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BOUNDARY REGULARITY FOR NONDIVERGENCE ELLIPTIC
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Communicated by Hongjie Dong

Abstract. We obtain the pointwise boundary differentiability of strong solu-

tions for elliptic equations with the lower order coefficients, the boundary, and
the right-hand side term satisfying a Dini type condition. Furthermore, we

establish a pointwise estimate of strong solutions and show that the gradients

of the strong solutions are continuous along the boundary if the drift term, the
boundary, and the right-hand side term satisfy a uniform Dini type condition

on the boundary.

1. Introduction

In this article, we will study the boundary regularity of strong solutions of elliptic
equation with unbounded lower order coefficients. Suppose that u ∈W 2,n

loc (Ω)∩C(Ω)
satisfies

Lu := −aij(x)Diju+ bi(x)Diu = f(x) in Ω;

u(x) = 0 on ∂Ω;
(1.1)

where Ω is a bounded domain in Rn (n ≥ 2). We use the summation convention
over repeated indices and the notations Di := ∂

∂xi
; Dij := DiDj . We assume that

aij , bi and f are measurable functions on Ω, the matrix (aij(x))n×n is symmetric
and satisfies the uniformly elliptic condition

λ|ξ|2 ≤ aij(x)ξiξj ≤ λ−1|ξ|2, for all ξ ∈ Rn, a.e. x ∈ Ω, (1.2)

with a constant λ ∈ (0, 1], and bi, f ∈ Ln(Ω). Throughout this article, the operator

L in (1.1) is applied to functions u in the class W (Ω) := W 2,n
loc (Ω) ∩ C(Ω).

In the following, we extend the results in [15] to elliptic equations with un-
bounded lower order term. The boundary differentiability is shown for strong so-
lution of nondivergence elliptic equation on C1,Dini domain with unbounded drift
satisfies Dini type condition. Furthermore, we prove that boundary first order
derivative is continuous along the boundary.

As for the boundary regularity of nondivergence elliptic equations: If the drift
term |b| is bounded, Krylov [8, 9] showed that the solution is C1,α along the bound-
ary if ∂Ω is C1,1. Lieberman [13] gave a more general estimates. Wang [19] proved
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a similar pointwise result as in [8, 9] by an iteration method that will be adopted in
this paper. Ma and Wang [15] proved a boundary C1,ψ estimate for fully nonlinear
elliptic equations on C1,Dini domain. Li and Wang [11, 12] showed the boundary
differentiability of solutions of elliptic equations on convex domains. If |b| is un-
bounded, Ladyzhenskaya and Ural’tseva in [10] proved boundary C1,α estimate of
elliptic and parabolic inequalities on W 2,q domain with b ∈ Lq, Φ ∈ Lq, q > n
and nonlinear term µ1|Du|2. Apushkinskaya and Nazarov [1] proved the boundary
C1,α estimate for nondivergence parabolic equation with composite righthand side
and lower order coefficients, and in [2] they gave a counterexample of Hopf-Oleinik
lemma in the elliptic case. Safonov [18] obtained the Hopf-Oleinik lemma on a flat
domain for elliptic equations and gave the counterexample which indicated that the
Dini condition on |b| can not be removed for our theorem. Nazarov [16] proved the
Hopf-Oleinik Lemma and boundary gradient estimate under minimal restrictions
on lower-order coefficients. Braga, Moeira and Wang [3] generalized the elliptic case
in [10] to Ln viscosity solutions with µ1 = 0 and C1,Dini boundary value. Some
related results concerning Dini continuity can be found in [4, 6, 7, 17, 20, 21].

The following Alexandroff-Bakelman-Pucci maximum principle and Harnack in-
equality are our main tools.

Theorem 1.1 ([5, 18]). Let Ω be a bounded domain in Rn, and let u be a function
in W (Ω) such that Lu ≤ f in Ω. Suppose that the matrix (aij(x))n×n is symmetric
and satisfies the uniformly elliptic condition (1.2), and bi, f ∈ Ln(Ω). Then

sup
Ω
u ≤ sup

∂Ω
u+N diam Ω · eN‖b‖

n
Ln(Ω)‖f+‖Ln(Ω), (1.3)

where

‖b‖Ln(Ω) =
(∫

Ω

|b|n dx
)1/n

, b = (b1, b2, . . . , bn), (1.4)

and N is a positive constant depending only on n and λ.

Theorem 1.2 (Harnack Inequality). Let u be a nonnegative function in W (B8),
Lu = f in B8 and bi, f ∈ Ln(B8). There exists a positive constant ε0 depending
only on λ and n, such that if ‖b‖Ln(B8) ≤ ε0, then

sup
B1

u ≤ C(inf
B1

u+ ‖f‖Ln(B8)), (1.5)

where C is constant depending only on λ and n.

Theorem 1.2 follows from the the proof in [18] clearly. The most important
thing is that the quantity ‖b‖Ln is scaling invariant(see [18, Remark 1.4]) and the
Harnack constant is invariant in the iteration procedure. Before we state out our
main theorem, for convenience, we give the following notation and definitions.
{ei}ni=1 is the standard basis of Rn.

|x| :=
( n∑
i=1

x2
i

)1/2

is the Euclidean norm of x = (x1, x2, . . . , xn) ∈ Rn. a+ := max{0, a}. Br :=
{x ∈ Rn : |x| < r}. Br(x) := x + Br. Ωr := Ω ∩ Br. Ωr(x) := Ω ∩ Br(x).
diam(Ω) := supx,y∈Ω |x− y|.

Qr := {x ∈ Rn : |xi| < r, i = 1, 2, . . . , n}.

