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UNIQUENESS OF SOLUTIONS TO DIRICHLET PROBLEMS
FOR GENERALIZED LAVRENT’EV-BITSADZE EQUATIONS
WITH A FRACTIONAL DERIVATIVE

OLESYA KH. MASAEVA

Communicated by Mokhtar Kirane

ABSTRACT. In this article we study the uniqueness of the solution of the Dirich-
let problem for an equation of Lavrent’ev-Bitsadze type with a fractional deriv-
ative. The equation studied becomes the regular Lavrent’ev-Bitsadze equation
when the order of the derivative is an integer.

1. INTRODUCTION

We consider the equation

0%u 5 Ou

Lu= — — — =
Y= 02 % 9y

0, 0<~vy<1, (1.1)

in the domain Q = {(z,y) : 0 <z <r,a <y < g}, a < 0,8 > 0, where Dgy is the
Riemann-Liouville differential operator of order « [8, p. 37].

In [2 3] the Dirichlet problem for second order partial differential equations with
a Caputo derivative has been studied. The equations become the Laplace equation
and a vibrating string equation when the order of differentiation in the equation is
an integer. The Dirichlet problem for the Lavrent’ev-Bitsadze equation has been
studied in [I], @].

Here with the abc method a uniqueness of the solution to the Dirichlet problem is
proved for equation in the domain 2. Uniqueness conditions for the solution
of the problem has been found in terms of the upper limits for the zeros of a
Mittag-Leffler type function.

Let us set Q- = QN {y < 0}, Q7 = QN {y > 0}. Let the function u = u(z,y)
be such that u € CY(Q), uzy € C(QY), Uga, DG, uy € C(Q™ UQT), satisfying
at all points (z,y) € @~ UQ™T be a regular solution of equation in the domain
Q.
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2. DIRICHLET PROBLEM
We try to find a regular solution to (|1.1)), satisfying the conditions
w(0,y) =vo(y), ulry)=1vp(y), a<y<p, (2.1)
u(z, ) = po(x), ulz,B)=pg(x), 0<z<r (2.2)

where ¥o(y), ¥r(y), va(z), ps(z) are given functions. We consider the Mittag-
Leffler type function

oo k
V4
=N 2 p>0peC 2.3
) ];)F(pk—l—,u) p>0,p (2.3)

It is known that this function can have only a finite number of real zeros for all
p <2, pueC [ p. 372). Also it is known that the set of real zeros of (2.3)) is not
empty for 1 < p <2, p=p and p = 1; see [0].

3. UNIQUENESS
Theorem 3.1. Let t; = max{t e R: E, ,(—t) =0}, to = max{t e R: £, ;(—t) =
0}, v=v+1, h = max{t1,t2} and
/811
2= 7r2
Then the homogeneous Dirichlet problem , (2.1), (2.2) has only the trivial
solution.

(3.1)

Proof. First, we consider equation (1.1]) in Q7. According to the definition of the

Riemann-Liouville fractional derivative in Q™ equation (1.1]) can be written as

0 0
DIt —u=0. (3.2)

Lu:uxx+ay Oy dy

Let
W) = (1= ) Bysrye1 Qnly—)*), A= (55)7,

be the solution to the Cauchy problem

dw™ (y) _
D3, 4w () =0,
lim D}~ 1w (v) =1, w (a)=0.

y—a Y dy
We multiply (3.2) by v(z,y) = w™ (y) sin (vVA,z) and rewrite it as

v—1
— vy Dy, Uy

0 0 _
VLU = Vigy + v—D7 T ——u = (Vg — Uy )y + Wgy + (ngy 1uy) 0y

dy % oy

Then we consider the integral

—e
/ / vLudzx dy
:/ (Vg — uvy) I " Ed —|—/ / Uy AT dy (3.3)
a+te
+/€ [vDg, "y z_a;da:—/ / vy DY, tuy du dy,

Y
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where € > 0. - -
Since u(z,y) € C*(Q), we have Dg;luy € C(Q2). Therefore, in (3.3) we can
make ¢ tend to zero

0
0 / [0(r, y)ua (r, y) — ulr, y)va(r, y)]dy

_/ [U(O,y)uz(O,y)—u(O,y)vw(Qy)]dy—i—/r/ UV, dT dy ",
e 0 Ja 3.4

+ /OT (v(m,O)[D&Jluy]yzo - U(CE,a)[Dggluy]y:a> dx

r 0
,/0 / vy DY, uy du dy.

