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BOUNDARY REGULARITY FOR NONDIVERGENCE ELLIPTIC
EQUATION WITH UNBOUNDED DRIFT

YONGPAN HUANG, QIAOZHU ZHAI, SHULIN ZHOU

Communicated by Hongjie Dong

ABSTRACT. We obtain the pointwise boundary differentiability of strong solu-
tions for elliptic equations with the lower order coefficients, the boundary, and
the right-hand side term satisfying a Dini type condition. Furthermore, we
establish a pointwise estimate of strong solutions and show that the gradients
of the strong solutions are continuous along the boundary if the drift term, the
boundary, and the right-hand side term satisfy a uniform Dini type condition
on the boundary.

1. INTRODUCTION

In this article, we will study the boundary regularity of strong solutions of elliptic
equation with unbounded lower order coefficients. Suppose that u € I/Vlicn (NC ()
satisfies

Lu = —a;j(x)D;ju+ bi(z)Dyu = f(x) in Q; .

u(z) =0 on 0Q; (L.1)

where  is a bounded domain in R™ (n > 2). We use the summation convention

over repeated indices and the notations D; := %; D;; := D;D;. We assume that

a;j, b; and f are measurable functions on €, the matrix (a;;(x))nxn is symmetric
and satisfies the uniformly elliptic condition

MNP < aij(2)6& < THEP, forall € R, ae. z€Q, (1.2)

with a constant A € (0, 1], and b;, f € L™(Q)). Throughout this article, the operator
Lin is applied to functions w in the class W (2) := Wlicn(Q) NnCQ).

In the following, we extend the results in [I5] to elliptic equations with un-
bounded lower order term. The boundary differentiability is shown for strong so-
lution of nondivergence elliptic equation on C*P" domain with unbounded drift
satisfies Dini type condition. Furthermore, we prove that boundary first order
derivative is continuous along the boundary.

As for the boundary regularity of nondivergence elliptic equations: If the drift
term |b| is bounded, Krylov [8,[9] showed that the solution is C* along the bound-
ary if 9Q is C11. Lieberman [13] gave a more general estimates. Wang [19] proved
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a similar pointwise result as in [8][9] by an iteration method that will be adopted in
this paper. Ma and Wang [I5] proved a boundary C1¥ estimate for fully nonlinear
elliptic equations on C1P"¢ domain. Li and Wang [11} [12] showed the boundary
differentiability of solutions of elliptic equations on convex domains. If |b| is un-
bounded, Ladyzhenskaya and Ural’tseva in [10] proved boundary C1'* estimate of
elliptic and parabolic inequalities on W29 domain with b € LI, ® € L9, ¢ > n
and nonlinear term p;|Du|?. Apushkinskaya and Nazarov [I] proved the boundary
C1* estimate for nondivergence parabolic equation with composite righthand side
and lower order coefficients, and in [2] they gave a counterexample of Hopf-Oleinik
lemma in the elliptic case. Safonov [I8] obtained the Hopf-Oleinik lemma on a flat
domain for elliptic equations and gave the counterexample which indicated that the
Dini condition on |b| can not be removed for our theorem. Nazarov [16] proved the
Hopf-Oleinik Lemma and boundary gradient estimate under minimal restrictions
on lower-order coefficients. Braga, Moeira and Wang [3] generalized the elliptic case
in [10] to L™ viscosity solutions with y; = 0 and C*P™ boundary value. Some
related results concerning Dini continuity can be found in [4, [6, [7, 17, 20} 21].

The following Alexandroff-Bakelman-Pucci maximum principle and Harnack in-
equality are our main tools.

Theorem 1.1 ([5,[18]). Let Q be a bounded domain in R™, and let u be a function
in W(Q) such that Lu < f in Q. Suppose that the matriz (a;j(z))nxn is symmetric
and satisfies the uniformly elliptic condition (1.2), and b;, f € L™(Q). Then

supu < supu + N diam Q - eVIPIEn@ || £+ L™ ()5 (1.3)
Q aQ
where
1/n
Ibllzn ) = (/ b|" d:c) ;b= (b1,ba,...,bn), (1.4)
Q

and N is a positive constant depending only on n and .