‖f‖Ln(Ω) :=
( ∫

Ω
|f(x)|n dx

)1/n
. W (Ω) := W 2,n

loc (Ω) ∩ C(Ω).
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Definition 1.3. We say that ∂Ω is C1,Dini at x ∈ ∂Ω, if there exist a unit vector
~n and a positive constant r0 such that

1

r
sup

y∈∂Ω,|y−x|≤r
|(y − x) · ~n| ≤ ω(r), for 0 < r ≤ r0,

where ω(r) is a nonnegative nondecreasing function and satisfies
∫ r0

0
ω(r)
r dr < ∞.

We say that ∂Ω is C1,Dini if for any x ∈ ∂Ω, ∂Ω is C1,Dini at x ∈ ∂Ω.

If ∂Ω satisfies the pointwise C1,Dini condition at any x ∈ ∂Ω with the same r0, it
follows that ∂Ω is C1,Dini in the classical sense, i.e., ∂Ω can be locally represented
as a C1 graph with the gradient being Dini continuous.

Definition 1.4. We say that the function g ∈ Ln(Ω) is C−1,Dini
n at x ∈ ∂Ω, if

there exists a positive constant r0 such that

(
1

|Br(x) ∩ Ω|

∫
Br(x)∩Ω

|g(y)|ndy)1/n ≤ r−1ω(r)

for each 0 < r ≤ r0, where ω(r) is a nonnegative nondecreasing function and satisfies∫ r0
0

ω(r)
r dr <∞. Obviously, we have ‖g‖Ln(Ω∩Br(x)) ≤ |B1(0)|1/nω(r) ≤ 2ω(r). We

say that g is C−1,Dini
n on ∂Ω if for any x ∈ ∂Ω, g is C−1,Dini

n at x ∈ ∂Ω.

Generally, for any function in Lp(Ω)(1 ≤ p ≤ ∞), we can define the pointwise
Ck,Dini
p (k ∈ Z). We say that the function g ∈ Lp(Ω) is Ck,Dini

p at x ∈ ∂Ω, if there
exists a positive constant r0 and a k − th order polynomial P xk (y) (P xk (y) ≡ 0 if
k < 0) such that( 1

|Br(x) ∩ Ω|

∫
Br(x)∩Ω

|g(y)− P xk (y)|pdy
)1/p

≤ rkω(r)

for each 0 < r ≤ r0, where ω(r) is a nonnegative nondecreasing function and

satisfies
∫ r0

0
ω(r)
r dr <∞.

The main results of this paper are Theorems 1.5, 1.9, and Corollary 1.7 below.

Theorem 1.5. Assume that

(1) 0 ∈ ∂Ω, r0 > 0, u ∈ W (Ωr0), u|∂Ω∩Br0 = 0, Lu = f in Ωr0 , |b|, f ∈
Ln(Ωr0) and

∫ r0
0

‖f‖Ln(Ωr)

r dr <∞;

(2) ∂Ω is C1,Dini at 0 and |b| is C−1,Dini
n at 0 with the modulus of continuity

ω(r) satisfies

ω(r0) ≤ min
{δ

6
,

1

2
,
ε0
2

}
and

∫ r0

0

ω(r)

r
dr ≤ min

{
1,

δ ln 1
δ

72M
√
nA2

}
, (1.6)

where δ, M and A2 are constants depending only on λ and n (see Lemma
2.2), and ε0 is the constant in Theorem 1.2.

Then u is differentiable at 0, furthermore, there exist a linear function L(x) and
constants α̂ > 0, Λ > 1, C > 0 such that

|u(x)− L(x)| ≤ C
{
rα̂ + ω(Λr) + ‖f‖Ln(ΩΛr) + rα̂

∫ r0

r

ω(s) + ‖f‖Ln(Ωs)

s1+α̂
ds

+

∫ Λr

0

ω(s) + ‖f‖Ln(Ωs)

s
ds
}
r,

(1.7)
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for any x ∈ Ωr and 0 < r ≤ r0
Λ , where C depends on ‖u‖L∞(Ωr0 ), ‖f‖Ln(Ωr0 ),∫ r0

0

‖f‖Ln(Ωs)

s ds, r0, λ and n.

Remark 1.6. (1) The condition (1.6) will always be satisfied for small r0 if the
modulus of continuity ω(r) satisfies the Dini condition, which will guarantee that
the slopes of hyperplanes in the iteration procedure are uniformly bounded (see
(2.22)).

(2) We can also deduce pointwise boundary differentiability with nonhomoge-
neous pointwise C1,Dini boundary value as in [15]. Here we only consider the
homogeneous boundary value just for convenience.

(3) The modulus of continuity ω(r) is nondecreasing can be replaced by ω(r)
satisfies the doubling condition(see [14, Definition 2.3]).

The following corollary is a direct consequence of Theorems 1.5 and 2.1.

Corollary 1.7. Assume that

(1) 0 ∈ ∂Ω, r0 > 0, u ∈ W (Ωr0), Lu = f in Ωr0 , u|∂Ω∩Br0 = 0 and |b|,
f ∈ Ln(Ωr0);

(2) ∂Ω is C1,Dini at 0, |b| is C−1,Dini
n at 0 and f is C−1,Dini

n at 0 with the
modulus of continuity ω(r) satisfies

ω(r0) ≤ min
{δ

6
,

1

2
,
ε0
2

}
,

∫ r0

0

ω(r)

r
dr ≤ min

{
1,

δ ln 1
δ

72M
√
nA2

}
,

where δ, M and A2 are the constants in Lemma 2.2, and ε0 is the constant
in Theorem 1.2.