Since v|{z—0yu{e=r}u{y=a} = 0 and u|{z—o}u{z=r} = 0 from (3.4) we obtain

T 0 r r 0
0= / / Uy do dy + / v(z, 0)[Da’y_1uy]y:0dx — / / vyDgy_luydx dy.
0 [eY 0 0 a

Applying here the formula of fractional integration by parts [8, p. 34],

d d
/ h(t)Dlyg(t)dt = / oD% (1), § <0, (3.5)

we can obtain

0= / /0 UVag AT dy+/rv(x,0)[pgy—1uy]yzodx_/r /0 wy DY vy da dy. (3.6)
0 0 0 Ja
We substitute the expression
“yDlglvy = (uDZ?vy)y —u—DY v,
in (3.6), then we have
o:/r /Ou(vm+Dgyvy)dxdy+/’“U(x’o)[Dgy_luy}y_odgc
0 e 0

_/ u(x,O)[Dgglvy]yzodx—&—/ u(x7a)[Dg;1vy]y:adw.
0 0

Hence, as u(x, o) = 0 and vy, + D}, v, = 0, we have

/ v(x,0)[DY,  uyly—odx — / u(x,0)[DY, vyly—odz = 0. (3.7)
0 0
In OF we have 5 5
—1
Lu = ugy — @Dgy 8—yu (3.8)

Denote by wt(y) = (8 — y)"Ey41,4+1 (—Aa(B — y)?™!) the solution of the Cauchy
problem

+ _
+
lim D1 W) gy =0
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Multiplying (3.8) by v(z,y) = w¥(y)sin (v/A,z), we obtain

vLu = (Vg — UV )y + UVzy — (ngy_luy)y + vyDgy_luy.

B—e
/ / v Lu dx dy
B—e
:/ (vuz—uvm x "q / / UV dx dy
1>

r—e 5 B—e
_/ (ngy*Iu )y “dx +/ / vy D, Y, dz dy.
€

Making ¢ tend to zero, then in view of u(0,y) = u(r,y) =0, v(0,y) = v(r,y) =0,
v(z, ) =0, and formula (3.5)), we have

r ﬁ T r 16
0= / / UV dx dy+/ v(x,O)[Dggluy]yzodx—i—/ / uyDg;lvy dz dy. (3.9)
o Jo 0 o Jo

Taking into account the equality uyDgglvy = (uDg;vy)y - U%Dgglvy, and using

. we obtain
/ / Wy dz dy + / o, 03t lyod + / (e, B)(D o)y

0
_/ (wao)[Dgy odf—/ / ufDA’ 1vyalsrdy:O.
0

Hence, Dﬁyvy (%Dg;lvy, u(x, 3) = 0, which lead us to

Then

r B T
/ / u(vge + D}, vy ) da dy + / v(z, O)[Dg;luy]yzodm
0o Jo 0

(3.10)
7/0 u(z, 0)[D5y vyly=odz = 0.
Note that vz, + Dgyvy = 0. Therefore, using ({3.10)), we obtain
/ v(x,0)[Dg, "uyly—odz — / u(x,O)[Dg;lvy]yzoda: =0. (3.11)
0 0

Considering that the function u(x,y) satisfies the conditions

Jim u(e,y) = lim u(e,y),  lim D, tuy = lim D

—0+ y,

using (3.7) and (3.11)), one finds the values of the functions u(zx, 0) and [Dgy_luy]yzo.
Now let us consider the system of the algebraic equations

d
w™ (0)uy — [Dgyld—w Jy=ouo = 0,
(3.12)

d
1
-[D3, & wty—ouo + w (0)u, =0,

where

T T
ug = / w(z,0)sin(y/ Apz)de, uy,= / [Dg;luy]yzo sin(v/ Ap2)dx
0 0
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From the definition of the Riemann-Liouville fractional integro-differentiation, it
follows that J
dfywi = Déwa

Using the formula of fractional integro-differentiation for the Mittag-Leffler type
function,

Dyt - 5|M_1Ep’u()“t —sl?) =t - 5|M_6_1Ep’u75(>‘|t —slf), d€R,
w>0,if 6 ¢ NU{0}, and p € R, if 6 € NU {0}, then we find that

4 d
D}, 1@W+ = =By (B -y)"),
o d
Dy, 1@“’ =E, 11 (Anly—a)?).

Then the determinant of has the form
A= B"Eyii i1 (A7) Eypn (Anla| ™)
+ | Eyp1 441 Anla™) Byprn (287, n=1,2,...
Let us show that A # 0. Since
Eyiia(Mala™) >0, By (Aalal™h) >0,
the existence of roots of the equation A = 0 depends on

Eypiy41 (=271, Bypa (=X 871,

Next, we use the asymptotic expansion (2.3 at p € (1,2). As |z| — oo, [B, p. 219],
the following formula holds
Ep u(z) = 1/p2(1=m/pez'? szk/r(u = pk) + 0 (l7"71), (3.13)
k=1
for |arg z| < m. When z € R and z — —o0,

Bpu(2) = = 2% /D — pk) + O(|1 1), (3.14)
k=1

From (3.13)), we obtain the expansions

1 T4
Eyiia(Anla ™) = ——er el o (2!
'Y+171( Tb|a‘ ) 7+1e + ( n )7

1

1
. 4T B
Erarsa OQulal ™) = 220 a1 40 (07).