Theorem 1.2 (Harnack Inequality). Let u be a nonnegative function in W (Bs),
Lu = f in Bg and b;, f € L™(Bg). There exists a positive constant ¢g depending
only on A and n, such that if [|b||nps) < €0, then

supu < C(inf u + ||f||Ln(BS))7 (1.5)
B By

where C' is constant depending only on A and n.

Theorem follows from the the proof in [I8] clearly. The most important
thing is that the quantity ||b||z~ is scaling invariant(see [I8, Remark 1.4]) and the
Harnack constant is invariant in the iteration procedure. Before we state out our
main theorem, for convenience, we give the following notation and definitions.

{e;}"; is the standard basis of R".

n 1/2
|| := (me) /
i=1
is the Euclidean norm of z = (z1,22,...,2,) € R". a* := max{0,a}. B, :=
{r e R" : |z| < r}. By(z) =2+ By. Q := QN B,. Q(z) = QN B,(x).
diam(Q) := sup,, yeq |7 — yl-

Qr={xeR": |z <r, i=12,...,n}.
1 lzne = (fo 1 @)™ dz)' " W(Q) = W2 (Q) N C(@).

loc
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Definition 1.3. We say that 0Q is C1Pi" at x € 99, if there exist a unit vector
7 and a positive constant rg such that

1
- sup (y — ) -7 <w(r), for0<r<rg,
T yeoQ,|ly—z|<r

where w(r) is a nonnegative nondecreasing function and satisfies [;° %dr < o0.
We say that 9Q is CHP if for any = € 99, 9 is CHP™ at 2 € ON.

If 09 satisfies the pointwise C1:Pi" condition at any = € 9 with the same g, it
follows that 9§ is CTP" in the classical sense, i.e., 9 can be locally represented
as a C' graph with the gradient being Dini continuous.

Definition 1.4. We say that the function g € L"(Q) is C,, LD at 2 € 99Q, if
there exists a positive constant rg such that

1
(BT mal lg(y)["dy)"" < rte(r)
1B, (z) N2 /B, (2)ne
for each 0 < r < rg, where w(r) is a nonnegative nondecreasing function and satisfies
Jo© 8 dr < co. Obviously, we have ||g]| r(anp, () < [BL(0)[Y w(r) < 2w(r). We
say that g is C; 1P on 9Q) if for any z € 99, g is C;; 1P at 2 € 99.

Generally, for any function in LP(Q2)(1 < p < o00), we can define the pointwise
Cl-Pi (k€ Z). We say that the function g € LP(Q) is CEPM at z € 9Q, if there
exists a positive constant ro and a k — th order polynomial P (y) (P¥(y) = 0 if
k < 0) such that

1

e\ ok
(m R l9(y) = P ()] dy) < rFu(r)

for each 0 < r < 1o, where w(r) is a nonnegative nondecreasing function and
satisfies fom @dr < oo.
The main results of this paper are Theorems and Corollary [L.7] below.
Theorem 1.5. Assume that
(1) 0 € 99Q, 1o > 0, u € W(Qy,), uloans,, = 0, Lu = f in Q,, |b[, f €
L"(Q,,) and fOTO 7|VHL:<”” dr < oo;

(2) 09 is CLP a1 0 and |b| is C;HP™ at 0 with the modulus of continuity
w(r) satisfies

0 1 € " w(r)

- =, = d dr < min {1

22l /0 . dr < min { »ToM /A,

where 6, M and As are constants depending only on X\ and n (see Lemma

, and €y is the constant in Theorem [1.3

Then w is differentiable at 0, furthermore, there exist a linear function L(z) and
constants & > 0, A > 1, C' > 0 such that

5ln%

w(rg) < min {

(1.6)

. o [ w(s) + e,
) = La)| < C{s +ldr) + | Fleniay) + 17 [ W0y

Ar
+ "
+/ w(s) + 11 fllz (QS)ds}r,
0

S

(1.7)
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for any x € Q, and 0 < r < 2, where C depends on |[ul L=, Ifllzn@,,);

ro [[fllLn(a,
Jo ! s, o, A and n.

Remark 1.6. (1) The condition will always be satisfied for small rq if the
modulus of continuity w(r) satisfies the Dini condition, which will guarantee that
the slopes of hyperplanes in the iteration procedure are uniformly bounded (see
(12.22)).

