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Gradient method in Sobolev spaces for nonlocal

boundary-value problems ∗

J. Karátson

Abstract

An infinite-dimensional gradient method is proposed for the numerical
solution of nonlocal quasilinear boundary-value problems. The iteration
is executed for the boundary-value problem itself (i.e. on the contin-
uous level) in the corresponding Sobolev space, reducing the nonlinear
boundary-value problem to auxiliary linear problems. We extend earlier
results concerning local (Dirichlet) boundary-value problems. We show
linear convergence of our method, and present a numerical example.

1 Introduction

The object of this paper is to study the numerical solution to the nonlocal
quasilinear boundary-value problem

T (u) ≡ − div f(x,∇u) + q(x, u) = g(x) in Ω

Q(u) ≡ f(x,∇u) · ν +

∫
∂Ω

ϕ(x, y)u(y) dσ(y) = 0 on ∂Ω

on a bounded domain Ω ⊂ RN . The exact conditions on the domain Ω and the
functions f, q, g and ϕ will be given in Section 2.
The nonlocal boundary condition allows the normal component of the non-

linearity f(x,∇u) to depend on a nonlocal expression of u, in contrast to a
function of u(x) in the usual case of mixed boundary conditions (or especially 0
in the case of Neumann problems). This kind of boundary condition has been
analysed in detail e.g. in [13, 21]. Most often the studied nonlocal expres-
sion depends on a composite function of u, this boundary condition arises e.g.
in plasma physics. General theoretical results on existence and uniqueness of
weak solutions to such problems have been proved in [23] and [22] for linear and
nonlinear equations, respectively. In this paper we consider the case when the
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nonlocal expression involves an integral for all the values of u|∂Ω (cf. [13]). (The
weak formulation of our problem will also be given in Section 2.)
The usual way of the numerical solution of elliptic equations is to discretize

the problem and use an iterative method for the solution of the arising nonlinear
system of algebraic equations (see e.g. [12, 16]). However, the condition number
of the Jacobians of these systems can be arbitrarily large when discretization
is refined. This phenomenon would yield very slow convergence of iterative
methods, hence suitable nonlinear preconditioning technique has to be used [2].
Our approach is opposite to the above: the iteration can be executed for

the boundary-value problem itself (i.e. on the continuous level) directly in the
corresponding Sobolev space, reducing the nonlinear boundary-value problem
to auxiliary linear problems. Then discretization may be used for these auxil-
iary problems. This approach can be regarded as infinite-dimensional precondi-
tioning, and yields automatically a fixed ratio of convergence for the iteration,
namely, that which is explicitly obtained from the coefficients f , q and g. Con-
cerning this, we note that the method in question is related to the Sobolev
gradient technique, developed in [17, 18, 19]. Especially, in [17] nonlocal bound-
ary conditions are discussed in connection with Sobolev gradients.

The theoretical background of this approach is the generalization of the gra-
dient method to Hilbert spaces. This was first developed by Kantorovich for
linear equations (see [11]). For the numerous results so far, we refer e.g. to
[3, 5, 7, 20, 24]; the investigations of the author have included non-differentiable
operators [9] and non-uniformly monotone operators [10]. The mentioned re-
sults focus on partial differential operators. Concerning numerical realization to
local (Dirichlet) boundary-value problems relying on the Hilbert space gradient
method, we refer to [6, 7].

This paper consists of three parts. The exact formulation of the problem
is given in Section 2. The gradient method for the nonlocal boundary value
problem is constructed and its linear convergence is proven in Section 3. The
numerical realization is illustrated in Section 4.

2 Formulation of the problem

The exact formulation of the nonlocal boundary condition requires the following
notion. (Therein and throughout the paper σ denotes Lebesgue measure on the
boundary.)

Definition 2.1 Let Ω ⊂ RN , ∂Ω ∈ C1. A function ϕ : ∂Ω2 → R is called

(i) a positive kernel if it fulfills

ϕ(x, y) =

∫
∂Ω

ψ(x, z)ψ(z, y) dσ(z) (x, y ∈ ∂Ω)

with some ψ ∈ L2(∂Ω2) satisfying ψ(x, y) = ψ(y, x) (x, y ∈ ∂Ω);
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(ii) regular if the function x 7→

∫
∂Ω

ϕ(x, z) dσ(z) does not a.e. vanish on ∂Ω.

