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INFINITELY MANY RADIAL SOLUTIONS FOR A SUB-SUPER
CRITICAL DIRICHLET BOUNDARY VALUE PROBLEM IN A

BALL

ALFONSO CASTRO, JOHN KWON, CHEE MENG TAN

Abstract. We prove the existence of infinitely many solutions to a semilinear

Dirichlet boundary value problem in a ball for a nonlinearity g(u) that grows
subcritically for u positive and supercritically for u negative.

1. Introduction

In this paper we consider the sub-super critical boundary-value problem

∆u + g(u(x)) = 0, x ∈ RN , ‖x‖ ≤ 1

u(x) = 0 for ‖x‖ = 1,
(1.1)

where

g(u) =

{
up, u ≥ 0
|u|q−1u, u < 0,

(1.2)

with
1 < p <

N + 2
N − 2

< q < ∞, (1.3)

that is, g has subcritical growth for u > 0 and supercritical growth for u < 0. Our
results hold for more general nonlinearities. For example, it is easy to see that (1.2)
may be replaced by limu→+∞ g(r, u)/up ∈ (0,∞) and limu→−∞ g(r, u)/(|u|q−1u) ∈
(0,∞), uniformly for r ∈ [0, 1].

Our main result is as follows.

Theorem 1.1. Problem (1.1) has infinitely many radial solutions.

This theorem extends the results of [4] where it was established that if 1 < p <
(N +1)/(N−1) and q > 1, or p, q ∈ (1, (N +2)/(N−2)), or p ∈ (1, (N +2)/(N−2))
and q = (N +2)/(N−2), then (1.1) has infinitely many radial solutions. This result
is optimal in the sense that if p, q ∈ [(N + 2)/(N − 2),∞) then u = 0 is the only
solution to (1.1) (see [12]). For related results for quasilinear equations the reader is
referred to [8] and [10]. Studies on positive solutions for sub-super critical problems
may be found in [9]. For other studies on the critical case, p = q = (N +2)/(N −2)
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and lim|u|→∞ /(u|u|p−1) ∈ R, see [1, 3, 4, 6, 7]. In [2] the reader can find a complete
classification of the radial solutions to (1.1) for 1 < p = q < (N +2)/(N −2). For a
recent survey of radial solutions for elliptic boundary-value problems that includes
the case where the Laplacian operator is replaced by the more general k-Hessian
operator, see [11].

Radial solutions to (1.1) are the solutions to the singular ordinary differential
equation

u′′ +
n

t
u′ + g(u(t)) = 0

u′(0) = u(1) = 0,
(1.4)

where, and henceforth, n = N − 1.
For d > 0 let u(t, d) be the solution to the initial-value problem

u′′ +
n

t
u′ + g(u(t)) = 0

u(0) = d, u′(0) = 0.
(1.5)

We define the energy function

E(t, d) ≡ (u′(t, d))2

2
+ G(u(t, d)), (1.6)

where G(u) =
∫ u

0
g(s)ds. For future reference we note that

dE

dt
(t) = −n

t
(u′(t))2 ≤ 0. (1.7)

The proof of Theorem 1.1 is based on the properties of the energy and the argument
function defined below (see (1.9)).

Theorem 1.2. There exists D > 0 such that if d ≥ D, then

tN−1
(
tE(t) +

N − 2
2

u(t)u′(t)
)
≥ cdξ for all t ≥

√
Nd(1−p)/2, (1.8)

where ξ = N+2−p(N−2)
2 . Also u(t) ≥ d/2 for t ∈ [0,

√
Nd(1−p)/2].

As a consequence of Theorem 1.2 we see that, for d ≥ D, ρ(t, d) ≡ u2(t, d) +
(u′(t, d))2 > 0 for all t ∈ [0, 1]. Hence there exists a continuous function θ :
[0, 1]× [D,∞) → R such that

u(t, d) = ρ(t, d) cos(θ(t, d)) and u′(t, d) = −ρ(t, d) sin(θ(t, d)). (1.9)

In section 7 we prove that
lim

d→∞
θ(1, d) = +∞, (1.10)

see (7.7) below.