(2) We can also deduce pointwise boundary differentiability with nonhomoge-
neous pointwise C1Pi bhoundary value as in [15]. Here we only consider the
homogeneous boundary value just for convenience.

(3) The modulus of continuity w(r) is nondecreasing can be replaced by w(r)
satisfies the doubling condition(see [14, Definition 2.3]).

The following corollary is a direct consequence of Theorems [I.5] and

Corollary 1.7. Assume that
(1) 0 € 9Q, 19 > 0, u € W(y,), Lu = f in Qp, u|agmBr0 = 0 and |b|,
feL™(Q);
(2) 09 is CLPnt gt 0, |b| is C;;1P™ at 0 and f is C; 1P at 0 with the
modulus of continuity w(r) satisfies
01 € "0 w(r Sln %
(,u(ro)grnin{é,g,g0 , /0 Eq)drgmin{l,m/[\/%fb},
where §, M and Ao are the constants in Lemmal2.4, and eq is the constant
in Theorem [L.2
Then w is differentiable at 0, furthermore, there exist a linear function L(z) and
constants & > 0, A > 1, C > 0 such that for any x € Q, and 0 < r < ro/A,

sita s

0 Ar
lu(z) — L(x)| < C(ré‘ + w(Ar) + ¥ / w(s) ds + / &ds)r, (1.8)
r 0
where C depends on |ul|L=(q,,), 70, A and n.

Remark 1.8. If 9Q is C1* at 0, |b| is C,; 2 at 0 and f is C,;1'* at 0 with
w(r) = r*(0 < a < 1), then u is C*? at 0 with 3 = min{a,a} if @ # & and
0 < B <min{a,a} if a = é.
Theorem 1.9. Assume that

(1) 0 €09 1o >0, u € W(sp,), Lu = f in Qay,, ulponps,, = 0 and |b],

fe L Q) - o
(2) 0Q is CLPn bl is O VP and f is O 1P on 0Q N B, uniformly
with the modulus of continuity w(r) satisfies

01 € "o w(r) §ln i
<min{=, =, = “Zdr <min {1, ——9% —
w(ro) < min{g, 5. 7}, /0 ,dr < min{ ’72M\/HA2}’
where 8§, M and Ay are constants in Lemma[2.3, and €y is the constant in

Theorem [1.3

Then there exist constants & > 0, A > 1, C > 0 such that for any y,z € 002N By,
and 0 < |y —z|=r <72,

|Vu(y) — Vu(z)| < C(ré‘ + w(Ar) + ¢ /:0 w(s) ds + /OAT @ds),

sita s
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where & and A are the constants in Corollary [I.7, and C is a constant depending
on HUHL‘”(QSTO), o, A and n.

Remark 1.10. If 9Q is C* on QN By, |b| is C;;"* on QN By, and f is C;; 1
on 9Q N B,, with w(r) = r*(0 < a < 1), then Vu is C” along QN B,, with
B =min{a,a} if @ # & and 0 < f < min{a, &} if @ = G.

We shall prove Theorems [1.5] and [I.9]in the next section.

2. BOUNDARY ESTIMATES

By standard normalization, it is enough to prove Theorem [2.I] below, instead
of proving Theorem [1.5| . Since 99 is C1P at 0 € 99, without loss of generahty,
we assume 7t = e, as the inward normal direction in the following Theorem
Consider the normalization of solution,

. u(rox)

[ullLoe () + €+ 70l flln(@.y) + 70

TO ”fHL"(QT)dT

for € > 0 and = € QN By, with the normalized domain  := {z € R" : roz € Q}.
Obviously, t.(x) satisfies

liicl peqyy €1 and  — gy (@) Dijiie(@) + bi(a) Ditic() = f(x)
forz € QN B, where

aij(z) = aij(roz), bi(x) = robi(roz),
5 ref(roz
f(ﬂ?) - ’ ( : ) To ”f”L"(Q )
[ull Lo (,) + €+ Toll flln ., + 70 Jo 2y

Let &(r) = w(rer). Obviously,

1 - - -
= sup fyeen| <@(r),  [bllpag,) = Pl < 20(r)

" yead,y|<r
1 ~ T0o
/ &(r) dr = / w(r) dr.
o T 0 r

Theorem 2.1. Assume that
(1) 0€9Q, ue W(), ulgans, =0, Lu zf in Qy, and |[ul| g0,y < 1;
(2) f e L") with | f|lpr@ <1 and [, Y@ g <4,