The following properties are elementary to prove.

Proposition 2.1 A positive kernel ϕ fulfills ϕ ∈ L2(∂Ω2) and ϕ(x, y) = ϕ(y, x)
(x, y ∈ ∂Ω).

Proposition 2.2 Consider the linear integral operator A : L2(∂Ω)→ L2(∂Ω),

(Au)(x) =

∫
∂Ω

ϕ(x, y)u(y) dσ(y) . (1)

(i) If ϕ is a positive kernel then A is a positive operator, i.e.∫
∂Ω

(Au)u ≥ 0 (u ∈ L2(∂Ω).

(ii) If ϕ is regular then A does not carry constants to the (a.e.) zero function.

Definition 2.2 Let ϕ be a regular positive kernel and m > 0. Then we define

〈u, v〉 ≡

∫
Ω

∇u · ∇v +
1

m

∫∫
∂Ω2

ϕ(x, y)u(y)v(x) dσ(y) dσ(x) . (2)

Proposition 2.3 Formula (2) defines an inner product on H1(Ω).

The above inner product will be used in H1(Ω) (with m > 0 to be defined in
condition (C3) below) throughout the paper, and the corresponding norm will
be denoted by ‖ . ‖. We note that if u ∈ H2(Ω) and ∂u∂ν +A(u) = 0 on ∂Ω, then
the divergence theorem yields

〈u, v〉 =

∫
Ω

(−∆u)v (3)

with m = 1. (This is a special case of Remark 2.4 below with T = −∆.)
We will use notation ν for the outward normal vector on ∂Ω, and dot product

to denote the inner product in RN .
Now the nonlocal boundary-value problem can be formulated.

We consider the problem

T (u) ≡ − div f(x,∇u) + q(x, u) = g(x) in Ω

Q(u) ≡ f(x,∇u) · ν +

∫
∂Ω

ϕ(x, y)u(y) dσ(y) = 0 on ∂Ω
(4)

with the following conditions:

(C1) Ω ⊂ RN is bounded, ∂Ω ∈ C1; f ∈ C1(Ω × RN ,RN ), q ∈ C1(Ω × RN),
g ∈ L2(Ω);
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(C2) ϕ is a regular positive kernel;

(C3) there exist constants m′ ≥ m > 0 such that for all (x, η) ∈ Ω × RN the

Jacobians
∂f(x, η)

∂η
∈ RN×N are symmetric and their eigenvalues λ fulfill

m ≤ λ ≤ m′ ;

further, there exist constants κ, β ≥ 0 such that for all (x, u) ∈ Ω× R

0 ≤
∂q(x, u)

∂u
≤ κ+ β|u|p−2

where 2 ≤ p if N = 2 and 2 ≤ p < 2N
N−2 if N > 2.

Remark 2.1 It is worth mentioning the following special cases of f .

(a) f(x,∇u) = p(x,∇u)∇u where p ∈ C1(Ω × RN ). Then the boundary
condition takes the form

p(x,∇u)
∂u

∂ν
+

∫
∂Ω

ϕ(x, y)u(y) dσ(y) = 0 .

(b) f(x,∇u) = a(|∇u|)∇u where a ∈ C1[0,∞) (a special case of (a)). The
corresponding type of operator T arises e.g. in elasto-plasticity theory or
in the study of magnetic potential [8, 15].

Remark 2.2 The assumption 2 ≤ p (if N = 2), 2 ≤ p < 2N
N−2 (if N > 2) in

condition (C3) yields [1] that there holds the Sobolev embedding

H1(Ω) ⊂ Lp(Ω) . (5)

Remark 2.3 The condition that ϕ is a regular kernel is required to avoid the
lack of injectivity when f(x, 0) = 0 (e.g. in the cases of Remark 2.1). Namely,
there would otherwise hold Q(c) = 0 on ∂Ω for constant functions c as in the
case of Neumann boundary condition.

Proposition 2.4 For any u, v ∈ H1(Ω) let

〈F (u), v〉 ≡

∫
Ω

(
f(x,∇u) · ∇v + q(x, u)v

)
+

∫∫
∂Ω2

ϕ(x, y)u(y)v(x) dσ(y) dσ(x) .

