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INFINITELY MANY RADIAL SOLUTIONS FOR A SUB-SUPER
CRITICAL DIRICHLET BOUNDARY VALUE PROBLEM IN A
BALL

ALFONSO CASTRO, JOHN KWON, CHEE MENG TAN

ABSTRACT. We prove the existence of infinitely many solutions to a semilinear
Dirichlet boundary value problem in a ball for a nonlinearity g(u) that grows
subcritically for u positive and supercritically for u negative.

1. INTRODUCTION

In this paper we consider the sub-super critical boundary-value problem
Au+g(u(z) =0, zeRY |z <1

(1.1)
u(z) =0 for ||z =1,
where
uP u >0
u) = ’ = 1.2
9(u) {u|q_1u, u <0, (12)
with 5
1 1.3
<SP< 5 <a<™, (1.3)

that is, g has subcritical growth for v > 0 and supercritical growth for v < 0. Our
results hold for more general nonlinearities. For example, it is easy to see that
may be replaced by limy,—, 1o g(r,u)/uP € (0,00) and limy—, oo g(r,u)/(|u|9" u) €
(0, 00), uniformly for r € [0, 1].

Our main result is as follows.

Theorem 1.1. Problem (1.1) has infinitely many radial solutions.

This theorem extends the results of [4] where it was established that if 1 < p <
(N+1)/(N—1)and ¢ > 1,0orp,q € (1,(N+2)/(N—=2)),0rp € (1,(N+2)/(N—-2))
and ¢ = (N+2)/(N —2), then has infinitely many radial solutions. This result
is optimal in the sense that if p,q € [(IN 4+ 2)/(N — 2),00) then u = 0 is the only
solution to (see [12]). For related results for quasilinear equations the reader is
referred to [§] and [10]. Studies on positive solutions for sub-super critical problems
may be found in [9]. For other studies on the critical case, p = ¢ = (N+2)/(N —2)
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and im0 /(u|ulP™1) € R, see [1,13,4,[6,[7]. In [2] the reader can find a complete
classification of the radial solutions to forl<p=¢q< (N+2)/(N—2). Fora
recent survey of radial solutions for elliptic boundary-value problems that includes
the case where the Laplacian operator is replaced by the more general k-Hessian
operator, see [11].

Radial solutions to are the solutions to the singular ordinary differential
equation

n
u’ + ?u’ +g(u(t)) =0

(1.4)
u'(0) = u(1) =0,
where, and henceforth, n = N — 1.
For d > 0 let u(t,d) be the solution to the initial-value problem
u”—|—ﬁu’—|— u(t)) =0
"+ gu) -
u(0) =d, v/ (0) = 0.
We define the energy function
/! t d 2
E(t,d) = M + G(u(t, d)), (1.6)
where G(u) = [ g(s)ds. For future reference we note that
dE n
— () =-—(/(t)* <0. 1.7
iy = )y < 1.7

The proof of Theorem [I.1]is based on the properties of the energy and the argument
function defined below (see (1.9))).

Theorem 1.2. There exists D > 0 such that if d > D, then
N -2

tV-1 (tE(t) + u(t)u'(t)) > cd® for allt > VNdIP)/2, (1.8)

where £ = w. Also u(t) > d/2 fort € [0,/ Nd—»)/2].

As a consequence of Theorem [1.2] we see that, for d > D, p(t,d) = u?(t,d) +
(u/(t,d))?> > 0 for all t € [0,1]. Hence there exists a continuous function 6 :
[0,1] x [D,00) — R such that

u(t,d) = p(t,d)cos(6(t,d)) and u'(t,d) = —p(t,d)sin(6(t,d)). (1.9)
In section 7 we prove that

lim 6(1,d) = 400, (1.10)

d—oo

see ([7.7)) below.

2. FIRST ZERO

Let d > 0 and to > 0 be such that u(tg) = d/2, and u(t) > d/2 for t € (0,to).
Following the arguments in [4], based on

t
—u'(t) = t_"/ s"g(u(s))ds, (2.1)
0
it is easily seen that
VNAIP/2 <t < V2 Nd P2, (2.2)
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Multiplying by V¥ ~1lu and integrating on [s, t], then multiplying the same
equation by »Vu/ and integrating also on [s, t] one has the following identity, known
as Pohozaev’s identity,

K N -2
(" H(t) = 5" H(s) + / P (NGu(r) = = ~u(r)g(u(r)) dr,  (2:3)

