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DARBOUX TRANSFORMATION FOR THE DISCRETE
SCHRODINGER EQUATION

TUNCAY AKTOSUN, ABDON E. CHOQUE-RIVERO, VASSILIS G. PAPANICOLAOU

ABSTRACT. The discrete Schrodinger equation on a half-line lattice with the
Dirichlet boundary condition is considered when the potential is real valued,
is summable, and has a finite first moment. The Darboux transformation
formulas are derived from first principles showing how the potential and the
wave function change when a bound state is added to or removed from the
discrete spectrum of the corresponding Schrédinger operator without changing
the continuous spectrum. This is done by explicitly evaluating the change in
the spectral density when a bound state is added or removed and also by
determining how the continuous part of the spectral density changes. The
theory presented is illustrated with some explicit examples.

1. INTRODUCTION

Our goal in this article is to analyze the Darboux transformation for the dis-
crete Schrodinger equation on the half-line lattice with the Dirichlet boundary
condition. In the Darboux transformation, the continuous part of the correspond-
ing Schrodinger operator is unchanged and only the discrete part of the spectrum
is changed by adding or removing a finite number of discrete eigenvalues to the
spectrum. We can view the process of adding or removing discrete eigenvalues as
changing the “unperturbed” potential and the “unperturbed” wavefunction into
the “perturbed” potential and the “perturbed” wavefunction, respectively. Hence,
our goal is to present the Darboux transformation formulas at the potential level
and at the wavefunction level, by expressing the change in the potential and in the
wavefunction in terms of quantities related to the perturbation and the unperturbed
quantities.

The Darboux transformation was termed to honor the work of French mathe-
matician Gaston Darboux [9], and it is useful for various reasons. For example, it
allows us to produce explicit solutions to differential or difference equations by per-
turbing an already known explicit solution. As another example, we can mention
that Darboux transformations for certain nonlinear partial differential equations or
nonlinear partial differential-difference equations yield so-called soliton solutions,
which have important applications [I6] in wave propagation of electromagnetic
waves and surface water waves. We refer the reader to the existing literature
[, 10, [16] 17, 18] on the wide applications of Darboux transformation, and in our
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paper we concentrate on the mathematical aspects of the Darboux transformation
for the Schrodinger equation on the half-line lattice with the Dirichlet boundary
condition.

On the half-line lattice the discrete Schrodinger equation is given by

_wnJrl +2¢n_'l/)n71 +Vn¢n :Awnv TLZ ]-7 (]—1)

where A is the spectral parameter, n is the spacial independent variable taking
positive integer values, and the subscripts are used to denote the dependence on n.
Thus, 1, denotes the value of the wavefunction at n and V,, denotes the value of
the potential at n. The point n = 0 corresponds to the boundary. We remark that
(1.1) is the analog of the half-line Schrodinger equation

—y'+V(x)y =X, x>0, (1.2)

where A is the spectral parameter, the prime denotes the xz-derivative, v is the
wavefunction, and V(z) is the potential. The point z = 0 corresponds to the
boundary. In analogy to , we can use to describe [19] the behavior of a
quantum mechanical particle on a half-line lattice (such as a crystal) experiencing
the force at each lattice point n resulting from the potential value V,.

In order to determine the spectrum of the corresponding Schrédinger operator
related to and to identify a square-summable solution in n as an eigenfunction,
we must impose a boundary condition on square-summable wavefunctions at n = 0.
In applications related to quantum mechanics, it is appropriate to use the Dirichlet
boundary condition at x = 0 for , ie.

$(0) =0,
and hence we impose the Dirichlet boundary condition at n = 0 for (1.1)), i.e.
o = 0. (1.3)

The spectrum of the corresponding operator for ((1.2)) is well understood when the
potential V() is real valued and satisfies the so-called L}-condition [5, 10} [11] given
by

/Ooo do (14 2) |V (2)] < +00. (1.4)

Similarly, we assume that V,, is real valued and satisfies the analog of (|1.4) given
by

D> (1+n) Vo] < +o0. (1.5)
n=1
Clearly, (|1.5)) is equivalent to
> n V| < +o0. (1.6)
n=1

The class of real-valued potentials V () satisfying is usually known [5, [0, [11]
as the Faddeev class. Similarly, we refer to the set of real-valued potentials V,
satisfying 7 or equivalently , as the Faddeev class. The existence of the
first moments in and assures that the number of discrete eigenvalues for
each of the corresponding Schrodinger operators is finite.

Our paper is organized as follows. In Section [2]we present the appropriate prelim-
inaries involving the Jost solution and the regular solution to ; the Schrodinger
operator, the scattering states, the bound states, the Jost function, the scattering
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matrix, the phase shift, and the spectral density associated with and (L.3);
the exceptional and generic cases that are related to A = 0 and A = 4 for the
Schrodinger operator; Levinson’s theorem; and the Gel’fand-Levitan procedure as-
sociated with and . In Section [3| we present the Darboux transformation
formulas when a bound state is added to the spectrum of the Schrodinger opera-
tor. In Theorem [3.I] we prove that the matrix inverses appearing in the relevant
Darboux transformation formulas in Section B are well defined. In Section E we
present the Darboux transformation formulas when a bound state is removed from
the spectrum of the Schrédinger operator. In Theorem [£.1]we prove that the matrix
inverses appearing in the relevant Darboux transformation formulas in Section []
are well defined. Finally, in Section [5| we present some illustrative examples for
better understanding of the results introduced and also make a contrast between
and for certain results [2] related to compactly-supported potentials.

The most relevant reference for our paper is [3], and in the current paper we use
the notation used in [3]. The results in [3] were presented under the assumption
that the potential is compactly supported, i.e. V;, = 0 for n > b for some positive
integer b. In Section 2] we present the corresponding results when V,, belongs to the
Faddeev class and does not necessarily have a compact support. Another relevant
reference for our paper is the classic work by Case and Kac [4]. Even though
[] is more related to the Jacobi operator and not to the Schrédinger operator,
the treatment of the spectral density in [4] is useful. We remark that the Darboux
transformation results related to the Jacobi operators do not reduce to the Darboux
transformation results for the Schrodinger operator. Hence, in our paper we use
the Gel’fand-Levitan theory [4, 5], 2] and an appropriate formula for the spectral
density for the corresponding Schréodinger operator with bound states, and we derive
the Darboux transformation from first principles.

2. PRELIMINARIES

In this section, associated with and we introduce various quantities
such as the Jost solution f,,, the regular solution ¢,,, the Jost function fj, the scat-
tering matrix S, and the spectral measure dp. We also present the basic properties
of such quantities relevant to our analysis of Darboux transformations.

When the potential in (1.1) belongs to the Faddeev class, the Schrédinger op-
erator corresponding to and to the Dirichlet boundary condition is a
selfadjoint operator acting on the class of square-summable functions. The spec-
trum of the corresponding operator is well understood [3, 4, [7, [8] T3] 14} [15]. Let us
use R to denote the real axis (—oo, +00). The continuous spectrum corresponds to
A € ]0,4], and the discrete spectrum consists of at most a finite number of discrete
eigenvalues in R\ [0,4], i.e. A € (—00,0) U (4, +00). For each A-value in the inter-
val (0,4), there are two linearly independent solutions to . There is only one
linearly independent solution satisfying both and (L.3), and such a solution is
usually identified as a physical solution. Let us assume that the discrete spectrum
consists of N eigenvalues given by {\s}Y;, where N = 0 corresponds to the ab-
sence of the discrete spectrum. When A = ), there is only one linearly independent
square-summable solution satisfying and . For each of A =0 and \ =4,
there exists one linearly independent solution satisfying and , and such
a solution may be either bounded in n or it may grow as O(n) as n — +oo. For
A = 0, one says that the exceptional case occurs if a solution satisfying and
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is bounded in n and that the generic case occurs if a solution satisfying
and is not bounded in n. Similarly, for A = 4, the exceptional case occurs if a
solution satisfying and is bounded in n and that the generic case occurs
if a solution satisfying and is not bounded in n.

In quantum mechanics, it is customary to interpret the discrete spectrum as-
sociated with and as the bound states. Hence, the \s-values in the
discrete spectrum can be called the bound-state energies and the corresponding
square-summable solutions can be called bound-state wavefunctions. The solutions
to when A € (0,4) can be referred to as scattering solutions.

Associated with (|1.1), instead of A, it is convenient at times to use another
spectral parameter related to A, usually denoted by z, given by

z:zl—g-l—%\/)\()\—@, (2.1)

where the square root is used to denote the principal branch of the complex square-
root function. Note that (2.1)) yields

A=2—z—2z1 (2.2)

Let us use T for the unit circle |z] = 1 in the complex plane C, T* for the upper
portion of T given by z = €% with 6 € (0,7), and T+ for the closure of T+ given
by z = ¢ with 6 € [0,7]. Under the transformation from A € C to z € C, the real
interval A € (0,4) is mapped to z € T, the real half line A € (—oc0,0) is mapped
to the real interval z € (0, 1), the real interval A € (4,+00) is mapped to the real
interval z € (—1,0), the point A = 0 is mapped to z = 1, and the point A = 4 is
mapped to z = —1. Using it is convenient to write as

Yps1 +Yno1=(z+2" 1+ V) bn, n>1 (2.3)

Let us now consider certain particular solutions to (L.1). A relevant solution
to or equivalently to is the so-called regular solution ¢,, satisfying the
initial conditions

Yo =0, ¢ =1 (2.4)
From and it follows that ¢,, remains unchanged if we replace z with z~!
in @,.

The result presented in the following theorem is already known and its proof

is omitted. A proof in our own notation can be obtained as in the proof of [3]
Theorem 2.6].

Theorem 2.1. Assume that the potential V,, belongs to the Faddeev class. Then,
forn > 1 the reqular solution p, to (L.1)) with the initial values (2.4)) is a polynomial
i X of degree n — 1 and is given by

n—1
on =Y BnjN, (2.5)
j=0

where, for each fized positive integer n, the set of coefficients {an}?:_ol are real
valued and uniquely determined by the ordered set {Vi,Va,...,Vi_1} of potential
values. In particular, we have
n—1
Bn(n—l) = (_1)71—17 Bn(n—2) = (_1)n—2 [2(77’ - 1) + Z V‘]:| :
j=1
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We remark that Theorem [2.I] holds even when the potential V;, does not belong
to the Faddeev class. If the potential values are allowed to be complex, then the
coefficients B,,; appearing in are complex valued.

