code in the middle. If we do the forward migration of the code

in the middle, we get the rightmost code. If we do the backward migration on

the code in the middle, we get the leftmost code back.

Lemma 2.2. For any valid (n, k)-code f , we have � (�!(f)) = f .

Proof. Any even sized slime s of the form a, b, . . . , a, b after a forward move

becomes either

a� 1, b+ 1, . . . , a� 1, b+ 1 or a� 1, b+ 1, . . . , a� 1, b+ 1, a� 1

The latter case absorbs a new element to the right. In the first case it is obvious

the backward move returns it back to s. In the second case since

a+ b > a� 1+ b, the rightmost element gets cut o↵ upon backward migration, so

that we get s back as well. A similar analysis holds for odd-sized slimes.
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In Figure 2.4, notice that the weights of all three codes are the same. It is

true in general that the migration operation preserves the number of slimes and

the total weight as well:
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Figure 2.4: Slime migrations

Lemma 2.3. For any valid (n, k)-code f , migration does not change the weight

of f . That is, we have w(� (f)) = w(f) = w(�!(f)).

Proof. Given an odd-sized slime, its size is either maintained or decreased by 1

after a movement. Given an even-sized slime, its size is either maintained or

increased by 1 after a movement. Hence the weight of each slime is preserved

after the migration.

Consider the case when we have two adjacent slimes in f : fi, . . . , fk is a slime

and fk+1, fk+2, . . . , fj is another slime. After forward migration, if the latter

slime was even length then . . . , fk and fk+1, . . . are still separate slimes since

fk + fk+1 stays the same and is strictly smaller than mf . If the latter slime had

odd length then fk+1 gets cut o↵ from the slime to the right anyways. So there is

no fear of two slimes merging after a migration.

Since the weight of each slime is preserved and slimes do not merge nor split,

it is explicitly realized that the weight of a code is preserved upon slime

migration.

Given a valid (n, k)-code f that has weight w(f) coprime to n, let i(f) denote

the inverse of w(f) modulo n. Define �(f) to be the map that sends f to

(�!)i(f)(f). Combining what we have so far we get:
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Proposition 1. Suppose that w(f) is coprime to n. Then the map � is

invertible and weight preserving. Furthermore, the image of a valid code in Fn,k,t

under � is a valid code of Fn,k,t+1.

Proof. Assume that w(f) is coprime to n. Then, w(f) generates Zn, so that i(f)

exists such that i(f)w(f) = 1. Let �(f) = (�!)i(f)(f). As we have already

shown, the weight is preserved upon slime migration. Hence, � also preserves the

weight. � (�!(f)) = f , so that

(� )
i(f)(�(f)) = (� )

i(f)
�
(�!)

i(f)(f)
�
= f.

Therefore ��1 = (� )i(f) verifying that � is invertible. Upon slime migration

the weighted sum increases by w(f). Thus, i(f)w(f) times of migration results

increment of 1 modulo n. Thus, � maps f in Fn,k,t to a code in Fn,k,t+1. Since

the weight is preserved under � and the existence of the weight of a code infers

that it is valid, �(f) is valid if f is valid.

Take a look at Figure 2.5 illustrating the Proposition 2.5. Let f be a code

referring to the left topmost configuration in Figure 2.5. Then, f 2 F5,6,1 and

w(f) = 2. Since w(f) is coprime to 5, i(f) = 3 is obtained. Such conditions yield

that � : f ! (�!)3(f) defined by in detail

f 7! (�!)
1(f) 7! (�!)

2(f) 7! (�!)
3(f) = �(f).

It is realized that �(f) refers to the right topmost configuration of Figure 2.5.