Then u is differentiable at 0, furthermore, there exist a linear function L(x) and
constants α̂ > 0, Λ > 1, C > 0 such that for any x ∈ Ωr and 0 < r ≤ r0/Λ,

|u(x)− L(x)| ≤ C
(
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
)
r, (1.8)

where C depends on ‖u‖L∞(Ωr0 ), r0, λ and n.

Remark 1.8. If ∂Ω is C1,α at 0, |b| is C−1,α
n at 0 and f is C−1,α

n at 0 with

ω(r) = rα(0 < α < 1), then u is C1,β̂ at 0 with β̂ = min{α, α̂} if α 6= α̂ and

0 < β̂ < min{α, α̂} if α = α̂.

Theorem 1.9. Assume that

(1) 0 ∈ ∂Ω, r0 > 0, u ∈ W (Ω3r0), Lu = f in Ω3r0 , u|∂Ω∩B3r0
= 0 and |b|,

f ∈ Ln(Ω3r0);
(2) ∂Ω is C1,Dini, |b| is C−1,Dini

n and f is C−1,Dini
n on ∂Ω ∩ Br0 uniformly

with the modulus of continuity ω(r) satisfies

ω(r0) ≤ min
{δ

6
,

1

2
,
ε0
2

}
,

∫ r0

0

ω(r)

r
dr ≤ min

{
1,

δ ln 1
δ

72M
√
nA2

}
,

where δ, M and A2 are constants in Lemma 2.2, and ε0 is the constant in
Theorem 1.2.

Then there exist constants α̂ > 0, Λ > 1, C > 0 such that for any y, z ∈ ∂Ω ∩ Br0
and 0 < |y − z| = r ≤ r0

Λ ,

|∇u(y)−∇u(z)| ≤ C
(
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
)
,
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where α̂ and Λ are the constants in Corollary 1.7, and C is a constant depending
on ‖u‖L∞(Ω3r0

), r0, λ and n.

Remark 1.10. If ∂Ω is C1,α on ∂Ω∩Br0 , |b| is C−1,α
n on ∂Ω∩Br0 and f is C−1,α

n

on ∂Ω ∩ Br0 with ω(r) = rα(0 < α < 1), then ∇u is C β̂ along ∂Ω ∩ Br0 with

β̂ = min{α, α̂} if α 6= α̂ and 0 < β̂ < min{α, α̂} if α = α̂.

We shall prove Theorems 1.5 and 1.9 in the next section.

2. Boundary estimates

By standard normalization, it is enough to prove Theorem 2.1, below, instead
of proving Theorem 1.5. Since ∂Ω is C1,Dini at 0 ∈ ∂Ω, without loss of generality,
we assume ~n = en as the inward normal direction in the following Theorem 2.1.
Consider the normalization of solution,

ũε(x) =
u(r0x)

‖u‖L∞(Ωr0 ) + ε+ r0‖f‖Ln(Ωr0 ) + r0

∫ r0
0

‖f‖Ln(Ωr)

r dr
,

for ε > 0 and x ∈ Ω̃ ∩ B1, with the normalized domain Ω̃ := {x ∈ Rn : r0x ∈ Ω}.
Obviously, ũε(x) satisfies

‖ũε‖L∞(Ω̃1) ≤ 1 and − ãij(x)Dij ũε(x) + b̃i(x)Diũε(x) = f̃(x)

for x ∈ Ω̃ ∩B1, where

ãij(x) = aij(r0x), b̃i(x) = r0bi(r0x),

f̃(x) =
r2
0f(r0x)

‖u‖L∞(Ωr0 ) + ε+ r0‖f‖Ln(Ωr0 ) + r0

∫ r0
0

‖f‖Ln(Ωr)

r dr
.

Let ω̃(r) = ω(r0r). Obviously,

1

r
sup

y∈∂Ω̃,|y|≤r
|y · en| ≤ ω̃(r), ‖b̃‖Ln(Ω̃r) = ‖b‖Ln(Ωr0r) ≤ 2ω̃(r)

for 0 < r ≤ 1, and ∫ 1

0

ω̃(r)

r
dr =

∫ r0

0

ω(r)

r
dr.

Theorem 2.1. Assume that

(1) 0 ∈ ∂Ω, u ∈W (Ω1), u|∂Ω∩B1
= 0, Lu = f in Ω1, and ‖u‖L∞(Ω1) ≤ 1;

(2) f ∈ Ln(Ω1) with ‖f‖Ln(Ω1) ≤ 1 and
∫ 1

0

‖f‖Ln(Ωr)

r dr ≤ 1;

(3) ∂Ω is C1,Dini at 0 and |b| is C−1,Dini
n at 0 with the modulus of continuity

ω(r) satisfies the normalized conditions

ω(1) ≤ min
{δ

6
,

1

2
,
ε0
2

}
,

∫ 1

0

ω(r)

r
dr ≤ min

{
1,

δ ln 1
δ

72MA2

}
, (2.1)

where ε0 is the constant in Theorem 1.2, and δ, M , A2 are constants in
Lemma 2.2.
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Then there exist the three positive constants C, α̂ and Λ(≥ 324n) depending only
on λ and n, and there exists a constant θ such that

|u(x)− θxn| ≤ C
{
rα̂ + ω(Λr) + ‖f‖Ln(ΩΛr) + rα̂

∫ 1

r

ω(s) + ‖f‖Ln(Ωs)

s1+α̂
ds

+

∫ Λr

0

ω(s) + ‖f‖Ln(Ωs)

s
ds
}
r,

(2.2)

for any x ∈ Ωr and r ≤ 1
Λ .

