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ABSTRACT

POLYGON REDUCTION ALGORITHM 
FOR LAYOUT EXTRACTION AND PARASITIC SIGNAL CALCULATION

The design of a specific polygon reduction algorithm to be applied to the process of 

layout extraction is proposed. The algorithm is tested with the Star-RCXT parasitic signal 

extraction tool and the impact of the reduction algorithm is measured and analyzed. There 

are many polygon reduction algorithms but they all are application specific and not 

particularly suitable for the extraction tool. The research objective is to generate a 

reduction algorithm which may be used by any Electric Design Automation (EDA) layout 

extraction tool and which most effectively achieves a goal of maximum reduction of the 

number of extracted polygons and preserves connectivity and area of the polygons for 

further processing. The reduction algorithm described in this paper is created as a local 

greedy method with some history back tracking for the combined error control. It is used 

with trapezoidation processing, which is the most common way to perform polygon 

extraction by EDA tools. The reduction method developed is very general yet effective 

since it allows not only reduction of “not carrying information” trapezoids but trapezoids 

with a slight topology modification, fixing trapezoids displacements which may result
o

from the lack of precision of a layout tool used to generate data. The trapezoidation and 

reduction algorithm was implemented in C++ and tested on real design data. The worst 

time reduction complexity is 0(n2) and the worst time complexity of the trapezoidation

IX



and reduction performed together is 0(n2 log2n). The reduction of the number of 

polygons achieved in the most accurate mode is 73% and it may be much higher if the 

less accurate mode is used. The accuracy tests displayed that extracted data produced 

using reduction algorithm is identical to the extraction data produced without reduction. 

Total reduction of the parasitic signal extraction time of the designs in the most accurate 

reduction mode is approximately 26%, which is very significant for the tape out time 

constraints in the competitive high technology industry. Implemented as a “stand alone” 

tool, the reduction algorithm may be used not only with Star RCXT tool created by 

Avant!, but with any other extraction tool.

by

OLGA.V. ZAPOROJETS, M.S.

Southwest Texas State University 

May 2002

SUPERVISING PROFESSOR: CAROL HAZLEWOOD
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CHAPTER I 

INTRODUCTION

1.1 Motivation

There are many practical applications where the reduction of polygons is an essential 

part of successful performance. Automatic polygon reduction is widely used in 

computer graphics, CAD and other related fields. The idea is to start with a geometric 

description of an object and to produce a new description, which preserves the 

properties of the object but has fewer geometric primitives. Many approaches to 

simplification have been proposed recently [1,2], at least in part because this 

technique has the potential to dramatically speed up interactive graphics applications. 

Applications are confronted with over-sampled surfaces or models too complex for 

limited hardware capacity. An effective and fast algorithm for dynamically producing 

accurate approximations of the original model is a valuable tool for managing data 

complexity. While there is a large number of recent publications on automatic model 

simplification which are targeting computer graphics applications, especially 

computer games, the purpose of this work is to create a polygon reduction algorithm 

which is targeted for Electronic Design Automation (EDA) tools specifically.
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1.2 EDA tools overview

EDA tools are used for electrical circuit design, schematic capture, simulation, 

prototyping, production, verification and parasitic signal extraction. The underlying 

idea behind EDA tools is to model and create the actual electrical circuit with the 

properties described in the schematic netlist. The Integrated Circuit (IC) design is 

advanced to millions of transistors on one chip, which would be impossible to achieve 

without sophisticated EDA tools. These are the main steps which are performed 

during a design cycle: design entry, functional verification, physical design, physical 

verification and parasitic extraction, synthesis, testing. Design entry encapsulates a 

circuit description. Functional verification confirms that the functionality of a model 

of a circuit conforms to the intended/specified behavior, by simulation or by formal 

methods. Physical design creates the mask set of a custom IC, plans, partitions, places 

and routes a cell-based Application Specific Integrated Circuit (ASIC), maps a netlist 

into an Field Programmable Gate Array (FPGA), or places and routes parts on a PC 

board. Synthesis tools translate abstract descriptions of functionality into optimal 

physical realizations, creating netlist that can be passed to a place-and-route tool. 

Physical verification ensures that masks sets conform to design rules, and parasitic 

extraction checks if the intended functionality is not compromised by layout-induced 

parasitic signals, cross talk, and other effects. Tools for testing generate test patterns 

to verify that a fabricated IC is free of process-induced faults. Other tools modify the
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design to incorporate additional hardware supporting built-in self-testing of the chip, 

or testing by an external source.

The actual transistors, diodes, resistors, and metal routings are viewed by the tools as 

a collection of polygons with specific properties. Numerous verifications, 

optimizations and calculations are performed on this polygon database. Naturally, use 

of the polygon reduction algorithm will enhance the performance of EDA tools.

The tool that incorporates our algorithm for testing extraction tool Star-RCXT 

developed at Avant!. This tool analyses several aspects of the design including 

evaluation of parasitic resistances and capacitance, electromigration, power analysis, 

and clock analysis. The xTractor engine is the main core of the tool. It is called a 

swap-scan engine since it reads into the database all routing levels simultaneously. 

Only polygons necessary for the calculation of the parasitic signal are kept in memory 

and they are discarded as soon as the area of their influence is exited. This is a very 

advanced software product and one of the leading extraction tools in the industry. The 

importance of the accurate parasitic signal extraction grows as the industry advances 

into submicron technologies, since smaller sizes lead to more significant parasitic 

signals. Increase of the average number of the transistors in the design leads to huge 

databases, which consume gigabytes of memory and take days to process. This is why 

we believe that our polygon reduction algorithm may significantly improve 

performance of the tool by reducing the number of polygons to be processed.
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1.3 Restrictions applied to polygon reduction algorithm

While existing polygon reduction algorithms for graphic applications have the goal to 

generate a model that looks reasonably similar to the original, my polygon reduction 

algorithm has to satisfy other specific requirements, i.e. to preserve the connectivity 

and the area o f the polygons. The reasons for these restrictions are:

• Connectivity of the polygons represents electrical connectivity of the circuit 

By losing original connectivity we may cause an electrical open circuit and 

by letting newly generated polygons to touch/overlap we may create an 

electrical short circuit which will create a design error.

• The area of the polygons is used for the calculation of the resistance (R), 

capacitance (C), current and power drop. By modifying the area we will 

change the circuit parameters, which may lead to serious design errors.

Analogous to all existing polygon reduction algorithms we have to deal with the error 

introduced by the reduction procedure. The most accurate algorithms are generally 

very slow, since very complex calculations are involved. The fastest algorithms often 

produce poor quality results. My goal is to find an effective compromise and to 

create a fast but accurate algorithm for polygon reduction satisfying restrictions of

EDA tools.
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1.4 Our approach to solving the problem

I use edge contraction as the method for the simplifying geometry, as have a number 

of previous researches [12]. This approach selects an edge and replaces it with a 

single vertex. The edge contraction operation is attractive because it allows the new 

vertex to be placed in a manner that helps to preserve the location and the area of 

original structure. Three decisions are central to a simplification method that uses 

edge contraction:

• Which edge may be collapsed or which vertex can be reduced?

• What is the position of the new vertex created by the edge collapse or how is a 

vertex reduced?

• How is the error calculated and evaluated? What criteria should be used to 

terminate polygon reduction?

This is how we approach these questions:

Which edge may be collapsed or which vertex can be reduced?

First of all we examine the candidates for reduction polygons and decide if they may 

be collapsed into one. The guidelines for this decisions are: if it is possible to reduce 

the number of polygons without changing the topology of the data, then perform the 

reduction; if the reduction is possible with a topology change which meets the error 

threshold and requirements of preserving connectivity and area, then perform the
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reduction. The analysis of possible neighboring polygon combinations in the layout 

design database will be described later in this paper. The algorithm for examining 

reduction candidates will be defined.

What is the position of the new vertex created by the edge collapse?

The (x, y) coordinates in 2D space characterize every vertex. If the reduction is 

performed along the y axis, intuitively the new vertex may be placed at one of the 

original vertices. To determine the vertex, we evaluate the areas of newly generated 

polygons versus the previous combined area. The new vertex position must be 

selected so the area is changed as little as possible and satisfies the error threshold 

restriction. An error threshold is a limit, set by the user, which indicates when 

reduction should terminate. If accumulated error exceeds the error threshold, then 

reduction should stop. The guidelines for a new vertex position will be defined for all 

possible topologies qualified for reduction later in this paper.

When to stop polygon reduction or how to calculate and evaluate the error produced 

by the reduction?

The edge collapse algorithm used for the implementation of the described in this 

paper reduction algorithm is a local method. It does not “look ahead” and the 

accumulation of the error is possible as a result of the series of the consecutive 

reductions. As a result, the error restriction may be violated if topology of the data
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will be modified at several reduction events. To prevent such situation the history of 

reduction must be kept and the evaluated at

every reduction event The error threshold shall be controlled by the user, which may 

set it as an input parameter. The error threshold value shall control the reduction 

level.

There is a built in default value for the reduction error threshold, which shall be tested 

on the actual data and guarantee to yield the desired accuracy.

1.5 Reduction algorithm design and implementation

First of all available reduction algorithms were reviewed and the most appropriate 

type of reduction methodology was selected. The overview of the previous work is 

given in the chapter 1 and the analysis of the modem polygon reduction algorithms is 

given in the chapter 2.

Following methodology decisions were made: decimation was preferred to 

refinement; local method was preferred to global method; greedy approach with 

history tracking for the error control was chosen.

Next extraction methodology was defined. Chapter 4 describes the nature of the 

parasitic extraction; goals and constraints applied to the reduction algorithm 

developed for the design layout extraction application. The trapezoidation was chosen
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as a decomposition method for the polygon extraction.

In order to create a non-proprietary stand alone polygon extraction and reduction tool, 

a trapezoidation method was implemented. The trapezoidal decomposition and its 

implementation are described in chapter 5. After review of publicly available 

trapezoidation algorithms, a trapezoidation algorithm proposed by Borut Zalik was 

chosen for it efficiency, simplicity, and capability of processing non-monotone 

polygons with holes. This algorithm was implemented in this research in C++. This 

implementation displayed exceptional stability.

The “break through” of the created reduction algorithm is the ability not only reduce 

“not carrying information” trapezoids but trapezoids with a slight topology 

modification, fixing trapezoids displacements which may result from the lack of 

precision of a layout tool used to generate data. Three possible types of the 

trapezoidal displacement and algorithms for their reduction are described in the 

chapter 6.

The error control mechanism developed and implemented in this research and 

reduction algorithm complexity analysis is described in the chapter 6. The worst time 

reduction complexity is 0(n2) and the worst time complexity of the trapezoidation 

and reduction performed together is 0(n2 logan).

Tests and reduction algorithm performance is described in the chapter 7. The 

reduction of the number of polygons achieved in the most accurate mode is 73% and 

it may be much higher if the less accurate mode is used. The accuracy tests displayed
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that extracted data produced using reduction algorithm is identical to the extraction 

data produced without reduction. Total reduction of the parasitic signal extraction 

time of the designs in the most accurate reduction mode is approximately 26%.

The examples of the test cases used for testing reduction algorithm are given in the 

appendix. The work is summarized in the chapter 8. The parasitic signal extraction is 

a significant part of the integrated circuit design cycle. By reducing time necessary 

for extraction, a design gets to the market weeks faster, which is very significant 

advantage in a modem integrated circuit design industry.
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CHAPTER n

OVERVIEW OF THE PREVIOUS WORK

2.1 Research history. Curves simplification.

Long before computer applications demanded model simplifications, the problems of 

curves and height fields simplifications were discussed. Since they are special cases 

of general surfaces they served as a base for solving general surface simplification 

problems. Approximation of curves satisfying an equation y = f(x) has the longest 

history. The simplification of the piecewise-linear curves relates closely to the 

problem of polygonal reduction of the surfaces. Consider a curve implemented with n 

vertices. The goal is to obtain the approximation of this curve using k vertices, where 

k < n. Imai and M [16] proposed an optimal approximation of the functions for 

achieving the goal: to use the minimum number of vertices necessary for satisfying 

the given error e. Garland [18] describes of the approximation error as follows. The 

error may be described by L» norm, which measures the deviation between original 

and approximation. Suppose the original function is f(x) and the approximation is 

g(x). Lx. norm on interval of interest [a, b] is defined as following:

||f - g||oo = max |f(x) -  g(x)|, where a <= x <= b (1)
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Another commonly used error norm is L2, defined as

l(f-g |b  = ^ iW )-g < x ))2dx (2)
a

The piece-wise approximation g(x) composed of n segments is called an optimal 

approximation of f(x) if there is no other n-segment approximation function with 

smaller error. The choice of which norm should be used depends on a particular 

function. Loo norm is generally regarded as a stronger measure of error because it 

provides a global absolute bound on the distance between the original and the 

approximation and it is often easier to verify the quality it guarantees. La is more 

general and in some cases it may be well defined where L«, is not. None of these 

metrics are ideal: L«, provides strong error bounds but it may be overly sensitive to 

noise and local deviations. L2 is more tolerant to the noise, but it may discount local 

deviations. The best precision may be achieved by using combination of both metrics: 

the approximations where La error is small and where L» error is bounded by some 

known threshold are most desirable.

While the algorithms for finding optimal approximations of functions have time 

complexity O(n), the algorithms for plane curves have complexity 0(n2 log n) and 

space curves have complexity 0(n3 log n) which make them impractical for large

data.
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2.2 Greedy approach

The greedy strategy is powerful and widely applied. I would like to discuss how the 

popular method of greedy search shall be applied to the problem of polygon 

reduction.

First of all I will give an overview of the greedy method. Search strategies may be 

evaluated using the following parameters:

• Optimality -  does it always find a least-cost solution?

• Completeness -  does it always find a solution if one exists?

• Time complexity -  number of nodes generated / expanded

• Space complexity -  maximum number of nodes in memory

The greedy search idea is to expand the node that appears to be closest to the goal. 

The evaluation function h(n) = estimate of the cost from n to the goal. The greedy 

algorithm would look at the adjacent nodes and will choose the one that has the 

shortest distance to the goal.

The greedy algorithm is not always optimal. Greedy search algorithms may be easily 

mislead to search wrong paths. Can it be optimal? Yes it can, but performance 

depends on the heuristic, simply the way we are estimating the cost of the path 

through n to the goal. Another problem of the greedy search is that it often gets stuck 

in loops. So in general the basic greedy algorithm is not optimum and not complete. 

Optimization is obtainable only in the finite space with repeated-state checking. One
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of the proposed solutions was to carry out the process several times, starting from 

different randomly generated configurations, and save the best result. So another 

general property of the greedy method is that it always makes a locally optimal 

choice, though it doesn’t always yield a globally optimal solution. The worst run time 

complexity of a greedy algorithm is O (b“), where b is a branching factor of the 

search tree and m is maximum depth of the search space. The space complexity of a 

greedy algorithm is O (bm) as well. However, with a good heuristic it may yield 

dramatically better performance and this is why it is a popular solution for a wide

variety of optimization problems. Greedy algorithms are rather simple; easy to
/

implement and yield a very good run time. If the requirement of admissibility and 

monotonicity is satisfied, greedy algorithms will produce the optimal and compete 

solution. Greedy algorithms are especially suitable for problems where speed is more 

important than the absolute accuracy of the solution. This is why greedy algorithm 

had been used as a solution for the polygon reduction problem by Hoppe [12] and 

other researches. The persisting problem is: how to select a heuristic formula to 

evaluate possible solutions and choose the best one. The solution proposed by Hoppe 

based on greedy algorithm displays great speed and fair quality of the reduced modes. 

The approach I choose for my solution may be called “greedy”, since only local 

properties of the polygon are evaluated at any given time. There is not any “ look 

ahead” mechanism to confirm that the chosen decision is the best in the long term 

after several rounds of reduction are done. We believe that this approach is an
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appropriate solution for the polygon reduction problem since it gives flexibility to 

choose how many reduction iterations we want to perform along with the simplicity 

of implementation and speed.

2.3 Classification of the modern reduction algorithms

2.3.1 Decimation versus refinement

The problems of automatic model simplification have received increasing attention in 

recent years. The underlying concept of model simplification is a function 

approximation and has been researched by mathematicians for many years. However 

the numerous practical polygon reduction algorithms appeared only during the last 

two decades. My polygon reduction algorithm falls into the category of decimation 

algorithms, which begin with the original surface and remove polygons at each step. 

Decimation algorithms are opposite to another group of popular simplification 

algorithm, called refinement, where the algorithm starts with a coarse model initially 

and adds elements at each step. An example of the refinement approach is adaptive 

subdivision algorithms. Data on the various simplification algorithms may be found 

in [1,2]. Rather few algorithms for progressively refining polygonal surfaces have 

been proposed [14], [15]. While refinement was the traditional solution for curve 

approximation, decimation is widely used for simplifying general surfaces. I believe
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the decimation approach is more suitable for surface simplification because it doesn’t 

require construction of the base approximation while all refinement algorithms do. 

The base approximation is a difficult task because it must have a topology of the 

original model in order to use simple subdivision rules. The topology of input surface 

may be difficult to obtain and it leads to restrictions on the ability to simplify it.

2.3.2 Local versus global

Another way to categorize polygon reduction algorithms is to divide them into local 

or global techniques. Local techniques operate on individual primitives such as 

vertices, edges, triangles, or other polygon characteristics. The examples of local 

techniques are vertex decimation, edge collapse, polygon curvature evaluation, 

polygon area evaluation, and adaptive subdivision. Global technique optimizes the 

polygon mesh based upon high-level yet more general features of the model. The 

examples of global solutions are polygon re-tiling, mesh optimization, object 

replacement, and wavelet encoding. The brief overview of these methods is below.

2.3.3 3D versus 2D

Most of the model simplification algorithms are targeting 3D problems. Describe in 

this paper reduction algorithm is applied to 2D models. The information about 3rd
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dimension of the layout for the xTractor is kept separately. The third dimension 

parameters along with the physical characteristics of the material used for the 

implementation of the IC are described in a process description database, unique for 

every foundry, which fabricates the chip in silicon. Therefore my problem may be 

viewed as an analogous to the problems discussed, only simplified to two dimensions.