One can see that the map � sends a code f 2 F5,6,1 to code �(f) 2 F5,6,2 through

three times of forward migration. The natural implication goes in the other

direction. Suppose g is a code referring to the right topmost configuration of

Figure 2.5. Then, three times of backward migrations on g 2 F5,6,2 result to f

where f 2 F5,6,1. On the other hand, Figure 2.5 illustrates that the slimes does

not merge nor split throughout the slime migrations. Thereby, we can see that
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all codes in Figure 2.5 are valid and the weights of them are preserved:

w(f) = w(�!(f)) = w((�!)
2(f)) = w((�!)

3(f)) = 2,

w(g) = w(� (g)) = w((� )
2(g)) = w((� )

3(g)) = 2.
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Figure 2.5: A riwi-map via slime migrations
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III. BIJECTION AND NECKLACES

We proposed that a certain bijective map between Fn,k,t’t induces a bijection

Nn,k and Fn,k,0 in the general case. To accomplish it, at first label the black

beads of a necklace of Nn,k 1 to n in some clockwise order. After that, express a

necklace of Nn,k as a sequence (g0, . . . , gn�1) where gi represents the number of

white beads between black beads labeled i and i+ 1. Since a necklace

g = (g0, . . . , gn�1) is a cyclic rotation invariant class, it is a collection of codes

such that

g, c(g), . . . , cn�1(g).

We dedicate q such that

q =
n

gcd(n, k)
.

Besides, we call the collection

{f, cq(f), c2q(f), . . . , cn�q(f)}

a neck-class of Fn,k,t for a given code f 2 Fn,k,t. Explicit conjecture is that

every code in a neck-class including f 2 Fn,k,t belongs to the same set Fn,k,t.

This gives the natural implication such that all codes in a neck-class have the

same weighted sum modulo n.

Let f and g be the first codes of Figure 3.1 and Figure 3.2, respectively.

Then, f is in F9,6,1 and g is in F9,6,4 and q = 3 for both f and g. Figure 3.1 and

Figure 3.2 shows that {f, c3(f), c6(f)} and {g, c3(g), c6(g)} are neck-classes of f

and g, respectively, where their weighted sums are preserved (mod 9) upon

rotations of period 3.

For a code f of Figure 3.3, q = 5
gcd(5,6) = 5. This means that the weighted

sum of a code of Figure 3.3 is preserved by rotations of period 5. Therefore, a

neck-class of F5,6,5 is {f}.

Let F 0n,k,t denote the codes of Fn,k,t that have period n. Let N 0n,k denote the

necklaces of Nn,k that have period n.
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Figure 3.1: A neck-class of F9,6,1 of period 3
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Figure 3.2: A neck-class of F9,6,4 of period 3
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Figure 3.3: A neck-class of F5,6,5 of period 5

A Riwi-Map

Definition 3.1. We say that a map � : F 0n,k ! F 0n,k is a riwi-map where

F 0n,k :=
S

t F 0n,k,t if:

• it is a bijective map,

• (rotation invariant) c� = �c, and

• (weighted sum increasing) if f 2 F 0n,k,t then �(f) 2 F 0n,k,t+1.

22



Using a riwi-map � we can construct a map �� between N 0n,k and F 0n,k,0 in the

following way: for each neck-class in Fn,k,0, fix an arbitrary representative f . Let

�� be a map from F 0n,k,0 to N 0n,k that sends ciq(f) to �i(f) for each 0  i < n
q .

Theorem 3.1. When � is a riwi-map, the map �� is a bijection between F 0n,k,0
and N 0n,k.

Proof. We first show that the map �� : F 0n,k,0 ! N 0n,k is one-to-one. Assume for

sake of contradiction that the image of some ciq(f) and cjq(g) are the same. Due

to �i(f) 2 F 0n,k,i, we must have i = j. But since � is a bijective map,

�i(f) = �i(g) implies f = g and we get a contradiction.