From it is clear that the A-domain of ¢, is the entire complex A-plane.
With the help of , we can conclude that the z-domain of ¢,, corresponds to
the punctured complex z-plane with the point z = 0 removed.

Another relevant solution to or equivalently to is the Jost solution f,
satisfying the asymptotic condition

fao=2"[140(1)], n— +4oc. (2.6)

On the unit circle z € T we have z~! = 2z*, where we use an asterisk to denote

complex conjugation. Let us use f,(z) to denote the value of f,, when z € T+.

From ([2.3) and (2.6) it follows that we have
fa(z™h) = fu(2") = ful2)", 2 €TH, (2.7)

and hence the domain of f,(z) can be extended from z € T+ to z € T by using
(2.7). We will see in Theorem that, when the potential V,, belongs to the
Faddeev class, the domain of f,(z) can be extended from z € T to the unit disc
|z] < 1.

Let us define g,, as the quantity f, but by replacing z by 2! there, i.e.

gn(2) == fu(z71), z€T. (2.8)

From it follows that the domain of g, (z) is originally given as z € T and it
can be extended to |z| > 1 when the potential V,, in belongs to the Faddeev
class. With the help of we see that g, is also a solution to , and from
(2.6) it follows that g, satisfies the asymptotic condition

gn=2""[1+0(1)], n— +oo. (2.9)

The quantity fp, which is obtained from the Jost solution f,, with n = 0, is
known as the Jost function. Let us remark that the Jost solution f,, is determined
by the potential V;, alone and is unaffected by the choice of the Dirichlet boundary
condition . On the other hand, the Dirichlet boundary condition is used
when naming fy as the Jost function. For a non-Dirichlet boundary condition
the Jost function is not defined as fy and it corresponds to an appropriate linear
combination of fy and f;. In this paper we do not deal with the Jost function in
the non-Dirichlet case.

The Jost function fy(z) is used to define the scattering matrix S as

_ fo(®)" .
SG) = 2ET (2.10)

Even though S(z) is scalar valued, it is customary to refer to it as the scattering

matrix. With the help of (2.7 and (2.8]) we see that we can write (2.10]) in various
equivalent forms such as
go(2) _ folz™h)

@ =50 " h@

Let us write the Jost function in the polar form as

fo(z) = fo(2)|e 7?3, 2 €T, (2.12)

zeT. (2.11)
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The real-valued quantity ¢(z) appearing in (2.12)) is usually called the phase shift.
Its domain consists of z € T. Using (2.7) in (2.12) we see that the phase shift
satisfies

d(z7h) = p(2*) = —p(2), z€T. (2.13)
From we see that the scattering matrix can be expressed in terms of the
phase shift as
S(z) =9 2 eT. (2.14)
The relevant properties of the Jost solution f, and the Jost function fy are
summarized in the following theorem.

Theorem 2.2. Assume that the potential V,, in (1.1) belongs to the Faddeev class.
Then:

(a) For each fized n > 0, the Jost solution f, satisfying (1.1) and (2.6) is analytic
in z in |z| <1 and continuous in z in |z| < 1. It has the representation

fn(z) = Z Kpm 2™, |Z‘ <1, (2.15)

where each double-indexed coefficient K., is real valued and uniquely determined
by the potential values in the ordered set {Vy,}o_, 1. In particular, we have

00
Knn =1, Kn(nJrl) = Z Vja Kn(n+2) = Z ‘/j Vi. (216)
Jj=n+1 n+1<j<li<4+o0

(b) The Jost function fo(z) is analytic in |z| < 1 and continuous in |z| < 1. It has
the representation

folz) =Y Kom 2™, |2 <1, (2.17)
m=0

where each coefficient Ko, s uniquely determined by the set {V,}52, of potential
values. In particular, we have

Ko=1, Kn=Y1V;, Kp= Y VW (2.18)
j=1

1<j<I<+00

(c) For each fized n > 0, the solution g, (z) satisfying (1.1) and (2.9) is analytic in
|z| > 1 and continuous in |z| > 1. It has the representation

oo
gn(2) = Z Kpmz™™, 2| > 1L
m=n

(d) The solutions f, and g, are linearly independent when z € T\ {—1,1}. In
particular, the regular solution @, appearing in (2.4) can be expressed in terms of
fn and g, as

Pn = (QOfn = fo gn) . (2'19)

z—2z"1
Proof. Tt is enough to prove the analyticity in |z| < 1 and the continuity in |z| <
1 for f,(z). The remaining results in (a)-(c) can be obtained with the help of
[3, Proposition 2.4]. Note that is the same as [3, (2.42)] and the linear
independence of f, and g, is established by using and . Let us then
prove the aforementioned analyticity and continuity. In fact, for the analyticity
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in |z| < 1, it is enough to use the summability in (1.5) without the need for the
first moment of the potential. The first moment i is needed to prove the
continuity at z = +1. We can prove the analyticity by modifying the proof of [10]
Lemma 1] so that it is applicable to the discrete Schrodinger equation. We only
provide the key steps and let the reader work out the details. Letting

My, =2~ " fn, (2.20)
from ([2.6)) we see that
my, =1+0(1), n— 4oo,

for each fixed z € T. With the help of (2.3)) and (2.20) we see that m,, satisfies the
discrete equation given by

1 > .
my =14+ —— j:znjﬂ (2207 — 1) V;my. (2.21)

Note that (2.21)) is the discrete analog of the second displayed formula on [I0, p.
130]. Next we solve (2.21)) iteratively by letting

mn(2) = nglp)(z), |z] < 1, (2.22)
p=0
where we have defined
m9(z) =1, |z <1, (2.23)
1 - ; _
mP)(z) := pom— Z (ZQ(J_") -1) ij§p 1)(z), 2| <1, p>1. (2.24)
j=n-+1

Each iterate m ") (2) is analytic in |z| < 1, and the left-hand side of (2.22)) is analytic
in |z| < 1 if we can show that the series on the right-hand side of (2.22)) converges
uniformly in every compact subset of |z| < 1. When |z| < 1, we have

|220-") — 1] <2, j>n+1. (2.25)
Furthermore, from (|1.5) we have

DVl IVl < +oo. (2.26)
j=n+1 j=1

The uniform convergence is established by using the estimates in and .
Hence, m,,(z) is analytic in |z| < 1 for each fixed nonnegative integer n. From
it then follows that f,(z) is analytic in |2| < 1 for each fixed n > 0. In
order to prove the continuity of m,(z) in |z| < 1, we need to show that each iterate
m!P )(z) is continuous in |z| < 1 and that the series in converges absolutely
in |z] < 1. The factor z — z~! appearing in the denominator of becomes
troublesome at z = +1. As a remedy, we use the identity
220G-n) _ 525—2n _ J 1

1 — ,
k=

(=)

From (2.27) it follows that for |z] < 1 we have

220-n) _q
‘ﬁ‘gj—n, j>n+l. (2.28)
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With the help of (L.5), (2.23), (2.24), and (2.28), one establishes the uniform con-
vergence in |z| < 1 for the series on the right-hand side of . Furthermore,
with the help of and we establish the continuity of each iterate m® ) (2)
in |z| < 1. Then, it follows that m,(z) appearing on the left-hand side is
continuous in |z| < 1. Finally, from it follows that f,(z) is continuous in
|z] <1 for each fixed value of n. O

Let us remark that, from (2.17) and (2.18) we see that the value of the Jost
function fy(z) at z =0 is given by

fo(0) = 1. (2.29)
From the second equality of (2.16) it follows that
Vo = K(n—l)n - Kn(n+1)a n>1.

The results in following theorem clarifies the generic and exceptional cases en-
countered at the endpoints of the continuous spectrum, i.e. at A =0 and \ = 4.

Theorem 2.3. Assume that the potential V,, in belongs to the Faddeev class.
Let X and z be the spectral parameters appearing in and , respectively,
and let @, and f, be the corresponding regular solution and the Jost solution to
(1.1) appearing in and (2.6, respectively. Let fo be the corresponding Jost
function. Then:

(a) The Jost function fo(z) is nonzero when z € T \ {—1,1}.

(b) At A =0, or equivalently at z = 1, the reqular solution @, either grows linearly
mn asn — +o0o, which corresponds to the generic case, or it is bounded in n,
which corresponds to the exceptional case. Hence, X = 0 never corresponds to a
bound state for with the Dirichlet boundary condition . In the generic

case, fo #0 at z = 1. In the exceptional case, fy has a simple zero at z = 1.

(c) At X\ =4, or equivalently at z = —1, the regular solution ¢,, generically grows
linearly in n as n — 400, and in the exceptional case the regular solution , is
bounded in n. Hence, A\ = 4 never corresponds to a bound state for with the
Dirichlet boundary condition . In the generic case we have fo # 0 at z = —1.
In the exceptional case, fo has a simple zero at z = —1.

Proof. The proofs (b) and (c) can be obtained as in the proof of [3, Theorem 2.5].
The proof of (a) can be given as follows. Assume, on the contrary, that fo(2)
vanished at some point z = zy, where zg is located on the unit circle T and zy # +1.
From and it follows that fo(z9) = 0 implies that go(z9) = 0. Using these
values in we would then get ¢, = 0 for any positive integer n when z = 2.
On the other hand, by the second equality in we know that ¢; must be equal
to 1 when z = 2. This contradiction shows that fy cannot vanish on the unit
circle, except perhaps at z = £1. Il

The following theorem shows that the Jost function fo(z) cannot vanish at any
z-value inside the unit circle when the imaginary part of that z-value is nonzero.

Theorem 2.4. Assume that the potential V, appearing in (1.1) belongs to the
Faddeev class. Let z be the spectral parameter appearing in, fn(z) be the
corresponding Jost solution appearing in , and fo(z) be the corresponding
Jost function appearing in . Then, fo(z) # 0 for any z satisfying |z| < 1 with
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the imaginary part Im[z] is nonzero. The zeros of fo(z) in the interior of the unit
circle can only occur when z € (—1,0) U (0,1).