2.3.4 Incremental algorithms without history tracking

Since it is impossible to cover all existing work [1,2], I would like to focus on the 

algorithms that make small incremental changes to the geometry of a model which is 

not a case for the algorithms described in [3,4]. One of the major benefits of iterative 

contraction is the hierarchical structure it creates. This leads to a useful 

multiresolution surface representation. The incremental simplification algorithms in 

turn may be divided into two groups: the algorithms which don’t keep a history of the 

original geometry during simplification and the more recent algorithms which use 

some history about the original geometry as a way of tracking error during 

simplification. The example of “non history tracking” algorithms is an algorithm 

proposed by Schroeder [5]. He is performing successive vertex removal using the 

distance from a vertex to the plane most nearly passing through adjacent vertices as 

their priority measure. Renze and Oliver, who concentrate in their work on a 

triangulation algorithm [6], use the same distance to the plane method. Another
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example of “non history tracking” algorithms is Hamman’s algorithm, which uses a 

measure of the curvature to decide which vertices to remove [7]. Lindstrom and Turk 

[11] proposed a “memoryless” algorithm which makes decisions based on the current 

approximation alone. No information about original shape is retained. They use linear 

constraints based on the conservation of volume to decide which edge should be 

contracted and where remaining vertex should be placed. This algorithm generates 

good quality results along with low memory consumption.

2.3.5 Incremental algorithms using history for the error evaluation

An example of a “history tracking” algorithm is a more recent variant of the 

technique proposed by Schroeder [8]. He includes a scalar value at each vertex, which 

encodes the error created so far in the neighboring area of the vertex. The “negative” 

and “positive” error bounds are kept through the interactive reduction process by 

Bajaj and Schikore [9]. The error bounds are computed by projecting old and new 

triangles to a plane. Another way of calculating the error was proposed by Ciampalini 

and cq-workers [1], They associate a list of vertices from the original model with 

every triangle. These vertices allow calculating an error estimate for each triangle 

during the simplification process.
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CHAPTER III <

OVERVIEW OF THE MODERN POLYGON REDUCTION ALGORITHMS

3.1 Local methods

This chapter will discuss local reduction algorithms and give an overview of some 

local reduction methods available.

3.1.1 Vertex decimation

The underlying idea of the all iterative algorithms described above is vertex 

decimation. Figure 3.1 illustrates this technique, as it is proposed by Schroeder [5].

Figure 3.1 Vertex decimation



The following steps implement this operation:

1. All edges and triangles containing selected vertex (v) are removed.

2. Vertex is removed (v)

3. Resulting hole is retriangulated

3.1.2 Edge contraction

While all the algorithms described above are based on vertex removal, my algorithm 

is based on edge contraction. H. Hoppe [12] appears to be the first to use edge 

contraction as the underlying mechanism for accomplishing the polygon reduction. 

Most of the better techniques proposed recently are variations of the progressive 

meshes algorithm proposed by H. Hoppe [10]. These techniques reduce the 

complexity of the model by iterative application of the edge contraction operation. 

This is the basic idea of the edge contraction.

Edge ey is connecting vertices i and j. One of the vertices is selected (i) and 

“collapsed” onto another (j)
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Before After

Figure 3.2 Edge contraction

The following steps implement this operation:

1. Remove any triangles that have both i and j as vertices, e.g. remove triangles 

containing edge eij.

2. Update the remaining triangles that use i as a vertex to use j instead.

3. Remove vertex j.

These steps are repeated until the desired result is reached. At each step one vertex, 

two triangles and three edges are usually removed. Figure 3.2 describes this 

procedure.

The vertex decimation methodology is closely related to the edge contraction. As you 

may see the vertex v removal illustrated on the Figure 3.1 can be easily accomplished 

by contracting the bottom edge. Edge contraction is usually more robust then
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projecting the neighborhood on the plane and retriangulating, since we don’t have to 

worry about finding a plane onto which the neighborhood can be projected without 

overlap.

3.1.3 Polygon curvature evaluation

This group of algorithms is based on measuring the angles between connected edges 

to evaluate the curvature of the mesh at any given point. The goal is to reduce details 

around areas of low curvature and to retain details around high curvature regions. 

This approach is based on the assumption that the regions with high curvature 

contribute strongly to the shape of the object. The principal advantage of curvature 

based reductions is that they remove nearly planar surfaces and provide good shape 

constancy. Hamann [7] used this method in his reduction algorithm. His algorithm 

iteratively removes triangles based on the curvature values at their vertices from a 

mesh and re-triangulates local area.

3.1.4 Polygon area evaluation

The reduction criteria for this group of algorithms are polygon dimensions. The 

polygons with the small area may be removed or merged. The example of the use of 

this approach is Holloway’s Viper system [19]. Viper improves system performance
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by the terminating display of the object when the graphic system becomes 

overloaded. The polygons of the object are sorted by size and the largest polygons are 

displayed first, while the smallest may be successfully removed as the system 

becomes overloaded.

3.2 Global methods

Global reduction methods differ from local methods by keeping in memory the whole 

data base and making incremental reduction on the data as a whole, modifying 

multiple vectors simultaneously, unlike local methods. An overview of some global 

methods follows.

3.2.1 Mesh optimization

Complex triangle meshes arise naturally in many areas of computer graphics. 

Quadratic error metric allows fast and accurate geometric simplification of the 

meshes. I think that Hoppe more than anyone else researched this approach and 

produced a number of algorithms based on mesh optimization. The examples of his 

work are [10,12]. An interesting technique was proposed by Hoppe in [23]. This 

technique introduced the concept of an energy function to model the opposing factors 

of polygon reduction and their similarity to the original topography. The energy
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function was used to provide a measure of the deviance between the original mesh 

and the simplified version. This was then minimized to find an optimal distribution of 

vertices for any particular instantiation of the energy function. In another work Hoppe 

proposed a new metric, based on geometric correspondence in 3D which requires less 

storage, evaluates more quickly and results in more accurate simplified meshes [24]. 

In this work Hoppe shows that a wedge-based mesh data structure captures 

discontinuities efficiently and permits simultaneous optimization of the multiple 

attribute vectors. He also experiments with memoryless simplification and volume 

preservation and shows that they are beneficial within the quadratic framework. The 

mesh optimization technique successfully distributes vertices in relation to the surface 

curvature and provides a high degree of shape constancy between model 

approximations.

3.2.2 Polygon Re-tiling

The re-tiling technique is an example ofa global technique. It was proposed by Turk 

[3]. The idea of re-tiling is to optimize a polygon mesh by introducing new vertices to 

the mesh and then discarding the old vertices to form new representations. The initial 

surface is triangulated by the vertices. The new vertices are pseudo-randomly 

positioned in the planes of the existing polygons and then successfully repelled by 

their neighbors in order to create a uniform distribution. After that the old vertices are
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removed one after another and the surface is locally re-tiled in order to retain the 

topology of the original surface.

3.2.3 Object replacement

Certain classes of objects may be approximated by object replacement. Sewell 

developed an algorithm to compute a simple replacement primitive for a complex 

grouping [20]. This approach can produce substantial complexity reductions because 

it can decompose clusters of objects, which other techniques would treat as separate 

entities. The underlying idea of this method is the theory that suggests that the human 

object recognition is based upon identifying a small number of primitive shapes 

within the object. I think that this is a very interesting approach but it may produce 

visual artifacts and is quite complex in implementation.

3.2.4 Wavelet encoding

Wavelet methods provide a clean mathematical framework for the decomposition of a 

surface into a base shape plus a sequence of successively finer surface details. 

Approximations can be generated by discarding the least significant details. Wavelets 

are a means of hierarchically decomposing a function so that it can be described as a 

coarse general form. Omitting a number of small detail terms called wavelet



25

coefficients when rebuilding a model may form the coarse approximation of the 

original object. Wavelet decomposition has been used successfully for producing 

multiresolution representations of signals and images [21,22]. The downside of this 

approach is that the resulting approximations may be relatively far from optimal 

because they may have a large number of triangles simply to preserve the subdivision 

connectivity. Another problem is not being able to resolve creases on the surface 

unless they fall along the edges in the base mesh. Like other subdivision-based 

schemes, wavelet methods cannot construct approximations with a topology different 

from the original surface.

3.3 Precision versus speed

Hoppe’s algorithm for progressive meshes construction [10] is based on the 

minimization of the energy function. The algorithm maintains a set of sample points 

on both the original surface and the approximation. The distances between these 

points and the closest point on the opposing surface determine the geometric error. 

This algorithm produces the highest quality results among currently available 

methods. The downside of this method is a very long running time.

There are a number of faster algorithms then Hoppe’s, but quality of reduction is the 

price paid for increased speed. For example Ronfard and Rossignac [13] developed a
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fairly efficient algorithm. Each vertex in the approximation has an associated set of 

planes. The error of every vertex is defined by the maximum of squared distances to 

the planes in this set. These sets are merged when the vertices are contracted together. 

This error metric is much cheaper than Hoppe’s since calculation of distances to the 

planes is faster then measuring distances to triangles. The resulting approximation 

produces generally good quality and it is more efficient than more precise algorithms. 

The mesh optimization algorithm of Hoppe [12] and his coworkers was created 

before the progressive mesh construction algorithm [10]. It performs explicit search 

rather than simple greedy contraction. Possible approximations are found using edge 

contraction, edge split, and edge flip operations. This algorithm exhibits a longer 

running time but it produces the highest quality results.
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CHAPTER IV

PARASITIC SIGNAL EXTRACTION

4.1 Nature of parasitic signals and importance of their evaluation

The polygon reduction algorithm discussed in this paper is created for the extraction 

engine, which reads information from the IC design layout and calculates the parasitic 

signal values.

Parasitic signal evaluation is necessary for the calculation of correct timing delays on 

all signal paths. Interconnect wires in a semiconductor chip provide paths for signals. 

Due to smaller and smaller feature sizes, the importance of interconnects in chip 

design is growing. Feature size reduction leads to relatively taller metal wires, since 

metal thickness cannot be scaled down at the same ratio as feature sizes are reduced. 

Otherwise, the sheet resistance would increase too much. The relatively taller metal 

wires lead to relatively larger line-to-line parasitic wiring capacitance. As a result, a 

larger percentage of chip performance is now due to the delay in interconnect wires,
•s "4

calledlthe interconnect delay.

The calculation of wiring capacitance among interconnect wires is more complex 

than the calculation of the resistance. An accurate calculation of wiring capacitance 

usually requires the use of electromagnetic field simulation software, typically called 

a field solver. To satisfy the needs of circuit designers to perform VLSI circuit
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simulations, a fast capacitance extraction formula is needed. The most common 

configuration for wiring capacitance is a 2D cross-section vertical layout, which 

consists of row of rectangles between two infinitely long conducting planes. In 

generations of older technology capacitance extraction formulas were based on the 

analytic capacitance expressions for a parallel-plate capacitor and for a cylinder 

above a plane, plus new features to handle the wires on the left and right as well as 

the second conducting plane on top of it. As semiconductor feature sizes continue to 

shrink, the shape of the conducting wire changes from the old shape of fat-short to the 

new shape of thin-tall, where fringing capacitance is very important and has to be 

calculated accurately, Figure 4.1.



29

c d _ , Ccij— \cn

T J
Cc2

I I___
P Cc3

V
c f g y - C g l  T fg2

ground

Cgl -  capacitance of horizontal plane of polygon P to ground

Cc2 and Cc3 -  coupling capacitance of P and interconnects of the same layer

Cel -  coupling capacitance of P and polygon on the routing layer above

Cf 1 and Cf2 -  fringing capacitance of P and polygon on the routing layer above

Cfgl and Cfg2 -  fringing capacitance of P and ground

Figure 4.1 Parasitic capacitance among layout polygons

Total capacitance of P to ground is: 

Cgt= ECfgj + XCgj (3)
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Total coupling capacitance of P to other interconnects is:

Cgt= ECfi + XCCj (4)

The core part of the analytic capacitance expressions is derived based on conformal 

transformation in complex variable analysis.

4.2 Input data for calculation of parasitic signals and processing steps

Parasitic capacitance and resistance are functions of the area of the conducting 

polygons and the technology values: permittivity and resistivity of the materials and 

height of the polygons. Height of the polygons is the third dimension of the structures 

and the value of it is contained in technology file along with all other technology 

characteristics. Technology information, combined with the information about 

geometry of the polygons, allows performing the parasitic signal calculation. 

Information about polygon structures is actual design information and it may be 

represented in different formats. Examples of different formats are the Milkyway 

formafcreated for Avant! EDA tools, Lef/Def files used by Cadence tools and many 

others. But the standard format, which is widely used in EDA industry, is GDSII 

format. Every EDA tool vender provides an ability to translate their internal format 

into GDSD or works directly with GDSII format. The process of translation of design 

in/out GDSH is called streaming in/out. GDSII format file contains only information
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about polygon geometry and doesn’t have any information about electrical 

connectivity. The connectivity information has to be provided from another source in 

order to create a meaningful netlist of the design.

The first processing step is to read in GDSII format data and to process or simplify 

the database in order to be able to calculate resistance and capacitance. The Extractor, 

Avant! extraction engine, utilizes a new concept of simultaneous reading of all 

vertical layers in the design; it is called the sweep scan band. Average modem design 

may have 4 to S conducting layers that are read at the same time with the sweep scan 

band moving. The advantages of such an approach are:

• a decrease of processing time -  no need to process one layer at a time;

• the ability to calculate parasitic more accurate accounting influence of all layers in 

the same time;

• more efficient memory use since we don’t need to keep all of the data base in the 

cache. Because we need only structures within the scan band influencing each other, 

such that they may be disposed from the memory as soon as the area of their 

influence is left.

Since calculation of resistance and capacitance directly depends on the area,The most 

natural approach is to decompose polygons for easy and efficient area calculation.
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4.3 Why trapezoids are chosen as the decomposition method

The idea of decomposing complex geometric structures into simple components is 

one of the main focal points of computational geometry and its applications. There is 

a large number of decomposition techniques that have been proposed. The most 

popular and widely investigated decomposition technique is triangulation. 

Triangulation is the breaking of planar or three-dimensional polygons into triangles. 

Two ways to triangulate a polygon are shown in Figure 4.2.

Original polygon Triangulated polygon Triangulated polygon

Figure 4.2 Examples of triangulation
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However, the decomposition method chosen in this work is trapezoidation. A  

trapezoid is a four-sided polygon in which two of the edges are parallel. The triangle 

may be considered as a special case of a trapezoid, since a triangle has one of the 

parallel edges equal to zero length. The topology of layout has predominantly vertical 

and horizontal lines and since processing extracted layout data is an application for 

this algorithm, trapezoids appear to be a very natural choice for the decomposition 

shape. The trapezoids are chosen as an optimal component also because of the 

simplicity of processing trapezoids and the easy calculation of resistance and 

capacitance of the trapezoid shaped polygon. The area of trapezoid is calculated 

easily by the formula:

(base one + base two) / 2 * height (5)
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CHAPTER V

TRAPEZOIDAL DECOMPOSITION

5.1 Methods and definitions used for trapezoidation

Chazelle and Incerpi proposed the first trapezoidation algorithm [26]. Some 

triangulation algorithms use trapezoidation as a first step [27]. Polygons may be 

classified as monotone and non-monotone polygons. A monotone polygon is a 

polygon whose boundary consists of two y-monotone chains. A set of ordered 

vertices is a y-monotone chain if, for every vertex in a chain, its y coordinate is 

greater then or equal to the y coordinate of the previous vertex for y-monotone 

increasing chain, and less then or equal to the y-coordinate of the previous vertex for 

the y-monotone decreasing chain. Examples of horizontal trapezoidation of 

monotone and non-monotone polygons are shown in Figure 5.1.
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a) Monotone polygon b) Non-monotone polygon

Figure 5.1 Horizontal trapezoidation of monotone and non-monotone polygons.

A horizontal trapezoidation of a polygon is constructed by adding a horizontal line 

through every vertex of the polygon. The most popular technique to perform such 

task is called plane sweep. A horizontal line is swept vertically down the plane and 

the data structure is updated at discrete events. For a trapezoidation algorithm on 

event will be the intersection of the sweep line with one of the vertices.

5.1.1 Vertex classification

This is the list of relationships existing between polygon vertex p and its neighboring 

vertices pj and pr, proposed by O’Rourke [28]:
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Intersection (INT):

One of neighboring vertices has greater y-coordinate and the other a lower y- 

coordinate then p (Figure 5.2a).

Local minimum (MIN):

Both neighboring vertices have greater y-coordinates then p (Figure 5.2b).

Local maximum (MAX):

Both neighboring vertices have lower y-coordinates then p (Figure 5.2c).

Horizontal line segment (H-MAX, H-MIN):

One of the neighbors has the same y-coordinate as p within tolerance s, then p is and 

end point of a horizontal line segment.

If second neighbor has lower y-coordinate then p, then p is called H-MAX 

(Figure 5.2d). If second neighbor has a higher y-coordinate then p, then p is called 

H-MIN (Figure 5.2e). If second neighbor has the same y-coordinate within s 

tolerance, then p doesn’t form part of any horizontal trapezoid and it can be erased 

from the list of polygon points at this stage (Figure 5.2f).
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Figure 5.2 Vertex types.

Classification of the vertexes proposed by O’Rourke is used in this research for 

vertex type identification. The trapezoidation algorithm used in this research was 

proposed by Borut Zalik and Gordon Clapworthy [25]. We have chosen this 

algorithm because of its efficiency, simplicity and generality.
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5.2 Overview of Borut Zalik’s trapezoidation algorithm.

Borut Zalik proposed an algorithm allowing decomposition of non-monotone 

polygons which may contain holes into trapezoids. A hole is a polygon that has all 

vertices inside or laying on the edges of an outer polygon. The trapezoidation 

algorithm consists of two parts: data preparation and creation of the trapezoids. 

Using the vocabulary of Zalik, the sequence of vertices forming the border of a 

polygon are called a loop, and a sequence of the vertices forming the border of inner 

closed polygon is called a ring.

5.2.1 Processing of a non-monotone polygon without holes

First, the overview of the processing of a polygon without holes will be given. It 

consists of two steps.

Step 1:

All vertices are sorted by y-coordinate and stored in a dynamic ordered list.

A plane sweep is employed. Since the vertices are already sorted, only the first 

element in the list is examined. The vertex type is examined and the appropriate 

action is chosen. The vertices with the same y-coordinate are sorted by x-coordinate 

in increasing order. Vertices, which are relevant to trapezoidation between the 

previous scan line and this scan line are retained and others are discarded. If there are
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n vertices in the polygon, there are at most n scan lines.

Step 2:

Identify points on current and previous scan lines that are to be joined to create 

trapezoids.

Implementation of the step 1

• Read in vertex coordinates and analyze type of vertices.

• Store vertex coordinates sequentially in an array named InputPoints.

• Sort vertices by y-coordinate and store them in an array SortedVerticesY, (Figure 

7). Several vertexes with the same y are possible. The data structure is implemented 

in a way that in addition to vertex coordinates, two pointers are stored which point to 

neighboring vertices. A Flag Used, associated with the vertex, is set initially to 

FALSE and it is reset to TRUE as soon as the sweep reaches the scan line on which 

vertex resides.