Next, we show that the map is onto. Pick any necklace in N 0n,k. Choosing a

position here gives a code g in F 0n,k,j n
q +i for some 0  j < q and 0  i < n

q . We

can replace g with a rotation equivalent code in F 0n,k,i. Take the neck-class in

F 0n,k,i containing g. Thanks to � being rotation invariant, applying (��1)i on the

neck-class gives a neck-class in F 0n,k,0. Pick f to be the chosen representative of

that neck-class. Then, ciq(f) is mapped to �i(f) under �� which is rotation

equivalent to g.

Consider a necklace of N 06,10. Then, it has the period 3 since q = 6
gcd(6,10) = 3.

This tells that a given code g to a necklace of N 06,10 has a pair g0 obtained by

rotating g three times where their weighted sums are equivalent modulo 6.

Take one from each pair and let them be g1, g2, and g3. Then, the

configurations in the first row of Figure 3.4 correspond to g1, g2, and g3. Let

g01, g02 and g03 be the rest of each pair, then the configurations in the second row

of Figure 3.4 correspond to them, respectively. The fact that n
q = 2 facilitates a

coding by that each of g1, g2, and g3 belongs to a F 06,10,2j+i for some 0  j < 3

and 0  i < 2. On the other hand, Figure 3.5 shows that {g1, g01}, {g2, g02}, and
{g3, g03} are three neck-classes obtained from a necklace of N6,10 in Figure 3.4.

Moreover, we can see that g01 2 F 06,10,2, g02 2 F 06,10,0, and g03 2 F 06,10,4.
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Figure 3.4: A necklace of N 06,10
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Figure 3.5: Neck-classes obtained from a necklace of N 06,10
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Now, assume that there exists a riwi-map � sending a code of F 06,10,t to a code of

F 06,10,t+1. Thereby, a code f 2 F 06,10,0 is surely found by applying the inverse of �

several times on the codes g01, g02 or g03 as following

(��1)2(g01) = f 2 F 06,10,0,

(��1)0(g02) = f 2 F 06,10,0,

(��1)4(g03) = f 2 F 06,10,0.

Next, consider a neck-class {c3·2(f), c3·0(f), c3·4(f)} that is obtained by rotating

f 3i times where i is taken from g0 2 F6,10,i.

Finally, a bijective map

�� : F6,10,0 7! N6,10 defined by c3i(f) 7! (��1)i(g0).

is constructed extremely depending on a riwi-map �.

Let us unfold a path from a code g representing any configuration of a necklace of

N6,10 in Figure 3.4 to a code in F6,10,0 through a neck-class {g, g0} in Figure 3.5:

g 7! g0 7! (��1)i(g0) 7! f 7! c3i(f).

This path clearly shows that the map �� : F6,10,0 7! N6,10 is surjective under the

assumption that there exists a riwi-map such that �i(f) = g0 2 F 06,10,i. With the

same assumption, look at the following two di↵erent paths starting from the

codes in F6,10,0 ending at the codes given to a necklace of N6,10 :

c3·2(f) 7! f 7! (��1)2(g01) 7! g01 7! g1

c3·j(f 0) 7! f 0 7! (��1)j(h0) 7! h0 7! h

Consider g1 is the code representing the left topmost configuration of Figure 3.5.

As for the injectivity of ��, assume that (��1)2(g01) = (��1)j(h0) whereas

c3·2(f) 6= c3·j(f 0). Then, since � is a riwi-map, g1 and h should be in the same
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neck-class as seen in the first row of Figure 3.5. However, there is no way for h to

be in the same neck-class with g1 unless 2 = j. This obviously contradicts that

c3·2(f) 6= c3·j(f 0).

For codes and necklaces of period p < n in Nn,k and Fn,k,0 (here p has to be a

common divisor of n and k), we can extend the bijection between N 0n
p ,

k
p

and

F 0n
p ,

k
p ,0

. Hence the problem of constructing a bijection between Nn,k and Fn,k,0

can be reduced to the problem of finding a riwi-map on F 0n,k’s.