S

where H(z) = zE(z) + %52 «/(z)u(z). In particular, taking s = 0 and ¢ = t, we
have N, gp+1 (N=2)/2

to yd” N Yoe gt

thH(to) > e 2 %1 = aid’, (2.4)
where v = N/(p+1) — (N —2)/2 and ¢ is as in (L.8). Also, from (2.3)), if u(r) >0
for all r € [0,¢] we have

p+1

t
tN (W (t)? = —(N = 2u - t"u — 2tN;+ Tt 2/ ruP T dr. (2.5)
0

Thus from and the fact that ¢~ fg s"uPtlds > —u(t)u'(t) we have
—tu' (=t —u )+ t(u)?
Sty =)
—t(— 2" — uP)u — ' 4 t(u')?
2

u
N—-2

—~
(n — Dun/ + tuP™ +t(u')?
2
. UH - . (2.6)
—n n U
2t [ s yuPt ds — 2 1+tp
2

u
2t—n fot s"yuPt ds + t(;%)up“
2

u
21 ( —tu’(t))
t N ow(t)
t). Integratmg on [tg,t) we have
t
( —tou/ to )/u( t0)> Zln(%)v'
Letting I' = —tgu/(¢9)/u(to) we conclude that
—tu/(t)
u(t)

For future reference we note that

provided u(s) > 0 for s € (0,

= F(%)V-

r>2l-r (2.7)
where we have used (2.2)), and —u/(tg) > todP/(2PN) (see (2.1))). Integrating again
in [to, t] yields

U(to) r
> —[t7 —t3].
Assuming that u(t) > 0 for all t € [to, toIn'/7(d) = T] we have

/vy
w(T) < ulto)(ed™H)T/7 = erH/V.
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Now we estimate F for ¢ > tg with u(s) > 0 for s € (o, t]. Since E'(t) > —2nE(t)/t,

E(t) > E(s)(s/t)*" forany 0<s<t<l1. (2.8)
Thus
(u'(1))? toyan  wPTH(T)
> E(to) (=
7y = Bto(g) p+1
p+1 1 T/~ +1
> d . - (e dl‘F”)p (2.9)
(p+ 120+ > (d) p+1\ 2
artl

> ;
(p 4 1)2°+2 %"/ (d)

for d sufficiently large.

Let us suppose now that that u(t) > 0, for any ¢ € [T, 27]. Arguing as in (2.9)
we have

(' (1) T\ urt(T)
> E(T)
2 - t p+1
p+1 T/ ptl
(p+ 1)2rti42n 2?7 (d)  p+1\ 2
artt
>

T (p+ 2rt2tan 1n?/7(g)

for d large. Integrating on [T, t] we have

t

0<u(t)=u(T)+ | u(s)ds
/T (2.11)

\/2d(P+1D/2
91+n+(p/2) lnn/’Y(d) /p+1 i

L/
< %d”/v —(t—T)
Hence u has a zero in [d0~P)/2 T + e/7d(1=p)/2=F/v9n+(@/2) |n"/7 () /p+ 1]. We
summarize the above in the following lemma.

Lemma 2.1. For d > 0 sufficiently large, there exists
t1 € (VNP2 2/ Nd=P/2 10/ (q)) (2.12)

such that u(ty) =0, u(s) > 0 for s € [0,t1), and

qrt1 qrt+1

< E(t;) <
(p+ 1)2rt2t2n 1n2n(d) < Et) < p+1

(2.13)
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3. FIRST LOCAL MINIMUM

Let t € (ty,t1 + (1/2)(2/(q + 1))9/ @tV |0/ (¢,)|1=0/0+9) = ¢; 4+ 7). From (2.12)
and (2.13)),

(31 T T

—>1- >1 - —

t - tl +7 tl
o (/2@ (g + D))V ()| 0/
- VNd(-p)/2 51)
o W/2)@/ (g + )@ @r 2 p T 0/ 0

VNd1-p)/2
=1 — mdP—9/0+9) > 0.91/7.

for d large. Hence for d positive and large

u'(t) = t_"[ T (ty) — /tlt S”|u(s)|q_1u(s)ds}

1 3.2
§ O.9u/(t1) + (t o tl)(%)Q/(QJFD|u/(t1)|(2q)/(q+1) ( )

S 0.4u’(t1),

where we have used that, since E/ < 0, |u(t)|[7"! < (¢ + 1)(u/(t1))?/2 for t >
with u(t) < 0. This and (3.2) yield

u(ty +7) < 040 (t1)T < —0.2(2/(q 4 1))/ @D |0/ (#,) 2/ A+, (3.3)

Now for t > t; + 7 with u(s) < —0.2(2/(g + 1))@+ D]/ (,)|>/ A+ for all s €
(t1 + 7,t) we have

u'(t)

=t [t;lu’(tl) - /t t s [u(s)| " u(s)ds

> /() + £ (0.2(2/ (g + 1) D)y () 20/ (1) / s'ds
t1+7
N N
> (1)~ 14 670202/ (g-+ D)@ ap ()| (o DV L LT T

(0.2(2/(q +1))4/@*D)q
N

> () -1+ /(1) = (04 7))

(3.4)
This and the definition of 7 imply the following lemma.