• Processing points on the first scan line:

If p is MAX, insert it into array OldPoints twice;

If p is HMAX, insert it into array OldPoints once; Procedure 1

If p is between vertices on the horizontal line, ignore it.

No other type of vertex may happen on the first scan line.
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• Move scan line down and process vertices, repeat it for every scan line Sk 

(at most n-1 times):

Determine number and types of polygon vertices laying on Su;

Calculate all intersections between Sk and polygon edges. These points are type INT. 

To locate those intersections, an array SortedVerticesY is searched starting from the 

first element and finishing just before the first vertex which resides on the current 

scan line is encountered. SortedVerticesY data structure is illustrated in Figure 5.3. If 

one of the neighboring vertices has the Used flag set to FALSE, the edge joining the 

examined vertex with this neighbor is intersecting the scan line. If both neighbors 

have flag set to TRUE, then the vertex may be discarded, since this will be the case of 

three vertices lying on the same line, Figure 5.2f. If the neighbors are ordered by y 

coordinate, then only one neighbor with the smaller y coordinate has to be tested. 

Insert the vertices and intersections into an array Intersections, ordered by x- 

coordinate;

• Create an array CurrentPoints from Intersections using the procedure:

If MIN, add point to CurrentPoints twice;

If INT, HMIX, add point once to CurrentPoints; Procedure 2

If MAX, HMAX, do not add point.

• Update for the next scan line

Update OldPoints from the points stored in intersections according to their types

as follows:
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If MAX, add point to Oldpoints twice;

If INT, HMAX, add point to OldPoints once; Procedure 3

If MIN, HMIN, do not add point.

• Move scan line until the polygon is exhausted.

Value of y coordinate is increasing 

------------------------------------------------►

Vertex 0 Vertex 1 Vertex n

Vertex co-s Flag
(x, y) Used
Left 
Neighbor 
Pointer

Right
Neighbor
Pointer

Figure 5.3 Sorted Vertices Y data structure.

Implementation of the step 2

After processing vertices at every scan line the arrays OldPoints and CurrentPoints 

have equal even number of vertices which may be joined by corresponding pairs
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between two arrays. Trapezoids between Sk-i and Sk are created. This step is repeated 

inside the loop n-1 times at the most.

The implementation described above is used in most scan-line fill algorithms 

proposed earlier. But now this algorithm is generalized to accommodate the cases of 

polygons with several rings (e.g. holes), including the possibility of nested rings.

5.2.2 Processing of a polygon with holes

This algorithm is a generalization for all planar polygons that don’t self-intersect. 

Holes will be processed and decomposed to trapezoids. Let’s call a set of vertices 

composing the most outer polygon a loop and a set of vertices composing a hole ring. 

First consider a case when loop and rings are disjoint (this limitation will be lifted 

later). Loop and ring are disjoint when their edges and vertices don’t intersect and 

don’t touch.

5.2.2.1 Simple nested rings

Follow the steps of the algorithm for a non-monotone polygon without rings 

described above. Introduce following changes:

Create new arrays Ring-j_OldPoints and Ring-j_CurrentPoints for every ring %
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• When the scan line encounters the first intersection with a ring, array 

CurrentPoints is generated according to Procedure 2. All ring vertices are ignored at 

this time because they are MAX and HMAX type.

• When the scan line is moved and Procedure 3 is executed for update of OldPoints, 

the intersections of the scan line with a ring Rj are now considered in two arrays:

The array Ring-j_OldPoints belonging to Rj and The OldPoints, for the loop if it is 

within the loop or the array Ring-j_CurrentPoints if Rj is nested immediately within 

another ring, Rk.

• Similarly, at subsequent scan lines in addition to the array CurrentPoints, for each 

ring Rj an array Ring-j_CurrentPoints is created using Procedure 2, so that ring 

intersections with the current scan line also occur in two arrays.

This process continues until all scan lines have been processed. If it is determined that 

any ring is not to be decomposed then the arrays Ring-j_CurrentPoints and Ring- 

jjOldPoints can be discarded.



5.2.2.2 Example of processing a non-monotone polygon containing a hole

PO P2 P3

Figure 5.4. Trapezoidation of non-monotone polygon that contains a hole.

Figure 5.4 illustrates an example of trapezoidation algorithm execution, given by 

Borut Zalik in [25].
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As a result of applying Procedure 1 on the so scan line, the array OldPoints contains 

P0> PO, P2» P3-

1. Move to the next scan line si. After calculation of the intersection of Si and 

polygon edges, q i1 and qi2 are obtained. Insert vertices and intersections into the 

array Intersections: qi1, pi, qi2. Execute Procedure 2. After sorting, the array 

CurrentPoints contains the points qi1, pi, pi, qi2.

2. Create trapezoids, joining the OldPoints and CurrentPoints arrays together. Two 

trapezoids are created:

pO qi1 p i pO and p2 p i qi2 p3.

3. Update the scan line, executing Procedure 3. The array OldPoints is q i1, qi2.

4. Move to the next scan line S2. The CurrentPoints array is generated according to 

Procedure 2 and it contains q2* and q22. All ring points are ignored, because they are 

of type MAX and HMAX.

5. Create trapezoid q i1 q21 q22 qi2

6. Update the scan line, executing Procedure 3. The Array OldPoints is q2* p7 p« pio 

Pn Pi3 P13 q22* The array Ring-1jOldPoints is pio pn pi3 P13. The array 

CurrentPoints is qi1 q32 q33 q34 P12P12 q35 q36. The array Ring-1 CurrentPoints is q34 

P12 P12 q35.

7. Six new trapezoids are created:

Trapezoid 1: q2l q3* q32 P7,

Trapezoid 2: p6 q33 q34 Pio,
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Trapezoid 3: pw pi2 P12 P13,

Trapezoid 4: pi3 q35 q36 q22,

Trapezoid 5: pi0 q34 P12 pu,

Trapezoid 6: pi3 pi2 q35 pi3.

Trapezoids 1-4 belong to the loop; whole trapezoids 5 and 6 belong to the ring R l. 

Trapezoids 3 and 6 degenerated into triangles.

Continue until all scan lines are processed.

5.2.2.3 Touching and coincident rings

Inconsistencies in vertex type interpretation may appear if touching or coincident 

rings are present. For example, in Figure 5.5 p may be interpreted as type INT in ring 

Ri and type MIN in ring R2 (see Figure 6 for vertex classification).

Figure 5.5 Polygon with partially coincident rings.
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To avoid this problem Zalik proposed to number a vertex common to more then one 

ring differently in each ring, regarding it as a set of coincident vertices, rather then as 

a multiple vertex. The algorithm proceeds as previously and a trapezoid is generated 

“between” two coincident rings. At the final stage checking the pairs of points on the 

previous and current scan lines identifies the “null” trapezoids. If the points on both 

lines are coincident, the trapezoid is discarded. A simple test of the x-coordinates of 

the trapezoid vertices on the previous and the current scan lines is sufficient to 

identify such cases.

If a ring is intersected by the first scan line because it is coincides with the loop, the 

initialization step in Procedure PI has to be modified to include the creation of an 

additional array Ring-j_OldPoints for each intersected ring.

Summary: The trapezoidation algorithm of Borut Zalik can accommodate any 

polygon containing any number of holes to any depth of nesting, where polygon 

edges may touch and overlap, but not intersect.
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CHAPTER VI

REDUCTION OF THE NUMBER OF TRAPEZOIDS

The purpose of this work is to perform more efficient trapezoidal reduction, which 

would make applications using trapezoidation created more efficient. The post 

processing reduction algorithm we have developed is described in this section. The 

trapezoidation algorithm itself produces more trapezoids than necessary. The more 

complex the polygon is, more unnecessary polygons are created during the 

trapezoidation step, which ultimately leads to need for a more effective polygon 

reduction. This problem is addressed by developed reduction algorithm.

6.1 Case 1

The most evident and simple case of reduction is when the following conditions are 

true:

1. Both trapezoids belong to the same ring or loop.

2. There are two adjacent vertices in both trapezoids, e. g. there is a pair of vertices in 

each trapezoid, where the vertex in the trapezoid one and a vertex in a trapezoid two 

has equal coordinates x and y.

3. The side edges of two trapezoids are lie on the same line, e. g. parallel.



The example of this case is illustrated on the Figure 6.1 In this case it is easy to 

detect and reduce unnecessary trapezoids that were produced as a result of not 

looking ahead during trapezoidation.

49

Po P3

Figure 6.1 Trapezoid optimization, Case 1.

This kind of reduction does not modify the original polygon structure. More 

interesting situations that are accommodated by the reduction algorithm created in 

this research are cases that don’t satisfy the conditions of Casel. By performing those 

kinds of reductions, the original polygon structure is modified on the condition that 

the error threshold is satisfied. Such reduction is desirable in the applications where 

the processing time of trapezoids is very significant compared to the time invested in 

reduction and the loss of information after reduction is insignificant. The extraction
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engine for parasitic signal calculation is the example of such an application. It is 

extremely desirable to reduce number of polygons as much as possible if the required 

parameters of the polygon are preserved. Such parameters are connectivity, e. g. 

adjacent trapezoids cannot be disconnected and the total area of trapezoids before and 

after reduction should be within the error threshold.

6.2 Case 2

Assume that conditions 1 and 2 from the Casel are satisfied. But condition 3 is not 

satisfied, so non-horizontal edges are not parallel, as on the Figure 6.2.

Figure 6.2 Trapezoid optimization, Case 2.
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In which situations may such a case be simplified?

First of all a restriction has to be placed that would not allow reduction of the 

trapezoids with non-parallel edges if those edges do not belong to the loop. This 

restriction is necessary to avoid loss of information if this case appears in the ring, 

since reduced vertices po from Tk and pi from Tj may be a part of some outer 

trapezoids. Because the reduction algorithm used is a “local” method, e.g. only two 

neighboring trapezoids are examined at a time, the coordinates of the vertices of the 

non-adjacent horizontal edges must be preserved. The only possible way to reduce 

vertex po from Tk and pi from Tj is to join vertex po from Tj and pi from Tk with a 

reduction line. But this would lead to decreasing the area of the polygon. This cannot 

be allowed, since in order to preserve connectivity we cannot decrease the total 

polygon area. In the example in Figure 10 only reduction of vertices p3 from Tk and 

P2 from Tj may be allowed, because after connecting vertices p2 from Tk and p3 from 

Tj the polygon area will slightly increase. This situation may occur only of the vertex 

to be reduced is on the same side as other vertices of the polygon after the cut by the 

reduction line.

The following constraints may be formulated for the Case2:

1. Vertex to be reduced belongs to loop

2. If after the cut with the reduction line the vertex is on the side where no other

vertices from the examined trapezoids are present, do not reduce it.
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3. The area increase requirement has to be satisfied, e.g. reduction error is within the 

threshold.

Let’s examine possible configurations when Case 2 applies, illustrated in Figure 11, 

and formulate conditions which have to be tested in order to insure that the total area 

of polygon will not be reduced after trapezoidal reduction. Every case in Figure 11 

successfully joins two trapezoids ABCD and DCEF into trapezoid ABEF. Reduction 

line BE eliminates vertex p and segment DC. The most important difference among 

these cases is relation between vertices B, E and segment GG1, which is a vertical 

segment with y-coordinate equal to y of vertex p, which we would like to eliminate. 

Lets call 0  an angle between upper trapezoid edge BC and vertical line GG1 and O 

an angle between lower trapezoid edge CE and GG1. In configuration Figure 6.3a, B 

and E is on the same side of GG1. There is no need to examine 0  in order to 

guarantee that there is no total area reduction. Area S of triangle CBE, as an ultimate 

measure of error, may be calculated as follows:

Scbe = Sbwv -  Sbve - Scew (6)

Area S = Yi * (height * base), so (7)

Sbwv = Yi * (WV*BV) =

Yt * ((WG1 + G1V)*GG1) = Yt * ((WG1 + xl)(yl+y2)) (S)
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Sbve = Vi * (BV*EV) = Vi * (BV*(G1V -  EV)) = Vi * ((yl+y2)(xl-x2)) (9)

Scew = J/2  * (CGI *EW) = !/2 * (y2*(x2 + WG1)) (10)

To calculate WG1 note that 0  = 0 , and tg0 = x l/y l from triangle GBC. Then 

WG1 = tgO* CGI

WG1 = tg©*y2 = xl*y2/yl (11)

Plug WG1 into the area equation for Sprf.:

Scbe = *4 * ((WG1 + xl)(yl+y2) - (yl+y2)(xl-x2) - (y2*(x2 + WG1)) =

x/2 * ((xl*y2/yl + xl)(yl+y2) - (yl+y2)(xl-x2) - (y2*(x2 + xl*y2/yl)) (12)

After simplification,

Scbe = x/2 * (xly2 + ylx2) (13)
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a) b)

A \B x l G

c)

Figure 6.3 Examples of the case 2 topology.
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Figure 6.3b illustrates a case when vertices B and E are on the opposite sides of GG1. 

If we consider GG1 as a 0 x-coordinate, then segment G1E will be negative and GB 

will be positive, e. g. x2 <0 and xl>0. To avoid total area reduction following 

restriction must be applied:

® < 0 , it translates to: the absolute value of x l/y l has to be bigger than the absolute 

value of x2/y2:

ABS (xl/yl) < ABS(x2/y2) (14)

After this condition is satisfied, the area of Scbe may be calculated:

Scbe = Sggivb - S gbc+ S cegi- S bve =

xl*(yl+y2) -  V2*xl*yl- Vi* (yl+y2)*(xl+x2) + 1/2*x2*y2 = 1/2*(xly2 -  ylx2) (15)

Scbe = x/2 * (xly2 - ylx2) (16)

Figure 6.3c illustrates a case when vertices B and E are on the opposite sides of GG1 

If we consider GG1 as a 0 x-coordinate, then segment G1E will be positive and GB 

will be negative, e. g. x l <0 and x2>0. To avoid total area reduction, the following 

restriction must be applied: <1> > 0 . It translates to: the absolute value of x l/y l has to

be smaller then absolute value of x2/y2:
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ABS (xl/yl) > ABS(x2/y2) (17)

After this condition is satisfied, the area of Scbe may be calculated:

ScBE =  S b EW - S CG1E -S KCG1W- S BKC =

1/2*(xl+x2)*(yl+y2) -  xly2 - 1/i*x2*y2- Vi* y l*xl = V£*(x2yl -  y2xl) (18) 

Scbe = % * (x2yl -  y2xl) (19)

The reduction algorithm for case 2 is:

1. Check if there are two vertices on the scan line with the same coordinates for both 

trapezoids.

2. Create a reduction line, which joins the vertices on the opposite parallel edges. 

Check if the vertices on the scan line lie on the same side as all other vertices of the 

trapezoids. If they lie on the reduction line, then case 2 is reduced to case 1. Both 

vertexes on the scan line must be on the “inner” side of the reduction line.

3. Calculate the error: Sadded = ^2*( x2yl + y2xl) (20)

Where:

y l is the distance from the scan line to the highest edge; 

y2 is the distance to the lowest edge;
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xl is difference between the x coordinate of the highest edge vertex and the x 

coordinate of the vertex on a scan line;

x2 is difference between x coordinate of the lowest edge vertex and the x coordinate 

of the vertex on a scan line.

x l and x2 may be positive or negative, as it was demonstrated on Figure 6.3(b) and 

6.3(c).

4. If Sadded is smaller or equal to the Error, create a new trapezoid as in Casel by 

connecting the highest and the lowest edges of the two polygons. Discard the vertices 

that reside on the scan line.

6.2 Case 3

Now let’s consider case 3, which relaxes the constraints of case 2 even further: 

requirement 1 from case 1 (and requirement from case 2) is satisfied, but 

requirements 2 and 3 are not:

1. Both trapezoids belong to the same ring or loop.

2. There are no two adjacent vertices in both trapezoids, e. g. there is a pair of 

vertices in both trapezoids with the same y coordinate, but x coordinates are different 

(if there is a pair of vertices from neighboring trapezoids with same x and y 

coordinates, then this edge reduces to the case 2).
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3. The side edges of two trapezoids do not lie on the same line (if they are this case is 

reduced to case 1).

Figure 6.4 Trapezoid optimization, Case 3.

Let’s examine two trapezoids on the Figure 6.4. We would like to join edge p ip 0 

from trapezoid Tk and the edge pipofrom  trapezoid Tj. Edges lie on the segments al 

and a2. If we use the same heuristic as in the case 2 to eliminate vertices p o from Tk 

and pi from T j by joining vertices p \ from Tk and po from T j with the segment b l, 

we would lose some area from Tk . To avoid this situation, another restriction must be 

applied: no vertices should be cut off by the reduction line from the main loop. The 

right hand side edges of T k and Tj on the Figure 6.4 satisfy this restriction. So
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trapezoids Tk and Tj on the Figure 6.4 cannot be reduced because one of the edges 

doesn’t satisfy all reduction requirements.

Figure 6.5 Trapezoid optimization, Case 3. Added area calculation.

Let’s examine example on the Figure 14.

Note that

BD = BC + d (21)

BC =x2 -  GB = x2 -  tg0*y2; ( from ÀAGC) (22)
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tg© = BF/yl = (BC +d + xl)/yl; (from ABEF) (23)

BC = x2 -y2*(BC +d + xl)/yl = x2 -  BC*y2/yl -  y2*d/yl -y2*xl/yl (24) 

BC*(l+y2/yl) = x2 -  y2*d/yl -y2*xl/yl (25)

multiply both sides of equation (25) by yl:

BC = (x2yl - y2*d -y2*xl)/ (yl+y2) (26)

Sadded = Sbac + s bed = V4* BC*y2 + 1/2* BD*yl = 1/2* BC (y2 + yl) + fc*d*yl (27) 

plug into (27) expression for BC (26):

Sadded = 1/2*(x2y l - y2*d -y2*xl) + 1/2*d*yl =

J/4*(x2*yl -  xl*y2 + d*yl -  d*y2) (28)

The reduction algorithm for the case 3 is:
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1. Check if there are two vertices on the scan line with the same y coordinates and 

different x coordinates for both trapezoids. The difference of x coordinates of 

corresponding vertices lying on the scan line is evaluated:

Ax = x l -  x2 = d (29)

if Ax > Axmav. ignore the case, these trapezoids cannot be eliminated. Ax,,** is 

maximum displacement error.

2. Create a reduction line, which would join the vertices on the opposite parallel 

edges. Check if the vertices on the scan line he on the same side as all other vertices 

of the trapezoids. Both vertices on the scan line must be on the “inner” side of the 

reduction line.