(6)
Then formula (6) defines an operator F : H1(Ω)→ H1(Ω).
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Proof Condition (C3) implies that for all i, j = 1, .., N and (x, η) ∈ Ω× RN∣∣∣∣ ∂fi∂ηj
(x, η)

∣∣∣∣ ≤ m′ .
Lagrange’s inequality yields that for all (x, η) ∈ Ω× RN we have

|fi(x, η)| ≤ |fi(x, 0)|+m
′N1/2|η| , |q(x, u)| ≤ |q(x, 0)|+ κ|u|+ β|u|p−1 .

Consequently, the integral on Ω in (6) can be estimated by

∫
Ω

( N∑
i=1

(
|fi(x, 0)|+m

′N1/2|∇u|
)
|∂iv|+ (|q(x, 0)| + κ|u|)|v|+ β|u|

p−1|v|
)

≤
(
‖f(x, 0)‖L2(Ω)N +m

′N‖∇u‖L2(Ω)N
)
‖∇v‖L2(Ω)N

+
(
‖q(x, 0)‖L2(Ω) + κ‖u‖L2(Ω)

)
‖v‖L2(Ω) + β‖u‖

p−1
Lp(Ω)‖v‖Lp(Ω) .

Using (2) and (5), we obtain the following estimate for the right side of (6):(
‖f(x, 0)‖L2(Ω)N +m

′N‖∇u‖L2(Ω)N +K2,Ω
(
‖q(x, 0)‖L2(Ω)

+κ‖u‖L2(Ω)
)
+ βKp,Ω‖u‖

p−1
Lp(Ω) + ‖u‖

)
‖v‖ ,

where Kp,Ω (p ≥ 2) is the embedding constant in the inequality

‖u‖Lp(Ω) ≤ Kp,Ω‖u‖ (u ∈ H
1(Ω)) (7)

corresponding to (5). Hence for all fixed u ∈ H1(Ω) Riesz’s theorem ensures the
existence of F (u) ∈ H1(Ω). ♦

Definition 2.2 A weak solution of problem (4) is defined in the usual way as
a function u∗ ∈ H1(Ω) satisfying

〈F (u∗), v〉 =

∫
Ω

gv (v ∈ H1(Ω)). (8)

Remark 2.4 For any u ∈ H2(Ω) with Q(u) = 0 on ∂Ω, we have

〈F (u), v〉 =

∫
Ω

T (u)v (v ∈ H1(Ω)).

This follows from the divergence theorem:∫
Ω

T (u)v =

∫
Ω

(
f(x,∇u) · ∇v + q(x, u)v

)
−

∫
∂Ω

(
f(x,∇u) · ν

)
v dσ .

Consequently (as usual), a solution of (4) is a weak solution, and a weak solution
u∗ ∈ H2(Ω) with Q(u∗) = 0 on ∂Ω satisfies (4).
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3 Construction and convergence of the gradient
method in Sobolev space

The construction of the gradient method relies on the following property of the
generalized differential operator.

Theorem 3.1 Let F : H1(Ω) → H1(Ω) be defined in (6). Then F is Gateaux
differentiable and F ′ satisfies

m‖h‖2 ≤ 〈F ′(u)h, h〉 ≤M(‖u‖)‖h‖2 (u, h ∈ H1(Ω)), (9)

where
M(r) = m′ + κK22,Ω + βK

p
p,Ωr

p−2 (10)

with Kp,Ω defined in (7).

Proof For any u ∈ H1(Ω) let S(u) : H1(Ω) → H1(Ω) be the bounded linear
operator defined by

〈S(u)h, v〉 ≡

∫
Ω

(∂f
∂η
(x,∇u)∇h · ∇v +

∂q

∂u
(x, u)hv

)
(11)

+

∫∫
∂Ω2

ϕ(x, y)h(y)v(x) dσ(y) dσ(x) ,

for all u, h, v ∈ H1(Ω). The existence of S(u) is provided by Riesz’s theorem
similarly as in Proposition 2.4, now using the estimate(

m′ + κK22,Ω + βK
2
p,Ω‖u‖

p−2
Lp(Ω)

)
‖h‖‖v‖

for the integral term on Ω. We will prove that

F ′(u) = S(u) (u ∈ H1(Ω)) (12)

in Gateaux sense. Therefore, let u, h ∈ H1(Ω) and E :=
{
v ∈ H1(Ω) : ‖v‖ = 1

}
.