Lemma 3.1. There exists 11 in

N
(2(2/(q + D)/@D

(tl’tl +{(1/2)(2/(q + 1))/ @D 4

= (tlatl + l€1|u'(t1)|(1—Q)/(1+q)]

a }|u’(t1)|(1—4)/(1+(1)}

such that u'(11) = 0.



6 A. CASTRO, J. KWON, C. M. TAN EJDE-2007/111

4. SECOND ZERO

Let 79 > 7 be such that u(s) < 0.5u(m) for all s € [r,7p]. Imitating the
arguments leading to (2.2]) we see that

71+ |u(m) [T < 7p <1+ V29N u(r)| 9O/, (4.1)

Hence

T0
W (r0) = 73" / " u(s)|7ds
T1

e - )

- N2arf (4.2)
Ju(1)?(m0 — 1)

- 29N
|u(71)|(1+q)/2

- 2‘1N b

and
T8> 95" for any s € (7o, 70 + 2972 N |u(ry )| 17972, (4.3)

for d > 0 sufficiently large.
Suppose now that for all s € [y, 7 = 79+ 29T N|u(r1)|*~9/2] we have u(s) < 0.
Then

u'(s) > 0.9u' (1) for all s € [1g,7]. (4.4)

This and and the definition of r give

u(71)
2

0>u(r) > +.9(r — ) (1)

u(m) g+1 (1—q)/2 Ju(m)|0F9/2
> —5 T 92T ) Nu(r)| BT

= 1.3|u(m)|,
which is a contradiction. From (3.3)), |u(70)| > 0.2(2/(q + 1))%/ @D |/ (¢,)]|?/A+a),
Since also 79 < t1 4 (k1 +0.2v24N (2/(q+1))9/@HD) o/ (1) |1~ D/(+4) (see Lemma
B-1and ([2)). Thus
70 + 29 N ju(ry ) |1 -9/2
<tk (4 220N (/g + D)D) (1) 07/ 00
=1t + kg‘u/(tlﬂ(liq)/(prq).

Thus we have proven the following lemma.

Lemma 4.1. There exists ty € [t1,t1 + ko|u/(t1)|0~9/0+D] such that u(ty) = 0
and u(s) < 0 in (t1,t2).
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5. FIRST POSITIVE MAXIMUM

Let ¢ > t be such that u/(s) > 0 on [t2,t]. Thus v” < 0 in [t2,t]. Hence
u(s) < u'(te)(s — ta) for all s € [ta,t]. Integrating ((1.5]) on [t2, s], we have

s"u'(s) = thu' (tg) — /S ™ lu(r) [P u(r)dr

ta
[u'(t2) [P (s — t2)P*!
>tn ,t N 5.1
> thu (t2) — s o1 (5.1)
g™
> /t tnii
_U(Q)(Q p+1)7

for s < to + u(to) =P/ (HP) | Since t)|u/ (t2)|? > 2¢1dS (see (2.4)) and (u/(t2))? <
2dP*/(p + 1), we have

1
tév > 26, (p‘g )E/(P'H)|u/(t2)|N(1fp)/(1+P). (5.2)
Now for 5 .
s € [t2, min {21/", 1+ (201)_1/1\[(?) N b, = aty],
p
from (5.1) and (5.2), we have
W) 2 () (2 - ) 2 ()P (53
gn T p+1/ = Ty
Integration on [tg, ats] yields
u(aty) > 70&f2ul(t2) (5.4)

Therefore, assuming again that u’ > 0 on [t, t], we have
t

() < B0 () — / P ()P~ (r) dr
ats 1 ) (5.5)
< Na! _on(y p— / )
<t (1) — t2(t o@)(p—Jr Catyu (tz))
This and (5.2) imply

p—1 —P,—pi I 1—
t—aty < (—— t t p
aty < (070) " (1)

-1 (- 1, -
< (p Oé) p(261)7p/N (p_g ) Pf/(N(P"Fl))‘ul(t2)|(lfp)/(p+1) (56)
= kgt ()| (7P (PHD),