3. Calculate the error: Sadded = 1/2*(x2 *yl -  xl*y2 + d*yl -  d*y2)

Where:

d is difference of x coordinate of the corresponding vertices to be reduced from 

different trapezoids (pi from Tj and po from Tk; P2 from Tj and p3 from Tk). 

y l is the distance from scan line to the highest edge; 

y2 is the distance to the lowest edge;

xl is difference between x coordinate of the highest edge vertex and the x coordinate

of the vertex on a scan line;
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x2 is difference between x coordinate of the lowest edge vertex and the x coordinate 

of the vertex on a scan line.

x l and x2 may be positive or negative, as it was demonstrated on Figure 6.3(b) and 

6.3(c).

4. If Sadded is less then or equal to the Error, create a new trapezoid as in Casel by 

connecting the highest and the lowest edges of the two polygons. Discard the vertices 

that reside on the scan line.

Case 3 is the most general case allowing reduction; it may lead to a significant change 

of the data topology, if the Error and Axmav is set too large. Selection of the maximum 

error parameters may be critical in preserving topology of the data.

6.4 Control of the degree of reduction and error evaluation

Since the local (greedy) method is used for this reduction algorithm implementation, 

accumulation of error may occur as a result of several consecutive reductions. The 

example of a such situation is demonstrated on the Figure 6.6.
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G H

Figure 6.6 Error accumulation as a result of two consecutive reductions.

Figure 6.6 demonstrates the most general case, leading to changing data topology. 

Assume that at step one trapezoids Tj and T| are joined, since the area increase 

satisfies the error threshold and connectivity may be preserved. A trapezoid AEFB is 

generated as a result of a such reduction. The area increase is the area of AEC 

combined with the area of DFDiB. At the next step the scan line is lifted and 

trapezoid T k is evaluated with trapezoid AEFB for a possible reduction. The 

connectivity requirement is satisfied and the aresa of AGE and FHB are examined. It 

satisfies the error threshold and a trapezoid AGHB is created. But at this stage the 

actual area change will be the area of AGEC combined with the area of BDiDFH,
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which violates the area threshold. To a avoid situation as this, the variable 

ERROR_CURRENT will be used. The advantage of this approach is that this is a 

dynamic variable, which is updated at every scan line move during reduction stage. 

There is no need for memory allocation to keep historical data as a data member for 

every trapezoid as is done in most “history keeping” algorithms. One dynamically 

changing variable is sufficient, since we reduce one trapezoid at the time.

The error evaluation algorithm is:

1. Initialize ERROR_CURRENT to 0.

2. Examine first couple of the trapezoids and if they satisfy the reduction

requirements, perform reduction and set the value of ERROR_CURRENT to the

value of the total area added during that reduction.

3. Examine next couple of the trapezoids. If they cannot be reduced, set value of the 

ERROR_CURRENT to 0. If they may be reduced, add the value of the area increase 

as a result of this possible reduction to the value of the ERROR_CURRENT. 

Compare the value of the ERROR_CURRENT with the error threshold. If it is 

smaller then error threshold, perform the reduction. If ERROR_CURRENT is bigger 

then the error threshold, do not perform reduction and set ERROR_CURRENT to 0.

4. Move the scan line and perform step 3 until all trapezoids are exhausted.
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6.5 Complexity analysis of the trapezoidation and reduction algorithm

Time complexity of the trapezoidation and reduction algorithm is determined by the 

number of scan lines. Number of scan lines depends on the physical form of the 

polygon, number of vertices, and the orientation of the polygon with respect to the 

sweep line. The number of scan lines depends on polygon orientation, as it is 

demonstrated in Figure 6.7. Therefore the analysis of the average case is difficult, so 

the worst case will be analyzed. In the worst case the number of scan lines m will be 

equal to the number of the vertices n.

m <= n is always true, n is the number of vertices and m is the number of scan lines 

passing through them.

5 scan lines for horizontal orientation 3 scan lines for vertical orientation

Figure 6.7 Dependency of number of the scan lines on the polygon orientation.



66

Analysis of the steps performed:

1. Determining the vertex neighbors requires only one pass and is completed in linear 

time.

2. Sorting vertices by the y-coordinate to create data structure SortedVerticesY is 

performed using Quick sort. Quick sort complexity is

Tsorty(n) = 0(n log2 n) (30)

3. Sorting vertices with maximal y-coordinate by x-coordinate to create array 

OldPoints depends on number of polygon vertices with maximal y-coordinate t.

Worst case for t is a triangle with all vertices laying on the upper horizontal edge. 

Then t=n-l. In general t is not dependent on n and t « n .

Therefore initialization time is

Tinit(n) = 0(n  log2 n) (31)

4. The main loop of the algorithm contains m-1 steps. The following tasks are 

performed in the loop:

Determining the number of the vertices t on the scan line (t < n). It is linear process 

of t steps.
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Calculating intersections between edges and scan line to create j intersection 

points. It is a linear process of j steps.

Sorting all points on the scan line k = j + 1 by x coordinate. Quick sort algorithm 

time complexity is

If there are rings, then the parent ring must be identified by searching half of the 

points on the scan line (negligible time for large n).

Create trapezoids between current and previous scan lines. If there are no rings, the 

number of trapezoids is k-1 at the most.

If rings are present, the ring intersections should be included into array twice, 2k-1 

in the worst case. So process time is linear in k, where k < n.

5. So in the loop execution the most critical part is x-coordinate sorting of the 

intersections. Therefore

Tprocess(n) = (m-l ) T SOrtx (k ), w h e re  m, k  < n . (3 3 )

TSOrtx(k) = 0(k log2k), where k < n. (3 2 )

Tprocess(n) = (m-1) 0(k log2k)

accounting that (m-l)k <= n2

(3 4 )

(3 5 )



T process*;(n) =  0 (n 2 log2n ) (36)

6. Trapezoid reduction complexity.

Generated trapezoids are sorted by y-coordinates and x-coordnates. If there are p 

trapezoids above the scan line and q trapezoids below it then each set has to be tested 

against the other to check if trapezoids can be joined. If trapezoid cannot be joined it 

is removed from the set. If there are two trapezoids that can be joined, then two 

trapezoids are removed from the set. So number of the tests on each scan line is p + q 

at the most. The test takes place m-2 scan lines. Therefore

Treduc(n) = 0((p+q)(m-2)) (37)

since p + q < n, m < n:

T redue(n) =  0 ( n  ) (38)

Total worst case time complexity for trapezoidation and reduction is

T(n) =  T in it(n ) +  Tprocess(n) +  Trejuc(n)process' (39)

Substitute (31), (36), and (38) into (39):



T(n) = 0(n log2 n) + 0(n2 log2 n) + 0(n2) (40)

T(n) = 0(n2 log2 ii) (41)

The formula (41) reflects the worst possible case, however in average case the 

performance is much better.
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CHAPTER VH

PERFORMANCE AND TESTS OF THE REDUCTION ALGORITHM

7.1 Testing reduction algorithm on simple geometry data.

The details of the reduction algorithm performance may be displayed on the simple 

geometry testcases. The error_threshold and error_delta are set to the values, which 

are recommended for the layout extraction. The testcases described are displayed in 

the Appendix. The algorithm was tested on simple and more complex geometries, 

with the holes and without. The example test cases attached in Appendix demonstrate 

on which types of structures reduction algorithm is most effective. The geometries 

with more small details and curves achieve higher rate of reduction then geometries 

with the large shapes and long edges.

Every test case includes:

• screen shot picture of the geometry after trapezoidation

• screen shot of the geometry after reduction using the reduction algorithm described 

in this work

• input data file

• list of polygons after reduction



• summary of the number polygons extracted and number of polygons reduced. 

The summary of the number of polygons produced and reduced for the attached 

testcases is demonstrated on the Figure 7.1.
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Casel

No o f generated trapezoids 417 

No o f erased trapezoids 283 

No o f trapezoids after reduction 134 

Case2

No o f generated trapezoids 28 

No of erased trapezoids 15 

No o f trapezoids after reduction 13 

Case3

No of generated trapezoids 191 

No o f erased trapezoids 99 

No o f trapezoids after reduction 92 

Case4

No o f generated trapezoids 7 

No o f erased trapezoids 1 

No of trapezoids after reduction 6 

Case5

No o f generated trapezoids 87 

No o f erased trapezoids 51 

No o f trapezoids after reduction 36

Figure 7.1 Summary of the trapezoid count for testcases.
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The reduction rate depends on the geometrical characteristics of the data. The test was 

performed on 50 geometry testcases and the average reduction time was calculated. 

The average reduction rate is 3.3 times, e.g. there are 3.3 times fewer trapezoids to 

process after reduction:

number of trapezoids after reduction/number of trapezoids generated = 0.27 (42)

number of reduced trapezoids/number of trapezoids generated = 0.73 (43)

Formula 43 displays that approximately 73% of trapezoids are reduced. This is a 

very good result, competitive with all other available polygon reduction algorithms.

7.2 Testing reduction algorithm on the design layout

Figure 1 in the Appendix demonstrates an example of the design viewed in PLE, 

Cadence layout editor. The extractor tool extracts this layout data, extracted polygons 

are processed and connectivity is established. Different colors on the layout annotate 

different layers of the design: green is poly, pink is diffusion, red is metall routing, 

blue is metal2 routing, yellow squares are contacts and read squares are vial. If you 

look at the layout vertically cross cut, you will see so called process stack, as it is 

demonstrated on the Figure 7.2. This is the third dimension of a design. Every layer in
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the stack has it is own physical characteristics: permitivity, resistance, height, and 

process specific characteristics. All stack information will be taken from technology 

file, which is provided to extraction tool as an input along with the layout data. After 

all polygons are extracted from layout and connection among polygons is established, 

parasitic signals will be calculated, based on the process and layout information. 

Current design technology allows stacks of 7 to 8 metal layers and millions of 

polygons on one chip. The processing time grows very fast, as the number of 

polygons grows. It may take several days to extract parasitic signals on the modem 

high integrated circuit design. This is why reduction of the number of extracted 

polygons is so important. Star_RCXT extraction tool has a great advantage of 

extracting all layers in the design simultaneously, so it doesn’t have to do several 

scans of the layout. But calculation of the parasitic signals may be very time 

consuming and reduction of the number of polygons decreases processing time 

dramatically.
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Metal3

Via2 dialectric2

Metal2

Vial dialectric2

Metall

contact
poly

dialectricl

tox

Substrate

Figure 7.2 Example of a process stack

7.2.1 Tests performed

The tests performed on the code had to verify accuracy of the reduction algorithm and 

decrease of the total execution time of extraction if reduction is used. Since 

Star_RCXT executable cannot be accessed by anyone but Avant! (Synopsis)
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developers, the code was tested as a separate executable and it will be forwarded to 

the company R&D for the future incorporation into the xTractor engine of 

Star_RCXT tool.

1. Accuracy test.

To verify the accuracy of the reduction algorithm the following tests were performed. 

Setup:

The extraction run was performed on a design. Layout data was given in gds format. 

Parasitic signals were extracted and printed in the netlist. The extracted trapezoid file 

was used as an input file into the reduction function. After reduction was performed, 

the extraction tool further processed new reduced trapezoid file. The new parasitic 

netlist was produced. To verify the accuracy of the extracted information after 

reduction the two netlists were compared.

Example of the spef format netlist, a fragment for one net parasitic information is 

displayed on the Figure 7.3.



*SPEF "IEEE 1481-1998"
*DESIGN "r00mxn521a5"
*DATE "Wed Apr 3 19:20:05 2002"
* VENDOR "Avant!"
*PROGRAM "Star-RCXT"
*D_NET *10 1.7571

*CONN
*1 *26:d_xl880y3090 B *C 1.88 3.09 *D P 
*1 *24:g_x960y37351 *C 0.96 3.735 *L 0.0696

*N *10:181 *C 1.32 0.18 
*N *10:149 *C 0.92 4.45

*CAP
1 *10:181 *8:121 0.000876261
2 *10:181 *13:197 3.56865e-05
3 *10:181 *13:192 0.000117115

314 *10:341 1.10000e-05
315 *10:330 1.10000e-05 
316*10:338 1.10000e-05 
317 *10:323 1.10000e-05

*RES
1 *10:181 *10:311 89.1361 //$1=0.450000 $w=0.0900000 $lvl=23
2 *10:181 *10:314 66.8521 // $1=0.150000 $w=0.0800000 $lvl=23
3 *10:149 *10:148 77.9941 // $1=0.280000 $w=0.0800000 $lvl=23

32 *10:236 *10:234 0.00100000 // $1=0.280000 $w=10.0000 $lvl=20
33 *10:236 *10:232 0.00100000 // $1=0.560000 $w=10.0000 $lvl=20
34 *10:230 *10:228 0.00100000 // $1=0.280000 $w=10.0000 $lvl=19 
*END

Figure 7.3 Example of the parasitic signal information in spef netlist.
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Experimenting with the value of the error threshold Sadded Error (28) and Axmav error 

delta (29) default values were defined. When error_threshold and error_delta are set 

to the default value, maximum reduction is achieved, while the netlist produced after 

reduction is identical to the netlist produced on the unreduced data. The compare tool 

was used to verify tested netlists and to confirm that the parasitic values netlisted are 

correct. The necessity of the compare tool arose because netlist size may take more 

than a gigabyte of memory and it is impossible to verify it without automation.

2. Efficiency and execution time reduction test

To verify execution time reduction, the following tests were performed. 

Trapezoidation was run the on a significantly large layout database. The CPU time 

was monitored. The extraction was performed on the original data base and on the 

reduced data base. There was significant execution time reduction. The time table is 

displayed on the Figure 19. Tests were performed on a 2G hp machine.

The processing time reduction achieved by using our reduction algorithm is 

approximately 26%, which translates into big time savings when this algorithm is used 

in production.



Table 7.1 CPU time of extraction performed on reduced and on not reduced data

Design extraction time 
original data

reduction
time

extraction time 
reduced data

reduc. time 
+ extr. time

total time 
reduction

Size,
Mb

Celli 6,5 h 5.3 min 4.3 h 4.5 h l h 185

Cell2 1,5 h 1.1 min 0.8 h 0.9 h 0.6 h 30

Cell3 40,2 h 62.0 min 28.2 h 29.2 h 11 h 1100

Cell4 26,3 h 37.2 min 17.9 h 18.5 h 7.8 h 750
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CHAPTER Vm 

CONCLUSION

This paper describes a trapezoid reduction algorithm created for the processing of 

the extracted polygons. This algorithm may be used in a wide variety of graphical 

applications, but it is specifically targeted for Electrical Design Automation tools 

(EDA), particularly for design layout extraction. The reduction algorithm was 

tested in a production extraction tool and significant runtime reduction was 

displayed along with preserving integrity of the data. This method is seen to deal 

with a large number of complex polygons effectively and economically. Tests 

performed on the real layout data demonstrated that the number of trapezoids was 

reduced by approximately 50%, while connectivity was preserved and the most 

conservative error threshold satisfied. The complexity of the reduction algorithm 

is 0(n2), while the complete trapezoidation and reduction processes display worst 

time complexity of 0(n2 log2 n). The decomposition algorithm used in this work is 

trapezoidation algorithm proposed by Borut Zalik, which successfully processes 

non-monotone polygons with a number of holes, including nested holes. The 

reduction algorithm described in this paper is a local method, and it is using 

greedy heuristics. The originality and novelty of this algorithm is in a feature that 

allows reduction of trapezoids with the slight modification of the layout topology, 

controlled by the error threshold, set by the user. This feature allows control of the



level of the reduction and maintains the original connectivity of the polygons, 

which is necessary for the correct calculation of the parasitic signal and electrical 

connectivity information. The algorithm was implemented in C++ and displays 

exceptional stability. The trapezoid reduction rate in a very accurate mode is 

approximately 73%. If incorporated into the parasitic signal extraction tool and 

released into production, this reduction algorithm will significantly increase 

productivity of numerous integrated circuit design teams. Currently it takes 

several days to extract and calculate parasitic signals on designs containing 

several million of gates. By using the proposed reduction algorithm the parasitic 

signal extraction time may be reduced by approximately 26%. This translates into 

weeks of time saved before design tape out date.
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Testcase 1
150_l.pol

Geometry after trapezoidation.
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Geometry after reduction

¿ygtrapecoid-Micros... | ri?WS_FTP95L£rtys.,. j 11:37PM

Input data:

150_2.pol:

l Y .................................
RO
L
140
185.000000 476.000000
168.000000 472.000000
152.000000 465.000000
131.000000 457.000000
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112.000000 440.000000
95.000000 420.000000
92.000000 396.000000
92.000000 366.000000
85.000000 340.000000
66.000000 327.000000
37.000000 332.000000
16.000000 325.000000
13.000000 294.000000
14.000000 241.000000
5.000000 186.000000
6.000000 144.000000
12.000000 105.000000
21.000000 78.000000
52.000000 56.000000
90.000000 52.000000
115.000000 84.000000
120.000000 119.000000
111.000000 156.000000
106.000000 188.000000
115.000000 232.000000
126.000000 302.000000
137.000000 363.000000
152.000000 397.000000
176.000000 420.000000
186.000000 383.000000
184.000000 332.000000
194.000000 285.000000
203.000000 245.000000
207.000000 183.000000
194.000000 155.000000
222.000000 115.000000
235.000000 96.000000
260.000000 70.000000
275.000000 46.000000
300.000000 27.000000
343.000000 25.000000
391.000000 19.000000
436.000000 14.000000



465.000000
518.000000
543.000000
579.000000
582.000000
577.000000
566.000000
535.000000
525.000000
558.000000
593.000000
617.000000
656.000000
703.000000
742.000000
777.000000
774.000000
767.000000
753.000000
754.000000
806.000000
860.000000
864.000000
867.000000
863.000000
860.000000
860.000000
844.000000
795.000000
749.000000
722.000000
719.000000
715.000000
699.000000
676.000000
672.000000
657.000000
635.000000
610.000000

21.000000
21.000000
30.000000
55.000000
77.000000
101.000000
141.000000
178.000000
220.000000
248.000000
247.000000
255.000000
244.000000
212.000000
189.000000
158.000000
125.000000
91.000000
56.000000
23.000000
34.000000
47.000000
90.000000
134.000000
170.000000
207.000000
228.000000
248.000000
258.000000
277.000000
307.000000
332.000000
351.000000
372.000000
371.000000
336.000000
311.000000
305.000000
327.000000



596.000000
582.000000
582.000000
555.000000
535.000000
527.000000
501.000000
467.000000
463.000000
465.000000
466.000000
475.000000
464.000000
458.000000
426.000000
398.000000
385.000000
389.000000
398.000000
405.000000
418.000000
419.000000
423.000000
428.000000
442.000000
453.000000
460.000000
463.000000
457.000000
437.000000
403.000000
375.000000
359.000000
356.000000
373.000000
399.000000
404.000000
381.000000
352.000000