Then

Du,h(t) ≡
1

t
‖F (u+ th)− F (u)− tS(u)h‖

=
1

t
sup
v∈E
〈F (u + th)− F (u)− tS(u)h, v〉

=
1

t
sup
v∈E

∫
Ω

[(
f(x,∇u+ t∇h)− f(x,∇u)− t

∂f

∂η
(x,∇u)∇h

)
· ∇v

+
(
q(x, u+ th)− q(x, u)− t

∂q

∂u
(x, u)h

)
v
]

= sup
v∈E

∫
Ω

[(∂f
∂η
(x,∇u + tθ∇h)−

∂f

∂η
(x,∇u)

)
∇h · ∇v

+
(∂q
∂u
(x, u+ tθh)−

∂q

∂u
(x, u)

)
hv
]
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≤ sup
v∈E

[∥∥(∂f
∂η
(x,∇u + tθ∇h)−

∂f

∂η
(x,∇u)

)
∇h
∥∥
L2(Ω)

‖∇v‖L2(Ω)

+
∥∥( ∂q
∂u
(x, u+ tθh)−

∂q

∂u
(x, u)

)
h
∥∥
Lq(Ω)

‖v‖Lp(Ω)
]
,

where p−1 + q−1 = 1. Here ‖∇v‖L2(Ω) ≤ ‖v‖ ≤ 1 and ‖v‖L2(Ω) ≤ K2,Ω‖v‖ ≤
K2,Ω. Further, |tθ∇h| → 0 and |tθh| → 0 (as t → 0) a.e. on Ω, hence the
continuity of ∂f

∂η
and ∂q

∂u
implies that the integrands tend to 0 as t → 0. For

|t| ≤ t0 the integrands are majorated by (2m′|∇h|)2 ∈ L1(Ω) and (2κ+ β(|u +
t0h|p−2+|u|p−2)h)q ≤ const.·(2κ+β(|u+t0h|(p−2)q+|u|(p−2)q)hq) ∈ L1(Ω). (The

latter holds since u, h ∈ Lp(Ω) implies u(p−2)q ∈ L
p

(p−2)q (Ω) and hq ∈ L
p
q (Ω),

and here (p−2)q
p
+ q
p
= 1 from p−1+ q−1 = 1.) Hence Lebesgue’s theorem yields

that the obtained expression tends to 0 (as t→ 0), thus

lim
t→0

Du,h(t) = 0 .

Now the inequality (9) is left to prove. From (12) and (11) we have for any
u, h ∈ H1(Ω)

〈F ′(u)h, h〉 =

∫
Ω

(∂f
∂η
(x,∇u)∇h · ∇h+

∂q

∂u
(x, u)h2

)
+

∫∫
∂Ω2

ϕ(x, y)h(y)h(x) dσ(y) dσ(x) .

From condition (C3) we have

m|∇h|2 ≤
∂f

∂η
(x,∇u)∇h · ∇h ≤ m′|∇h|2 ,

which, together with ∂q
∂u
≥ 0, implies directly that

m‖h‖2 ≤ 〈F ′(u)h, h〉 .

Further,

〈F ′(u)h, h〉 ≤

∫
Ω

[
m′|∇h|2 + (κ+ β|u|p−2)h2

]
+

∫∫
∂Ω2

ϕ(x, y)h(y)h(x) dσ(y) dσ(x)

≤ m′‖h‖2 + κ‖h‖2L2(Ω) + β‖u‖
p−2
Lp(Ω)‖h‖

2
Lp(Ω)

≤ (m′ + κK22,Ω + βK
p
p,Ω‖u‖

p−2)‖h‖2 ,

i.e. the right side of (9) is also satisfied. ♦

Now we quote an abstract result on the gradient method in Hilbert space,
which in this form follows from [10] (Theorem 2 and Corollary 1).
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Theorem 3.2 Let H be a real Hilbert space, b ∈ H and let F : H → H satisfy
the following properties:

(i) F is Gateaux differentiable;

(ii) for any u, k, w, h ∈ H the mapping s, t 7→ F ′(u + sk + tw)h is continuous
from R2 to H;

(iii) for any u ∈ H the operator F ′(u) is self-adjoint;

(iv) there exists m > 0 and an increasing function M : [0,∞) → (0,∞) such
that for all u, h ∈ H

m‖h‖2 ≤ 〈F ′(u)h, h〉 ≤M(‖u‖)‖h‖2 .