2. First zero

Let d > 0 and t0 > 0 be such that u(t0) = d/2, and u(t) > d/2 for t ∈ (0, t0).
Following the arguments in [4], based on

−u′(t) = t−n

∫ t

0

sng(u(s))ds, (2.1)

it is easily seen that
√

Nd(1−p)/2 ≤ t0 ≤
√

2pNd(1−p)/2. (2.2)
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Multiplying (1.5) by rN−1u and integrating on [s, t], then multiplying the same
equation by rNu′ and integrating also on [s, t] one has the following identity, known
as Pohozaev’s identity,

tnH(t) = snH(s) +
∫ t

s

rn
(
NG(u(r))− N − 2

2
u(r)g(u(r))

)
dr, (2.3)

where H(x) ≡ xE(x) + N−2
2 u′(x)u(x). In particular, taking s = 0 and t = t0 we

have

tn0H(t0) ≥
tN0 γdp+1

2p+1N
≥ N (N−2)/2γ

2p+1
dξ ≡ c1d

ξ, (2.4)

where γ = N/(p + 1)− (N − 2)/2 and ξ is as in (1.8). Also, from (2.3), if u(r) ≥ 0
for all r ∈ [0, t] we have

tN (u′(t))2 = −(N − 2)u · tnu′ − 2tN
up+1

p + 1
+ 2

∫ t

0

γrnup+1 dr. (2.5)

Thus from (2.5) and the fact that t−n
∫ t

0
snup+1 ds ≥ −u(t)u′(t) we have(−tu′

u

)′ =
(−tu′′ − u′)u + t(u′)2

u2

=
−t(−n

t u′ − up)u− uu′ + t(u′)2

u2

=
(

N−2︷ ︸︸ ︷
n− 1)uu′ + tup+1 + t(u′)2

u2

=
2t−n

∫ t

0
snγup+1 ds− 2 tup+1

p+1 + tup+1

u2

=
2t−n

∫ t

0
snγup+1 ds + t

(
p−1
p+1

)
up+1

u2

≥ 2γ

t

(−tu′(t)
u(t)

)
,

(2.6)

provided u(s) > 0 for s ∈ (0, t). Integrating (2.6) on [t0, t) we have

ln
(

−tu′(t)/u(t)
−t0u′(t0)/u(t0)

)
≥ ln

( t

t0

)γ
.

Letting Γ = −t0u
′(t0)/u(t0) we conclude that

−tu′(t)
u(t)

≥ Γ
( t

t0

)γ
.

For future reference we note that

Γ ≥ 21−p, (2.7)

where we have used (2.2), and −u′(t0) ≥ t0d
p/(2pN) (see (2.1)). Integrating again

in [t0, t] yields

ln
(u(t0)

u(t)
)
≥ Γ

γtγ0
[tγ − tγ0 ].

Assuming that u(t) ≥ 0 for all t ∈ [t0, t0 ln1/γ(d) ≡ T ] we have

u(T ) ≤ u(t0)(ed−1)Γ/γ =
eΓ/γ

2
d1−Γ/γ .
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Now we estimate E for t ≥ t0 with u(s) ≥ 0 for s ∈ (t0, t]. Since E′(t) ≥ −2nE(t)/t,

E(t) ≥ E(s)(s/t)2n for any 0 ≤ s ≤ t ≤ 1. (2.8)

Thus

(u′(T ))2

2
≥ E(t0)

( t0
T

)2n − up+1(T )
p + 1

≥ dp+1

(p + 1)2p+1 ln2n/γ(d)
− 1

p + 1

(eΓ/γ

2
d1−Γ/γ

)p+1

≥ dp+1

(p + 1)2p+2 ln2n/γ(d)
,

(2.9)

for d sufficiently large.

Let us suppose now that that u(t) > 0, for any t ∈ [T, 2T ]. Arguing as in (2.9)
we have

(u′(t))2

2
≥ E(T )

(
T

t

)2n

− up+1(T )
p + 1

≥ dp+1

(p + 1)2p+1+2n ln2n/γ(d)
− 1

p + 1

(
eΓ/γ

2
d1−Γ/γ

)p+1

≥ dp+1

(p + 1)2p+2+2n ln2n/γ(d)
,

(2.10)

for d large. Integrating on [T, t] we have

0 ≤ u(t) = u(T ) +
∫ t

T

u′(s)ds

≤ eΓ/γ

2
d1−Γ/γ − (t− T )

√
2d(p+1)/2

21+n+(p/2) lnn/γ(d)
√

p + 1
.

(2.11)

Hence u has a zero in [d(1−p)/2, T + eΓ/γd(1−p)/2−Γ/γ2n+(p/2) lnn/γ(d)
√

p + 1]. We
summarize the above in the following lemma.