(3) 09 is CLP a1 0 and |b| is C;¥P™ at 0 with the modulus of continuity
w(r) satisfies the normalized conditions

for 0 <r <1, and

5ln%
72MAQ}7 (2.1)

1 1
w(l)gmin{g,i,%o , /0 @drﬁmin{l,

where €y is the constant in Theorem and §, M, Ay are constants in

Lemma[2.2
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Then there exist the three positive constants C, & and A(> 324n) depending only
on A and n, and there exists a constant 0 such that

. 1 w(s) 4 1 fll e
i) = 6] < Ofr® +lhr) + ey +00 [ SO,
' (2.2)
Ar
+/ W(5)+Hf||m(ns)ds}r7
0 S

foranyx € Q. and r < %

We shall establish Theorem [2.1] by an iteration method which is based on Lemmas
and below. For convenience, we define

1
()=~ sup |y- e, forO<r <L
r ye@ﬂ,lylgr
Obviously,
y(r) <w(r), |Ibllir(a,) < 2w(r) for0<r <1

Lemma 2.2. Suppose that 0 € 9Q, u € W(Q), ulogans, = 0, Lu = f in Qy,
fe L"), v(1) £ 0/6 and ||b||n(q,) < min{eg, 1}, where €y is the constant in
Theorem and 6(< 1) will be chosen in (2.3). Then there exist positive constants
uw<1, M, Ay and As depending only on A and n. If

krn, —l <u(z) < Kz, + B in Qy, (2.3)

for some constants | > 0, B(>0), k and K with k < K, then there exist constants
k and K such that

k= A fllin o, — A2 (K| + K]+ D(v(1) + bl £r ()

<u(r) < Kz + A1) fllnen + A2 (K] + [k + B)(v(1) + bl () 24
in Qg, where either
k=k—3Mynl+u(K—Fk) and K=K+ 3M/nB, (2.5)
or 5 B
k=k—3Mynl and K=K+ 3My/nB—u(K —k). (2.6)

Obviously, we have k < K.

Proof of Lemma[2.3 First we proof the following.

Claim. There exist positive constants M, § and C; depending only on \ and n,
such that

ey — 3MV/n([k] + D)y (1) = CL([k[ + Dbl 0y
< u(x)
< (K +3M+/nB)xy 4 Ct| fllLn(ay) + 3MV/n(| K| + B)v(1)
+ Ci(|K| + B)|Ib||pryy in QN Q;.
Proof. Let M =1+ 27%\“1(2 3) and €(> 0) be small enough, such that
3—(14+¢€¢)(24€¢(M-1)°>0. (2.7)
Let -
~ 1 1 ) 1
0= < — d=— = 2.8
M\/ﬁ(_ 3ﬁ)’ 2M 2 /m(1+ 2/n=1y2 (28)
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and

¢u>§<2@n§vu»@ntgu»2)+2mfﬁ)§§<o?|Q+>H5

The barrier function ¢(z) is C? and satisfies the following conditions (observe that
3+(1) .
1< 710 < 3)9):
b(x) > onal/\fﬂ{xER”:xnzg};
B@) 20 on QN {z €R™ 52, = —1(1);
2>

Y(@) =1 ondQy N{w €R": —y(1) <ay < 3}; (2.9)
—aij(x)Dijih(z) 2 0 ae. in Qym Nz € R": —y(1) <z, <5} N
o) < M Qs N{z 2y > —y(1)}.
Combining (??) and (24), we have
L(kzy — lw( ) — u(@)) < bi(x)Di(kz, — 1(2)) — f(x) in QN (2.10)

— () —ulz) < [kly(1) on A(QNQ);

where Q = QuymN{reR": —(1) <z, < o).
By the Alexandroff-Bakelman-Pucci maximum principle,