We shall establish Theorem 2.1 by an iteration method which is based on Lemmas
2.2 and 2.3 below. For convenience, we define

γ(r) =
1

r
sup

y∈∂Ω,|y|≤r
|y · en| for 0 < r ≤ 1.

Obviously,
γ(r) ≤ ω(r), ‖b‖Ln(Ωr) ≤ 2ω(r) for 0 < r ≤ 1.

Lemma 2.2. Suppose that 0 ∈ ∂Ω, u ∈ W (Ω1), u|∂Ω∩B1 = 0, Lu = f in Ω1,
f ∈ Ln(Ω1), γ(1) ≤ δ/6 and ‖b‖Ln(Ω1) ≤ min{ε0, 1}, where ε0 is the constant in
Theorem 1.2 and δ(< 1) will be chosen in (2.3). Then there exist positive constants
µ < 1, M , A1 and A2 depending only on λ and n. If

kxn − l ≤ u(x) ≤ Kxn +B in Ω1, (2.3)

for some constants l ≥ 0, B(≥ 0), k and K with k ≤ K, then there exist constants

k̃ and K̃ such that

k̃xn −A1‖f‖Ln(Ω1) −A2(|K|+ |k|+ l)(γ(1) + ‖b‖Ln(Ω1))

≤ u(x) ≤ K̃xn +A1‖f‖Ln(Ω1) +A2(|K|+ |k|+B)(γ(1) + ‖b‖Ln(Ω1))
(2.4)

in Ωδ, where either

k̃ = k − 3M
√
nl + µ(K − k) and K̃ = K + 3M

√
nB, (2.5)

or
k̃ = k − 3M

√
nl and K̃ = K + 3M

√
nB − µ(K − k). (2.6)

Obviously, we have k̃ ≤ K̃.

Proof of Lemma 2.2. First we proof the following.

Claim. There exist positive constants M , δ̃ and C1 depending only on λ and n,
such that

(k − 3M
√
nl)xn − C1‖f‖Ln(Ω1) − 3M

√
n(|k|+ l)γ(1)− C1(|k|+ l)‖b‖Ln(Ω1)

≤ u(x)

≤ (K + 3M
√
nB)xn + C1‖f‖Ln(Ω1) + 3M

√
n(|K|+B)γ(1)

+ C1(|K|+B)‖b‖Ln(Ω1) in Ω ∩Qδ̃.

Proof. Let M = 1 + 2
√
n−1
λ (≥ 3) and ε(> 0) be small enough, such that

3− (1 + ε)(2 + ε)(M − 1)ε ≥ 0. (2.7)

Let

δ̃ =
1

M
√
n

(≤ 1

3
√
n

), δ =
δ̃

2M
=

1

2
√
n(1 + 2

√
n−1
λ )2

(2.8)
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and

ψ̃(x) =
4

3

(2(xn + γ(1))

δ̃
− (xn + γ(1))2

δ̃2

)
+

λ2

2(n− 1)

n−1∑
i=1

(( |xi|
δ̃
− 1
)+)2+ε

.

The barrier function ψ̃(x) is C2 and satisfies the following conditions (observe that

1 ≤ δ̃+γ(1)

δ̃
≤ 3/2):

ψ̃(x) ≥ 1 on Q1/
√
n ∩ {x ∈ Rn : xn = δ̃};

ψ̃(x) ≥ 0 on Q1/
√
n ∩ {x ∈ Rn : xn = −γ(1)};

ψ̃(x) ≥ 1 on ∂Q 1√
n
∩ {x ∈ Rn : −γ(1) < xn < δ̃};

−aij(x)Dijψ̃(x) ≥ 0 a.e. in Q1/
√
n ∩ {x ∈ Rn : −γ(1) < xn < δ̃} ∩ Ω;

ψ̃(x) ≤ 3(xn + γ(1))

δ̃
in Qδ̃ ∩ {x : xn ≥ −γ(1)}.

(2.9)

Combining (??) and (2.4), we have

L
(
kxn − lψ̃(x)− u(x)

)
≤ bi(x)Di(kxn − lψ̃(x))− f(x) in Q̃ ∩ Ω;

kxn − lψ̃(x)− u(x) ≤ |k|γ(1) on ∂(Q̃ ∩ Ω);
(2.10)

where Q̃ = Q1/
√
n ∩ {x ∈ Rn : −γ(1) < xn < δ̃}.

By the Alexandroff-Bakelman-Pucci maximum principle,

kxn − lψ̃(x)− u(x) ≤ |k|γ(1) + C1(|k|+ l)‖b‖Ln(Ω1) + C1‖f‖Ln(Ω1) (2.11)

in Q̃ ∩ Ω, where C1 is a constant depending only on λ and n.
By (2.4) (fifth inequality), we have

u(x) ≥ (k − 3M
√
nl)xn − C1‖f‖Ln(Ω1) − 3M

√
n(|k|+ l)γ(1)

− C1(|k|+ l)‖b‖Ln(Ω1)

(2.12)

in Ω ∩Qδ̃. As in (2.5), we have

L
(
u(x)−Kxn −Bψ̃(x)

)
≤ f(x)− bi(x)Di(Kxn +Bψ̃(x)) in Q̃ ∩ Ω;

u(x)−Kxn −Bψ̃(x) ≤ |K|γ(1) on ∂(Q̃ ∩ Ω).