365.000000
402.000000
428.000000
456.000000
435.000000
402.000000
368.000000
363.000000
392.000000
448.000000
493.000000
524.000000
558.000000
579.000000
596.000000
598.000000
582.000000
540.000000
496.000000
457.000000
423.000000
373.000000
321.000000
269.000000
236.000000
195.000000
160.000000
133.000000
116.000000
98.000000
86.000000
96.000000
104.000000
123.000000
133.000000
146.000000
167.000000
176.000000
167.000000
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315.000000 162.000000
287.000000 181.000000
298.000000 217.000000
298.000000 237.000000
295.000000 252.000000
285.000000 271.000000
265.000000 283.000000
235.000000 289.000000
222.000000 304.000000
223.000000 319.000000
230.000000 336.000000
270.000000 356.000000
283.000000 370.000000
290.000000 388.000000
290.000000 403.000000
270.000000 435.000000
263.000000 448.000000
248.000000 461.000000
206.0456.000000
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ a

OUTPUT
TrapezCounttxt:

No of generated trapezoids 417 
No of erased trapezoids 283 
No of trapezoids after reduction 134
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Testcase 2
bc04.pol

Geometry after trapezoidation.
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Geometry after reduction

Input file: 

bc04.pol:
*  *  *  *  *  *  *  X- * * *  *  *  * *  *  *  *  *  *  *  *  *  *  *  *  * *  * * *  *  * * *  *  *  * * * * * * * * * * * * * *  *  * * * * * * * * * *  * * *  Si- * * * *

L I
RO
L
7
3 2 
3 0 
2 0.11
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1 0.1
0.0 0.00000000000000 
1 2
2 1.9999999

OUTPUT:
TrapezCounre.txt:
No of generated trapezoids 7
No of erased trapezoids 1
No of trapezoids after reduction 6

Atrapezoid.txt: 
(after reduction)

0.000000000000000, 0.000000000000000 
0.050000000000000, 0.100000000000000
1.000000000000000, 0.100000000000000 
0.000000000000000, 0.000000000000000

ring -1

3.000000000000000,
2.000000000000000,
3.000000000000000,
3.000000000000000,

ring -1

0.050000000000000,
0.055000000000000,
2.000000000000000,
1.000000000000000,

ring -1

0.055000000000000,
0.999999950000000,
3.000000000000000,
3.000000000000000,

0.000000000000000
0.110000000000000
0.110000000000000
0.000000000000000

0.100000000000000
0.110000000000000
0.110000000000000
0.100000000000000

0.110000000000000
1.999999900000000
1.999999900000000 
0.110000000000000
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ring -1

2.000000000000000,
3.000000000000000,
3.000000000000000,
3.000000000000000,

ring -1

0.999999950000000,
1.000000000000000,
1.000000000000000,
2.000000000000000,

ring -1

1.999999900000000
2.000000000000000
2.000000000000000
1.999999900000000

1.999999900000000
2.000000000000000
2.000000000000000
1.999999900000000

Num ber of polygons is: 6
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Testcase 3
Alan4.pol

Geometry after trapezoidation
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Geometry after reduction.

Input data:

Alan4.txt
l V ....................
R 6 
L
43
4303825.000000
4303955.000000
4303950.000000
4304154.000000
4304158.000000

304310.000000
304315.000000
304356.000000
304356.000000
304091.000000



4304228.000000
4304330.000000
4304413.000000
4304487.000000
4304783.000000
4304862.000000
4304913.000000
4305936.000000
4306011.000000
4306189.000000
4306189.000000
4306167.000000
4291427.000000
4291427.000000
4292569.000000
4293866.000000
4295196.000000
4295152.000000
4297841.000000
4297852.000000
4298329.000000
4298320.000000
4301805.000000
4301746.000000
4301695.000000
4301551.000000
4301412.000000
4301410.000000
4301451.000000
4303075.000000
4303064.000000
4303045.000000
4303033.000000
4303021.000000
4303021.000000
4303380.000000
4303376.000000
4303816.000000 
R

304102.000000
304157.000000
304218.000000
304301.000000
304722.000000
304815.000000
304861.000000
305491.000000
305533.000000
305581.000000
308117.000000
310674.000000
310674.000000
310504.000000
310474.000000
310425.000000
310390.000000
309086.000000
309008.000000
309239.000000
309223.000000
308988.000000
308904.000000
307425.000000
307429.000000
307062.000000
306615.000000
306612.000000
306558.000000
306517.000000
306077.000000
305392.000000
304966.000000
304525.000000
304225.000000
304343.000000
304069.000000
304065.000000
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4295892.000000
4295920.000000
4296194.000000
4296162.000000 
R
4
4296065.000000
4296073.000000
4296250.000000
4296246.000000 
R
6
4296602.000000
4296625.000000
4297901.000000
4297882.000000
4297184.000000
4297180.000000 
R
4
4296073.000000
4296158.000000
4296266.000000
4296178.000000 
R
4
4302190.000000
4302206.000000
4302438.000000
4302382.000000 
R
4
4302490.000000
4302677.000000
4303161.000000
4303157.000000

4
310063.000000
310260.000000
310232.000000
310031.000000

309826.000000
309951.000000
309943.000000
309810.000000

309528.000000
310306.000000
310276.000000
309703.000000
309727.000000
309506.000000

309585.000000
309677.000000
309569.000000
309472.000000

309462.000000
309934.000000
309927.000000
309382.000000

308883.000000
309272.000000
309251.000000
308862.000000
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OUTPUT:
TrapezCounter.txt

**
No of generated trapezoids 191 
No of erased trapezoids 99 
No of trapezoids after reduction 92

Testcase 4

data8.pol

Geometry after trapezoidation

j js t a r t  j; j trapezoid - Micros... j ;&W5_FTP95lEnyt.„ j _JC:\temp\olQa_bac.., | ¿gTrapezCounter.t<t...| 8]Dotumentl5-l«fcr...|^g i)d ta 8 .p o l-T ra p - I1:S6PM
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Geometry after reduction.

Input data:

Data8.pol:
* * * * * ** * * * * * * * * * * * ** *** * * * * * * *** * * * * * * * * * ** * * * * * * * * * * * * * ** *

L I  
R 4 
L
8
100.0 100.0
200.0 200.0
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500.0 200.0
600.0 100.0
600.0 500.0
500.0 400.0
200.0 400.0
100.0500.0 
R
6
200.0 220.0
350.0 280.0
500.0 220.0
500.0 380.0
350.0 300.0
200.0 380.0 
R
4
130.0150.0
160.0 180.0
160.0 420.0
130.0 450.0 
R
4
580.0 150.0
540.0 180.0
540.0 420.0
580.0 450.0 
R
3
220.0 250.0
270.0 300.0
220.0 350.0

OUTPUT
TrapezCounttxt:

No of generated trapezoids 87
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No of erased trapezoids 51
No of trapezoids after reduction 36

Testcase 5

100_3_2.pol

Geometry after trapezoidation

& loo.. 3 ?.pol - Trapezoid
File O W rii Trapezoidation Help

100_3_2.p. 11:09 PM
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Geometry after reduction

|e*t» 100 3 2.pol - Trapezoid

Fite T i r  . Trapezoidatìon Help

; j f t s ta r t I j f i fe e :  Thanks for... | «»trapezoid -M lc...| g j  Welcome to M... ! nÿw5_FTP95LH ... | i g win2ip-thiwis...| 0 th e jfc .d o c  - Mi... ¡¡3g>00_3_2.pol.- 11:12PM

Input data

100_3_2.pol

L I  
R 2
L
99
107.000000 553.000000
67.000000 431.000000
143.000000 363.000000
167.000000 277.000000
76.000000 182.000000
57.000000 14.000000



184.000000 14.000000
194.000000 69.000000
290.000000 67.000000
289.000000 28.000000
349.000000 33.000000
357.000000 124.000000
428.000000 122.000000
425.000000 26.000000
483.000000 22.000000
494.000000 63.000000
527.000000 75.000000
557.000000 60.000000
571.000000 38.000000
590.000000 31.000000
618.000000 34.000000
638.000000 65.000000
642.000000 128.000000
609.000000 169.000000
542.000000 177.000000
500.000000 195.000000
474.000000 209.000000
475.000000 250.000000
499.000000 273.000000
552.000000 259.000000
644.000000 232.000000
714.000000 149.000000
714.000000 84.000000
716.000000 45.000000
771.000000 37.000000
861.000000 90.000000
856.000000 158.000000
800.000000 168.000000
794.000000 223.000000
831.000000 243.000000
829.000000 280.000000
669.000000 297.000000
672.000000 338.000000
856.000000 333.000000
849.000000 217.000000



927.000000 213.000000
938.000000 575.000000
870.000000 594.000000
867.000000 520.000000
901.000000 506.000000
891.000000 475.000000
807.000000 478.000000
796.000000 540.000000
745.000000 587.000000
719.000000 588.000000
695.000000 569.000000
693.000000 542.000000
703.000000 495.000000
680.000000 477.000000
621.000000 472.000000
601.000000 498.000000
614.000000 532.000000
615.000000 567.000000
572.000000 567.000000
534.000000 559.000000
513.000000 529.000000
517.000000 498.000000
537.000000 473.000000
560.000000 448.000000
562.000000 412.000000
557.000000 368.000000
544.000000 316.000000
483.000000 324.000000
421.000000 336.000000
421.000000 418.000000
487.000000 410.000000
498.000000 469.000000
486.000000 513.000000
454.000000 543.000000
409.000000 564.000000
380.000000 557.000000
372.000000 540.000000
364.000000 519.000000
354.000000 490.000000
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353.000000 470.000000
355.000000 441.000000
357.000000 416.000000
357.000000 390.000000
353.000000 369.000000
311.000000 352.000000
268.000000 358.000000
239.000000 400.000000
255.000000 455.000000
282.000000 480.000000
299.000000 521.000000
267.000000 548.000000
245.000000 586.000000
203.000000 600.000000
169.000000 581.000000 
R
10
200200 
210 220 
220 210 
230 230 
240200 
245 150 
235 170 
225 180 
215 150 
205 190 
R 
10
180400 
190420 
200 410 
210 430 
220 400 
225 350 
215 370 
205 380 
195 350 
185 390 I



OUTPUT:
TrapexCounter.txt:

No of generated trapezoids 462 
No of erased trapezoids 332 
No of trapezoids after reduction 130

ring -1

385.000000000000000, 
396.375000000000000,
426.000000000000000, 
452.352941176470610,

ring -1

396.375000000000000,
398.000000000000000,
398.000000000000000,
426.000000000000000,

582.000000000000000
596.000000000000000
596.000000000000000
582.000000000000000

596.000000000000000
598.000000000000000
598.000000000000000
596.000000000000000

ring -1

Num ber of polygons is: 130
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Testcase 6

Alan4_l

Geometry after trapezoidation:

FUe (. iptmi Trap€20idaöon Help

alarv4_«. 12:04 AM
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Geometry after reduction:

| ¿gT rapaz... | fg g a la n 4 _

Input data:

Si*********************************************************************

L I  
R 1 
L
8
25.000000 100.000000
55.000000 200.000000
80.000000 160.000000
300.000000 400.000000
450.000000 80.000000
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500.000000 220.000000
500.000000 50.000000
20.000000 40.000000 
R
3
200.000000 163.000000
260.000000 260.000000
290.000000 132.000000
O U TPU T:"'"................

TrapezCount.txt:

No of generated trapezoids 28 
No of erased trapezoids 15 
No of trapezoids after reduction 13

Atrapezoid.txt:

171.666666666666660, 260.000000000000000
300.000000000000000, 400.000000000000000
300.000000000000000, 400.000000000000000
365.625000000000000, 260.000000000000000

ring -1

20.000000000000000,
20.833333333333332,

500.000000000000000,
20.000000000000000,

ring -1

20.833333333333332,
23.333333333333332,

500.000000000000000,
500.000000000000000,

ring -1

40.000000000000000
50.000000000000000
50.000000000000000

40.000000000000000

50.000000000000000
80.000000000000000
80.000000000000000
50.000000000000000



23.333333333333332,
25.000000000000000,

440.625000000000000,
450.000000000000000,

ring-1

450.000000000000000,
500.000000000000000,
500.000000000000000,
500.000000000000000,

ring -1

25.000000000000000,
34.600000000000001,

425.625000000000000,
440.625000000000000,

ring -1

34.600000000000001,
43.000000000000000, 
208.709677419354850,
290.000000000000000,

ring -1

290.000000000000000,
260.000000000000000,
365.625000000000000,
425.625000000000000,

ring -1

290.000000000000000,
200.000000000000000, 
282.734375000000000,
290.000000000000000,

80.000000000000000
100.000000000000000
100.000000000000000
80.000000000000000

80.000000000000000
220.000000000000000
220.000000000000000
80.000000000000000

100.000000000000000
132.000000000000000
132.000000000000000
100.000000000000000

132.000000000000000
160.000000000000000
160.000000000000000
132.000000000000000

132.000000000000000
260.000000000000000
260.000000000000000
132.000000000000000

132.000000000000000
163.000000000000000
163.000000000000000
132.000000000000000
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ringO

43.000000000000000,
55.000000000000000,
55.000000000000000,
80.000000000000000,

ring -1

80.000000000000000,
82.750000000000000,

200.000000000000000,
208.709677419354850,

ring -1

82.750000000000000,
171.666666666666660,
260.000000000000000,
200.000000000000000,

ring -1

200.000000000000000,
260.000000000000000,
260.000000000000000,
282.734375000000000,

160.000000000000000
200.000000000000000
200.000000000000000
160.000000000000000

160.000000000000000
163.000000000000000
163.000000000000000
160.000000000000000

163.000000000000000
260.000000000000000
260.000000000000000
163.000000000000000

163.000000000000000
260.000000000000000
260.000000000000000
163.000000000000000

ring 0

Num ber of polygons is: 13
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APPENDIX B 

C++ source code

Trapez.h and Trapez.cpp files are displayed. The complete C++ project with all 
classes and methods is attached on CD.

Trapez.h

/  /  Declaration of trapezoidation and reduction algorithm s.
/ /  H eader file.
#if
!defined(AFX_TRAPEZ_H_A9D0439B_54C2_llD2_9591_000000000000__IN
CLUDEDJ 
# define
AFX_TRAPEZ_H_A9D0439B_54C2_11D2_9591_000000000000__INCLUDED

#if _MSC_VER >= 1000
# pragm a once
#endif / /  _MSC_VER >= 1000

# define USED 1
# define NOTJJSED 0
# define LOOP_POINT 1
# define RING_POINT 2
# define INTERSECTION 3
# define LOCAL_MINIMUM 4
# define LOCAL_MAXIMUM 5
# define HORIZONTAL_SEGMENT 6
# define NONE -1

typedef struct { 
double x, y;

} Pointlnf;

typedef struct { 
double x, y;



int Type;
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int PNo; 
int Ring; 

otherwise 
} IntersectionType;

/  /  -1 if intersects m ain loop, ring no.

typedef struct { 
double y; 
int PNo; 
in t il, i2;
short int U sedl, Used2; 

used
} YCoord;

/ /  point num ber 
/  /  index of edges
/ /  1 if edge (PNo, il) or (PNo,i2) is already

struct Ttypef 
double x[4]; 
double y[4]; 
int Ring;
struct Ttype* Next;

/ /  ring num ber

}; / /  structure Ttype for trapezoids

typedef struct Ttype TrapezType;

class Trapez 
{
private: 
int NoL; 
int NoRings; 
int* NoR; 
int Total;
int ProcessedPointsIndex;

/ /  no of points in loop 
/  /  no of rings
/  /  array of no of points in rings 
/  /  total num ber of points

int IntersectionNoX; 
int RingsReached; 
int AllocateFlag;

/  /  num ber of intersections in X direction 
/ /  num ber of rings in treatm ent

double xmin, ym in, xmax, ymax; /  /  bounding box coordinates - just for 
plotting
double MyEpsilon; / /  tolerance w hen two lines are colinear



TrapezType *TrapezPointer/ *T r apezPointerT ail;
TrapezType* tptr;
Pointlnf* InputPoints; / /  array of input points
YCoord* SortedPointsY; / /  array of sorted points

IntersectionType* Oldlntersections; / /  array of previous intersections 
IntersectionType* Intersections; / /  array of actual intersections 
IntersectionType** OldRinglntersections;
IntersectionType** NewRinglntersections;
IntersectionType* Usefullntersections;
IntersectionT ype* U sefulRingln ter sections;

in t Mirror_Total;
in t Mirror_NoL;
int Mirror_NoRings;
int TrapezCounter, ErasedTrapezoids;

void M irrorInputData(); 
void ReleaseM irrorData(); 
void RestoreFromM irror(); 
void Deallocate();

Pointlnf* M irror_InputPoints; 
int* Mirror_NoR;

void MainAllocate(); 
void SortByY(); 
in t LocalMinimum(int); 
in t LocalMaximum(int); 
int LSMaximum(int p); 
int HorizontalSegm ent(int p); 
int HorizontalM iddle(int p);

void SortIntersectionsX();
void DetermineNeighbours(); 1
void Init01dBuffer();
void PointsW ithTheSameY(int & il, int &i2); 
void CalculateIntersections(int p, int q);
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void M akeTrapezodiation();
int IntersectionW ithHLine(double y l, double x3, double y3, double a, double 
b,

double &outx, double &outy); 
void M akeTrapezs(); 
void UpdateOldlntersectionsO; 
int W hichRing(int p); 
void M arkUsedEdges(int p, int q); 
int W hereToPlace(int i);
void Fill01dRingIntersections(IntersectionType**, int i, int r l , int* jr); 
int FindEncloseingRing(int b l, int b2); 
void Add(TrapezType* t);
int TrapezsCanBeJoined(TrapezType* tl , TrapezType* t2, double 
&ERROR_ACCUM);
/  /  determ ines if trapezoids m ay be joined 
void ArrangeTouchingRingpoints(); 
void CorrectURI(int n); 
void SortURIByX(int il, int i2); 
void ClearTrapezoids();
void PointBetween(PointInf p i, Pointlnf p2, Pointlnf* p3);

void QSortByY(int iLo, int iH i); 
void QSortByX(int Dnoln, int Vrhln); 
void DetermineEpsilion();

public:
Trapez(void); 
virtual ~Trapez(void);
void OptimizeTrapezs(); //fu n c tio n  to optimize trapezoids
int Load(char*);
int LoadPolygon(char* fname);
void SetPolygon(int NoOfVertices, in t NoOfHoles, int* VerticesInHoles, 

double* xarr, double* yarr); 
void Trapezoidation(); 
void Plot(HDC);
void Plot(HDC h, int xw, int yw);
void PlotTrapez(HDC);
void PlotTrapez(HDC h, int xw, int yw);
TrapezType ReturnTrapez();
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void ReturnTrapezInit(); 
void SplitPoints();
in t ReturnTrapezCounter() {return TrapezCounter;}
int ReturnErasedTrapezoids() {return ErasedTrapezoids;}
int ReturnNoOfTrapezoids() {return(TrapezCounter - ErasedTrapezoids);}
TrapezType* ReturnTrapezPointer() {return TrapezPointer;}

void EraseW indow(HDC hdc, HWND hW nd); 
void PrintListOfTrapezoids();

1;

#endif

Trapez.cpp

/  /  im plem entation of trapezoidation algorithm
/ / i t  perform s horizontal trapezoidation of non/m onotone polygons
containing
/  /  nested holes. The holes are trapezaoidated as well. Polygon edges should 
not
/  /  intersect. The holes can thouch each other, but should not thouch the loop 
/  /  (the polygon border). Trapezoidation algorithm  proposed by Borut Zalik. 
/ /  Trapezoid reduction algorithm  developed by Olga Zaporojets is 
implemented.