—W(x) = u(z) < [kly(1) + CL(lkl + Dbl ooy + Cull flen)  (211)

in Q NQ, where C} is a constant depending only on A and n.
By (2.4) (fifth inequality), we have

u(z) > (k= 3Mv/nl)ay — C1l| flln .y — 3M/n(|k] + 1)(1)
— Cu(k + Db
in QN Qs Asin , we have
L(u(z) — Kz, — B(x)) < f(z) — bi(2)Ds (K, + By(z)) in QN
u(@) = Kz — Bi(z) < [Kly(1) on 9(QNQ).
According to the Alexandroff-Bakelman-Pucci maximum principle,
u(z) — Ky — Bd(z) < |K|y(1) + CillfllLn () + CLIK| + B)|[b| ()

in Q N, where C; is a constant depending only on A and n. By (2.4) (fifth
inequality), we have

u(z) < (K +3Mv/nB)zn + C1| flln @) + 3MVn(|K]+ B)y(1)

(2.12)

L™ (Q1)

(2.13)
+ Ci(IK|+ B)[bllLn(ay)
in QN Q;z. By (2.7) and (2.8), the claim follows. O
Let I' = Qs N{z € R": z,, = &}. By (1) < /6, we have
5
'cQ and dist(I',00) > 5 (2.14)

Next, we show (??) for the two cases: u(de,) > (K + k)0 and u(de,) <
1(K + k)4, corresponding to (??) and (?7?).
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Case 1: u(de,) > (K + k)d. Let

+ Cr([k[ + Dbl Ln (@)

Lr(y) + 3MV/n(k| 4+ 1)~y(1)

Then

vsen) = (K2 3015 + Cull iy +3MVAH + (1)

+ C1([k[ + Dbl n(0y)-

Since v(xz) > 0 for x € QN Q;, from (2.9) and the interior Harnack inequality, it
follows that

(2.15)

supv(r) < O (inf o) + | o), (2.16)

where C3(> 1) is a constant depending only on A and n. Combining (2.10)),(2.11))
and v(z) > 0, we have

Lr(oy) + ([l + )b

infv(z) > { . ((K L 3M/nl)s + 3M/n(|k| + 1)7(1))

r Co\' 2
C +
" (é - 1)((|k‘ +DIPllzn @) + Hf”L"(Ql))} =a.
Let
3((xnt+7(1) Tn +y(1)\2 2 ol ] o\ 24
v =g ((F=5) + (75 ))_4(71_1);((5 -1)*) @)
where € satisfies (2.2).

The barrier function ¢ (z) is C? and satisfies the following conditions (observe
that 1 < &0 < 7/6):
Y(@) <1l onQusN{zx eR":x, =05}
P(x) <0 on QusN{zxeR" :z, =—y(1)};
Y(z) <0 ondQus N{z €R": —y(1) <z, <6}
—aij(#)Dijo(x) <0 ae in Qus N{z €R™: —y(1) <an <0}NL (2.18)

vi@)2 20 gia e a0z )
v@) < W Qun (e e R () <, < 0).

We claim that

L{aw(x) — v(x)) < bi(a)Di(av(x) + (k — 3MVil)w,) — f in QN

2+ 9M/n
ap(z) —v(z) < 0

N (2.19)
(IK] + [k + 1)y(1)  on 0(Q N Q);

where Q = Qa5 N {z € R™ : —~(1) <, < J}.
In fact, the first inequality is clear. For the second inequality, we separate the

boundary 9(Q N Q) into three parts:

aQN{z eR" 1z, =6}, IQN{zeR": —6<z,<d}NQ, IQNQ.
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The first part is just I' where v(z) > a and ¢(z) < 1, then ay)(z) — v(z) < 0 on
it. On the second part, since v(z) > 0 and ¥ (z) < 0, we have ap(x) — v(xz) < 0 on
them. On the last part, since ¢ (z) < %’Y(l) < 1on it by (6)7 we have
ap(x) —v(x) < C% ((# + 3M+/nl)d + 3M/n(|k| + l)’y(l)) %7(1)
i((lKl + |K]
Cy 2
_2+9Myn
ST

IN

+ 3M/l) ( + (1) + 3MVA(k| + (1))
(K| + K+ D7(1),

where we have used —y(1) < z, < (1) for x € 90N 6:2 By the Alexandroff-
Bakelman-Pucci maximum principle,

ayp(x) = v(x) < C3(IK] + [K[ + D)(3(1) + [bll (@) + Csllfllzny) 0 @NE

where we have used ||b|[zn(o,) < 1 and Cs is a constant depending only on A and
n.
From (2.13) (fifth inequality), it follows that for all x € QN Qs,

ap(x) > (2, +7(1))