Bijection when n and k are Coprime

It was proved in Theorem 5.2 by Brauner et al. [9] that there is a bijection

between Nn,k and Fn,k,0 when n and k are coprime. They proved this with the

perspective of equivalent the divisors on a circular graph Cn. Another way to

think of this is that one can simply take a certain power of the rotation map as

the riwi-map.

Corollary 3.1. When n and k are coprime, Theorem 3.1 gives a bijection

between Nn,k and Fn,k,0.

Proof. When n and k are coprime, every code and necklace have period n. So we

have Nn,k = N 0n,k and Fn,k = F 0n,k. Pick i(k) to be the inverse of k modulo n.

Then, ci(k) is a riwi-map since rotating i(k) times increases the weighted sum of a

code by k · i(k) ⌘ 1 (mod n).

Give codes f1, f2 and f3 to a necklace of N3,5 in Figure 3.6 in a row. Then,

f1 2 F3,5,2, f2 2 F3,5,1, and f3 2 F3,5,0. For (3, 5)-codes, i(5) = 2 since 5 · 2 ⌘ 1

(mod 3). Therefore, it is clear that c2 sends a code in F3,5,t to a code F3,5,t+1. A

rotation map is bijective when n and k are coprime, so is c2 as long as n and k

are coprime. Besides, it is taken granted that c2 is rotation invariant. Hence, we

can conclude that c2 : F3,5 ! F3,5 is a riwi-map. Next, pick a code f in F3,5,0

that is identical to f3 in Figure 3.6. Then, a neck-class including f is a singleton

set {f} as shown in Figure 3.7 since q = n = 3. Now, we can have a bijective

map �� sending a code given to a necklace of N3,5 in Figure 3.6 and a code in a

neck-class in Figure 3.7 defined by
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f1 2 N3,5 7! �1(f1) = f3 = f 7! c1·3(f) 2 F3,5,0,

f2 2 N3,5 7! �2(f2) = f3 = f 7! c2·3(f) 2 F3,5,0,

f3 2 N3,5 7! �0(f3) = f3 = f 7! c0·3(f) 2 F3,5,0.
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Figure 3.6: A necklace of N3,5
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Figure 3.7: A neck-class of F3,5,0

As for the necklaces of N2,k with k is odd, we can also simply use a rotation

map c as a riwi-map � since n and k are coprime. For instance, let f be a code

representing a necklace of N2,k in form of (a, b), then send it under a riwi-map �

� : (a, b) 7! (b, a).

Since a+ b = k and k is odd, a and b cannot have the same parity. Hence, if we

assume that (a, b) is in F2,k,t, (b, a) must be in F2,k,t+1.

Bijection when n and k are Not Coprime

In the case n is an odd prime, we use the slime migration map � as our riwi-map.

Corollary 3.2. When n is an odd prime, Theorem 3.1 gives a bijection between

Nn,k and Fn,k,0.
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Proof. When n is an odd prime, all codes and necklaces have period 1 or n.

Lemma 2.1 tells us that the only invalid codes are the constant codes.

Associating the constant codes to constant necklaces, all that remains is to show

that � of Proposition 1 is a riwi-map. Bijection and weighted sum increasing are

already done, so we need to check rotation invariance. The forward migration

map �! does not depend on any choice of a position on the circle since slimes

are defined using sums of adjacent entries. Therefore, � is rotation invariant as

well.

Pick the leftmost necklace of N3,3 in Figure 3.8 and give it a code f . Since

w(f) = 1 and it is coprime to 3, i(f) = 1. Thus, we have the slime migration

such that � = �!. Figure 3.8 shows that the slime migration changes the

leftmost code f to the middle code �(f). Doing it one more time gives the

rightmost code �2(f). Each of them belongs to a di↵erent F3,3,t since the

weighted sum changes upon slime migrations. Moreover, they are rotation

variant, so that each of them represents a di↵erent necklace of N3,3.

f 2 F3,3,0 7! �(f) 2 F3,3,1 7! �2(f) 2 F3,3,2.
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Figure 3.8: Slime migrations on a code f given to a necklace N3,3

Rotate f and then make a slime migration on it and vice versa. Both cases yield

the same result, that is, the rotated second code of Figure 3.8. Therefore, it is

clearly stated that the slime migration on f 2 F3,3,t satisfies three conditions of

a riwi-map in the case n and w(f) are coprime.
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Figure 3.9 shows a neck-class {f, c(f), c2(f)} of F3,3,0 including a code f .