Proof. From (2.29) we see that fo(0) = 1, and hence it is enough to prove that
fo(z) # 0 when |z| < 1 with 2z; # 0, where we use the decomposition z := zg +
i z1, with zg and 27 denoting the real and imaginary parts of z, respectively. For
simplicity, let us use f,, to denote f,,(z). Since f,, satisfies (2.3)) we have
ot faci=(GE+2 4+ V,) fo, n>1 (2.30)

Taking the complex conjugate of both sides of (2.30) and using the fact that V,, is
real, we obtain

fom i =+ E) T V] fr, 21 (2.31)
Let us multiply both sides of (2.30) with f;¥ and multiply both sides of (2.31]) with
fn and subtract the resulting equations side by side. This yields

f: fn-i-l +f;: fn—l - f:;-&-l fn - f;:—l fn

2.32
=lz—2" 42z =)l n>1 (2:32)
Note that 1
IMfﬂ:h% ,}z —— (2.33)
ZR t 121 2R T 21
We have
z—2" 4+ 27— (297 = 2iIm[2] + 20 Im[z 1], (2.34)
and using (2.33) in ([2.34]) we obtain
* —1 ) —1 . . 21
_ — Y 9
z—2"+z (z%) 121 lzﬁ—i—z%’
or equivalently
2 2
-1
z—2 2t (297 :2izlw (2.35)

2 . 2
R T4
Let us take the summation over n on both sides of (2.32) and use (2.35) in the
resulting summation, which yields

Z [f; fn+1 - f:—l fn] + Z [f: fn—l - f:-i—l fn]
n=1

n=1

I L 2
=22 55— | fnl”
Zg T 21

(2.36)

n=1
When |z| < 1, the two series on the left-hand side of (2.36) are both telescoping,
and using (2.6)) in (2.36]) we obtain

—fo fi+ fifo=—2ixz

oo

Sl (2.37)

When |z] < 1 with z1 # 0, the right-hand side of cannot vanish unless
fu(z) = 0 for n > 1. However, because of we cannot have f,(z) = 0 for
all n > 1 at such a z-value. Thus, the right-hand side of cannot be zero
for any z-value satisfying |z| < 1 with z; # 0. On the other hand, if we had
fo(z) = 0 for some z-value satisfying |z| < 1 with 21 # 0, then we would also have
fo(2)* = 0 at the same z-value, and hence we would have the left-hand side of
vanishing at that z-value. This contradiction proves that fy(z) # 0 for any

1|2
|22
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z-value satisfying |z| < 1 with 21 # 0. Since we have already seen that f,(0) # 0,
we conclude that the zeros of fy(z) in the interior of the unit circle can only occur
when z € (—1,0) U (0, 1). O

In the next theorem, we summarize the facts relevant to the bound states of
with the Dirichlet boundary condition (L.3). Recall that the bound states
correspond to the A-values at which has square-summable solutions satisfying
the boundary condition .

Theorem 2.5. Assume that the potential V, in (1.1) belongs to the Faddeev class.
Let A and z be the spectral parameters appearing i and , respectively, and
let fr, pn, and fo be the corresponding Jost solution appearing in (2.6)), the reqular
solution appearing in , and the Jost function appearing in respectively,
Then:

(a) A bound state can only occur when X € (—00,0) or A € (4,+00). Equivalently,
a bound state can only occur when z € (—1,0) or z € (0,1).

(b) At a bound state, @, and f, are both real valued for every n > 1. At a bound
state, py, and f, are linearly dependent and each is square summable in n.

(¢) At a bound state the Jost function fo has a simple zero in X and in z. At a
bound state the value of the Jost solution at n = 1 cannot vanish, i.e. f1 # 0 at a
bound state.

(d) The number of bound states, denoted by N, is finite. In particular, we have
N =0 when V,, =0.

Proof. The proofs for (a)-(c) can be obtained by slightly modifying the proof of
[3, Theorem 2.5] as follows. At a bound state, must have a square-summable
solution satisfying the Dirichlet boundary condition . Note that has two
linearly independent solutions, and only one of those two linearly independent so-
lutions can satisfy . We know from the first equality in that the regular
solution ¢,, appearing in satisfies (|1.3). Thus, any bound-state solution to
must be linearly dependent on ¢,,. Since the corresponding Schrodinger oper-
ator is selfadjoint, the bound states can only occur when the spectral parameter A is
real. From we know that the A-values in the interval A € (0,4) correspond to
the z-values on T, the upper portion of the unit circle T. For such z-values, from
and we conclude that neither of the two linearly independent solutions
fn and g, can vanish as n — 400, where we recall that g, is the solution appearing
in (2.8). Furthermore, by (b) and (c) of Theorem [2.3] we know that neither A = 0
nor A = 4 can correspond to a bound state. Thus, the bound states can only occur
when A\ € (—00,0) or A € (4, 4+00). Equivalently, with the help of we conclude
that a bound state can only occur when z € (—1,0) or z € (0,1). This completes
the proof of (a). Let us now prove (b). From Theorem [2.1| we know that the coef-
ficients B,,; appearing in are real valued, and hen implies that at any
A-value in the interval A € (—o00,0) or A € (4, +00) the corresponding ¢, is real val-
ued for every m > 1. Similarly, we know from Theorem [2.2|(a) that the coefficients
K., appearing in are real valued, and hence mplies that f,, for every
n > 1 is real valued at any z-value occurring in z € (—1,0) U (0,1). In the proof of
(a) we have already indicated the linear dependence of ¢,, and f,, and we have also
indicated that their square integrability follows from the definition of a bound-state
solution. Thus, the proof of (b) is complete. Let us now turn to the proof of (c).
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This follows by proceeding as in [3 (2.67)—(2.69)] and hence by concluding that
at a bound state the Jost function fy must have a simple zero in A and a simple
zero in z and that f; cannot vanish at a bound state. This concludes the proof of
(c). Let us now prove (d). The finiteness of the number of bound states can be
proved as follows. From Theorem [2.2| we know that fy(z) is analytic in |z| < 1 and
continuous in |z| < 1. From we know that fp(0) = 1. Furthermore, from (a)
and (c) above we know that the bound states can only occur at the zeros of fy(z)
when z € (—1,0) U (0,1) and such zeros are simple. Thus, the bound-state zeros of
fo(z) could only accumulate at z = £1. On the other hand, Theorem indicates
that fo(z) can at most have simple zeros at z = 1. Thus, fo(z) is analytic in
z € (—1,1) with no accumulation points in z € [—1,1]. Consequently, the number
of bound-state zeros of fo(z) must be finite. O

For further elaborations on the finiteness of the number of bound states, we refer
the reader to [7, 8] and the references therein.

Let us assume that the bound states occur at A = A\ for s = 1,...,N. Let
us also assume that the corresponding z,-values are obtained via using , and
hence the bound states occur at z = z5 for s=1,..., N. From we see that

Ae=2—2,—2;", s=1,...,N. (2.38)
From Theorem b) we know that ¢, (As) is real valued and the quantity Cj

defined as N
= (Z sOn()\s)Q)il/Q, s=1,...,N, (2.39)
n=1

is a finite nonzero number. It is appropriate to refer to the positive number Cy as
the Gel’fand-Levitan norming constant at A = A;. Thus, the quantity Cse, (As) is
a normalized bound-state solution to at the bound state A = Ag. Similarly,
from Theorem [2.5(b) we know that f, (z) is real valued and the quantity c, defined
as

s 1= (ifn(zs)z)il/{ s=1,...,N, (2.40)
n=1

is a finite nonzero number. It is appropriate to refer to the positive number c,
as the Marchenko norming constant at z = z;. Thus, the quantity csf(zs) is a
normalized bound-state solution to (1.1f) at the bound state z = z;. We then get

C? lonN))? = A [fulzs)]?, s=1,...,N. (2.41)

Using the second equality of (2.4) in (2.41]) we see that the Gel’fand-Levitan norm-
ing constant Cs and the Marchenko norming constant c, are related to each other
as

C? = [fi(z)]>, s=1,...,N. (2.42)
Let us use a circle above a quantrty to emphasize that it corresponds to the
trivial potential V,, = 0 in . Hence, ¢,, denotes the regular solution, fn is the

Jost solution, g, is related to fn as in ., fo is the Jost function, and S is the
scattering matrix. We have [3]

) ° _ _—n o
f’ﬂ_z7 gn—Z I @n— —1 nZl,

fol2) =1, Golz)=1, S(z)=
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Let us use dp to denote the spectral density corresponding to the Schrodinger
equation with the Dirichlet boundary condition . The spectral density is
normalized, i.e. its integral over the real-\ axis is equal to one. Let us use dp to
denote the spectral density when the potential is zero. From [3, (4.1)] we have

0, A <0,
. 1
dp = o VAA =N AN, 0< A <4, (2.43)
Y3
0, A> 4.