According to the Alexandroff-Bakelman-Pucci maximum principle,

u(x)−Kxn −Bψ̃(x) ≤ |K|γ(1) + C1‖f‖Ln(Ω1) + C1(|K|+B)‖b‖Ln(Ω1)

in Q̃ ∩ Ω, where C1 is a constant depending only on λ and n. By (2.4) (fifth
inequality), we have

u(x) ≤ (K + 3M
√
nB)xn + C1‖f‖Ln(Ω1) + 3M

√
n(|K|+B)γ(1)

+ C1(|K|+B)‖b‖Ln(Ω1)

(2.13)

in Ω ∩Qδ̃. By (2.7) and (2.8), the claim follows. �

Let Γ = QMδ ∩ {x ∈ Rn : xn = δ}. By γ(1) ≤ δ/6, we have

Γ ⊂ Ω and dist(Γ, ∂Ω) ≥ δ

2
. (2.14)

Next, we show (??) for the two cases: u(δen) ≥ 1
2 (K + k)δ and u(δen) <

1
2 (K + k)δ, corresponding to (??) and (??).
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Case 1: u(δen) ≥ 1
2 (K + k)δ. Let

v(x) = u(x)− (k − 3M
√
nl)xn + C1‖f‖Ln(Ω1) + 3M

√
n(|k|+ l)γ(1)

+ C1(|k|+ l)‖b‖Ln(Ω1).

Then

v(δen) ≥
(K − k

2
+ 3M

√
nl
)
δ + C1‖f‖Ln(Ω1) + 3M

√
n(|k|+ l)γ(1)

+ C1(|k|+ l)‖b‖Ln(Ω1).
(2.15)

Since v(x) ≥ 0 for x ∈ Ω ∩ Qδ̃, from (2.9) and the interior Harnack inequality, it
follows that

sup
Γ
v(x) ≤ C2

(
inf
Γ
v(x) + ‖f‖Ln(Ω1) + (|k|+ l)‖b‖Ln(Ω1)

)
, (2.16)

where C2(≥ 1) is a constant depending only on λ and n. Combining (2.10),(2.11)
and v(x) ≥ 0, we have

inf
Γ
v(x) ≥

{ 1

C2

(
(
K − k

2
+ 3M

√
nl)δ + 3M

√
n(|k|+ l)γ(1)

)
+ (

C1

C2
− 1)

(
(|k|+ l)‖b‖Ln(Ω1) + ‖f‖Ln(Ω1)

)}+

:= a.

Let

ψ(x) =
3

8

((xn + γ(1)

δ

)
+
(xn + γ(1)

δ

)2)
− λ2

4(n− 1)

n−1∑
i=1

(( |xi|
δ
−1
)+)2+ε

, (2.17)

where ε satisfies (2.2).
The barrier function ψ(x) is C2 and satisfies the following conditions (observe

that 1 ≤ δ+γ(1)
δ ≤ 7/6):

ψ(x) ≤ 1 on QMδ ∩ {x ∈ Rn : xn = δ};
ψ(x) ≤ 0 on QMδ ∩ {x ∈ Rn : xn = −γ(1)};

ψ(x) ≤ 0 on ∂QMδ ∩ {x ∈ Rn : −γ(1) ≤ xn ≤ δ};
−aij(x)Dijψ(x) ≤ 0 a.e. in QMδ ∩ {x ∈ Rn : −γ(1) < xn < δ} ∩ Ω;

ψ(x) ≥ xn + γ(1)

3δ
in Qδ ∩ {x : xn ≥ −γ(1)};

ψ(x) ≤ xn + γ(1)

δ
in QMδ ∩ {x ∈ Rn : −γ(1) ≤ xn ≤ δ}.

(2.18)

We claim that

L
(
aψ(x)− v(x)

)
≤ bi(x)Di(aψ(x) + (k − 3M

√
nl)xn)− f in ˜̃Q ∩ Ω;

aψ(x)− v(x) ≤ 2 + 9M
√
n

C2
(|K|+ |k|+ l)γ(1) on ∂( ˜̃Q ∩ Ω);

(2.19)

where ˜̃Q = QMδ ∩ {x ∈ Rn : −γ(1) < xn < δ}.
In fact, the first inequality is clear. For the second inequality, we separate the

boundary ∂( ˜̃Q ∩ Ω) into three parts:

∂ ˜̃Q ∩ {x ∈ Rn : xn = δ}, ∂ ˜̃Q ∩ {x ∈ Rn : −δ < xn < δ} ∩ Ω, ∂Ω ∩ ˜̃Q.
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The first part is just Γ where v(x) ≥ a and ψ(x) ≤ 1, then aψ(x) − v(x) ≤ 0 on
it. On the second part, since v(x) ≥ 0 and ψ(x) ≤ 0, we have aψ(x)− v(x) ≤ 0 on

them. On the last part, since ψ(x) ≤ xn+γ(1)
δ ≤ 1 on it by (2.13)(6), we have

aψ(x)− v(x) ≤ 1

C2

(
(
K − k

2
+ 3M

√
nl)δ + 3M

√
n(|k|+ l)γ(1)

)xn + γ(1)

δ

≤ 1

C2

(
(
|K|+ |k|

2
+ 3M

√
nl)(xn + γ(1)) + 3M

√
n(|k|+ l)γ(1)

)
≤ 2 + 9M

√
n

C2
(|K|+ |k|+ l)γ(1),

where we have used −γ(1) ≤ xn ≤ γ(1) for x ∈ ∂Ω ∩ ˜̃Q. By the Alexandroff-
Bakelman-Pucci maximum principle,

aψ(x)− v(x) ≤ C3(|K|+ |k|+ l)(γ(1) + ‖b‖Ln(Ω1)) + C3‖f‖Ln(Ω1) in ˜̃Q ∩ Ω,

where we have used ‖b‖Ln(Ω1) ≤ 1 and C3 is a constant depending only on λ and
n.