By (3.14) at m = 2 and m = 1 we have the representations

W LAY e
E —An =——=r—— n)s
Y4141 (= A7) T =) +0 (A?)
E @) = P oz
y+1,1(=An 8 )—er (A2
Taking into account I'(—7) < 0, I'(—y — 1) > 0, we obtain
] Byt 41 (=2 By (Ao ) = oo,

Jim By (Anfa ™ B 11 (A7) = —oo.
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Therefore,
E’y+1,—y+1(_/\nﬁﬂy—i_l)E'y—i-l,l(An|alfy+l) < 07 )\nﬁ’ﬁ_l > tla
Eyiiyr1(Qula ™ E (A7) <0, ABT >t
Next by (3.1)), for \,87** > h, n =1,2,..., we have A < 0, n = 1,2,.... Thus,
from (3.12), it follows that

up =0, wu,=0.

(3.15)
Since the functions {sin(**x)} form a dense system, using (3.15)) we conclude that

[Dgy_luy]yzo = 07 u(x,O) = 07 S (0,7").

(3.16)
With this result we prove that Q~u = 0. We have
ulu = (utiy )y — u2 + (uDggjluy)y - uyDg;1%7 (z,y) e Q.
We consider the integral

T—& —&

/ / uLu dx dy
£ a+e
r—e p—¢ —€ T=r—c
= _/ / (u? + uyDa’y_luy) dx dy + / (uuy) dy
€ a+te a+e r=¢
r—e L y=—c¢
+ uDJ " u ‘ dz,
| i)
As Lu = 0, we obtain
r—e p—¢ L —€ T=r—=¢
_ / / (u? + uy Dy, " uy) da dy + / (uuy) dy
€ a+te ate =€
r—e L y=—¢
DI~ ‘ da = 0,
+ /5 (’LL Oy uy) y=ate €z
Making ¢ tend to zero we get
r 0
/ / (u2 + uyDgy_luy) drdy = 0. (3.17)
0 o

Since the fractional integral operator is positive [4],

r 0
/0 / uy DY, gy dz dy > 0,

then from (3.17) it follows that u, = 0, u, = 0. So, u = const in Q™. Namely, due

to u € C(£2), we can obtain u(z,y) = 0 for all (z,y) € Q.
In OF, we have

_ _ 0 0 _ 2
1 1 1 _ 1
Dgy uy - Lu = %(ungy uy) — um—Dgy Uy — 2 1—(Dgy uy)

1
or dy (3.18)
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Integrating (3.18)), we obtain
A —1 A —1
/ g (r,y) Do,y (r,y) dy — / uz(0,y)Dg, uy(0,y) dy

//uz 0y Yty da dy — /(Dgyl )2’y:5dx (3.19)
Dy, tw)?|  dw=o.
+ QA ( y) y=0 €L

Since u(0,y) = u(r,y) = 0, we have Dg;luy(r, y) = Dg;luy(o,y) = 0. So from
(3.19) it follows that

r B 1 T
_ / / uxDa’;luyz dx dy — f/ (Dgy—luyf‘ dx = 0. (3.20)
0o Jo 2.Jo y=06

We have

Yy
(1 —7)
Substituting the above formula in (3.20]), we obtain

y—1 — DY — DY
Dg,, “uye = Dy, uz — ug (z,0) = Dg, u.

/T /ﬂ Uy Dy, ug dx dy + % /T(Dgy—luy)2 dx = 0. (3.21)
o Jo 0 y=06
Assume f = Dj,u,. Then
-1
oo f+ Y (v) %Dgy_lum. (3.22)

From [7], we know that lim, .o Dgy_lugC = I'(y) limy—o y* us(z,y). Therefore, as
ugz(x,0) = 0, then lim, g Dg;lux = 0. So from (3.22), it follows that u, = Dy, f.

Thereby,
/ / uy D, uy dv dy = / / fDyg, fdxdy >0,

accordingly, (3.21) makes possible the conclusion u, = 0, i.e. u = u(y). Then
according to (1.1)), we have

Dgyuy =0.
Applying the operator Dy, 7 to both sides of this equation, we have

v—1
- 1
Dy, D, uy = uy — () o lim Dgy uy = 0.

Considering the first formula of (3.16), we have u, = 0. Consequently, u(z,y) =
const. As u from the class C(Q7) and u|pg+ = 0, then u(z,y) = 0 V(x,y) € QF.
Thus, u(z,y) = 0 for all points (z,y) € Q. This proves the theorem. a

Acknowledgements. The author would like to thank the referees for their valu-
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