Then

(1) the equation F (u) = b has a unique solution u∗ ∈ H.

(2) Let u0 ∈ H, M0 :=M
(
‖u0‖+

1
m
‖F (u0)− b‖

)
. Then the sequence

un+1 = un −
2

M0 +m
(F (un)− b) (n ∈ N)

converges linearly to u∗, namely,

‖un − u
∗‖ ≤

1

m
‖F (u0)− b‖

(
M0 −m

M0 +m

)n
(n ∈ N) .

Now we are in position for constructing the gradient method for (4) inH1(Ω)
and to verify its convergence.

Theorem 3.3 (1) Problem (4) has a unique weak solution u∗ ∈ H1(Ω).

(2) Let b ∈ H1(Ω) such that

〈b, v〉 =

∫
Ω

gv (v ∈ H1(Ω)),

and let F denote the generalized differential operator as in (6). Let u0 ∈
H1(Ω), M0 := M

(
‖u0‖+

1
m‖F (u0)− b‖

)
, where M(r) = m′ + κK22,Ω +

βKpp,Ωr
p−2. Then the sequence

un+1 = un −
2

M0 +m
(F (un)− b) (n ∈ N) (13)

converges linearly to u∗, namely,

‖un − u
∗‖ ≤

1

m
‖F (u0)− b‖

(
M0 −m

M0 +m

)n
(n ∈ N) .
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Proof Our task is to verify conditions (i)-(iv) of Theorem 3.2 for (4) inH1(Ω).
Conditions (i) and (iv) have been proved in Theorem 3.1. The hemicontinuity of
F ′ follows similarly to the differentiability of F if in the proof of Theorem 3.1 we
examine D̃u,k,w,h(t) ≡ ‖(F ′(u+ sk+ tw)−F ′(u))h‖ instead of Du,h(t). Finally,
the symmetry of F ′(u) follows immediately from (12), (11) and the symmetry
of ϕ and of the Jacobians ∂f

∂η
(x, η). ♦

Remark 3.1 Assume that un is constructed. Then

un+1 = un −
2

M0 +m
zn ,

where zn ∈ H1(Ω) satisfies

〈zn, v〉 = 〈F (un), v〉 −

∫
Ω

gv (v ∈ H1(Ω)).

That is, in order to find zn we need to solve the auxiliary linear variational
problem ∫

Ω

∇zn · ∇v +
1

m

∫∫
∂Ω2

ϕ(x, y)zn(y)v(x) dσ(y) dσ(x) (14)

= 〈F (un), v〉 −

∫
Ω

gv (v ∈ H1(Ω)).

Remark 3.2 If there hold the regularity properties un ∈ H2(Ω) and zn ∈
H2(Ω), then the auxiliary problem (14) can be written in strong form as follows.
Using the divergence theorem, we obtain from (14) that∫

Ω

(−∆zn)v +

∫
∂Ω

(
∂zn

∂ν
(x) +

1

m

∫
∂Ω

ϕ(x, y)zn(y) dσ(y)

)
v(x) dσ(x)

=

∫
Ω

(T (un)− g)v +

∫
∂Ω

(
f(x,∇un) · ν +

∫
∂Ω

ϕ(x, y)un(y) dσ(y)

)
v(x) dσ(x)

holds for all v ∈ H1(Ω). If especially all v ∈ H10 (Ω) are considered, then we
obtain

−∆zn = T (un)− g .

Hence for all v ∈ H1(Ω) the boundary integral terms coincide, which implies
that

∂zn

∂ν
+
1

m

∫
∂Ω

ϕ(x, y)zn(y) dσ(y)

= f(x,∇un) · ν +

∫
∂Ω

ϕ(x, y)un(y) dσ(y) = Q(un).

Consequently, in this case zn is the solution of the linear boundary-value problem

−∆zn = T (un)− g ,

∂zn

∂ν
+
1

m

∫
∂Ω

ϕ(x, y)zn(y) dσ(y) = Q(un).
(15)
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(In the general case – without regularity of zn and un – (14) is the weak formu-
lation of (15).)