From we see that, when the potential is zero, the discrete part of the spectral
measure, i.e. the part corresponding to R\ [0,4] is zero. Thus, the continuous part
of the spectral density in has its integral over A € [0, 4] equal to one. Using
in (2.43)), we can express [3] the continuous part of dj in terms of z as

s _ 1,1z T
dp = 2m,(z z ) o z e Tt

where we recall that T+ denotes the closure of the upper portion of the unit circle
T.
In the absence of bound states, the spectral density dp associated with (1.1]) and
(1.3) is given by
dp
TF T N2 A € [07 4]7
dp = { [fo(2)]? (2.44)
0, A eR\0,4],
where we recall that A € [0,4] corresponds to z € T+. Thus, the discrete part of the
spectral density dp is zero and the continuous part of the spectral density is obtained
by dividing dp by the absolute square of the Jost function fy(z). When there are N
bound states at A = A\g with the corresponding Gel’fand-Levitan norming constants
Cs appearing in (2.39), one can evaluate the spectral density dp as

1 — N 2 o
< %8:1 CS > dp = A c [0’4]7
dp = [T, 22 /lfo(2)] (2.45)
SN L CZE(N = A,) dA, AeR\[0,4],

where fy(z) is the corresponding Jost function and each zs corresponds to g via
([2-38). We remark that A € [0,4] in (2.45)) corresponds to z € T+. Note that, in
the absence of bound states, i.e. when N = 0, the spectral density given in
reduces to the expression given in . In the evaluation of we have used
the facts that

N N
dp =1, / dp=Y» C2 / dp=1-Y C2 (2.46)
/,\eR AER\[0,4] 522:1 A€[0,4] ;

With the help of (2.46) we see that the first line of (2.45) yields
dp N

2

—_ = 2

/)\6[0,4] | fo(2)[? kl;[l g

In order to understand the Darboux transformation, we need to establish the

Gel’fand-Levitan formalism related to (L.1) and (1.3). Let V;, and V,, be the un-

perturbed and perturbed potentials, respectively. Let ¢, and ¢, be the respective
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corresponding regular solutions, and let dp and dp be the respective corresponding
spectral densities. From Theorem [2.1]it follows that the set {¢;}}_, forms a basis
for polynomials in A of degree n — 1, and hence we can write

- ©Pn,, n = 17
Pn = 1 (2.47)
Pn + Zmzl Apm POm, N> 2,

where A,,, are some double-indexed real coefficients to be determined. Let us
define the double-indexed real-valued scalars G,,,, as

Grm = / ©n [dp — dp] om. (2.48)
AER

We already have [3, 4] the orthonormality

/ Pn dp Pm = 6nm7 (249)
AER

with d,,, denoting the Kronecker delta. Proceeding as in [3, (4.13)—(4.17)] we
obtain the Gel'fand-Levitan system

n—1
Apm + Gom + Y ApjGim =0, 1<m<n. (2.50)
j=1

Analogous to [3l, (2.84)], we obtain
Vn Vo= A(n+1)n - An(n—l)a n > ]-7 (251)

with the understanding that A,y = 0.
For each integer n > 2, let G,,—1 be the (n—1) x (n—1) matrix whose (k,l)-entry
is equal to Gy evaluated as in (2.48)), i.e.

G11 G12 e Gi(n-2) Gi(n-1)
Ga1 G2 e Gan—2) Ga(n—1)
Goii=| : : ; . (2.52)
Gin-21 Gmn-22 "+ Gm-2)n-2) Gmn-2)(n-1)
Gn-1)1 Gm-12 "+ Gu-pm-20 Gu-1)n-1)

From ([2.48) and (2.52)) we see that G,_1 is a real symmetric matrix. For each
integer n > 2, we can write the Gel’fand-Levitan system (2.50]) in the matrix form
as

Anl Gnl
An2 Gn2
(Infl + Gnl) - - ) (253)
An(n—2) Gn(n—2)
An(nfl) Gn(nfl)

where I,,_1 is the (n — 1) x (n — 1) identity matrix. Let g,,—1 be the column vector
with (n — 1) components appearing on the right-hand side of (2.53)), i.e.

gn—1 = [Gnl GnQ o Gn(n72) C;’n(nfl)]]L ) (254)
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where the dagger denotes the matrix adjoint. Using (2.54) in (2.53]) we obtain

Anl
An2
: = —(In-1+Gno1) ' gt (2.55)
An(n—2)
An(nfl)
Thus, A, can be explicitly expressed in terms of the coefficients of G,,_1 as

Apn = =10 (1,1 +Gp_1) ' gu1, 1<m<n, (2.56)

where 1,, is the column vector with (n — 1) components with all the entries being
zero except for the mth entry being one. Note that the right-hand side of (2.56)
contains a binomial form for a matrix inverse. Using [0}, (15) on p. 12], the binomial
form in (2.56) can be expressed as a ratio of two determinants, yielding

O iiﬂ

En—1 (Infl + anl)
det[[n_l + Gn—l] ’

where the matrix in the numerator is a block matrix of size n x n. Using in

and we obtain ¢,, and V,, in terms of the unperturbed quantities.
Let us refer to the data set {\,,Cs}Y ;, which consists of all the bound-state
energies and the corresponding Gel’fand-Levitan norming constants given in
5.10)

det
Anm =

1<m<n, (2.57)

as the bound-state data set. In general, the scattering matrix S(z) defined in (
and the bound-state data set are independent. This is because the domain of S(z)
consists of the unit circle z € T and the bound-state energies correspond to the z4-
values inside the unit circle. Let us consider the case where the nontrivial potential
V,, is compactly supported, i.e. when V,, = 0 for n > b and V}, # 0 for some positive
integer b. Thus, we use b to signify the compact support of V,, given by {1,2,...,b}.
For such potentials, it is known [3] that S(z) has a meromorphic extension from
z € T to the region |z|] < 1 and the z,-values correspond to the poles of S(z)
in |z| < 1. Furthermore, for such potentials the corresponding Cs-values can be
determined [3] in terms of certain residues evaluated at the z-values. In general,
without a compact support, the values of z, and Cs cannot be determined from the
scattering matrix S(z). On the other hand, even without a compact support, when
the potential V,, belongs to the Faddeev class, the scattering matrix corresponding
and contains some information related to the number of bound states N.
This result is known as Levinson’s theorem, and mathematically it can be viewed
as an argument principle related to the integral of the logarithmic derivative of the
scattering matrix along the unit circle T in the complex z-plane.

In the next theorem, we present Levinson’s theorem associated with and
(1.3). For this purpose it is appropriate to introduce the constants py and p_ as

L 1) fO(l) = 07
fg = { ) £0 (2.58)

_ {1’ fo(=1) = 8’ (2.59)
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where we recall that fo(2) is the Jost function appearing in (2.12)). Let us elaborate
on and . From Theorem b), we know that py = 1 if we have the
exceptional case at z = 1 and we have p; = 0 if we have the generic case at z = 1.
Similarly, from and Theorem [2.3(c) we conclude that u— =1 if we have the
exceptional case at z = —1 and we have y_ = 0 if we have the generic case at
z=—1.

Let At acting on a function of z denote the change in that function when the
z-value moves along the unit circle T once in the counterclockwise direction in
the sense of the Cauchy principal value. By the sense of the Cauchy principal
value, we mean that in the evaluation of the change by using an integral along
T, we interpret the corresponding integral as a Cauchy principal value. In the
theorem given below, that amounts to integrating along the unit circle z = ¢* for
6 € (0F,m—0")U(r+07F,2r —0") because the only singularities for the integrand
may occur at z =1 or z = —1.

Theorem 2.6. Assume that the potential V,, appearing in (1.1|) belongs to the Fad-
deev class. Let fo(z) appearing in (2.12), S(z) appearing i, @(2z) appearing
n , and N appearing in the respective Jost function, the scattering
matriz, the phase shift, and the number of bound states corresponding to and
. Let At denote the change when the z-value moves along the unit circle T
once in the counterclockwise direction in the sense of the Cauchy principal value.
We then have the following:

(a) The change in the phase shift ¢(z) when z moves along T in the counterclockwise
direction once is given by

Ax[p(2)] = =7 2N + py + p], (2.60)

where py and p— are the constants defined in (2.58) and (2.59), respectively.
(b) The change in the phase shift ¢(z) when z moves along T from z = 1 to

z = —1 1is given by

A [p(=)] = —m [N + Bty “7‘} . (2.61)

(c) The change in the argument of S(z) when z moves along TT from z = 1 to
z = —1 is given by

A+ [arg[S(2)]] = =7 [2N + py + p—]. (2.62)

(d) The change in the argument of fo(z) when z moves along TY from z = 1 to
z = —1 s given by

A [arglfo(2)]] = m [N+ BF 4 £ (2.63)
Proof. From Theorem [2.2b) we know that fy is analytic in |z] < 1 and continuous
in |z| < 1. Thus, fy has no singularities in |z| < 1. On the other hand, from
Theorem [2.4) and Theorem [2.5{c) we know that the only zeros of f; in |z| < 1 occur
at the bound states, those zeros are simple and can only occur when z € (—1,0) or
z € (0, 1), the number of such zeros is finite, and we use N to denote the nonnegative
integer specifying the number of bound states. From Theorem [2.3] we know that
the only zeros of fy on z € T may occur at z = %1, such zeros are simple, and
the number of such zeros is equal to 4 + p—. Applying the argument principle to
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fo(z) along the unit circle, we see that the change in the argument of fo(z) as z
moves along the unit circle once in the counterclockwise direction is given by

Ar [arglfo())] = 2 [N + 5 + £ ] (2.61)

where we have used the fact that the contribution from a zero of fo Jonz e Tis
half of the contrlbutlon from a zero in |z| < 1. Using (2.12) and we obtain

2.60). Using (2.13)) in D we obtain 1- Usmg i in 1 we obtain
2.62). Using (2.13) in 1 we have (2.63] [l

3. DARBOUX TRANSFORMATION IN ADDING A BOUND STATE

In this section we determine the effect of adding a bound state to the discrete
spectrum of the Schrodinger operator corresponding to and . For clarity,
we use the notation V,,(N) for V,, to indicate that the Schrodinger operator contains
exactly N bound states occurring at A = A\g for s = 1,..., N. Hence, we order
the bound states by assuming that we start with the potential V,(0) containing no
bound states. Then, we add one bound state at A = A\; with some Gel’fand-Levitan
norming constant and obtain the potential V;,(1). Next, we add one bound state
at A = Ao with some Gel’fand-Levitan norming constant and obtain the potential
V,.(2). Continuing in this manner we recursively add all the bound states with A\ =
As for s =1,..., N and obtain the potential V,,(IN). Note that establishes a
one-to-one correspondence between A; and zs, and hence we can equivalently say
that the bound states of the potential V,,(N) occur at z = z; for s =1,...,N. We
remark that the ordering of Ag is completely arbitrary and that ordering does not
have to have A; in an ascending or descending order.