From (2.13) (fifth inequality), it follows that for all x ∈ Ω ∩Qδ,

aψ(x) ≥ a

3δ
(xn + γ(1))

≥
(K−k)δ

2C2
− ‖f‖Ln(Ω1) − (|k|+ l)‖b‖Ln(Ω1)

3δ
(xn + γ(1))

≥ K − k
6C2

xn − ‖f‖Ln(Ω1) − (|k|+ l)‖b‖Ln(Ω1),

where we have used K − k ≥ 0.
Therefore, for all x ∈ Ωδ,

u(x) ≥ aψ(x) + (k − 3M
√
nl)xn − (C1 + C3)‖f‖Ln(Ω1)

− (C3 + 3M
√
n+ C1)(|K|+ |k|+ l)(γ(1) + ‖b‖Ln(Ω1))

≥
(
k − 3M

√
nl +

1

6C2
(K − k)

)
xn − (C1 + C3 + 1)‖f‖Ln(Ω1)

− (C3 + 3M
√
n+ C1 + 1)(|K|+ |k|+ l)(γ(1) + ‖b‖Ln(Ω1)).

(2.20)

Let

µ =
1

6C2
, A1 = C1 + C3 + 1, A2 = C1 + C3 + 3M

√
n+ 1. (2.21)

Combining (2.8),(2.15) and (2.16), we have (??) and (??).

Case 2: u(δen) < 1
2 (K + k)δ. The proof is similar to that of Case 1. Let

v(x) = (K + 3M
√
nB)xn + C1‖f‖Ln(Ω1) + 3M

√
n(|K|+B)γ(1)

+ C1(|K|+B)‖b‖Ln(Ω1) − u(x)

for x ∈ Ω ∩Qδ̃. Then

v(δen) >
(K − k

2
+ 3M

√
nB
)
δ + C1‖f‖Ln(Ω1) + 3M

√
n(|K|+B)γ(1)

+ C1(|K|+B)‖b‖Ln(Ω1)).
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By the interior Harnack inequality, we have

sup
Γ
v ≤ C2

(
inf
Γ
v + ‖f‖Ln(Ω1) + (|K|+B)‖b‖Ln(Ω1)

)
,

where C2(≥ 1) is a constant depending only on λ and n. Then

inf
Γ
v ≥

{ 1

C2

((K − k
2

+ 3M
√
nB
)
δ + 3M

√
n(|K|+B)γ(1)

)
+
(C1

C2
− 1
)
(‖f‖Ln(Ω1) + (|K|+B)‖b‖Ln(Ω1)))

}+

:= a.

(2.22)

Let ψ(x) be defined by (2.12). As in (2.14), we have

L
(
aψ(x)− v(x)

)
≤ biDi(aψ(x)− (|K|+ 3M

√
nB)xn) + f(x) in ˜̃Q ∩ Ω;

aψ(x)− v(x) ≤ (2 + 9M)

C2
(|K|+ |k|+B)γ(1) on ∂( ˜̃Q ∩ Ω);

(2.23)

where ˜̃Q = QMδ ∩ {x ∈ Rn : −γ(1) < xn < δ}.
Therefore, by the Alexandroff-Bakelman-Pucci maximum principle,

aψ(x)− v(x) ≤ C3(|K|+ |k|+B)(γ(1) + ‖b‖Ln(Ω1)) + C3‖f‖Ln(Ω1), (2.24)

in ˜̃Q ∩Ω, where we have used ‖b‖Ln(Ω1) ≤ 1, and C3 is a constant depending only
on λ and n.

By (2.13) (fifth inequality), we have that for any x ∈ Ω ∩Qδ,
a

3δ
(xn + γ(1))− v(x) ≤ C3(|K|+ |k|+B)(γ(1) + ‖b‖Ln(Ω1)) + C3‖f‖Ln(Ω1).

Combining (2.17) with (2.19), we have that for all x ∈ Ωδ,

u(x) ≤ (K + 3M
√
nB)xn −

a

3δ
(xn + γ(1)) + (C1 + C3)‖f‖Ln(Ω1)

+ (C1 + C3 + 3M
√
n)(|K|+ |k|+B)(γ(1) + ‖b‖Ln(Ω1))

≤
(
K + 3M

√
nB − 1

6C2
(K − k)

)
xn + (C1 + C3 + 1)‖f‖Ln(Ω1)

+ (C1 + C3 + 3M
√
n+ 1)(|K|+ |k|+B)(γ(1) + ‖b‖Ln(Ω1)).

(2.25)

Let µ = 1
6C2

, A1 = C1 + C3 + 1 and A2 = C1 + C3 + 3M
√
n + 1. Combining

(2.7) and (2.20), we have that (??) and (??) hold. �

Using induction, the following lemma is a direct consequence of Lemma 2.2.

Lemma 2.3. Suppose that 0 ∈ ∂Ω, u ∈ W (Ω1), u|∂Ω∩B1 = 0, Lu = f in Ω1,
‖u‖L∞(Ω1) ≤ 1, f ∈ Ln(Ω1) and ω(1) ≤ min{ε0/2, 1/2, δ/6}. Then there exist
nonnegative sequences {lm}∞m=0, {Bm}∞m=0, and sequences {km}∞m=0, {Km}∞m=0

with k0 = K0 = 0, l0 = B0 = 1, and for m = 0, 1, 2, . . . ,

lm+1 = A1δ
m‖f‖Ln(Ωδm ) +A2δ

m(|Km|+ |km|+
lm
δm

)(γ(δm) + ‖b‖Ln(Ωδm )),

Bm+1 = A1δ
m‖f‖Ln(Ωδm ) +A2δ

m(|Km|+ |km|+
Bm
δm

)(γ(δm) + ‖b‖Ln(Ωδm )),

and

km+1 = km − 3M
√
n
lm
δm

+ µ(Km − km) and Km+1 = Km + 3M
√
n
Bm
δm

,
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or

km+1 = km − 3M
√
n
lm
δm

and Km+1 = Km + 3M
√
n
Bm
δm
− µ(Km − km),

such that
kmxn − lm ≤ u(x) ≤ Kmxn +Bm in Ωδm , (2.26)

where δ, µ, M , A1 and A2 are positive constants given by Lemma 2.2.