Lemma 2.1. For d > 0 sufficiently large, there exists

t1 ∈ (
√

Nd(1−p)/2, 2
√

Nd(1−p)/2 ln1/γ(d)) (2.12)

such that u(t1) = 0, u(s) > 0 for s ∈ [0, t1), and

dp+1

(p + 1)2p+2+2n ln2n(d)
≤ E(t1) ≤

dp+1

p + 1
(2.13)
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3. First local minimum

Let t ∈ (t1, t1 + (1/2)(2/(q + 1))q/(q+1)|u′(t1)|(1−q)/(1+q) ≡ t1 + τ). From (2.12)
and (2.13),

t1
t
≥ 1− τ

t1 + τ
≥ 1− τ

t1

≥ 1− (1/2)(2/(q + 1))q/(q+1)|u′(t1)|(1−q)/(1+q)

√
Nd(1−p)/2

≥ 1− (1/2)(2/(q + 1))q/(q+1)(d(p+1)/2/
√

p + 1)(1−q)/(1+q)

√
Nd(1−p)/2

≡ 1−md(p−q)/(1+q) ≥ 0.91/n.

(3.1)

for d large. Hence for d positive and large

u′(t) = t−n
[
tn1u′(t1)−

∫ t

t1

sn|u(s)|q−1u(s)ds
]

≤ 0.9u′(t1) + (t− t1)
(q + 1

2
)q/(q+1)|u′(t1)|(2q)/(q+1)

≤ 0.4u′(t1),

(3.2)

where we have used that, since E′ ≤ 0, |u(t)|q+1 ≤ (q + 1)(u′(t1))2/2 for t ≥ t1
with u(t) ≤ 0. This and (3.2) yield

u(t1 + τ) ≤ 0.4u′(t1)τ ≤ −0.2(2/(q + 1))q/(q+1)|u′(t1)|2/(1+q). (3.3)

Now for t ≥ t1 + τ with u(s) ≤ −0.2(2/(q + 1))q/(q+1)|u′(t1)|2/(1+q) for all s ∈
(t1 + τ, t) we have

u′(t)

= t−n
[
tn1u′(t1)−

∫ t

t1

sn|u(s)|q−1u(s)ds
]

≥ u′(t1) + t−n(0.2(2/(q + 1))q/(q+1))q|u′(t1)|2q/(1+q)

∫ t

t1+τ

snds

≥ −u′(t1)
[
− 1 + t−n(0.2(2/(q + 1))q/(q+1))q|u′(t1)|(q−1)/(1+q) t

N − (t1 + τ)N

N

]
≥ −u′(t1)

[
− 1 +

(0.2(2/(q + 1))q/(q+1))q

N
|u′(t1)|(q−1)/(1+q)(t− (t1 + τ))

]
.

(3.4)
This and the definition of τ imply the following lemma.

Lemma 3.1. There exists τ1 in(
t1, t1 +

{
(1/2)(2/(q + 1))q/(q+1) +

N

(.2(2/(q + 1))q/(q+1))q

}
|u′(t1)|(1−q)/(1+q)

]
≡

(
t1, t1 + κ1|u′(t1)|(1−q)/(1+q)

]
such that u′(τ1) = 0.
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4. Second zero

Let τ0 > τ1 be such that u(s) ≤ 0.5u(τ1) for all s ∈ [τ1, τ0]. Imitating the
arguments leading to (2.2) we see that

τ1 + |u(τ1)|(1−q)/2 ≤ τ0 ≤ τ1 +
√

2qN |u(τ1)|(1−q)/2. (4.1)

Hence

u′(τ0) = τ−n
0

∫ τ0

τ1

sn|u(s)|qds

≥ |u(τ1)|q(τN
0 − τN

1 )
N2qτn

0

≥ |u(τ1)|q(τ0 − τ1)
2qN

≥ |u(τ1)|(1+q)/2

2qN
,

(4.2)

and

τn
0 ≥ .9sn for any s ∈ (τ0, τ0 + 2q+2N |u(τ1)|(1−q)/2], (4.3)

for d > 0 sufficiently large.
Suppose now that for all s ∈ [τ0, r ≡ τ0 +2q+1N |u(τ1)|(1−q)/2] we have u(s) ≤ 0.