# include "stdafx.h"
#include "trapez.h"
#include "utility.h"
#include "myCPUTime.h"
# include "Line2D.h"
# include <stdlib.h>
# include <stdio.h>
# include <string.h>

#ifdef .DEBUG
# define new DEBUG.NEW



#undef THIS_FILE
static char THIS_FILE[] = __FILE
#endif

# define shareware

#ifdef shareware
# include <windows.h>
#endif

Trapez::Trapez(void)
/ /C onstructor.
{Total = NoRings = ProcessedPointsIndex = 0; 
RingsReached = NONE;
TrapezPointer = NULL;
TrapezCounter = ErasedTrapezoids = 0; 
AllocateFlag = 0;

}

Trapez::~Trapez(void)
//D estructo r.
{
if (AllocateFlag == 1)
{
delete[] InputPoints; 
delete[] SortedPointsY; 
delete[] O ldlntersections; 
delete[] Intersections; 
delete!] Usefullntersections; 
delete!] UsefulRinglntersections; 
delete!] M irror_InputPoints; 
delete!] Mirror_NoR; 
delete!] NoR;

if (NoRings > 0)
{for (int i = 0; i < NoRings; i++)

{delete!] 01dRingIntersections[i];
delete!] NewRingIntersections[i];

}



delete [] OldRinglntersections; 
delete[] NewRinglntersections;

}
ClearTrapezoids();

}
}

void Trapez::DetermineEpsilion()
/ /O lga Zaporojets: set the error threshold
{

xmin = ymin = M AX_DOUBLE; 
xmax = ymax = -MAX_DOUBLE;

in ti;

for (i = 0; i < NoL; i++)
{if (xmin > InputPoints[i].x) xmin = InputPoints[i].x; 
if (ymin > InputPoints[i].y) ymin = InputPoints[i].y; 
if (xmax < InputPoints[i].x) xmax = InputPoints[i].x; 
if (ymax < InputPoints[i].y) ymax = InputPoints[i].y;

}

double dx = (xmax - xmin) * 0.1; 
double dy = (ymax - ymin) * 0.1;

xmin -= dx; 
ymin -= dy; 
xmax += dx; 
ymax += dy;

MyEpsilon = 0.5 * EPSILON * (dx + dy); 
if (MyEpsilon < VERY_SMALL_EPSILON) 
MyEpsilon = VERY_SMALL_EPSILON;

}

void Trapez::ClearTrapezoids() 
/  /  delete a list of trapezoids.
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{TrapezType* a;

while (TrapezPointer != NULL)
{a = TrapezPointer;
TrapezPointer= TrapezPointer->Next; 
delete a;

}
TrapezPointerTail = TrapezPointer = NULL;} 

void Trapez::Deallocate()
/  /  free memory.
{delete}] NoR; 
delete}] TrapezPointer; 
delete}] InputPoints; 
delete}] SortedPointsY; 
delete}] Oldlntersections; 
delete}] Intersections; 
delete}] Usefullntersections; 
delete}] UsefulRinglntersections;

if (NoRings > 0)
{for (int i = 0; i < NoRings; i++)

{delete}] 01dRingIntersections[i];
delete}] NewRingIntersections}i];

}
delete}] OldRinglntersections; 
delete}] NewRinglntersections;

}
}

int Trapez: :Load(char* Fname)
/  /  File has to have the following structure:
/  /  Number of points in a loop
/  /  (x, y) ordered coordinates of loop points
/  /  number of rings
/  /  {numer of points in i-th ring
/  /  ordered coordinates of i-th ring points }
{FILE* f;



i f  ( ( f  =  fopen (F n am e, "r t" )) = =  N U L L ) retu rn  0;

double x, y;
int i, kumulacija = 0;

fscanf(f, "%d", &NoL);
NoL~;

Pointlnf* A = new Pointlnf[10000];

for (i=0; i < NoL; i++) /  /  we do not duplicate last point 
{fscanf(f, "%lf %lf", &x, &y);

A[i].x = x;
A[i].y = y; 
kumulacija++;

}
fscanf(f, "%lf %li", &x, &y); / /  read last duplicated point

fscanf(f, "%d", &NoRings); /  /  get number of rings 
int r = 0;

NoR = new int[NoRings+10]; 
while (fscanf(f, "%d", &NoR[r]) != EOF)
{NoR[r]—;
for (i=0; i < NoR[r]; i++) /  /  we do not duplicate last point
{fscanf(f, "%lf % lf& x , &y);

A[kumulacija].x = x;
A[kumuladja].y = y; 
kumulacija++;

}
r++;
fscanf(f, "%lf %lf", &x, &y); / /  read last duplicated point
}

Total = NoL;
for (i = 0; i < NoRings; i++)
Total += NoR[i];

InputPoints = new PointInf[Total+10]; 
for (i = 0; i < Total; i++)



MainAllocateO; 
fdose(f); 
delete[] A; 
return 1;

In p u tP o in ts [i] =  A [i ] ;

void Trapez::SetPolygon(int NoOfVertices, int NoOfHoles, int* 
V er ticesInHoles,

double* xarr, double* yarr)
{Total = NoOfVertices;
NoRings = NoOfHoles;
NoR = new int[NoRings+10];

InputPoints = new PointInf[Total+10];
InputPoints = new PointInf[Total+10];

int NoOfPointsInLoop = NoOfVertices; 
int i = 0;

for (i = 0; i < Total; i++)
{InputPoints[i].x = xarr[i]; 
InputPoints[i].y = yarr[i];

}

if (NoOfHoles != 0)
{
for (i = 0; i < NoOfHoles; i++) 
{NoR[i] = VerticesInHoles[i]; 
}

}

NoL = Total;
for (i = 0; i < NoRings; i++) 
NoL -= NoR[i]; 
MainAllocate();

}



int T rapez: :LoadPoly gon(char* fname)
/ /  File has to have the following structure:
/ /  Number of points in a loop
/  /  (x, y) ordered coordinates of loop points
/ /  number of rings
/  /  {numer of points in i-th ring
/  /  ordered coordinates of i-th ring points }
{FILE* f;
# define LOOP 1
# define RING 0

if ((f = fopen(fname, "rt")) == NULL) return 0;

char c[2]; 
c[l] = '\0 '; 
int N ol; 
int No;

fscanf(f, "%s %d", &c, &Nol); /  /  number of loops 
fscanf(f, "%s %d", &c, &NoRings); / /  numer of rings

NoR = new int[NoRings+10];
Pointlnf* A = new Pointlnf[10000];

int LoopRingFlag; 
int r = 0;

int i , ), k, w; 
w  = 0;

for (j = 0; j < (Nol + NoRings); j++)
{fscanf(f, "%s", &c);
if (strcmp(c, "L") == 0) LoopRingFlag = LOOP; 
else LoopRingFlag = RING; 
fscanf(f, "%d", &No);

if (LoopRingFlag == LOOP)
NoL = No;



if (LoopRingFlag == RING)
NoR[r++] = No;

for (k = 0; k < No; k++)
{ fscanf(f, "%lf %lf", &A[w].x, &A[w].y); 
w++;

}
}

Total = NoL;
for (i = 0; i < NoRings; i++)
Total += NoR[i];

InputPoints = new PointInf[Total+10]; 
for (i = 0; i < Total; i++)
InputPoints [i] = A[i];

delete []A;
MainAllocate(); 
fclose(f); 
return 1;

void Trapez::SplitPoints()
//C re a te  split points.
{int Total2 = 2 * Total; 
intNoL2 = 2*NoL; 
in ti;
for (i = 0; i < NoRings; i++)

NoR[i] = 2 * NoR[i];

Pointing InputPoints2 = new PointInf[Total+10];

int j = 0; 
int k, w;
for (i = 0 ; i < NoL; i++)
{InputPoints2[j] = InputPoints[i];

++j;
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PointBetween(InputPoints[i], InputPoints [i+1 ], &InputPoints2[j]);
j++;

}

w = NoL;
for (k = 0; k < NoRings; k++) 
for (i = 0; i < NoR[i]; i++)
{InputPoints2[j] = InputPoints[w];
j++;
PointBetween(InputPoints [w], InputPoints[w+1 ], &InputPoints2 [j ]);
j++;
w++;

}

DeaIlocate();
InputPoints = new PointInf[Total+10]; 
for (i = 0; i < Total; i++)
InputPoints [i] = InputPoints2[i]; 

delete InputPoints2;
MainAllocate();

}

void Trapez::PointBetween(PointInf p i , Pointlnf p2, Pointing p3) 
/ /p 3  will be between p i  and p2.
{Point pout;

Line2D* 1 = new Line2D(pl.x, p l.y , p2.x, p2.y); 
l->PointOnLine(0.5, pout); 
p3->x = pout.x; p3->y = pout.y;

}

void Trapez::MirrorInputData()
{Mirror_Total = Total;
Mirror_NoL = NoL;
Mirror_NoRings = NoRings;

in ti;



for (i = 0; i < Total; i++) 
Mirror_InputPoints[i] = InputPoints[i];

Mirror_NoR = new int[NoRings+10]; 
for (i = 0; i < NoRings; i++) 
Mirror_NoR[i] = NoR[i];

}

void Trapez::RestoreFromMirror()
/  /  Original data will be assigned to the mirrored data.
{
Total = Mirror_Total;
NoL = Mirror_NoL;
NoRings = Mirror_NoRings;

in ti;
for (i = 0; i < Total; i++)
InputPoints[i] = Mirror_InputPoints[i];

for (i = 0; i < NoRings; i++)
NoR[i] = Mirror_NoR[i];

}

void Trapez::ReleaseMirrorData() 
/  /M irror data will be deleted.
{
delete[] Mirror_InputPoints; 
delete[] Mirror_NoR;

}

void Trapez: :MainAllocate() 
/ /  Create data structure.
{int a = 10;
AllocateFlag = 1;
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SortedPointsY = new YCoord[Total+ a];
Oldlntersections = new IntersectionType[Total + a];
Intersections = new IntersectionType[Total];
Usefullntersections = new IntersectionType[Total + a]; 
UsefulRinglntersections = new IntersectionType[Total + a];

if (NoRings > 0)
{ OldRinglntersections = new IntersectionType*[NoRings+ a]; 
for (int i = 0; i < NoRings; i++)

OldRinglntersections [i] = new IntersectionType[Total + a];
}
if (NoRings > 0)
{NewRinglntersections = new IntersectionType*[NoRings+ a]; 
for (int i = 0; i < NoRings; i++)

NewRingIntersections[i] = new IntersectionType[Total + a];
}

Mirror_InputPoints = new PointInf[Total+a];
Mirror_NoR = new int[NoRings+a];

}

void Trapez::Plot(HDC h)
/ /  Plot the polygone for the graphical output 
{POINT* pixy = new POINT[NoL+l];

int i, LastUsed;
for (i = 0; i < NoL; i++)
{plxy[i].x = (long) InputPoints[i].x;

plxy[i].y = (long) InputPoints[i].y;
}
plxy[i].x = (long) InputPoints[0].x; 
plxy[i].y = (long) InputPoints[0].y;

LastUsed = NoL;

Polyline(h, pixy, NoL+1); 
delete pixy;



for (k = 0; k < NoRings; k++)
{pixy = new POINT[NoR[k]+l]; 

int j = 0;
for (i = LastUsed; i < LastUsed + NoR[k]; i++) 
{plxy[j].x = (long) InputPoints[i].x;

plxy[j].y = (long) InputPoints[i].y;
j++;

}
plxy[j].x = (long) InputPoints[LastUsed].x; 
plxy[j].y = (long) InputPoints [LastUsed] .y;

Polyline(h, pixy, NoR[k]+l); 
delete pixy;
LastUsed += NoR[k];

}
}

void Trapez::Plot(HDC h, int xw, int yw)
/ /  Function for graphical output.
{POINT* pixy = new POINT[NoL+l];

int i, LastUsed;
xmin = ymin = M AX_DOUBLE; 
xmax = ymax = -MAX_DOUBLE;

for (i = 0; i < NoL; i++)
{if (xmin > InputPoints[i].x) xmin = InputPoints[i].x; 
if (ymin > InputPoints[i].y) ymin = InputPoints[i].y; 
if (xmax < InputPoints[i].x) xmax = InputPoints[i].x; 
if (ymax < InputPoints[i].y) ymax = InputPoints[i].y;

}

double dx = (xmax - xmin) * 0.1; 
double dy = (ymax - ymin) * 0.1; 
xmin -= dx;
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ymin -= dy; 
xmax += dx; 
ymax += dy;

for (i = 0; i < NoL; i++)
{plxy[i].x = FromRealToPixel(InputPoints[i].x, xmin, xmax-xmin, xw); 
plxy[i].y = FromRealT oPixel(InputPoints [i] .y, ymin, ymax-ymin, yw);

}
plxy[i].x = plxy[0].x; 
plxy[i].y = plxy[0].y;

LastUsed = NoL;

Polyline(h, pixy, NoL+1); 
delete pixy;

in tk ;

for (k = 0; k < NoRings; k++)
{pixy = new POINT[NoR[k]+l]; 

int j = 0;

for (i = LastUsed; i < LastUsed + NoR[k]; i++)
{plxy[j].x = FromRealToPixel(InputPoints[i].x, xmin, xmax-xmin, xw); 
pixy [j].y = FromRealToPixel(InputPoints[i].y, ymin, ymax-ymin, yw); 
j++;

}
plxy[j].x = plxy[0].x; 
plxy[j].y = plxy[0].y;

Polyline(h, pixy, NoR[k]+l); 
delete pixy;
LastUsed += NoR[k];

}
}

void Trapez::PlotTrapez(HDC h, int xw, int yw)



/ /D raw s trapezoids.
{POINT plxy[5];
TrapezType *t = TrapezPointer;
HPEN hpen, hpenOld;

HBRUSH HBrushl = CreateSolidBrush(RGB(0,0,255));
HBRUSH HBrush2 = CreateSolidBrush(RGB(0,255,0));
HBRUSH HBrush3 = CreateSolidBrush(RGB(100,200,0));
HBRUSH HBrush4 = CreateSolidBrush(RGB(200,200,0));
HBRUSH HBrush5 = CreateSolidBrush(RGB(30,100,0));
HBRUSH HBrush6 = CreateSolidBrush(RGB(100,100,0));

hpen = CreatePen(PS_SOLID, 1, RGB(255/0/0)); 
hpenOld = (HPEN)SelectObject(h, hpen);

while (t != NULL)
{
plxy[0].x = FromRealToPixel(t->x[0]/ xmin, xmax-xmin, xw); 
plxy[0].y = FromRealToPixel(t->y[0]/ ymin, ymax-ymin, yw); 
plxy[l].x = FromRealToPixel(t->x[l]/ xmin, xmax-xmin, xw); 
plxy[l].y = FromRealToPixel(t->y[l]/ ymin, ymax-ymin, yw); 
pixy [2] .x = FromRealToPixel(t->x[2], xmin, xmax-xmin, xw); 
pixy [2] .y = FromRealToPixel(t->y[2], ymin, ymax-ymin, yw); 
plxy[3].x = FromRealToPixel(t->x[3], xmin, xmax-xmin, xw); 
pixy [3] .y = FromRealToPixel(t->y[3], ymin, ymax-ymin, yw);

switch (t->Ring){
case NONE: (HBRUSH)SelectObject(h, HBrushl);break; 
case 0: (HBRUSH)SelectObject(h, HBrush2); break; 
case 1: (HBRUSH)SelectObject(h, HBrush3); break; 
case 2: (HBRUSH)SelectObject(h, HBrush4); break; 
case 3: (HBRUSH)SelectObject(h, HBrush5); break; 
default: (HBRUSH)SelectObject(h, HBrush6);

}

Polygon(h, pixy, 4); 

t = t->Next;
}



SelectObject(h, hpenOld); 
DeleteObject(hpen);

}

void Trapez::PlotTrapez(HDC h)
/ /D raw s trapezoids.
{POINT plxy[5];
TrapezType *t = TrapezPointer;
HPEN hpen, hpenOld;

HBRUSH HBrushl = CreateSolidBrush(RGB(0,0,255));
HBRUSH HBrush2 = CreateSolidBrush(RGB(0,255,0));
HBRUSH HBrush3 = CreateSolidBrush(RGB(100,200,0));
HBRUSH HBrush4 = CreateSolidBrush(RGB(200/200/0));
HBRUSH HBrush5 = CreateSolidBrush(RGB(30,100,0));
HBRUSH HBrush6 = CreateSolidBrush(RGB(100,100,0));

hpen = CreatePen(PS_SOLID, 1, RGB(255,0,0)); 
hpenOld = (HPEN)SelectObject(h, hpen);

while (t != NULL)
{plxy[0].x = (int)t->x[0]; plxy[0].y = (int)t->y[0];

plxy[l].x = (int)t->x[l]; plxy[l].y = (int)t->y[l]; 
pixy[2].x = (int)t->x[2]; plxy[2].y = (int)t->y[2]; 
pixy[3].x = (int)t->x[3]; pixy[3].y = (int)t->y[3]; 
plxy[4].x = (int)t->x[0]; plxy[4].y = (int)t->y[0];

switch (t->Ring){
case NONE: (HBRUSH)SelectObject(h, HBrushl);break; 
case 0: (HBRUSH)SelectObject(h, HBrush2); break; 
case 1: (HBRUSH)SelectObject(h, HBrush3); break; 
case 2: (HBRUSH)SelectObject(h, HBrush4); break; 
case 3: (HBRUSH)SelectObject(h/ HBrush5); break; 
default: (HBRUSH)SelectObject(h, HBrush6);