To the “unperturbed” potential V;,(IN) let us add one bound state at A\ = Ay41
with the Gel’fand-Levitan norming constant Cn11. We then get the “perturbed”
potential V,,(N + 1). Equivalently stated, we add one bound states at z = zyy1,
where zx 1 and Ay are related to each other via and zy11 € (—1,0)U(0, 1).
The Jost function for the unperturbed problem is denoted by fy(z; N) and the Jost
function for the perturbed problem is denoted by fo(z; N + 1). In the analog of
adding a bound state for the Schrodinger equation , we can uniquely express
the perturbed Jost function in terms of the unperturbed Jost function by requiring
that the absolute value of the Jost function in the continuous spectrum remains
unchanged [5]. However, this is no longer the case for the discrete Schrodinger
equation. Let us elaborate on this matter. We would like fo(z; N + 1) to be
obtained from fy(z; N) via

z

fN+1) = (1- =) Q@) fol= ), | <1, (3.1)

ZN+1
where Q(z) is analytic in |z| < 1, continuous in |z| < 1, and satisfies Q(0) = 1.
The constraints on Q(z) are determined by the fact that both fo(z; N + 1) and
fo(z; N) must be analytic in |z] < 1, continuous in |z| < 1, and take the value of
1 at z = 0, as required by Theorem b). Furthermore, fo(z; N + 1) must have
a simple zero at z = zy41 and fo(z; N) must be nonzero when z = zyy;. The
further requirement

lfo(z; N +1)[ = |fo(z; N)|, z€T, (3.2)
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combined with the maximum modulus principle would yield

(1 S ) Q) =1, |7 <1. (3.3)
ZN+1
The result in would follow from the fact that an analytic function in a bounded
domain must take its maximum modulus value somewhere on the boundary, and it
can be obtained as follows. The left-hand side of is already equal to one at
the interior point z = 0 and hence must hold for all z-values on the unit disk
|z] < 1. On the other hand, is not acceptable because it requires Q(z) to have
a pole at z = zy41, contradicting the requirement that Q(z) is analytic in |z| < 1.
Thus, in adding a bound state, we must use (3.1]) without requiring .
In establishing a Darboux transformation, the choice of Q(z) appearing in
is not unique. We find it convenient to choose a particular Q(z) as

Qz) = ——

= <1. 3.4
s < (3.4

One could argue that the simplest choice Q(z) = 1 would be a better choice than
the one given in (3.4). It turns out that the choice in (3.4) has a few important
advantages over other choices. For example, with the choice of Q(z) given in (3.4)
we obtain

folsi N+ D = 5 Ifo(ss NP, 2 €T, (35)

N+1

which greatly simplifies evaluations involving the spectral density given in (2.45]).
On the other hand, the choice Q(z) = 1 yields

z

2
folzN+DP = 1= ——[ [fo(= NP, z€T,

ZN+1

which hinders evaluations involving the spectral density. Another advantage of the
choice of Q(z) given in is that the pole of Q(z) at z = 1/zx1 can be considered
as a real-valued resonance for the discrete Schrodinger equation , where we
recall that zyy1 € (—1,0) U (0,1). Consider the special case of a compactly-
supported potential, where z = zxny; is a real-valued resonance for V,,(N), i.e.
fo(z; N) has a simple zero at z = 1/zy41. We may then be able to convert that
resonance into a bound state by adding a bound state to V,,(IN) at z = zy41 in
such a way that V,,(N + 1) contains a bound state. We refer the reader to [2]
for the analogous problem for of converting a resonance into a bound state
without affecting the compact support property of the potentials. For the discrete
Schrédinger operator associated with and , in some of the examples in
Section [p| we illustrate converting a resonance into a bound state and determine
how the compact-support property is impacted.

In our paper we exclusively use the choice in in adding a bound state.
Hence, as seen from and (3.4), the Darboux transformation formula for the
Jost function in adding one bound state at z = zy41 with zy11 € (—1,0) U (0,1)
yields

z

ﬁ@N+D(”“)h@N%|4§L (3.6)

1 — ZN+41 %




18 T. AKTOSUN, A. E. CHOQUE-RIVERO, V. G. PAPANICOLAOU EJDE-2019/112

Let S(z; N) and S(z; N + 1) denote the scattering matrices for the unperturbed
and perturbed problems, respectively. From ([2.11) we obtain
foz"5N) foz N +1)
S(zz;N)y=—/——""+, S(xzN+1)=———"+ z€T. 3.7
(% N) o) ( ) Fo N T D) (3.7)
Using (3.6) in (3.7)), after some simplification, we obtain the Darboux transforma-
tion for the scattering matrix as

1— 2
S(z N +1) = (M) S(z;N), »eT. (3.8)
Z — ZN+1
One can directly verify that
1— 2
‘7ZN+1Z‘ :17 ZGT?
Z = ZN+1

and hence, with the help of (2.14)), we see that the Darboux transformation for the
phase shift is given by
) 1_ 5
$(z N +1) = ¢(2;N) — < log (ﬂ) , zeT. (3.9)
2 Z— ZN+1
Next, let us determine the Darboux transformation for the spectral density. Let
dp(\; N) and dp(A\; N +1) denote the unperturbed and perturbed spectral densities,
respectively. From (2.45)) we see that

N 2 .
(1_%5—1@) ap S, Ae0,4],
dp(\;N) = [, 22 /lfo(zN) (3.10)
YL C2H(A = ) dA, AERN\[0,4],
(1—2&10&) dp x e 0.4]
N+1 . 27 2
dp(\;N +1) = 22/ lfo(z N +1) (3.11)
SSMALC26(N — Ay) d), AeR\[0,4],

where we recall that \ € [0,4] corresponds to z € T+. Using (3.5) in (3.11)) we see
that

1-yery  dp
~ 5, A €[0,4],
dp(\;N +1) = [, 22 /lfo(zN)| (3.12)
YA C25(0 = Ay dA, AER\[0,4],

and hence from (3.10)) and (3.12) we obtain the Darboux transformation for the
spectral density as

02
- (NN“)dp(A; N), Ae0.4],
o N +1) —dp(uN) = { \1- N 2 (3.13)
012\,+15()\—)\N+1)d)\7 )\ER\[O,ZH

Our next goal is to determine the Darboux transformation formula for the reg-
ular solution. In other words, we would like to determine the relationship between
©n(A; N) and @, (A; N 4 1), where the former is the regular solution for the unper-
turbed problem and the latter is the regular solution for the perturbed problem.

Let us now use the Gel’fand-Levitan procedure in the special case with V,, (N +1)
denoting V,, and V,, (N) denoting V,,. In that special case dp and dp appearing in
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(2.47) correspond to dp(A; N) and dp(A; N + 1), respectively, appearing on the left-

hand side of (3.13). The unperturbed and perturbed regular solutions ¢,, and @,
appearing in (2.47) correspond to ¢, (A; N) and ¢, (A\; N + 1), respectively. From
the second line of (3.10]) we obtain

[ N N (V) Z a0 V) om0 V). (3.14)
AER\[O 4]
With the help of (2.49)) and (3.14]) we obtain

N
A L PO N) (5 V) = B = 3O a0 N) om0 V), (315)
€[04 o

where we recall that ,,, denotes the Kronecker delta. Using (3.13)) in (2.48) we
obtain

02
G = - (N“> | oniN) o) (V)
Zk 1 A€[0,4]
+ Ot o0 (AN 115 N) @m(An 15 N).
The integral in (3.16) is equal to the right-hand side of (3.15). Thus, from (3.15))
and (3.16)) we obtain

Gnm

(3.16)

( Ci ) CRria i
=— Onm + <) C? 0n(Asi N) om(As; N) (3.17)
N N s 3 3
1- Zk:l CI% 1- Zk:l C}? s=1
+ 012V+1 On(AN+15 N) om(An+15 N).

Having obtained G, as in (3.17) in terms of the unperturbed quantities related
to Vo (IV), one can then use Gy, in (2.52), (2.54), and (2.55) and determine the
values of A,,. One then uses those values of A, in (2.47) and in in order
to determine ¢, (A; N 4+ 1) and V(N + 1), respectively.

Alternatively, in order to obtain ¢, (A; N +1) and V,,(N + 1), we can proceed as
follows. Let us write in terms of the real-valued (N 4 1) x (N + 1) diagonal
matrix Ey and the real-valued column vector &, with IV + 1 entries as

C2
Grm = — N“)(snm+ L EN &m, 3.18
(1—255:10,% €l Ene (3.18)

where we have defined
c?C? cz2C? C3 C?
N:d1ag{ ! J</V+1 o7 2 1\7+1 27"'5 il NN+1270]2V+1}7 (319)
1= Cp 130, Cf 1= G
&= [onON) @aAaiN) o paONiN) @O N]T. (3.20)

We recall that the dagger in can also be replaced by the matrix transpose
since the column vector &, is real valued. From we see that G, is separable
in n and m. Thus, we can solve the Gel’fand-Levitan system explicitly by
seeking A, in the form

Apm = Bl €y 1<m <, (3.21)
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where the column vector 3, has N + 1 components that are to be determined.
Using (3.18) and (3.21)) in (2.50)) we observe that 3 satisfies

2 n—1
B+ ENJrﬂ;rL( (C’N]\—,H)IN+1 +Z§j §]T E'N> =0, (3.22)
j=1

1=k OF
where we recall that Iy1; denotes the (N + 1) x (N + 1) identity matrix. From

(3.22) we obtain

CQ n—1 —1
8= e (Do - (O v + L6 By) L nz2 (629)
1= G j=1
which simplifies to
-y &, )
52:_§L<<3}\715>EK, +Zgjg.> , n>2 (3.24)
1- Zk:l CI% j=1 !
From (3.21)) and (3.24) we see that
1— N+1 CQ -1
- _gjl(<1§02> 1y Zg] ) Emy, 1<m<n.  (3.25)
- k=1

Hence, for n > 2, from (2.51)) and (3.25) we obtain the Darboux transformation at
the potential level as

Va(N +1) - <>s*((l‘zw) +Z@f*>lgn1

1- Zk 1 02
1— ZN+1 02 ; -1 (3'26)
s=1 s E71 al .
€n+1<(1_ZkN_1CI§> N +;§J€j> fn

Since A9 =0, for n = 1, instead of (3.26]) we need to use

1 ZN+1 02 -1
nv e v = -g((oer e ) rad) @ e
Yot CF
which is obtained from by replacing the first term on the right-hand side by
zero and by using n = 1 in the second term. Note that &; ﬂ appearing in is
the (N + 1) x (N + 1) matrix With all entries being equal to one.
Let us remark that ( - contain some binomial forms for the inverse of
a matrix. Using [6l, (15) on p. 12] such binomial forms can be expressed as ratios
of two determinants. For example, we can write the right-hand side of as

num

Anm = ) (328)

den
where we have defined num as the determinant of the (N + 2) x (N + 2) block
matrix given by

0 3

num := det 1— N+1c2 , 3.29)
i (== | I
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and we have defined den as the determinant of the (N + 1) x (N + 1) matrix given
by

1y N+ c?

den := det [(Z) by Z & {T} (3.30)
1 - Zk 1 Cf

The following theorem shows that the matrix inverses appearing in (3.23)—(3.27)

are well deﬁned and hence the Darboux transformation formulas at the potential

level given in and (3.27)) are valid.