Remark 3.3 Consider the semilinear special case T (u) ≡ −∆u+ q(x, u) and
assume that u0 is chosen to satisfy Q(u0) = 0, further, that zn ∈ H2(Ω) for all
n ∈ N. Then m = 1 and the boundary condition in (15) is Q(zn) = Q(un).
Hence by induction Q(zn) = Q(un) = 0 (n ∈ N), i.e. in each step homogeneous
boundary condition is imposed on the auxiliary problem.

Remark 3.4 The construction of the method requires an estimate for the
embedding constants Kp,Ω. For this we can rely on the exact constants for the
embedding of H1(Ω) into Lp(Ω) obtained in [4]. When the lower order term of
the equation has at most linear growth (or is not present at all), then only K2,Ω
is needed, which can be estimated, as usual, using a suitable Cauchy-Schwarz
inequality. (The numerical example in the following section includes a direct
estimation of the required constants.)

4 Numerical example

The summary of the result in the previous section is as follows. The Sobolev
space gradient method reduces the solution of the nonlinear boundary value
problem (4) to auxiliary linear problems given by (14). The ratio of conver-
gence of the iteration is the number M0−m

M0+m
, which is determined by the original

coefficients f , q, g and ϕ and is independent of the numerical method used for
the solution of the auxiliary linear problems.

The numerical realization of the obtained gradient method is established by
choosing a suitable numerical method for the solution of the auxiliary problems
(14). The latter method may be a finite difference or finite element discretiza-
tion. In this case the advantage of having executed the iteration for the original
problem (4) in the Sobolev space lies in the fact that the numerical questions
concerning discretization arise only for the linear problems (14) instead of the
nonlinear one (4), whereas the convergence of the iteration is guaranteed as
mentioned in the preceding paragraph. This kind of coupling the Sobolev space
gradient method with discretization of the auxiliary problems has been devel-
oped for local (Dirichlet) boundary-value problems [6, 7]. It is plausible that this
coupling may have a similarly effective realization for our nonlocal boundary-
value problem (4). Nevertheless, we prefer another situation for giving a numer-
ical example, namely, when the auxiliary linear problems can be solved directly
(without discretization).

The model problem. Let Ω = [0, π]2 ⊂ R2, and

g(x, y) =
2 cosx cos y

π(2− 0.249 cos2x)(2 − 0.249 cos2y)
.
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We consider the semilinear problem

−∆u+ u3 = g(x, y) in Ω

∂u

∂ν
+

∫
∂Ω

u(y) dσ(y) = 0 on ∂Ω .
(16)

The calculations will be made up to accuracy 10−4.
The function g(x, y) is approximated by its cosine Fourier partial sum

g̃(x, y) =
∑

k,l are odd
k+l≤6

akl cos kx cos ly , akl = 2.9200 · 4
−(k+l) (17)

which yields ‖g − g̃‖L2(Ω) ≤ 0.0001. We consider instead of (16) the equation
−∆u+ u3 = g̃(x, y) with the given boundary condition, and denote its solution
by ũ.
The main idea of the numerical realization is the following. Let

P = {
∑

k,l are odd
k+l≤m

ckl cos kx cos ly : m ∈ N
+, ckl ∈ R}.

Then T is invariant on P , i.e. u ∈ P implies T (u) ∈ P . Hence also T (u)− g̃ ∈ P .
Further, any u ∈ P fulfills the considered boundary condition (in fact, there even
holds ∂u∂ν =

∫
∂Ω u dσ = 0). Hence for any h ∈ P the solution of the problem

−∆z = h in Ω

∂z

∂ν
+

∫
∂Ω

z dσ = 0 on ∂Ω

fulfills z ∈ P , namely, if

h(x, y) =
∑

k,l are odd
k+l≤m

ckl cos kx cos ly

then
z(x, y) =

∑
k,l are odd

k+l≤m

ckl

k2 + l2
cos kx cos ly .

(That is, the inversion of the Laplacian is now elementary.) Summing up: using
Remark 3.3, we obtain that for any u0 ∈ P the GM iteration

−∆zn = T (un)− g̃ ,
∂zn
∂ν +

∫
∂Ω zn dσ = 0 ;

un+1 = un −
2

M0 +m
zn

(18)

fulfills un ∈ P for all n ∈ N+, and in each step un+1 is elementary to obtain
from un.
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Now our remaining task is to choose an initial approximation u0 ∈ P and to
determine the corresponding ellipticity constants M0 and m. For simplicity, we
choose

u0 ≡ 0.