30
K—k)d
> ( 202) - ||fHL"’(Ql) - (|k| + l)HbHL"(Ql) (.’E +'Y(1))
= 30 "
K-k
> e on = Wllen@n = (6 + D Pl ey,

where we have used K — k > 0.
Therefore, for all x € Qs,

u(z) > ay(z) + (k = 3Mv/nl)zn — (C1 + C3)||fllLn (o)
= (C3+3My/n+ C)(IK] + [ + D)(v(1) + bl n(0y))

1 (2.20)

> (k; — 3M/nl + — (K — k))xn — (C1+ Cs+ V)| fllzmgen)

6Cs
—(C3 +3My/n+ Cr + )(|K| + [k] + ) (v(1) + [[b]lr(0,))-
Let
1
M:@, A =Ci+C5+1, AQZCl—I—Cg—I—?)M\/ﬁ—‘rl. (2.21)
2

Combining (2.8)),(2.15)) and (2.16]), we have (??) and (?7?).
Case 2: u(de,) < 3(K + k)&. The proof is similar to that of Case 1. Let
v(z) = (K 4+ 3Mv/nB)z, + C1||fllLn(a,) +3MV/n(|K| + B)y(1)
+ Ci(IK[+ B)|bllr () — u(z)
for z € QN Q5. Then

v(den) > (g + 3Mﬁ3)5 + 4| f]

+ C1(|K[ + B)|blln(0,))-

Lr () + 3MV/n(|K|+ B)y(1)
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By the interior Harnack inequality, we have

supv < Cz(ilrlfv +1fllznu) + (K[ + B)[blln @)

where C5(> 1) is a constant depending only on A and n. Then

infu > {é((K; K 3MRB)S + 3M (K] + B)y(l))

c +
+ (G = DUl + (K + B)bBlle@))} =
Let 1 () be defined by (2.12)). As in (2.14), we have

L(ay(x) —v(z)) < biDi(ay(x) — (|K| +3My/nB)x,) + f(z) in QN
_ (2+9M)
&

(2.22)

ap(x) —v(r) < (K[ + [k + B)y(1) on d(QNQ);
where C:2 =QusN{z eR": —v(1) < x, < 6}
Therefore, by the Alexandroff-Bakelman-Pucci maximum principle,

ap(z) —v(x) < Cs(|K[+ k| + B)(v(1) + [[bllLr(0y) + Call fllznn),  (2.24)

in Q N Q, where we have used bl (,) <1, and C3 is a constant depending only
on A and n.
By ([2.13)) (fifth inequality), we have that for any € QN Qs,

3%(% +7(1)) —v(x) < C3(IK[ + [k + B)(v(1) + [[bllLr (1) + Csl[ fllzn (1)

Combining (2.17) with (2.19), we have that for all z € Qs,

u(e) < (K +3MVnB)a, — 5= (e, + (1) + (€1 + o)l
+ (1 + Cs 4+ 3MVR) (K| + k| + B)(1) + [Bllzn(a)
1 (2.25)

L ()

< (K +3M+y/nB - e (K = k))xy 4+ (C1+ Cs + 1)|| fll Lngon)

+(Cr+ Cs +3My/n+ 1)(|K| + k[ + B)(v(1) + [[bll = (0,))-

Let u = %7 A1 =C1+C3+1and Ay = C; + C3 + 3M+/n + 1. Combining
(2.7) and (2.20]), we have that (??) and (?7?) hold. O

Using induction, the following lemma is a direct consequence of Lemma [2.2]

Lemma 2.3. Suppose that 0 € 9Q, u € W (1), ulgans, = 0, Lu = f in Q,
lullpey < 1, f € L™(1) and w(l) < min{e/2,1/2,0/6}. Then there exist
nonnegative sequences {lm}oo_o, {Bm}so_o, and sequences {km}55_q, {Km}S_o
with kg = Ko =0, lg = By =1, and form=0,1,2,...,

m m lm m
lm+1 = A0 [ fllon@sm) + A20™ (|Kim| + [k + 520)(7(6™) + bl L7 (025m) ),

B

By = A16"|| fllLn(@sm) + A20™ ([ K| + [km| + 5%)(’7(57") + bl L (@5m) )