Theorem 3.1. Assume that the potential V,, appearing in belongs to the Fad-
deev class and that the discrete Schrodinger operator associated with and
has N bound states with the corresponding Gel’fand-Levitan norming constants Cls
defined in fors=1,...,N. Assume that an additional bound state is added
at X\ = Any1 with the Gel’fand-Levitan norming constant Cny1. Furthermore, as-
sume that ZN+1 C? < 1. Then, the matriz inverse appearing in exists for
any n > 2.

Proof. From we see that En is a diagonal matrix with positive entries, and
hence E&l is also a diagonal matrix with positive entries. Then, from we
see that the matrix whose inverse needs to be established is given by the sum
of a diagonal matrix with positive entries and the matrix E;:ll £€T. Let us now
consider the hermitian form for that sum with any nonzero vector v € CN*!L
Because the first matrix in the summation is diagonal with positive entries, the
corresponding hermitian form is strictly positive. The following argument shows
that the hermitian form for the second matrix in the summation is nonnegative.
This is established by using

*Z@&*v—Z@* Z!

j=1

(3.31)

which shows that the right-hand side must be nonnegative. Thus, the hermitian
form with any nonzero vector v € CN*! associated with the matrix whose inverse
is used in is positive, which proves that the matrix itself is positive and
hence is invertible. Thus, the right-hand side in is well defined when we have

Ntz <1 O

Let us remark that the case ZNH C? = 1 cannot happen, and hence it is not

cons1dered in Theorem This can be seen as follows. If we had ZNH C? =
1, then would 1mp1y that dp(A; N + 1) = 0 for A € [0,4] and hence the
corresponding discrete Schrodinger operator, which is a selfadjoint operator, would
only have the discrete spectrum consisting of a finite number of eigenvalues and
no continuous spectrum. The absence of generalized eigenfunctions as a result of
the absence of the continuous spectrum and the presence of only a finite number
of eigenfunctions related to the discrete spectrum would be incompatible for the
selfadjoint discrete Schrédinger operator. From the spectral theory we know that
the eigenfunctions and the generalized eigenfunctions must form a complete set
acting as an orthogonal basis for the infinite-dimensional space of square-summable
functions on the half-line lattice, and this cannot be done by using only a finite
number of eigenfunctions.
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Let us now evaluate the Darboux transformation for the regular solution. Using

(3.21) in (2.47) we obtain
9071()‘7 N)7 n=1,
on(XN) + B 300 Em pm(NN), 22

As the next proposition shows, the summation term in (3.32) can be written as
a linear combination of ¢, _1(A; N) and ¢, (A\; N). Let us define the real-valued
column vector a;, (M) for n > 1 with N 4+ 1 components as

PnAsN)  @aaiN) Wi N)  pnAaas V)
A=A A— X A— AN A= AN+

Pn(M N +1) = { (3.32)

an(N) = [ (3.33)

Proposition 3.2. Assume that the potential V,,, also denoted by V,,(N), appearing
n belongs to the Faddeev class and the discrete Schrodinger operator corre-
sponding to and has N bound states at A = A\g with s =1,...,N. Let
©n, also denoted by p,(\;N), be the corresponding regular solution appearing in
. Let &, be the real-valued column vector in with N +1 components. We
then have the following:

(a) The summation term in (3.32) can be simplified and we have

n—1

Z fm @m(A§ N) = an()‘) (pnfl()ﬁ N) - an71<)\) (pn()‘; N)’ n > 2’ (334)

where ay,(A) is the real-valued column vector defined in (3.33) with N + 1 compo-
nents.

(b) The (N + 1) x (N + 1) matriz consisting of the summation term in (3.24) can
be simplified and its (k,1)-entry for n > 2 is given by

n—1
(ij @T)
j=1
On-1(Ak; N) ©n(Ai; N) — 00 (Ais N) 0n—1(Ai; N) (3.35)
, k#L
- e — N,
Qon()\k;N)Sbnfl()\k;N)_Sonfl()\k;N)Sbn(Ak;N)a k:lv

where the dot over a quantity denotes the \-derivative of that quantity.

kl

Proof. Since ¢, (A; N) satisfies (|1.1)) we have

Omt1t AN N) +0m1(MN) =24 Vi, = A) om(MN), m>1, (3.36)
@m+1(/\s;N)+§0m—1()‘s;N) = (2+‘/m_>‘s) wm(As;N% m > 1. (337)
Let us multiply (3.36)) by —¢m (As; N) and multiply (3.37)) by ¢, (A; N) and add the

resulting equations and then apply the summation over m from m = 1 tom = n—1.
After some simplifications and using the first equality in (2.4), we obtain

Spn()\sa N) Sonfl(Aa N) - Qpnfl(Asa N) @n(Aa N)
n—1

= (/\ - /\5) Z @m()‘s;N) (Pm()\;N),

m=1



EJDE-2019/112 DARBOUX TRANSFORMATION 23

or equivalently

n—1

Z @m()‘s; N) Wm()ﬂ N)

m=1 (3.38)
_ (pn()\s§N) . . @nfl(AéN) .

= 7)\_)\3 Spnfl()HN) 7)\_)\3 gOn()\7N)

Note that (3.38) corresponds to the sth component of the vector relation given in
3.34). Thus, the proof of (a) is complete. Let us now turn the proof of (b). From
[3:20) and the fact that ¢; is real, we see that the (k,l)-entry of the matrix Q{; is
given by

(66)) 0 = 25 N) (A ). (3.39)
From ([3.38) and (3.39) we see that, when k # [, we have

n—1

n(Ak; NV n—1(Ak; N

(ngﬂn) = e oy - B,k
m=1 kl

yielding the first line of (3.35)). When k = [, we can use the limit A — A4 in (3.38)),
which gives us

n—1
Z @m(/\s;N) @m(/\s§N) = @n()\s;N) Sbn—l()\s;N) - @'n—l(/\s;N) an()\s;N)v
m=1

yielding the second line of (3.35)). O

Using (3.34) in (3.32) we obtain the Darboux transformation for the regular
solution as

B {%(A;N), n=1, (3.40)
[]- - ﬂ;rz anfl()‘)] @n()\, N) + BIL an(>\) (pnfl()\; N)7 n 2 27

where we recall that 3] is the real-valued row vector in (3.24), o, ()) is the real-
valued column vector given in , and &, is the real-valued column vector given
in .

Note that the results presented in this section remain valid when N = 0. In that
case we interpret the summation EkN:1 C? as zero in all the relevant formulas in
this section.

4. DARBOUX TRANSFORMATION IN REMOVING A BOUND STATE

In this section we determine the effect of removing a bound state from the discrete
spectrum of the Schrédinger operator corresponding to and (1.3). For clarity,
we use the notation introduced in Section [} We have the unperturbed potential
V. (N) containing N bound states at A = A; for s =1,..., N. We then remove the
bound state at A = Ay with the Gel’fand-Levitan norming constant Cp in order
to obtain the perturbed potential V;,(IN — 1) containing N — 1 bound states. As in
Section |3] we know from that there is a one-to-one correspondence between
As and zg, and hence we can equivalently say that the bound states of the potential
Vo(N) occur at z = z, for s = 1,..., N, and we remove the bound state at z = zy.
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The Darboux transformation for the Jost function in going from fo(z; N) to
fo(z; N — 1) can be obtained via (3.6) as

s =1 = (225 ) v, <1 (4.1)

Similarly, the Darboux transformation for the scattering matrix in going from
S(z;N) to S(z; N — 1) can be obtained via (3.8)) as

Z—ZN

SN 1) = ) S(N). zeT.

1—2z2yn2

With the help of (3.9) we see that the Darboux transformation for the phase shift
in going from ¢(z; N) to ¢(z; N — 1) can be obtained via (3.9) as

Bz N — 1) = (3 ) + £ log

Let us now determine the Darboux transformation for the spectral density in
going from dp(A; N) to dp(A; N — 1). From (3.10) we see that

1—2zy2\2
ey g
Z—ZN

1— N—-1 CQ ds
( %illj) . Aelod,
dp(\;N —1) = w22 ) fo(z N = 1) (4.2)
SNEC2E(N = N d), AeR\ [0,4].
On the other hand, from (3.5) we have
[fo(z: N = 1)]* = 2% |fo(: N)[?, 2 €T. (4.3)
Using (4.3)) in (4.2)) we obtain
1— N—-1 ~2 o
( %:Vszl Cs) dp 5 A c [0,4]’
dp(\;N —1) = e, 22/ lfo(zN) (4.4)
YL C2 (= M) d, AERN0,4].

We recall that A\ € [0,4] in (#.2) and (#.4) corresponds to z € TF. Thus, from
(3.10) and (4.4) we obtain

Gk .
dp(\; N — 1) —dp(X\; N) = (1 SOl Cg)‘ip(A’N)» A€ 0,4,

—C2,6(A — Ay) dA, AeRN [0,4].

(4.5)

Next, we determine the Darboux transformation for the regular solution in going
from @, (A;N) to @,(A; N — 1). In the Gel'fand-Levitan formalism outlined in

ETD)-(@50), we have
(A N), n=1,

wn()\; A 1) B {Spn()‘; N) + Z;Lz;ll Anm ‘pm()‘; N)7 n =2,
Grm :=/ n(N N) [dp(A N = 1) = dp(X; N)] om (A N), (4.6)
AER

where the constants A, are to be determined from (2.50) by using (4.6]) as input.
In this case, from (2.51) we obtain

Vn(N - 1) - Vn(N) = A(n+1)n - An(n—1)> n>1,
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again with the understanding that A;o = 0. Using (4.5)) in (4.6) we obtain

02
Grm :<N>/ ©n(AN N)dp(A; N) (A N)
1-— Eszl C2) Jaep,a

— CXen(ANi N) om(An; N).
Using (3.15) in (4.7)), after some simplification we obtain

C2
<1zf§_10,% 1fzk102 Z A
_Cj%(l—ziifcs

(4.7)

><Pn(>\N;N) Om(An; N).