Using the notations of conditions (C1)-(C3) in Section 2, the coefficients are

f(x, η) = η, q(x, u) = u3 and ϕ ≡ 1.

Hence we have
m = m′ = 1, κ = 0, β = 3 and p = 4.

Thus Theorem 3.1 yields

M(r) = 1 + 3K44,Ωr
2, (19)

and from Theorem 3.3 we obtain

M0 =M(‖b‖) = 1 + 3K
4
4,Ω‖b‖

2 (20)

where b ∈ H1(Ω) such that

〈b, v〉 =

∫
Ω

g̃v (v ∈ H1(Ω)).

We recall that now, owing to m = 1 and ϕ ≡ 1, the inner product (2) on
H1(Ω) is

〈u, v〉 =

∫
Ω

∇u · ∇v +

(∫
∂Ω

u dσ

)(∫
∂Ω

v dσ

)
. (21)

Proposition 4.1 There holds

b(x, y) =
∑

k,l are odd
k+l≤m

akl

k2 + l2
cos kx cos ly ,

where (from (17))
akl = 2.92 · 4

−(k+l).

Proof We have −∆b = g̃, hence (3) yields

〈b, v〉 =

∫
Ω

(−∆b)v =

∫
Ω

g̃v (v ∈ H1(Ω)).

Corollary 4.1 Since

∫
∂Ω

b dσ = 0, therefore (21) yields

‖b‖2 =

∫
Ω

|∇b|2 =
(π
2

)2 ∑
k,l are odd
k+l≤m

a2kl
k2 + l2

= 0.1014 .
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Remark 4.1 In the same way as above, we have for all u ∈ P

‖u‖2 =

∫
Ω

|∇u|2. (22)

In order to find now an estimate for K4,Ω, we note that its value is only
required for the (closure of the) subspace P where (un) runs. That is, it suffices
to determine K̃4,Ω satisfying

‖u‖L4(Ω) ≤ K̃4,Ω‖u‖ (u ∈ P).

Proposition 4.2 There holds K̃44,Ω ≤ 10.3776 .

The proof of this proposition consists of some calculations sketched in the
Appendix.

Substituting in (20), we obtain M0.

Corollary 4.2 The ellipticity constants are m = 1 and M0 = 4.1569.

The corresponding stepsize and convergence quotient are

2

M0 +m
= 0.3878,

M0 −m

M0 +m
= 0.6122 .

The algorithm (18) has been performed in MATLAB, which is convenient for
the required elementary matrix operations determined by storing the functions
un as matrices of coefficients. (In order to avoid the inconvenient growth of the
matrix sizes, the high-index almost zero coefficients were dropped within a 10−4

error calculated from the square sum of the coefficients.)
The actual error ‖ũ− un‖ was estimated using the residual

rn = ‖T (un)− g̃‖L2(Ω) .

The connection between ‖ũ−un‖ and rn is based on the following propositions.

Proposition 4.3 For any u ∈ P

‖u‖L2(Ω) ≤ 2
−1/2‖u‖.

Proof Let
u(x, y) =

∑
k,l are odd
k+l≤m

ckl cos kx cos ly .

Then from (22)

‖u‖2 =

∫
Ω

|∇u|2 =
(π
2

)2 ∑
k,l are odd

k+l≤m

(k2 + l2)c2kl

≥ 2
(π
2

)2 ∑
k,l are odd

k+l≤m

c2kl = 2‖u‖
2
L2(Ω) .

Proposition 4.4 For all u, v ∈ P

‖u− v‖ ≤ 2−1/2‖T (u)− T (v)‖L2(Ω) .
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Proof The uniform ellipticity of T implies

‖u− v‖2 ≤

∫
Ω

(T (u)− T (v))(u − v)

≤ ‖T (u)− T (v)‖L2(Ω)‖u− v‖L2(Ω)

≤ 2−1/2‖T (u)− T (v)‖L2(Ω)‖u− v‖ .

Corollary 4.3 Let

en = 2
−1/2rn = 2

−1/2‖T (un)− g̃‖L2(Ω) (n ∈ N). (23)

Then, applying Proposition 4.4 to un and ũ, we obtain

‖ũ− un‖ ≤ en .