}

Polygon(h, pixy, 4);
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t = t->Next;

SelectObject(h, hpenOld); 
DeleteObj ect(hpen);

}

}

void Trapez::QSortByY(int Dnoln, int Vrhln)
//S o rts  points by the value of y coordinate.
{
if (Dnoln < Vrhln)
{int Dno, Vrh; 
double Mid;

/ /  application specific
in tk;
double a;
Dno = Dnoln;
Vrh = Vrhln;
int Sredina = (Dno + Vrh) /  2;
Mid = SortedPointsY[Sredina].y;

a = SortedPointsY[Dno].y; 
k = SortedPointsY[Dno].PNo;
SortedPointsYfDno] = SortedPointsYfSredina]; 

SortedPointsY[Sredina].y = a;
SortedPointsY[Sredina].PNo = k;

Dno++;
do
{while ((SortedPointsY[Dno].y <= Mid) && (Dno < Vrhln)) Dno++; 
while ((SortedPointsY[Vrh].y >= Mid) && (Vrh > Dnoln)) Vrh--; 
if (Dno < Vrh)
{a = SortedPointsY[Dno].y;

k = SortedPointsYfDno] .PNo;
SortedPointsYfDno] = SortedPointsYfVrh]; 
SortedPointsY[Vrh].y = a;
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SortedPointsY[Vrh].PNo = k;

} while (Dno < Vrh);

a = SortedPointsY[DnoIn].y; 
k = SortedPointsY[DnoIn].PNo;
SortedPointsY[DnoIn] = SortedPointsY[Vrh];

SortedPointsY[Vrh].y = a;
SortedPointsY[Vrh].PNo = k;

QSortByY (Dnoln, V rh-1);
QSortByY (Vrh+1, Vrhln);

}
}

void Trapez::SortByY()
/  /  Methods sorts all points regardless if they belong to loop or rings by their 
/  /  Y coordinates and stores them into array SortedPoints 
{int i;

for (i = 0; i < Total; i++)
{SortedPointsY[i].y = InputPoints[i].y;

SortedPointsY[i].PNo = i;
SortedPointsY[i].Usedl = SortedPointsY[i].Used2 = NOT_USED;

}

QSortByY(0, Total-1);

ProcessedPointsIndex = 0;
TrapezCounter = ErasedTrapezoids = 0;

}

int Trapez::WhichRing(int p)
/  /  Determine in which ring is point p and return its number [0..n]
/  /  If it is in a loop it returns NONE;
{if (p >= NoL) / /  ring has been reached 

{int r l  = 0;
int r2 = NoL + NoR[rl]; 
while (r2 <= p)
{rl++;

}

\
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r2 += NoR[rl];
}
return r l;

return NONE;
}

int Trapez::LocalMaximum(int p)
/  /  Methods return 1 if observed point is a local maximum. It is the local 
maximum
/ / i f  its y coordinate is bigger than y coordinates of neighbouring points.
{int i = 0;
while (SortedPointsY[i].PNo != p) i++;

if (Equal (SortedPointsY[i].y, InputPoints[SortedPointsY[i].il].y, MyEpsilon)
== 1)

return 0; / /  part of a line segment

if (Equal (SortedPointsY[i].y, InputPoints[SortedPointsY[i].i2].y, MyEpsilon)
== 1)

return 0; / / part of a line segment

if ((SortedPointsY[i].y > InputPoints[SortedPointsY[i].il].y) &&
(SortedPointsY[i].y > InputPoints[SortedPointsY[i].i2].y)) 

return 1; 
return 0;

}

}

int Trapez::LocalMinimum(int p)
/ /  Methods return 1 if observed point is a local mininum. It is the local 
minimum
/  /  if its y coordinate is smaller than y coordinates of neighbouring points.
{int i = 0;
while (SortedPointsY[i].PNo != p) i++;

if (Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].il].y, MyEpsilon)
== 1)

return 0; / /  part of a line segment
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if (Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].i2].y/ MyEpsilon)
== 1)

return 0; / /  part of a line segment

if ((SortedPointsY[i].y < InputPoints[SortedPointsY[i].il].y) &&
(SortedPointsY[i].y < InputPoints[SortedPointsY[i].i2].y)) 

return 1; 
return 0;

}

int Trapez::LSMaximum(int p)
/ /  Methods search the neighbourhoud of a horizontal line segment. If the 
line
/  /  which touches the horizontal line segment, either form left or from right 
side,
/  /  has lower y coordinate, the the observed end point p of the horizontal line 
segment
/ /  is a local maximum and method returns 1;
{int i = 0;
while (SortedPointsY[i].PNo != p) i++;

if (!Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].il].y, MyEpsilon)) 
if (SortedPointsY[i].y < InputPoints[SortedPointsY[i].il].y) return 1;

if (!Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].i2].y, MyEpsilon)) 
if (SortedPointsY[i].y < InputPoints[SortedPointsY[i].i2].y) return 1;

return 0;
}

int Trapez::HorizontalSegment(int p)
/  /  point p defines a horizontal segment if at least one neighbouring point has 
/  /  the same y coordinate 
{int i = 0;
while (SortedPointsY[i].PNo != p) i++;

if (Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].il].y, MyEpsilon) 
= = 1 )
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return 1;
if (Equal(SortedPointsY[i].y, InputPoints[SortedPointsY[i].i2].y, MyEpsilon) 

== 1)
return 1; 

return 0;
}

int Trapez::HorizontalMiddle(int p)
/ /  point p is in the middle of two horisontal trapezes. Such point is not 
considered
/ /  for trapezoidation. If this case method returns 1 
{int i = 0;
while (SortedPointsY[i].PNo != p) i++;

if ((Equal(SortedPointsY[i].y/ InputPoints[SortedPointsY[i].il].y, MyEpsilon) 
== 1) &&

(Equal(SortedPointsY[i].y,InputPoints[SortedPointsY[i].i2].y, MyEpsilon)
== 1)) 

return 1; 
return 0;

}

void Trapez::SortIntersectionsX()
/  /  At first, intersection points are ckecked agains their characteristic type, if 
/  /  neccessary new intersection points are inserted or existed are eliminated 
/ /  and then resulting intersections are sorted by X 
{int i, j;
IntersectionType a;

/  /  this for statement acts only in the case when there are rings with common 
points.

/  /  In this case it checks if sequence of ring points in Intersection array is 
/  /  correct. If it is not, wrong positions are swapped, 
for (i=l; i < IntersectionNoX; i++)
{if ((Equal(Intersections[i].x, Intersections[i-l].x, MyEpsilon) == 1) && 

(Intersections[i].Ring != Intersections[i-l].Ring))
{int k l, k2;
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k2 = k l = i+1;
while ((Intersections[i-l].Ring != Intersections[kl].Ring) && (kl 

< IntersectionNoX)) kl++;
while ((Intersections[i].Ring != Intersections[k2].Ring) && (k2 < 

IntersectionNoX)) k2++;

if (k2 > k l)
{IntersectionType it = Intersections[i-l];
Intersections[i-l] = Intersections^];
Intersections[i] = it;

}
}

}

j = 0;
for (i = 0; i < IntersectionNoX; i++)
{if (Intersections[i].Type != INTERSECTION)

{if (LocalMaximum(Intersections[i].PNo) == 1)
{Intersections[i].Type = LOCAL_MINIMUM; 
a = Intersections]!];
Intersections [IntersectionNoX + j++] = a;

}
else
{if (LocalMinimum(Intersections[i].PNo) == 1)

Intersections[i].Type = LOCAL_MAXIMUM; 
else /  /  it is a part of a horisontal segment

if (HorizontalSegment(Intersections[i].PNo) == 1) 
Intersections^] .Type =

HORIZONTALJ3EGMENT;
else

Intersections[i].Type = INTERSECTION;
1

}
}
IntersectionNoX += j;

QSortByX(0, IntersectionNoX-1);
}
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void Trapez::QSortByX(int Dnoln, int Vrhln)
{
if (Dnoln < Vrhln)
{int Dno, Vrh; 
double Mid;

/  /  application specific 
IntersectionType a;

Dno = Dnoln;
Vrh = Vrhln;
int Sredina = (Dno + Vrh) /  2;
Mid = Intersections[Sredina].x;

a = Intersections[Dno];
Intersections[Dno] = Intersections[Sredina];

Intersections[Sredina] = a;

Dno++;
do
{while ((Intersections[Dno].x <= Mid) && (Dno < Vrhln)) Dno++; 
while ((Intersections[Vrh].x >= Mid) && (Vrh > Dnoln)) Vrh--; 
if (Dno < Vrh)
{a = Intersections[Dno];

Intersections[Dno] = Intersections[Vrh];
Intersections[Vrh] = a;

}
} while (Dno < Vrh);

a = Intersections[DnoIn];
Intersections [Dnoln] = Intersections[Vrh];

Intersections[Vrh] = a;

QSortByX(DnoIn, Vrh-1);
QSortByX(Vrh+1, Vrhln);

}
}
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void Trapez::DetermineNeighbours()
{ / /  Methods determines which two edges share the same point 
int i, v, r;

for (i=0; i < Total; i++)
{v = SortedPointsY[i].PNo;

if ((r = WhichRing(v)) == NONE) / /  loop point 
{if (v == 0)

{SortedPointsY[i].il = 1;
SortedPointsY[i].i2 = NoL -1;

}
else
{if (v == NoL-1)
{SortedPointsY[i].il = 0;

SortedPointsY[i].i2 = NoL - 2;
}
else
{ SortedPointsY[i].il = v -1;

SortedPointsY[i].i2 = v + 1;
}

}
}
else
{int LastlnRing, FirstlnRing = NoL;

for (int j = 0; j < r; j++) FirstlnRing += NoR[j]; 

LastlnRing = FirstlnRing + NoR[r] -1;

if (v == FirstlnRing)
{SortedPointsY[i].il = FirstlnRing+l; 
SortedPointsY[i].i2 = LastlnRing;

}
else
{
if (v == LastlnRing)
{SortedPointsY[i].il = FirstlnRing;
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SortedPointsY[i].i2 = LastlnRing - 1;

else /  /  somewhere in the middle of the ring 
{SortedPointsY[i].il = v -1;

SortedPointsY[i].i2 = v + 1;
}

}
}

}
}

}

int Trapez::IntersectionWithHLine(double y l, double x3, double y3, double a, 
double b,

double &outx, double &outy)
/  /  Method calculates the intersection with horizontal line which y coordinate 
is y l.
/ /  Line two passes through point (x3, y3) and has slope k = a /b  
/  /  a should be passed as y4-y3 and b as x4-x3.
/  /  Function returns 1 if lines intersects and then the intersection point is 
stored
/ / in (xout, yout)
/ / i f  Function returns 0, line 12 is also horisontal and an trivial intersection 
/ /  does not exists.
{if (Equal(a, 0,MyEpsilon) == 1) return 0; / /  line 12 is also horisontal 
outy = y l;
if (Equal(b, 0,MyEpsilon) == 1) 

outx = x3;
else

outx = x3 + (yl - y3) * b /  a; 
return 1;

}

void Trapez::PointsWithTheSameY(int &il, int &i2)
/ /  Methods finds all points with the same y coordinate in sorted array. 
/ /  i l  is the index of the first and i2 of the last such points 
{i2 = il  = ProcessedPointsIndex;
while (Equal(SortedPointsY[il ] .y, SortedPointsY[i2].y,MyEpsilon) == 1)
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{ i2++;
if (i2 >= Total) 

break;
1
ProcessedPointsIndex = i2; 
i2—;

1

void Trapez::InitOidBuffer()
/ /  initialization of old buffer. There are two possibilities:
/ /  the point with the minimum y is local minimum; in such case two points 
are
/ /  inserted
/  /  the point can be also part of a horiyontal line segment and in this case only 
/ /  one point is inserted.
{int y il, yi2, i, jl; 
int j = 0;

PointsWithTheSameY(yil, yi2);

YCoord a;

for (i = yil; i <= yi2-l; i++)
for (j = i+ l;j <= yi2; j++)
{if (InputPoints[SortedPointsY[j].PNo].x < 

InputPoints[SortedPointsY[i] .PNo] .x)
{a = SortedPointsY[j];

SortedPointsY[j] = SortedPointsY[i];
SortedPointsY[i] = a;

}
}

j = 0;
for (i = yil; i <= yi2; i++)
{if (LocalMinimum(SortedPointsY[i].PNo) == 1)

{ /  /  add two points into Oldlntersections 
jl = j +1;
01dIntersections[j].x = 01dIntersections[jl].x = 

InputPoints [SortedPointsY [i] .PNo] .x;
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01dIntersections[j].y = 01dIntersections[jl].y = 
SortedPointsY[i] .y;

Oldlntersections [j ] .Type = 01dIntersections[jl].Type = 
LOOP_POINT;

01dIntersections[j].PNo = 01dIntersections[jl].PNo = 
SortedPointsY[i].PNo;

01dIntersections[j].Ring = 01dIntersections[jl].Ring = NONE; 
j+=2;

}
else / /  the point is horizontal minimum and therefore, add just one

point
{

if (HorizontalMiddle(SortedPointsY[i].PNo) == 0)
{01dIntersections[j].x = InputPoints[SortedPointsY[i].PNo].x; 

Oldlntersections [j].y = SortedPointsY[i].y; 
01dIntersections[j].Type = LOOP_POINT; 
01dIntersections[j].PNo = SortedPointsY[i].PNo; 
01dIntersections[j].Ring = NONE;
MarkUsedEdges(i, i+1); 

j++;
}

}
}

}

void Trapez::MarkUsedEdges(int p, int q)
/ /  mark edges which touch vertices on skaning line as already use 
{int flag, b, k l, k2; 
if (p > q) b = p; 
else b = q;
for (kl = p; k l <= q; kl++)

for (k2 = 0; k2 < b; k2++)
{flag = 0;

if (SortedPointsY[kl].PNo == SortedPointsY[k2].il)
{flag = 1;
SortedPointsY[k2].Usedl = USED;

}
else
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if (SortedPointsY[kl].PNo == SortedPointsY[k2].i2)
{flag = 1;

SortedPointsY[k2].Used2 = USED;
}

if (flag == 1)
{
if (SortedPointsY[kl].il == SortedPointsY[k2].PNo) 

SortedPointsY[kl ] .Usedl = USED;
else

if (SortedPointsY[kl].i2 == SortedPointsY[k2].PNo) 
SortedPointsY[kl].Used2 = USED;

}
}

}

void Trapez::CalculateIntersections(int p, int q)
/  /  Method finds all intersection points between a horizontal scaning line and 
/ /  polygon edges.
/  /  p and q are indexes into array of sorted points of the polygon which has 
the
/  /  same y coordinates
/  /  method at first calculate the real intersections and at the end adds q-p+1 
/ /  polygon nodes 
{int i, j = 0;

MarkUsedEdges(p, q); 
for (i = 0; i < p; i++)
{

if (HorizontalMiddle(SortedPointsY[i].PNo) == 0)
{
if ((SortedPointsY[i] .Usedl == NOTJJSED) && (SortedPointsY[i].il != 

SortedPointsY[i].PNo))
{IntersectionWithHLine(SortedPointsY[p] .y,

InputPoints[SortedPointsY[i] .il] .x, 
InputPoints[SortedPointsY[i] .il] .y, 
InputPoints[SortedPointsY[i] .il] .y - 

InputPoints[SortedPointsY[i] .PNo] .y,



InputPoints[SortedPointsY[i].il].x- 
InputPoints[SortedPointsY[i] .PNo] .x,

Intersections [j ] .x, Intersections [j ] .y); 
Intersections[j].Type = INTERSECTION;
Intersections[j].PNo = NONE;
Intersections[j].Ring = WhichRing(SortedPointsY[i].PNo);
j++;

}

if ((SortedPointsY[i].Used2 == NOT_USED) && (SortedPointsY[i].i2 
SortedPointsY[i] .PNo))

{ IntersectionWithHLine(SortedPointsY[p] .y,
InputPoints[SortedPointsY[i].i2].x, 
InputPoints[SortedPointsY[i].i2].y/ 
InputPoints[SortedPointsY[i] .i2] .y - 

InputPoints[SortedPointsY[i] .PNo] .y,
InputPoints[SortedPointsY[i] .i2] .x - 

InputPoints[SortedPointsY[i].PNo].x,
Intersections[j] .x, Intersections]) ] .y);

Inter sections [j].Type = INTERSECTION;
Intersections[j].PNo = NONE;
Inter sections [j].Ring = WhichRing(SortedPointsY[i].PNo);
j++ ;

}
}

}
in tr;
for (i = p; i <= q; i++)
{if (HorizontalMiddle(SortedPointsY[i].PNo) == 0)
{

Inter sections [j].x = InputPoints[SortedPointsY[i].PNo].x; 
Intersections[j].y = SortedPointsY[i].y;
Intersections[j].PNo = SortedPointsY[i].PNo;

if ( (r = WhichRing(SortedPointsY[i] .PNo)) == NONE) 
Intersections[j].Type = LOOP_POINT;

else
Intersections[j].Type = RING_POINT;

Intersections[j].Ring = r;
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j++;
}
IntersectionNoX = j;

}
}

void Trapez::MakeTrapezs()
/  /  At first obtained intersection points are considered
/ /  and arranged regarding their characteristic type (local minimum,
horizontal segment
/ /  memeber of a ring etc.)
/ /  Then trapez are easily constructed by merging aid and new intersection 
points.
{int i, Where; 
int j=0; 
int ri = 0;

for (i = 0; i < IntersectionNoX; i++)
{if ((Where = WhereToPlace(i)) == NONE)
{

switch (Intersections^] .Type)
{case LOCAL_MAXIMUM: break;

case HORIZONTAL_SEGMENT:
{if (LSMaximum(Intersections[i].PNo) == 0)
{if (HorizontalMiddle(Intersections[i].PNo) == 0)

{UsefulIntersections[j] = Intersections [i];
j++;

}
}
break;

}
default:
{UsefulIntersections[j] = Intersections!!];

j++;
}

}.
else

}
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{

switch (Intersections [i] .Type)
{case LOCAL_MAXIMUM: break;

case HORIZONTAL_SEGMENT:
{if (LSMaximum(Intersections[i].PNo) == 0)
{if (HorizontalMiddle(Intersections[i].PNo) == 0) 

{UsefulRingIntersections[ri] = Intersections^];
UsefulRingIntersections[ri].Ring = Where; 
ri++;

}
}
break;

}
default:
{UsefulRingIntersections[ri] = Intersections^]; 
UsefulRingIntersections[ri].Ring = Where; 
ri++;

}
}

}

if (Intersections[i].Ring != NONE)
{switch (Intersections [i] .Type)