N
1=31 G}

(4.8)

Proceeding as in ([3.18)—(3.20) we can write G, given in (4.8)) as

02
Gom = (g)anm + 08 Fx Oy, (4.9)
1= Gk
where Fiy is the N x N diagonal matrix with real entries given by
) _02 02 _CQ 02
FN5:dlag{ INNQ, 2NN27-",
1=30h1 O 1= G

(4.10)

N—-1
—cz_, 0% —C% (1 — X 03)
L= 0 1=

and 6, is the column vector with IV entries given by

On = [en(A;N)  on(A2sN) -+ on(An-1;N) @n(/\N;N)]T' (4.11)

Comparing and we observe that the first N entries of the column
vectors 0, and &, are identical and that £, has an additional (IV 4 1)st entry. As in
Section [3 the quantity G, given in is separable in n and m, and hence the
Gel’fand-Levitan system is explicitly solvable by using the analog of ,
i.e. by letting

)

Apm = 'yn 0, 1<m<n, (4.12)

where the column vector 7, has N components to be determined. Proceeding as

in (3.22)(3.25) we determine ~ as
N— 1 1
1-— C?
%—_m« hBpe )F +§ 0;0 ) : (4.13)

1*Zk 102
From (4.12) and (4.13) we see that
1— N— 1 2
Anm:—eT(( by C)F +Ze 9*) O, 1<m<mn.  (4.14)
1_Zk 1 Ci

The analogs of ([3.28)—(3.30]) also apply in this case. Since the right-hand side of
(4.12) is a binomial for a matrix inverse, we can write A, given in (4.12)) as the
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ratio of two determinants as

0 of
_ N— 1 2
det 1y ((11 hBpe gQ)F +yle, eT)
Ay = _NZ’; 1 . 1<m<n. (4.15)
I_Z 02 n—1 +
det () S ST
1_Zk 1 Ci

As in Proposition m(b ), for n > 2 we can simplify the N x N matrix-valued

quantity Zj 1 (9 9T appearing in (4.13)—(4.15) and find that its (k,)-entry is given
by

(L),

On1 (ki N) 0n(A; N) = 00 (s N) 01 (i3 N) (4.16)
SV , k#I,
= k — Nl

L)On(>\ka]\7)()Onfl()\k:v]V)_()anl()\kyZV)‘)D'rL()‘l’mZV)v k=1L

Let us remark that the matrix in (3.35) has N + 1 rows and N + 1 columns, and
the matrix in (4.16) has N rows and N columns. If we delete the (N + 1)st row
and (N + 1)st column from the matrix in (3.35) we obtain the matrix in (4.16).

The analog of ([3.26)) in this case is obtained by using (4.14) in (2.51)), and for
n > 2 we obtain the Darboux transformation in going from V,,(N) to V, (N — 1)

given by

V(N —1) — V,,(N) :9*((11_5: jCC§>F +Za ) 1 On—1

1— NICQ
—9L+1<( 2 2)F +Ze 9*) 0.
1_Zk 1 Gk

For n =1, instead of (4.17) we use the analog of (3.27) and get
1 N—-1 02 -1
Vi(N —1) = Vi(N) = -6} (<Z>F§1 + 6, 91) 0;. (4.18)
1- Zk 1 Cf
The analog of (3.32)) in this case is

(4.17)

on (A N), n=1,
N N) + 9 S0 O i (A N), n>2,

m=1

on( NN —1) = {

and the analog of ([3.40) in this case is

©n(AN), n=1,
[1 =78 enm1N)]en(X N) + 4 €n(A) @n_1 (A N), n>2,

where €, (\) for n > 1 is the column vector with N components and it is defined as

on(MN —1) = {

en(A;N)  pn(Ag; N) on(AN—1; N)  on(AN; N) f
" . . (41
en() { X\ X A vt Xy (4.19)
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We remark that the column vector €,()\) given in has N components, and
the column vector a,,(\) given in has N + 1 components. In fact, €,(\) is
obtained from a,,(A) by omitting the last entry.

In the following theorem we present the analog of the result presented in Theo-
rem i.e. we prove that the matrix inverse appearing in is well defined and
hence the Darboux transformation formulas at the potential level given in
and are valid. Let us remark that the matrix in whose inverse is
established in Theorem consists of the sum of a diagonal matrix with positive
entries and a nonnegative hermitian matrix. In contrast, the matrix in whose
inverse is established in the next theorem consists of the sum of a diagonal matrix
with negative entries and a nonnegative hermitian matrix.

Theorem 4.1. Assume that the potential V,, appearing in belongs to the
Faddeev class and that the discrete Schrédinger operator associated with and
has N bound states with the corresponding Gel’fand-Levitan norming constants
Cy defined in fors=1,...,N. Assume that the bound state at A = AN with
the Gel’fand-Levitan norming constant C is removed from the discrete spectrum.
Furthermore, assume that Ziv:l C? < 1. Then, the matriz inverse appearing in
(4.14)) exists for any n > 2.

Proof. As a result of the assumption Eivzl C? < 1, from (4.10) we observe that
each entry of the diagonal matrix Fiy given in (4.10) is negative and hence Fiy !
is also a diagonal matrix with negative entries. We can write the matrix in (4.14)

whose inverse is to be established as —Hy + Z?;ll 0; 9;, where we have defined

1— N-1 CQ
Hy = — (Zsﬁl . )FNl. (4.20)
1=2 1 CF
Using (4.10) in (4.20) we obtain
11— N e 11 1 1
Hy = (M> diag {7 — .. } (4.21)

2 20 20 T e N—1
Cx SR CNno1 1=, C?

We let

_N 2
NP S DR L %%—1 G (4.22)

and observe that ey is a positive number as a result of Zévzl C? < 1. Note that

2 = 2 = 2 : :
Cx Cx Cx
With the help of (4.22)) and (4.23) we write (4.21) as
. l+ey 1+en l+ey 1
e —d { , 7} 4.24
e I I Sl o
Let v be a nonzero vector in CV given by
U1

UN+1
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The hermitian form of Hy with the vector v given in (4.25) is obtained from (4.23))
as

2 2 2 2

i _ (A+en)ul®  (T+en) v (Lt+en)fonal® | Jon]
vV'Hyv = et + . (4.26)

ct 3 CRa C%

Since ey > 0, from (4.26)) we obtain
2 2 2 2
i 1] | vl lov—1* | Jon]
vHyv > + 4+ 4 (4.27)
C? C3 C%_, C3

We evaluate the hermitian form of Z" ! 0; GT with the vector v given in (4.25) as
in and obtain

n—1 n—1
il Z 6, 9;0 = Z |9;v|2. (4.28)
j=1 j=1
From (4.28)) we conclude that
n—1 [ele
ol Z 0; 0;11 < Z |0}’U|2, (4.29)
j=1 j=1

where we have used the fact that we cannot have 0;1) = 0 for all j > n. Using

(4.11)) and (4.25) we obtain
0T v = 0j(\; N) o1+ @;(Aas N)va + -+ 0;(Avi N) v, (4.30)
where we recall that each entry in (4.11) is real. From (4.30) we obtain

N
010> = "o N o> +2 > 0, N) (s N) v v (4.31)
=1

1=k<I<N

Since the discrete Schrodinger operator associated with ((1.1]) and (1.3)) is selfadjoint,
its eigenvectors corresponding to distinct eigenvalues are orthogonal and we have

Z% M N) 9y (A N) =0, kAL (4.32)
Thus, with the help of -, from we obtain

o0 N [eS)

PBIULEEDS (Zsﬁj(kk;N)Q) [ (4.33)

j=1 k=1 j=1
Using (2.39) in (4.33) we obtain
wa Z '”k' . (434)

Thus, from (4.29) and ( we obtain

TZ 0,0 S | O U/l (4.35)
02 C2 o '
Combining (4.27) and - we obtain
-1
of (= Hy + Z 0; 0} )v <. (4.36)

Jj=1
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From (4.36) we conclude that the matrix whose inverse appears in (4.14)) is negative
and hence that matrix must be invertible. [l

5. SOME EXPLICIT EXAMPLES

In this section we illustrate the results of the previous sections with some explicit
examples. We also make some contrasts between the Darboux transformation for
(1.1) and the Darboux transformation for when the potentials are compactly
supported.

Let us consider the case where the potential V,, in is nontrivial and com-
pactly supported, i.e. assume that V,, = 0 for n > b and V, # 0 for some positive
integer b. The corresponding Jost function fy appearing in is then a polyno-
mial in z of degree 2b — 1 and, as [3], (2.50)] indicates, is given by

b b—1
fo=142Y Vit 422072V V; 4227 (5.1)
j=1 j=1

For a compactly-supported potential, the Marchenko norming constant ¢, defined
in (2.40) is obtained [3] from the residue of S/z at the bound-state value z; as

c? = Res [g,zs], s=1,...,N, (5.2)

where S is the scattering matrix defined in . Consequently, the corresponding
Gel’fand-Levitan norming constant Cs can be obtained by using .

In some of the examples in this section, we illustrate that not every polyno-
mial in z of degree 2b — 1 necessarily corresponds to the Jost function fy of a
compactly-supported potential vanishing for n > b. This is not surprising because
the coefficients in such a polynomial must agree with the coefficients given in .
There are b potential values that need to correspond to the (2b — 1) coefficients on
the right-hand side of . For example, when b = 2 from we obtain

fo=14+ (Vi 4+ Va)z+ViVaz? 4 V23, (5.3)

and the same quantity must also have the form

W= (20 2)0-2) o

for some nonzero constants «q, as, a3 satisfying

V1+V2=—<i+i+i)»

&3] (&%) a3

1 1 1
ViVs = + +—, (5.5)
apoz Qpo3 Q03
1
Vo= -,
Q1 a3

In case the system is inconsistent, the quantity given on the right-hand side
of cannot be the Jost function of a compactly-supported potential.