Based on these, the error was measured by en defined in (23). (Since T (un)
and g̃ are trigonometric polynomials, this only requires square summation of
the coefficients.)
The following table contains the error en versus the number of steps n.

step n 1 2 3 4 5 6 7
error en 1.1107 0.6754 0.3992 0.2290 0.1288 0.0718 0.0402

step n 8 9 10 11 12 13 14
error en 0.0225 0.0127 0.0072 0.0042 0.0024 0.0014 0.0008

step n 15 16 17 18 19 20 21
error en 0.0005 0.0003 0.0003 0.0002 0.0002 0.0002 0.0001

Table 1.

Remark 4.2 We have determined above numerically, up to accuracy 10−4,
the solution ũ of the approximated problem with g̃ instead of g. Since ũ and u∗

are in P , Proposition 4.4 yields

‖ũ− u∗‖ ≤ 2−1/2‖g̃ − g‖L2(Ω) ≤ 2
−1/2 · 0.0001 .

5 Appendix

Proof of Proposition 4.2. The proof can be achieved through two lemmata.

Lemma 5.1 For any u ∈ P,∫
Ω

u4 ≤
1

8

(∫
∂Ω

u2 dσ + 81/2‖u‖2
)
.
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Proof It is proved in [14] that for any u ∈ H10 (Ω)∫
Ω

u4 ≤ 4‖u‖2L2(Ω)‖∂1u‖L2(Ω)‖∂2u‖L2(Ω) ≤ 2‖u‖
2
L2(Ω)‖∇u‖

2
L2(Ω) .

Taking into account the boundary, we obtain in the same way that for any
u ∈ H1(Ω) ∫

Ω

u4 ≤ 2

(
1

4

∫
∂Ω

u2 dσ + ‖u‖L2(Ω)‖∇u‖L2(Ω)

)2
.

This yields the desired estimate for any u ∈ P , using Remark 4.1 and Proposi-
tion 4.3 for ‖u‖L2(Ω) and ‖∇u‖L2(Ω). ♦

Lemma 5.2 For any u ∈ P,∫
∂Ω

u2 dσ ≤ 2π‖u‖2.

Proof Let Γ1 = [0, π] × {0}, Γ2 = {π} × [0, π], Γ3 = [0, π] × {π}, Γ4 =
{0} × [0, π]. Then ∂Ω = ∪{Γi : i = 1, . . . , 4}. Now let u ∈ P . For any
x, y ∈ [0, π] we have

u(x, π)− u(0, y) =

∫ x
0

∂1u(s, y)ds+

∫ π
y

∂2u(x, t) dt .

Raising to square and integrating over Ω, we obtain

π

(∫
Γ3

u2 dσ +

∫
Γ4

u2 dσ

)
− 2

(∫
Γ3

u dσ

)(∫
Γ4

u dσ

)

≤ 2

∫ π
0

∫ π
0

[(∫ x
0

∂1u(s, y)ds

)2
+

(∫ π
y

∂2u(x, t)dt

)2]
dxdy

≤ π2
∫
Ω

[
(∂1u)

2 + (∂2u)
2
]
,

where Cauchy-Schwarz inequality was used. We can repeat the same argument
for the pairs of edges (Γ1,Γ2), (Γ2,Γ3) and (Γ1,Γ4) in the place of (Γ3,Γ4).
Then, summing up and using ∂Ω = ∪{Γi : i = 1, . . . , 4}, we obtain

2π

∫
∂Ω

u2 dσ − 2

(∫
Γ1∪Γ3

u dσ

)(∫
Γ2∪Γ4

u dσ

)
≤ 4π2

∫
Ω

|∇u|2. (24)

Using notations Γx = Γ1 ∪ Γ3 and Γy = Γ2 ∪ Γ4, there holds

2

(∫
Γx

u dσ

)(∫
Γy

u dσ

)
=

(∫
Γx∪Γy

u dσ

)2
−

(∫
Γx

u dσ

)2
−

(∫
Γx

u dσ

)2

≤

∫
∂Ω

u dσ = 0 ,
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hence (24) yields

2π

∫
∂Ω

u2 dσ ≤ 4π2
∫
Ω

|∇u|2 = 4π2‖u‖2.

Proof of the proposition. Lemmata 1 and 2 yield

‖u‖4L4(Ω) ≤
1

8
(2π + 81/2)‖u‖4 ,

that is

K̃44,Ω ≤
1

8
(2π + 81/2) = 10.3776

up to accuracy 10−4.
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