Proof of Theorem 2.1. Let {lm}∞m=0, {Bm}∞m=0, {km}∞m=0 and {Km}∞m=0 be de-
fined by Lemma 2.3. We prove the following claim first.

Claim. There exists a constant C1 depending only λ and n such that for all
m = 0, 1, 2, . . . ,

|Km|, |km|,
Bm
δm

,
lm
δm
≤ C1. (2.27)

Proof. Firstly, notice that we take K0 = k0 = 0 and l0 = B0 = 1, then by induction,

we have Km ≥ km for all m ≥ 0. For m ≥ 0, we define Sm =
∑m
i=0

(
Bi
δi + li

δi ). For

any m ≥ 0, since

Km+1 ≤ Km + 3M
√
n
Bm
δm

and K0 = 0,

we have
Km+1 ≤ 3M

√
nSm for m ≥ 0.

Similarly, we have
km+1 ≥ −3M

√
nSm for m ≥ 0.

It follows that
|km+1|+ |Km+1| ≤ 6M

√
nSm for m ≥ 0. (2.28)

Since

Bm+1 + lm+1

δm+1
=
A2

δ
(γ(δm) + ‖b‖Ln(Ωδm ))(2|Km|+ 2|km|+

Bm + lm
δm

)

+
2A1

δ
‖f‖Ln(Ωδm ),

for m ≥ 1, combining the above identity with (2.23), we obtain

Bm+1 + lm+1

δm+1
≤ A2

δ

(
γ(δm) + ‖b‖Ln(Ωδm )

)(
12M

√
nSm−1 +

Bm + lm
δm

)
+

2A1

δ
‖f‖Ln(Ωδm )

≤ 12M
√
nA2

δ
(γ(δm) + ‖b‖Ln(Ωδm ))Sm +

2A1

δ
‖f‖Ln(Ωδm ).

(2.29)

By the normalized condition, we have
∞∑
i=1

12M
√
nA2

δ

(
γ(δi) + ‖b‖Ln(Ωδi )

)
≤
∞∑
i=1

36M
√
nA2

δ
ω(δi)

≤ 36M
√
nA2

δ ln 1
δ

∫ 1

0

ω(r)

r
dr ≤ 1

2
,

(2.30)

and
2A1

δ

∞∑
i=1

‖f‖Ln(Ωδi )
≤ 2A1

δ ln 1
δ

∫ 1

0

‖f‖Ln(Ωr)

r
dr ≤ 2A1

δ ln 1
δ

. (2.31)
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From (2.24)-(2.26), it follows that for any m ≥ 1,

Sm+1 − S1 =

m∑
i=1

Bi+1 + li+1

δi+1

≤ Sm+1

m∑
i=1

12M
√
nA2

δ

(
γ(δi) + ‖b‖Ln(Ωδi )

)
+

2A1

δ

m∑
i=1

‖f‖Ln(Ωδi )

≤ 1

2
Sm+1 +

2A1

δ ln 1
δ

.

Therefore, for all m ≥ 1,

Sm+1 ≤
4A1

δ ln(1/δ)
+ 2S1.

Since S0 = 2, 0 ≤ S1 ≤ A1 +A2, we have

0 ≤ Sm ≤ 2A1 + 2A2 + 2 +
4A1

δ ln 1
δ

for all m ≥ 0.

Let C1 = 3M
√
n(2A1 +2A2 +2+ 4A1

δ ln 1
δ

). This completes the proof of the claim. �

Next we show estimate (??). By Lemma 2.3, we have that for all m ≥ 1,

0 ≤ Km+1 − km+1 ≤ (1− µ)(Km − km) + 3M
√
n
lm +Bm
δm

or

|Km+1 − km+1| ≤ (1− µ)|Km − km|+ C2(‖f‖Ln(Ωδm−1 ) + ω(δm−1)),

where C2 =
(
3M
√
n(A1 + 6A2C1)

)
/δ.

Let 1− µ = δα̂(α̂ > 0) . By iteration, we have that for all m ≥ 1,

|Km+1 − km+1| ≤ C3δ
α̂m
(

1 +

∫ 1

δm

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr
)
,

where C3 is a constant depending only on λ and n.
For any m ≥ 1,

Km+1 + km+1 ≤ Km + km + µ(Km − km) + 3M
√
n
Bm
δm

,

Km+1 + km+1 ≥ Km + km − µ(Km − km)− 3M
√
n
lm
δm

.

Hence,

|(Km+1 + km+1)− (Km + km)|

≤ µ|Km − km|+ 3M
√
n
lm +Bm
δm

≤ µ|Km − km|+ C4(ω(δm−1) + ‖f‖Ln(Ωδm−1 )),

(2.32)
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where C4 is a constant depending only on λ and n. It follows that

∞∑
j=m

|(Kj+1 + kj+1)− (Kj + kj)|

≤ C3µ

∞∑
j=m

(δj−1)α̂
(

1 +

∫ 1

δj−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr
)

+ C4

∞∑
j=m

(ω(δj−1) + ‖f‖Ln(Ωδ̂j−1 )).