This proves the following result.
Lemma 5.1. There exists T5 € [ta, aty + kolu/ (t2)| 7P/ D] such that ' (12) = 0
and u'(s) > 0 on [ta,T2).
6. ENERGY ON THE INTERVAL [tq, T2]
Now we estimate the energy on [to, 72].
Lemma 6.1. Fort € [ty, 7],
t"H(t) > c1d°. (6.1)
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Proof. Let us prove first that

t1 ta
/ Pt (t)dt > / "y fu(t) T dt, (6.2)

to t1

where v, = ((¢+1)(N—2)—2N)/(2(g+1)). Let iy € [to, t1] be such that u(fy) = d/4.
Then, for t € [to, o], we have

¢ tdp
—u'(t) = tfn/ s"uP(s)ds < — (6.3)
0 N~
Integrating on [to, o] we have (d/4) < (2 —t2)dP/(2N). This and (2.2) yield

d1*

to > +1t3 =ty 2p+1, (6.4)
which combined with (2.2)) gives
t1 £O
/ t"yuP T (t)dt > / tyuPT(t)dt
to tO
ity —t)
> y(d/4)PT ——
LSO (6.5)

Y 1 N/2 p+1
Z PN <(1 Tom) o l)d

Y 1 \ny2 N/2 ¢
z4p+1N((1+2p+1) —1)N d&.

Using (1.7), we have |u(t)|91 < (¢+1)dP™/(p+1). Also from (2.3) and (2.4)), we

have tV|u/(t1)|?/2 = t1H(t1) > c1dé. This implies that ko|u/(t;)|0~9/0+9) < ¢,
for d > 0 large. These inequalities and Lemma [£.1] imply

ta N N
+1 N —t
()7 dr < (L2 ey 2
< (e g
< (4t 1dp+1) (t1 + koft/ (t1)|— 0/ OHO)N — ¢
p+1 N
(q +1 (2N = Dkl ()|~ 9/ 0F0)
p+1 N
q+1 (2N — 1)ksy _ny2\ 1m0/ (1+9)
< derl n ( £/2 )
_ (q + 1) 2N — 1)k, JPHIH(E—a)/(2(149) N=1=N(1-a)/(2(1+0))
p+1 N !

g+1, (2% —Dko . py
< v n
_(p+1) N In (d)d",

dPrhty

(6.6)
where
l-g+(1-pCWV-1)1+q)—N1-9q))
2(1+q) ’
M= (2N -1)1+q) —N(1-q)/(2(1+q)).

n=p+1+
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An elementary calculation shows that ¢ > 7. Thus from and (6.6), (6.2]
follows. Thus for ¢ € [t1, 2],

t"H(t) =ty H(to) + /t s" (NG(u(s)) - N; 2u(s)g(u(s))> ds
>t + [ (NG - T 2w Jas @)
> tgH(to)
> cdf,
which proves the lemma. [

7. PROOF OF THEOREM [L.1]

Arguing as in Lemmas [2.1] and [£:1] we see that for d > 0 sufficiently large there
exist numbers

ty <<ty <1 (7.1)
such that
kE k+1
u(t) <O i (faimytai), and u(t) >0 in (fai tai1), i = 1,...min{g, —; ).
(7.2)
Imitating the arguments leading to (6.2)), one sees that
toit1 (SR
/ P (#)dt > / Py (D) |d (7.3)
to; t2i41

This in turn (see (6.7))) leads to
t"H(t) > c1d®  for all t € [to, 1]. (7.4)
This, together with Lemma. proves Theorem [1.2} From we see that
PpA(t) = uP(t) + (W (1)? — 0o as d — +oo, (7.5)

uniformly for ¢ € [0,1]. Therefore, there exists a continuous argument function
0(t,d) = 0(t) such that

u(t) = p(t) cos(0(t)) and u'(t) = —p(t)sin(0(t)). (7.6)

From this we see that ¢'(t) = {((n/t)u'(t) + g(u(t)))u(t) + (' (t))?}/p?(t). Thus
0'(t) > 0 for O(t) = jw/2 with j = 1,..., which implies that if 8(¢) = jr/2 then
0(s) > jm/2 for all s € (¢,1].

Imitating the arguments of Lemmas and we see that ta; — ty_1) <
csInt 7 (d)d=P)/2. Thus k > ¢4 1n—1/v(d)d@*1)/2 (see (7.1))), which implies that

lim 6(1,d . 7.7
i 6(1,) = (r)
By the continuity of 6 and the intermediate value theorem we see that there exists
a sequence d; < --- < d; < ---— oo such that 6(1,d;) = jm+ (7/2). Hence u(t, d;)
is a solution to (1.1)) having exactly j zeroes in (0, 1), which proves Theorem
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