For the half-line Schrédinger equation with a compactly-supported poten-
tial V(z), the following property is known [2]. If we remove a bound state from
such a potential, then the transformed potential is also compactly supported and the
transformed potential is guaranteed to vanish outside the support of the original
potential. In some of the examples in this section, we illustrate that the afore-
mentioned support property does not necessarily hold for the discrete Schrodinger
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equation (L.1)). We show that the property holds in one example but does not hold
in another example.

For the half-line Schrédinger equation with a compactly-supported poten-
tial V(z), also the following second property holds [2]. If we add a bound state
to a compactly-supported potential, then the transformed potential is also com-
pactly supported (and the transformed potential is guaranteed to vanish outside
the support of the original potential) if and only if the two conditions specified in
[2, Theorem 3.5] are satisfied. The first condition is that the added bound-state
As-value must come from an “eligible” resonance [2] and the second condition is
that the corresponding Gel’fand-Levitan norming constant C; must have a specific
positive value. In some of the examples in this section, we illustrate that the afore-
mentioned support property does not necessarily hold for the discrete Schrodinger
equation . We show that the property holds in one example but does not hold
in another example.

In the next example, we add a bound state at z = 2z; with the Gel’fand-Levitan
norming constant C; to a compactly-supported potential with b = 1. The exam-
ple shows that the Darboux transformation on the compactly-supported potential
results in a compactly-supported potential if the values for z; and C; are chosen
appropriately.

Example 5.1. Consider the compactly-supported potential V,, with b = 1 and
hence V,, = 0 for n > 2. Let us assume that 0 < |V;| < 1. From we see that
the Jost function is given by

fo =1+Viz. (56)
Using in , we obtain the corresponding regular solution ¢,, as a function

of z as
n —-n anl _ Zlfn

po— pos w n>1. (5.7)

Since the bound states correspond to the zeros of fo when 2z € (—1,0)U (0, 1), from
(5.6) we see that there are no bound states and hence we have N = 0. Let us now
add one bound state at z = z; with the Gel’fand-Levitan norming constant C7. Let
us choose z; = —V7, and hence impose the further restriction 0 < |V;| < 1. Let us
use fo and V,, to denote the corresponding Jost function and potential, respectively,
when the bound state is added. From and we see that

= z
=1+-—.
Jo=1+1

Using (5.7) and z; = —V; in (3.20), we obtain

En=(=VD)'™, n>1
The quantity Ey defined in (3.19) with N = 0 is given by Ey = C?. Then, (3.27)
and ([3.26]) respectively yield

(5.8)

Vi=Vi+ o (5.9)
1 — 1 ‘/1 9 .
- —CRVEI(L - VR (CE — 14 V)
TP - RV VR)(CF - L+ V) + V(O] - 1 V)Y
for n > 2. From (5.10) we see that V,, is compactly supported if and only if we
have

(5.10)

C?=1-V2 (5.11)
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In fact, with the special choice of the Gel'fand-Levitan norming constant in (5.11]),
from we obtain f/l = 1/Vi. In the presence of one bound state for the
compactly-supported potential V,, the corresponding Gel’fand-Levitan norming
constant Cy can be evaluated with the help of , , , and the fact
that f; = z, yielding the value of C? given in .

In the following example, we illustrate that a polynomial in z of degree 2b—1 may
or may not correspond to the Jost function of a compactly-supported potential.

Example 5.2. Consider the Jost function

z
= (1+2:)(1-2)(1- =). 5.12
fo=( ) ) 7 (5.12)
Comparing (5.12)) with (5.3)—(5.5)), we see that one solution to the corresponding
system ([5.5)) results in

b=2, Vi=-—V5, Vo= (5.13)

4
7
From (5.12)) we see that fy has two zeros when z € (—1,0) U (0,1), and hence it
has two bound-state zeros given by z; = —1/2 and z5 = 1/2. From (2.46) we see
that the corresponding Gel’fand-Levitan norming constants C; and Cy must satisfy
0 < C? + C2% < 1. Corresponding to a compactly-supported potential we must [3]
have f, = 2™ for n > b. Hence, in our example, corresponding to ([5.12]) we have
fo = 2% and f3 = 23. Then, from (2.3) with n = 2 we obtain fi(z) = z + V522,
With the help of (2.41)), (2.42)), and (5.2]), we obtain

3(12 — 55 - 3(12 4 5v/5 =
c? = (Tf) —0.032355, C2=— % — 0915013,  (5.14)
where the bar over a digit indicates a round off. We note that (5.14)) is compatible
with the constraint 0 < C? + C3 < 1. Thus, we have confirmed that z; = —1/2

and zo = 1/2 do indeed correspond to bound states of the compactly-supported
potential described in . In , if we choose a;j = 1 for j = 1,2,3, then
the system in (5.5) becomes inconsistent and hence there are no values V; and
V5 satisfying (5.5). Thus, the corresponding expression in does not yield
a compactly-supported potential. On the other hand, if we let V; = —v/2 and
Vo = 1/\/5 in , we obtain a solution to with oy = =1, ap = 1, and
as = /2, and hence the Jost solution obtained from does not contain any
zeros in z € (—1,0) U (0,1), yielding N = 0. Choosing V; = —(7 + v/10)/6 and
Vo = —(1+v/10)/2 in (5.3)), we obtain a solution to given by
3 - 2 2
o = 2(1+\/E) =0.36038, a9 = 1+\/§7j7 a3 = 1—\/§i’

which indicates that the corresponding fo in (5.4) has one bound state at 21 = a3
with the corresponding Gel’fand-Levitan norming constant C7, evaluated with the

help of 7 , and , as

o2 625+ 128+/10
te 3489
We remark that it is impossible to have a compactly-supported potential with
b = 2 having three bound states. This can be seen as follows. Assume that for
some choice of V7 and V5 in we had —1 < a1 < as < a3 < 1 for nonzero o

= 0.295148.
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values. Using (5.4]) in (2.10) and (5.2)) we would get the corresponding Marchenko
norming constants as

2o - af)(1 - aja)(1 — ara3)
! of(ag — a1)(az — 1)

= e e 519

2 (I-aas)(l — azas)(1 — a3)
° aj(ar — az)(ag — az)

From the three equations in we see that we would have ¢? > 0, 3 < 0,
¢3 > 0, and hence it is impossible to have N = 3. From Example we know that
0 < N < bwhen b =1, andfromWeknowthatogNSbwhenb:Z
From it is clear that the number of zeros of fy(z) in z € (—1,0)U (0, 1) cannot
exceed 2b — 1. This naturally leads to the following question, which can perhaps
be answered with the help of a generalization of from b = 2 to an arbitrary
positive integer b : For any given positive integer b, what is the maximal number
of bound states for the corresponding Schroédinger operator associated with
and , if the potential V,, has a compact support with V,, = 0 for n > b? The
answer to this question turns out to be the integer b itself and a proof can be found
in [1].

The regular solution ¢, to (|1.1)) corresponding to (5.3)) can be obtained recur-
sively with the help of (2.4). We have

b

p1=1, @a=-A+2+V, (5.16)

03 =N — (4+ Vi + Vo)A + 34 2V) + 2V, + Vi Va, (5.17)

01 == N+ (6+ V) +15)A\? (5.18)
— (10 +4V1 +4Vo + ViVo)A 4 4 4 3V 4 4V, + 2V sy,

05 =M — (8 + Vi + Vo)A3 4 (21 + 6V1 + 6Va + V1 Vo) A2 (5.19)

— (20 4 10V4 + 11V3 + 4ViVa)A + 5 + 4V + 6V3 + 313 Va.

In the next two examples, we show that if we remove a bound state from a
compactly-supported potential then the resulting potential may or may not be
compactly supported.

Example 5.3. Consider the compactly-supported potential V,, with b = 1 and
hence V,, = 0 for n > 2. The corresponding Jost function is given by . Since
the bound states correspond to the zeros of fy when z € (—1,0) U (0,1), from
we see that there exists one bound state if [V3| > 1. We assume that |Vi| > 1 so
that we have exactly one bound state at z = z;, where z; = —1/V;. From
and we see that the corresponding scattering matrix is given by

. Vi+z
e = v

In this case, the Jost solution satisfies f,, = z™ for n > 1. In the presence of one
bound state, the corresponding Gel’fand-Levitan norming constant C; is evaluated

with the help of (2.42)), (5.2)), (5.20), and f; = z, yielding
C?=V2-1. (5.21)

zeT. (5.20)
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From we see that we must have 0 < C? < 1 and hence we must use the
restriction 0 < |[V;] < v/2. Let us now remove the bound state with z; = —1/V;.
The transformed Jost function fo is obtained via and is given by fo =1+2z/V.
In this case, using and we obtain

1 \n—1
enz(—ﬁ) o> (5.22)

Using with N = 1, we obtain the quantity Fy given in as
FL=1-V2 (5.23)

Using (5.22) and (5.23) in (4.17) and (4.18) we obtain Vi, = 0 for n > 2 and
Vi =1/W1.

Example 5.4. Consider the compactly-supported potential V,, described by
in Example We know from Example that there are two bound states with
z1 = —1/2 and 29 = 1/2 with the respective corresponding Gel’fand-Levitan norm-
ing constants C7 and C5 as in . Hence, we have N = 2. We now demonstrate
that if we remove the bound state at z = zo by using the Darboux transformation
formulas given in Section [4] then the transformed potential is no longer compactly
supported. From we see that the values A1 and \s corresponding z; and 29,
respectively, are given by

1 9 1 1
—_ = -2 == S .24
21 27 Al 27 22 27 )\2 2 (5 )
Using ((5.16)—(5.20) and (5.24)) in (4.11f) we obtain
NNt (=D)" (5425
0, = (> (=1 Vo) , n>1. (5.25)
2 (5-2V5)
Using (5.14) with N =2 in (4.10)) we obtain
_1% 0
Fy = . 5.26
=0 1 +4\/5)] (5.26)

With the help of (5.14)), (5.25)), and (5.26)), from (4.17) and (4.18) we can evaluate

the transforqu potential n for all n > 1. We list the first few values below and
mention that V,, is not compactly supported:

%F:a3f2¢a ﬁF:1m5+2mmn6' ~y:2mu4m1+6yﬂ¢®
6 119120 ’ 15975481 ’
7= 1080(231681 + 102364+/5) 7 = 4320(3691281 + 163364+/5)
1284143281 ’ 204372438481
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