and
B

I
kma1 = km — 3M\/ﬁé—m + (K — k) and Ky = Ky +3Myn S
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or
Im B,
bt = ko = 3MVASS and K1 = Ko+ 3MyRSm = (K = ko),

such that

km@n — lpn < u(x) < K@y + By in Qem, (2.26)
where §, p, M, Ay and Ay are positive constants given by Lemma[2.2
Proof of Theorem- Let {ln}0 o, {Bm o, {km}so_y and {K,,}5°_, be de-
fined by Lemma [2.3] We prove the following claim first.
Claim. There exists a constant C; depending only A and n such that for all
m=0,1,2,...,

lﬂ’l
< . .
| K|, \kml §m s <O (2.27)

Proof. Firstly, notice that we take Ky = kg = 0 and l) = By = 1, then by induction,
we have K,,, > k,, for all m > 0. For m > 0, we define S,,, = EZ’;O (% fs—’,) For
any m > 0, since

B,
Km+l < Km + 3M\/ﬁé‘7m and KQ = O7
we have
K1 <3My/nS,, form >0.
Similarly, we have

kmi1 > —3M+/nS,, for m > 0.
It follows that

|mi1] + [ Kma1| < 6M+/nS,, form >0. (2.28)
Since
Bm 1+lm 1 AQ m Bm+lm
% = (1(6") + Ibllzr(@m)) 2HEm| + 2[km| + —2—)
2A1
—— 1z @sm)s

for m > 1, combining the above identity with (2.23)), we obtain

Bm+1 + lm+1 A2 m Bm + lm
— 1 =7 (v(8™) + bl n (250m)) (12M\/775m71 + 57’”)
2A
- ||f||Lw (Q5m) (2.29)
12M\f A 2A1
< f(?’(fsm) + 1Bl n (@5m))Sm + —= 1 f | 7 (25m )
By the normalized condition, we have
— 12M\/nAs , = 36M/nAy
> 5 (v(6") + [Ibllzr(o,)) < Y — w(8Y)
=1 =1 X (2.30)
< 36M\/717A2 / w(T)dr < }7
511’1 5 0 r 2
and
2A1 24, Ifllzn e, 24,
n - < . 2.31
>l < 53 g e S
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From (12.24)-(2.26)), it follows that for any m > 1,

m

By +1;
s 51 = 35 Bt
i=1

" 12M\/nA ; 24
< S S0 VI (3 5) 4 ) + A0 Z Il
=1

1 +2A1
= 27mH T 5

Therefore, for all m > 1,

444

< .
Sm+1 S G T2

Since Sy =2, 0 < 571 < A + As, we have

4A
0< S, <24, +24) +2+ —L

1
dln 5

for all m > 0.

Let Cy = 3M+/n(2A1 +2A5+2+ 44, ). This completes the proof of the claim.

6ln%

Next we show estimate (??). By Lemma [2.3] we have that for all m > 1,

+ B,
0< Kint1— ki1 < (1= p)(Kp — k )+3M\f7

or
[Kmt1 = kma1| < (1= @)K — kil + Co2(|| fll 27 (g0 -1) +w(@™),
where Cy = (3M/n(A; + 6A2C1)) /0.

Let 1 — p = 0%(a > 0) . By iteration, we have that for all m > 1,

[Km+41 — km1] < 036&’”(1 +/ w(r) + 1z, 2 dr )

sm r1+a

where Cj3 is a constant depending only on A and n.
For any m > 1,

Kipt1+kmy1 < Koy + ko + p(K — k )+3M\F5m7
Km+1 + karl Z Km + km - N(Km - km) - SM\/{E(S%

Hence,

|(Km+1 + km+1) - (K +k )‘
+ B,

O

< UKo — km |+3M\f7 (2.32)