(2.33)

Let

Fr :=

∫ 1

r

ω(s) + ‖f‖Ln(Ωs)

s1+α̂
ds.

By

∞∑
j=m

(δj−1)α̂
∫ 1

δj−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr

=

∞∑
j=m−1

(δα̂)jFδj

=
1

δα̂(1− δ)

∞∑
j=m−1

(δj+1)α̂Fδj ·
δj − δj+1

δj

≤ 1

δα̂(1− δ)

∞∑
j=m−1

∫ δj

δj+1

rα̂−1Frdr

=
1

δα̂(1− δ)

∫ δm−1

0

rα̂−1Frdr

=
1

δα̂(1− δ)α̂

(∫ δm−1

0

ω(r) + ‖f‖Ln(Ωr)

r
dr

+ (δm−1)α̂
∫ 1

δm−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr
)

and
∞∑
j=m

(ω(δj−1) + ‖f‖Ln(Ωδj−1 )) ≤
1

1− δ

∫ δm−2

0

ω(r) + ‖f‖Ln(Ωr)

r
dr,

it follows that
∞∑
j=m

|(Kj+1 + kj+1)− (Kj + kj)|

≤ C5

{
(δm−1)α̂ + (δm−1)α̂

∫ 1

δm−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr

+

∫ δm−2

0

ω(r) + ‖f‖Ln(Ωr)

r
dr
}
.

(2.34)

where C5 is a constant depending only on λ and n.
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While m→∞, by limr→0+ ω(r) = 0 and L’Hospital rule, we have the righthand
side of (2.29) tends to 0. Hence {Km+km}∞m=0 is convergent. Let limm→∞

Km+km
2 =

θ. Then for all m ≥ 2,∣∣θ − Km + km
2

∣∣ ≤ ∞∑
j=m

|Kj+1 + kj+1

2
− Kj + kj

2
|

≤ C5

2

{
(δm−1)α̂ + (δm−1)α̂

∫ 1

δm−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr

+

∫ δm−2

0

ω(r) + ‖f‖Ln(Ωr)

r
dr
}
.

(2.35)

For any m ≥ 0 and any x ∈ Ωδm , we have

|u(x)− θxn| ≤ |u(x)− Km + km
2

xn|+ |(
Km + km

2
− θ)xn|. (2.36)

From (2.21), it follows that

−|Km − km|
2

|xn| − lm ≤ u(x)− Km + km
2

xn ≤
|Km − km|

2
|xn|+Bm.

Then for any m ≥ 0 and any x ∈ Ωδm ,

|u(x)− Km + km
2

xn| ≤ (|Km − km|+
lm +Bm
δm

)δm. (2.37)

By (2.30) and the inequality above, for all x ∈ Ωδm , m = 2, 3, . . . ,

|u(x)− θxn|

≤ |u(x)− Km + km
2

xn|+ |(
Km + km

2
− θ)xn|

≤
(
|Km − km|+

Bm + lm
δm

+ |Km + km
2

− θ|
)
δm

≤ C6

{
(δm−1)α̂ + (δm−1)α̂

∫ 1

δm−1

ω(r) + ‖f‖Ln(Ωr)

r1+α̂
dr

+ ω(δm−1) + ‖f‖Ln(Ωδm−1 ) +

∫ δm−2

0

ω(r) + ‖f‖Ln(Ωr)

r
dr
}
δm,

(2.38)

where C6 is a constant depending only on λ and n.
Let Λ = 1/δ2 (≥ 324n). By (2.33), we have that for all x ∈ Ωr and r ≤ 1/Λ,

|u(x)− θxn| ≤ C7

{
rα̂ + ω(Λr) + rα̂

∫ 1

r

ω(s) + ‖f‖Ln(Ωs)

s1+α̂
ds

+ ‖f‖Ln(ΩΛr) +

∫ Λr

0

ω(s) + ‖f‖Ln(Ωs)

s
ds
}
r.

This completes the proof of Theorem 2.1. �

Proof of Theorem 1.9. Consider |∇u(y) − ∇u(z)|, where y, z ∈ ∂Ω ∩ Br0 and 0 <
|y − z| = r ≤ r0

Λ . By Corollary 1.7, we have

‖u(x)− Ly(x)‖L∞(Ωr(y)) ≤ C
{
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
}
r,

‖u(x)− Lz(x)‖L∞(Ωr(z)) ≤ C
{
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
}
r.



EJDE-2019/39 BOUNDARY REGULARITY 15

Noticing that ∂Ω is C1,Dini and the normalization makes ω small enough, then
there exist a point p ∈ Ω and a small positive constant η(< 1

Λ ) such that Bηr(p) ⊂
Ωr(y) ∩ Ωr(z). Then by the triangle inequality, we have

‖Ly(x)− Lz(x)‖
L∞(Bηr(p))

≤ 2C
{
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
}
r.

Since Ly(x)− Lz(x) is an affine function, we obtain

|∇Ly(x)−∇Lz(x)| ≤ 1

ηr
‖Ly(x)− Lz(x)‖

L∞(Bηr(p))
.

It follows that

|∇Ly(x)−∇Lz(x)| ≤ 2C

η

(
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
)
.

Hence, for y, z ∈ ∂Ω ∩Br0 , 0 < |y − z| = r ≤ r0
Λ , we have

|∇u(y)−∇u(z)| ≤ 2C

η

(
rα̂ + ω(Λr) + rα̂

∫ r0

r

ω(s)

s1+α̂
ds+

∫ Λr

0

ω(s)

s
ds
)
.

This completes the proof. �
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