Since (n, k)-codes are not rotation invariant, a code in a neck-class

{f, c(f), c2(f)} is di↵erent from the other.
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Figure 3.9: A neck-class of F 03,3,0 including f

Now, map the codes in Figure 3.9 to the codes in Figure 3.8 under a bijective

map �� defined by

{f, c(f), c2(f)} 7! {f,�(f),�2(f)}.

Notable thing is that a bijective map �� sends a set of three di↵erent codes of

the neck-class including a code in F3,3,0 to a set of codes given to three di↵erent

necklaces in N3,3. This is viable since w(f) is coprime to an odd prime n.

Theorem 3.2. We can construct a bijection between Nn,k and Fn,k,0 when n is

prime.

Proof. We only need to consider the case when n = 2 and k is even. For a

necklace of form a, b with a � b, map it to the code a, b if b is even. Otherwise

map it to b� 1, a+ 1.

In the case k is odd, a rotation map works as a riwi-map so that it gives a

bijection between N2,k and F2,k,0 since k is coprime to 2. However, the slime

migration does not when n = 2 and k is even. The reason our argument does not

work directly for n that is not an odd prime, is that the slime migration is not

guaranteed to be a bijection between F 0n,k,t’s. For example if we do a slime

migration on 2, 0, we get 1, 1. However, 1, 1 is also obtained from 0, 2 by the same

migration. Thus, a slime migration is not bijective when n = 2 and it can’t be a

riwi-map as a result. This is why we have to take care of n = 2 case separately.
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Instead, a map described in the proof of Theorem 3.2 gives a direct bijection.

Define � : N2,6 ! F2,6,0 to be such a map. Then, Figure 3.10 demonstrates that

each code given to four di↵erent necklaces of N2,6 is sent to one of four di↵erent

codes in F2,6,0. Besides, one can see that there exists a code given to a necklace

of N2,6 to which a code of F2,6,0 is mapped by the map ��1.
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Figure 3.10: A bijection between N2,6 and F2,6,0

By showing a bijection when n = 2, we have come to the end of constructing a

new bijection between Fn,k,0 and Nn,k in the case n is prime.
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IV. FUTURE DIRECTION FOR RESEARCH

We complete the construction of a new bijection between Nn,k and Fn,k,0 when n

is prime. A riwi-map provides a fundamental ground for this bijection when n is

an odd prime. More specifically speaking, it is a slime migration that works as a

riwi-map between Fn,k,t’s when k is not coprime to an odd integer n. By building

up a direct bijection between F2,k,0 and N2,k in the case that k is even, all the

work to constitute a new bijection between Nn,k and Fn,k,0 in the case n is prime

comes to the end. However, generalizing is not completed yet.

Question 1. Can one construct a bijection between Nn,k and Fn,k,0, for general n?

The strategy would be to find the riwi-maps using Theorem 3.1. A good

candidate is a modification of the slime migration map �. Notice that � working

as a riwi-map only depends on the weight of the codes being coprime to n,

instead of what k is. Since � preserves the weight of the code, we can refine N 0n,k
further based on the weight, and separately take care of the cases when the

weight isn’t coprime to n. Using this idea for small numbers like n = 4 and

n = 6, it is pretty straightforward to construct a riwi-map using the fact that

there are not many codes with w(f) = 2 (being 3 is impossible) and hence get a

bijection easily.
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