< K — k| + Ca(w(6™ 1)+Hf||m<95m_1>),
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where Cy is a constant depending only on A\ and n. It follows that
o0
[(Kj1 + kjr) — (K + k)|
j=m
oo 1
i 1Na + [ fllen o,
< J—1\& (,U(’I") (©2r)
- C3’“J;(5 ) (1 * /5;'71 rlté dr) (2.33)
+Cy Y (@O ) + [ fllLm@g-))-
j=m
Let
tw(s) + I fllzn (0,
F’r ::/r $1+d dS
By
oo 1
14 w(r) + | fllen 0,
> /&_71 )y
j=m
oo
= Z (5 )]F&
j=m—1
1 > s & — 5+t
- - Jthep o
54(1—6) 2. @Ry 67
j=m—1
1 =
L — a-lp
1 6771,—1 A )
= == a— F
35(1—0) /0 T Frdr
_ 1 (/‘wl w(r) + ||f||Ln(Q7.)dr
d(1=48)a\ J, r
1
me1\& w(r) + | fllzn@,)
+ (0 ) /5m_1 ra dr)
and
S — 1 " w(r) + 1 fllpo,
> @)+ If o) < 75 | Tl @ g,
j=m
it follows that
D K+ ki) — (K + k)
j=m

1

<cs{@ e e | w(r) + o

sgm—1 7‘1+d

S (2.34)

671172

w(r) + | fllzn@,)
+/O " dr}.

where Cj is a constant depending only on A and n.
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While m — oo, by lim,_,o+ w(r) = 0 and L’Hospital rule, we have the righthand
side of (2:29) tends to 0. Hence {K,,+k, }3°_, is convergent. Let lim,, o, Kmthm =
6. Then for all m > 2,

IQ,M} < i |Kj+1+/€j+1 . Kj+kj|
2 — 2 2

Jj=m

C m—1\é& m—1\é& ! w(r)+||f||L" Q.
e A e e

5""*2

w(r) + I fllzn @,
+/O " dr}.

For any m > 0 and any x € Qsm, we have
KTYL + km
2

—O)zl. (2.36)

K, +k

u(e) = O] < Ju(z) -
From (2.21)), it follows that
Ko

—k,
%\xd — I <u(z) —

Then for any m > 0 and any x € Qgm,

Km km lm Bm m
u(x) — %xnl < (| K — k| + ;T)a : (2.37)

By (2.30) and the inequality above, for all z € Qsm, m =2,3,...,
|u(x) = Oy

Ko+ km Ko +kp
| (P — O

B +lm | Km+km
om 2

< 06{(5”1*1)%(5%1)@/ w(n) + 1 f @)

gm—1 T'1+&

Km km Km - km

< Ju(w) - =

< <|Km — k| +

+|

1

- 0|)5m (2.38)

67n—2

w(r) + | fllzn@,) m

where Cg is a constant depending only on A and n.
Let A = 1/6% (> 324n). By (2.33), we have that for all z € Q, and r < 1/A,

1
w(s) + \l\fULn(QS)dS
glta

+ £ Ln(Qs)ds}r.

This completes the proof of Theorem |2.1 [

Proof of Theorem[1.9. Consider |Vu(y) — Vu(z)|, where y,z € 90N By, and 0 <
ly — 2| =r < 2. By Corollary we have

+w(@™ ) + I/

u(z) — | < 07{7“‘3‘ + w(Ar) + rd/

I

A w(s) + || f]
L (Q4r) +/
0

S

& a [ wis) A w(s)
lu(z) — Ly(2)]| Lo (0, () < C{r +w(Ar)+r /T Sira ds +/O ds}r,

S

S

T Ar
& a [° w(s)
[lu(x) 7LZ(.'L’)HL<>C(QT(Z)) < C{’I‘ +wAr)+r /r 51+‘3‘d5+/0 ds}r.
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Noticing that 9§ is C*P™ and the normalization makes w small enough, then

there exist a point p € 2 and a small positive constant n(< 1) such that By, (p) C
Q,(y) NQ.(2). Then by the triangle inequality, we have

4 a [T w(s AT (s
1Ly(z) = L (@)l o 57y < ZC{r +w(Ar) + 7 / 51(+ids+/0 ( )ds}r.

Since Ly (z) — L.(x) is an affine function, we obtain

1
VL (&) = VL&) < 1Ly (2) = Lol 1o

It follows that

VL, (z) — VL,(z)| < %( & 4 w(Ar) + 8 / w(s) ds+/OAT‘”(8)ds).

slta s

Hence, for y,z € 00N B,,;, 0 < |y — 2| =r < 2, we have

slt+a s

2 N N T0 Ar
Valy) - Vua) < 20 (v vaan) 40 1S as s [T g,
r 0
This completes the proof. ([
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