{case LOCAL_MAXIMUM: break;
case HORIZONTAL_SEGMENT:
{if (LSMaximum(Intersections[i].PNo) == 0)
{if (HorizontalMiddle(Intersections[i].PNo) == 0)

{
UsefulRinglntersectionsfri] = Intersections^];

}
break;

}
default:
{UsefulRingIntersections[ri] = Intersections^]; 
ri++;

}
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}
}

}

CorrectURI(ri);
for (i = 0; i < j; i+=2)
{TrapezType* t = new TrapezType;

t->x[0] = 01dIntersections[i].x; t->y[0] = 01dIntersections[i].y; 
t->x[l] = UsefulIntersections[i].x; t->y[l] = 

UsefulIntersections[i] .y;
t->x[2] = UsefulIntersections[i+l].x; t->y[2] = 

UsefulIntersections[i+l] .y;
t->x[3] = 01dIntersections[i+l].x; t->y[3] = 

01dIntersections[i+l] .y;
t->Ring = NONE; 
t->Next = NULL;
Add(t);

}
in tr;
int *RIndex = new int[NoRings+10];
int Index;
for (i = 0; i < NoRings; i++) RIndex[i] = 0;

for (i = 0; i < ri; i+=2)
{TrapezType* t = new TrapezType; 
r = UsefulRingIntersections[i].Ring;
Index = RIndex[r];
t->x[0] = 01dRingIntersections[r] [Index] .x; t->y[0] =

OldRinglntersections [r ] [Index] .y;
t->x[l] = UsefulRingIntersections[i].x; t->y[l] =

U sefulRinglntersections [i] .y;
t->x[2] = UsefulRingIntersections[i+l].x; t->y[2] = 

UsefulRingIntersections[i+l].y;
t->x[3] = 01dRingIntersections[r][Index+l].x; t->y[3] = 

OldRinglntersections [r] [Index+1 ] .y;
RIndex[r] += 2; 
t->Ring = r; 
t->Next = NULL;
Add(t);
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delete[] RIndex;
}

}

void Trapez::Add(TrapezType* t) 
/ /A d d  trapesoid to the list.
{TrapezCounter++; 
if (TrapezPointer == NULL)
{TrapezPointer = t; 
TrapezPointerTail = TrapezPointer; 
t->Next = NULL;

}
else
{TrapezPointerTail->Next = t; 

TrapezPointerTail = t; 
t->Next = NULL;

}

void Trapez::CorrectURI(int n)
/ /  Method checks array UsefulRinglntersections because fome 
inconsistencies can
/  /  appear if rings thouch each others. At first URI is sorted regarding ring 
number.
/ / I n  this way, the intersections which belongs to the same ring are gruped. 
Then
/  /  each grupe is sorted again X 
{int i,j;
IntersectionType p;

for (i = 0; i < n-1; i++)
for (j = i+1; j < n; j++)
{if (UsefulRingIntersections[i].Ring > UsefulRingIntersections[j].Ring) 

{p = UsefulRingIntersections[i];
UsefulRingIntersections[i] = UsefulRingIntersections[j]; 
UsefulRingIntersections[j] = p;

}
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}

intr; 
in t il;  
i = il  = 0; 
while (i < n)
{r = UsefnlRingIntersections[i].Ring;

il  = i; 
i++;
while ((UsefulRingIntersections[i].Ring == r) && (i < n)) 
{ i+ + ;}

SortURIByX(il, i);
}

}

void Trapez::SortURIByX(int il, int i2)
/  /  sorts array UsefulRinglntersections regarding x between index il  and i2 
{int i, j;
IntersectionType p;

for (i = il; i < i2-l; i++)
for (j = i+1; j < i2; j++)
{if (UsefulRingIntersections[i].x > UsefulRingIntersections[j].x) 

{p = UsefulRingIntersections[i];
UsefulRingIntersections[i] = UsefulRingIntersections[j]; 
UsefulRinglntersectionsfj] = p;

}
}

int Trapez::WhereToPlace(int i)
/  /  Methods determines if intersection i has a contact with inside area of a 
parcel.
/ /  If it has, it returns NONE, if not, then this points is a common point of two 
rings.
/  /  This can happen in two cases:
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/ /  1. one ring contains another ring
111., one ring thouches another ring (exception is if it thouches it in a 
horizontal
/  /  direction but this is already handeled.
/  /  Functions examines the sorted sequence of intersections.
{if (

(i == 0) | | I I  the first and
(i == IntersectionNoX) | | /  /  the last intersection point has to belongs 

to the loop.
(Intersections^] .Ring == NONE) /  /  Intersection belongs to the main

loop
)

return NONE;

if ( (hitersections[i-1].Ring == NONE) | | (Intersections[i+l].Ring == NONE)
)

return NONE; / /  Firts neighbouring (left or right) point belongs to 
the loop

/* Points of the rings can be placed on a common horizontal line segment. 
Then

we find the first intersection which does not belongs to the line 
segment
V

if (Intersections[i] .Type == HORIZONTAL_SEGMENT)
{int j = i-1;

while ((Intersections^].Type == HORIZONTAL_SEGMENT) && (j >
0))

B
if (j == 0) return NONE; 
else

if (Equal (Intersections[i].x, Intersections!]'] .x,My Epsilon) == 1) 
return Intersections!]'].Ring;

1

/* Now we are testing, if node belongs to the ring inside ring. We search to 
the
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left and to the ring from the node and cound the number of 
intersections with the outside ring (CounterLeft CounterRingt). If 
both counters are odd then the node is a member of a ring which is 
inside another ring.

*/
/  /  first jump over the intersections with the same ring 
in tb l  = i-1;
while (Intersections[bl].Ring == Intersections[i].Ring) b l—; 

int b2 = i+1;
while (Intersections[b2].Ring == Intersections[i].Ring) b2++;

/  /  then determine if both left and right ring number are the same. If not 
/  /  search further 
int EnclosingRingNo;

if ((EnclosingRingNo = FindEncloseingRing(bl, b2)) == NONE) 
return NONE;

int j;
int LeftCounter = 0; 
int RightCounter = 0;

for (j = 1; j<= b l; j++)
if (Intersections[j].Ring == EnclosingRingNo)
{LeftCounter++;

if (Intersections[j].PNo != NONE) 
LeftCounter++;

}
for (j = IntersectionNoX - 2; j >= b2; j—)

if (Intersections!)].Ring == EnclosingRingNo)
{RightCounter++;

if (Intersections[j].PNo != NONE) 
RightCounter++;

}

if ((Even(LeftCounter) == 1) | | (Even(RightCounter) == 1)) 
return NONE;
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return Intersections[b2].Ring;
}

int Trapez::FindEncloseingRing(int b l, int b2)
/  /  Method finds the enclosing ring of a ring if it exists.
/  /  b l  is the first intersection to the left of treated intersection which does not 
/ /  belongs to the same ring as treated intersection 
/ /  and b2 is the first such intersection to the right 
{if (Intersections[bl].Ring == Intersections[b2].Ring) return 
Intersections [b 1 ] .Ring; 
in ti;
while (b2 < IntersectionNoX)
{i = b l;

while (i > 0)
{if (Intersections[i].Ring == Intersections[b2].Ring) 

return Intersections [i] .Ring;
i- ;

}
b2++;

}
return NONE;

}

void T rapez: :Update01dIntersections()
/ /  Methods stores intersections reagrding their characteristic type. 
{int i, r l ,  j = 0;
int *jr = new int[NoRings+10]; 
for (i = 0; i < NoRings; i++) jr[i] = 0; 
for (i = 0; i < IntersectionNoX; i++)
{int Where = WhereToPlace(i);

if (Where == NONE) /  /  intersection is part of a main loop 
{switch (Intersections[i].Type)

{case LOCAL_MINIMUM: 
break;

case HORIZONTAL_SEGMENT:
{if (LSMaximum(Intersections[i].PNo) == 1)
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{01dIntersections[j] = Intersections^];
j++;

}
break;

}
case LOCAL_MAXIMUM:
{01dIntersections[j] = 01dIntersections[j+l] = Intersections]!]; 

j += 2; 
break;

}
default:
{01dIntersections[j] = Intersections]!];

j++;
}

}
1
else /  /  intersection is part of a ring (it must thouch the ring or 

/  /  be placed inside it
{

Fill01dRingIntersections(01dRingIntersections, i, Where, jr); 
Fill01dRingIntersections(01dRingIntersections, i, 

Intersections[i].Ring, jr);
goto ne;

}

if ( (rl = Intersections[i].Ring) != NONE) / /  ring has been reached 
Fill01dRingIntersections(01dRingIntersections, i, r l ,  jr); 
n e :;

}
delete jr;

}

void Trapez: :Fill01dRingIntersections(IntersectionType** 
OldRinglntersections, int i, int r l ,  int* jr)
/ /  Methods stores intersections which has been inside rings for next iteration 
{switch (Intersections [i] .Type)
{case LOCAL_MINIMUM: break;

case HORIZONTAL_SEGMENT:
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{if (LSMaximum(Intersections[i].PNo) == 1)
{01dRingIntersections[rl][jr[rl]] = Intersections^]; 
jr[rl]++;

}
break;

}
case LOCAL_MAXIMUM:
{if (LSMaximum(Intersections[i].PNo) == 1)

{01dRingIntersections[rl][jr[rl]] = 
01dRingIntersections[rl][jr[rl]+l] = Intersections^]; 

jr[rl] += 2;
}
break;

}
default:
{01dRingIntersections[rl][jr[rl]] = Intersections^]; 

jr[rl]++;
}

}
}

void Trapez::MakeTrapezodiation() 
//C rea te  trapezoids.
{int il,i2 ;

int i = 0;

while (ProcessedPointsIndex < Total) 
{Points WithTheSameY (il, i2); 
CalculateIntersections(il, i2); 
SortIntersectionsX();
MakeTrapezs();
UpdateOldlntersectionsO;

}
i+ + ;

}
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void Trapez:: OptimizeTrapezs()
/ /  Developed by Olga Zaporojets
/ /  Method finds and joins those trapezs, which can be joined to reduce the 
number
/ / o f  trapezs. There is, of course no need to compare each trapezs which 
each.
/  /  We have to check only those trapezs which share a common scanning line 
{TrapezType *tl, *t2, *t3; 
int flag, JoinCode, JoinFlag, ExitF; 
double ERROR_ACCUM;

#ifdef shareware 
/ /  SharewareMessage(); 

#endif

char* out= "CPUreduction"; 
MyCPUTime output; 
ERROR_ACCUM =0; 

output.Start(); 
t l  = TrapezPointer; 
while (tl != NULL)
{t2 = tl->Next; 

t3 = tl;

int WorkFlag = 1;
while ((t2 != NULL) && (WorkFlag == 1)) / /  jump over the 

horisontal trapezs
{if (t2->y[0] == tl->y[0])

{t3 = t2;
t2 = t2->Next;

}
else
WorkFlag = 0;

}
/  /  we are in the next row 
flag = FALSE;
JoinFlag = 0;

while ((t2 != NULL) && (flag == FALSE))
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{if ((JoinCode = TrapezsCanBeJoined(tl, t2, ERROR_ACCUM)) != 0)
{

ErasedT rapezoids++;
JoinFlag = 1; 
if (JoinCode == 1)
{tl->x[l] = t2->x[l];

tl->y[l] = t2->y[l]; 
tl->x[2] = t2->x[2]; 
tl->y[2] = t2->y[2];

}
t3->Next = t2->Next; 
delete t2; 

t2 = t3->Next;
/ / /  move in the beginning of the next row 
ExitF = 0;
while ((t2 != NULL) && (ExitF == 0))
{if (Equal(t2->y[l], tl->y[l],MyEpsilon) == 1)
{t3 = t2; 
t2 = t2->Next;

}
else ExitF = 1;

}
}
else
{ERROR_ACCUM = 0;
/ / th e re  is no reduction at this point, reset ERROR_ACCUM 

t3 = t2;
t2 = t2->Next; 

if (t2 != NULL)
if (Equal(t2->y[l], t3->y[l],MyEpsilon) == 0)
{if (JoinFlag == 1)

JoinFlag = 0; 
else
flag = TRUE;

}
}

}
t l  = tl->Next; / /  else we try to find next touching trapez
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output.Stop();
output. WriteEllapsedCPUT oFile(out);

void Trapez::PrintListOfTrapezoids()
/  /P rin t trapezoids.
{TrapezType *t = TrapezPointer; 
int i, k; 
k=0;
FILE* f = fopen("Atrapezoid.txt", "wt"); 
while (t != NULL)
{
for (i = 0; i < 4; i++)
fprintf(f, "%#20.151f, %#20.151f \n", t->x[i], t->y[i]); 

fprintf(f, An");
fprintf(f, "ring %d \n", t->Ring);
fprintf(f,"------------------------ \n");

k++;
t = t->Next;

}
k=k/2;
fprintf(f, "Number of polygons is: % i", k); 
fclose(f);

}

int Trapez::TrapezsCanBeJoined(TrapezType* t l ,  TrapezType* t2, double 
&ERROR_ACCUM)
/ /  Developed by Olga Zaporojets
/ /  Method determines if two trapezs which has a common y coordinate, can 
be joined
/  /  It returns 0 if they cannot be joined and a code which determines the way, 
how
/  /  trapezs can be joined.
{
/ /  indicate that merge may occure, extra area is added to the 
ERROR_ACCUM global variable 
/ / t o  keep track of combined changes.
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Point p i , p2;
double SI, S2, d_left, d_right; 
double error_delta =0.0001; 
double error_threshold = 0.001;
/  /  Case 1, no data topology modification. All vertices match and edges lay on 
the same lines
if (tl->Ring != t2->Ring) return 0;
/ / i f  this is different rings, don't reduce
if (((Equal(tl->x[l], t2->x[0], MyEpsilon)==l) && (Equal(tl->x[2],t2->x[3], 
MyEpsilon)==l)))
//d isplacem ent d =0; case 1 or 2

{
if (((Collinear2D(tl->x[0], tl->y[0], tl->x[l], tl->y[l], t2->x[l],t2->y[l], 

MyEpsilon)) &&
(Collinear2D(tl->x[2], tl->y[2], tl->x[3], tl->y[3], t2->x[2], t2->y[2], 

MyEpsilon))))
{ //edges are colinear, so this is case 1 

return 1;
}

/ /e ls e  edges are not colinear, this is case 2
if ((tl->Ring != -1) | | (t2->Ring != -1)) return 0; / /n o t a loop
//F IN D  FUNCTION POINT ON LINE,
//c rea te  reduction lines and check if no area is cut off 
Line2D* 11 = new Line2D (t2->x[l], t2->y[l], tl->x[0], tl->y[0]);
Line2D* 12 = new Line2D (t2->x[2], t2->y[2], tl->x[3], tl->y[3]);
11- >PointOnLine(tl->y[l], pi);
12- >PointOnLine(tl->y[l], p2);
if ((pl.x < tl->x[l]) | | (p2.x < tl->x[2])) return 0; / /a r e a  would be cut 
/  /  else calculate area error Sadd = l/2*(x2yl + y2xl):
/ / le f t  side:
51 = ((tl->x[l] - tl->x[0])*(t2->y[l] - t2->y[0])+(t2->x[l] - t2->x[0])*(tl- 

>y[l] " tl-  >y[0]))/2;
/ /r ig h t  side:
52 = ((tl->x[3] - tl->x[2])*(t2->y[l] - t2->y[0])+(tl->x[3] - tl->x[2])*(tl- 

>y[l]-tl->y[0]))/2;
/  /  check if added area is violated:
ERROR_ACCUM = ERROR_ACCUM + SI + S2; 
if (ERROR_ACCUM > error_threshold) return 0; 
return 1;
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} //e n d  of case 2 and 1 
else

{
if ((tl->Ring != -1) | | (t2->Ring != -1)) return 0; / /n o t a loop 
/  /  there is displacement d, it is case 3 
/  /  check if displacement is small enouth 
if (((tl->x[l]-t2->x[0]) > error_delta) | | ((tl->x[2]-t2->x[3])> 

error_delta)) return 0;
//c rea te  reduction lines and check if no area is cut off 
Line2D* 11 = new Line2D (t2->x[l], t2->y[l], tl->x[0], tl->y[0]); 
Line2D* 12 = new Line2D (t2->x[2], t2->y[2], tl->x[3], tl->y[3]);
11- >PointOnLine(tl->y[l]/ pi);
12- >PointOnLine(tl->y[l], p2);
if ((pl.x < tl->x[l]) | | (p2.x < tl->x[2])) return 0; / /  there is a cut off 

from t l
if ((pl.x < t2->x[0]) | | (p2.x < t2->x[3])) return 0; / /  there is a cut off 

from t2
/  /calculate d on the left and on the right 
d_left = tl->x[l] - t2->x[0]; 
d_right = tl->x[2] - t2->x[3];
/ /  calculate area error Sadd = l/2*(x2yl + xly2 + dy l + dy2) 
//le fts id e :
51 = ((tl->x[l] - tl->x[0])*(t2->y[l] - t2->y[0])+(t2->x[l] - t2->x[0])*(tl- 

>y[l] - tl->y[0]) + d_left*(t2->y[l] - t2->y[0]) + d_left*(tl->y[l] - tl->y[0]))/2;
/ /r ig h t  side:
52 = ((tl->x[3] - tl->x[2])*(t2->y[l] - t2->y[0])+(tl->x[3] - tl->x[2])*(tl- 

>y[l] - tl->y[0]) + d_right*(t2->y[l] - t2->y[0]) + d_right*(tl->y[l] - tl-  
>y[0]))/2;

/ /  check if added area is violated:
ERROR.ACCUM = ERROR_ACCUM + SI + S2; 
if (ERROR_ACCUM > error_threshold) return 0; 
return 1;

} //en d  of case 3
}

void Trapez::Trapezoidation() 
{if (Total > 3)

{



MyCPUTime* BigDataTime = new MyCPUTime(); 
BigDataTime->Start();

DetermineEpsilion();
SortByY();

DetermineNeighbours();
InitOldBuffer ();

MakeTrapezodiation();

BigDataTime->Stop();
BigDataTime->WriteEllapsedCPUToFile("BigData.CPU");

}
else {}; / /  nothing to do

}

void Trapez::EraseWindow(HDC hdc, HWND hWnd)
/  /  Used for GUI output 
{RECT r;
HBRUSH hbrOld, hbr;

DWORD dwBackColor = GetBkColor(hdc); 
hbr = CreateSolidBrush(dwBackColor); 
hbrOld = (HBRUSH)SelectObject(hdc, hbr);
GetClientRect( hWnd, (LPRECT) & r );
FillRect(hdc, &r, hbr);
SelectObject(hdc, hbrOld);
DeleteObject(hbrOld);

}
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