Then

u′(s) ≥ 0.9u′(τ0) for all s ∈ [τ0, r]. (4.4)

This and and the definition of r give

0 ≥ u(r) ≥ u(τ1)
2

+ .9(r − τ0)u′(r)

≥ u(τ1)
2

+ .9(2q+1)N |u(τ1)|(1−q)/2 |u(τ1)|(1+q)/2

2qN
= 1.3|u(τ1)|,

which is a contradiction. From (3.3), |u(τ0)| ≥ 0.2(2/(q + 1))q/(q+1)|u′(t1)|2/(1+q).
Since also τ0 ≤ t1 +(κ1 +0.2

√
2qN(2/(q +1))q/(q+1))|u′(t1)|(1−q)/(1+q) (see Lemma

3.1 and (4.2)). Thus

τ0 + 2q+1N |u(τ1)|(1−q)/2

≤ t1 + (κ1 + .2(2q+2N)(2/(q + 1))q/(q+1))|u′(t1)|(1−q)/(1+q)

≡ t1 + k2|u′(t1)|(1−q)/(1+q).

Thus we have proven the following lemma.

Lemma 4.1. There exists t2 ∈ [t1, t1 + k2|u′(t1)|(1−q)/(1+q)] such that u(t2) = 0
and u(s) < 0 in (t1, t2).
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5. First positive maximum

Let t > t2 be such that u′(s) > 0 on [t2, t]. Thus u′′ ≤ 0 in [t2, t]. Hence
u(s) ≤ u′(t2)(s− t2) for all s ∈ [t2, t]. Integrating (1.5) on [t2, s], we have

snu′(s) = tn2u′(t2)−
∫ s

t2

rn|u(r)|p−1u(r)dr

≥ tn2u′(t2)− sn |u′(t2)|p(s− t2)p+1

p + 1

≥ u′(t2)
(
tn2 −

sn

p + 1
)
,

(5.1)

for s ≤ t2 + u′(t2)(1−p)/(1+p). Since tN2 |u′(t2)|2 ≥ 2c1d
ξ (see (2.4)) and (u′(t2))2 ≤

2dp+1/(p + 1), we have

tN2 ≥ 2c1

(p + 1
2

)ξ/(p+1)|u′(t2)|N(1−p)/(1+p). (5.2)

Now for
s ∈ [t2,min

{
21/n, 1 + (2c1)−1/N

( 2
p + 1

) ξ
N(p+1)

}
t2 ≡ αt2],

from (5.1) and (5.2), we have

u′(s) ≥ u′(t2)
( tn2
sn

− 1
p + 1

)
≥ u′(t2)

p− 1
p + 1

. (5.3)

Integration on [t2, αt2] yields

u(αt2) ≥
p− 1
p + 1

αt2u
′(t2). (5.4)

Therefore, assuming again that u′ > 0 on [t2, t], we have

tnu′(t) ≤ tn2u′(t2)−
∫ t

αt2

rn|u(r)|p−1u(r)dr

≤ tn2u′(t2)− tn2 (t− αt2)
(p− 1

p + 1
αt2u

′(t2)
)p

.

(5.5)

This and (5.2) imply

t− αt2 ≤
(p− 1
p + 1

α
)−p

t−p
2 |u′(t2)|1−p

≤
(p− 1
p + 1

α
)−p(2c1)−p/N

(p + 1
2

)−pξ/(N(p+1))|u′(t2)|(1−p)/(p+1)

≡ κ2|u′(t2)|(1−p)/(p+1).

(5.6)

This proves the following result.

Lemma 5.1. There exists τ2 ∈ [t2, αt2 + κ2|u′(t2)|(1−p)/(p+1)] such that u′(τ2) = 0
and u′(s) > 0 on [t2, τ2).

6. Energy on the interval [t0, τ2]

Now we estimate the energy on [t0, τ2].

Lemma 6.1. For t ∈ [t0, τ2],

tnH(t) ≥ c1d
ξ. (6.1)
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Proof. Let us prove first that∫ t1

t0

tnγup+1(t)dt ≥
∫ t2

t1

tnγ1|u(t)q+1|dt, (6.2)

where γ1 = ((q+1)(N−2)−2N)/(2(q+1)). Let t̂0 ∈ [t0, t1] be such that u(t̂0) = d/4.
Then, for t ∈ [t0, t̂0], we have

−u′(t) = t−n

∫ t

0

snup(s) ds ≤ tdp

N
. (6.3)

Integrating on [t0, t̂0] we have (d/4) ≤ (t̂20 − t20)d
p/(2N). This and (2.2) yield

t̂0 ≥
√

Nd1−p

2
+ t20 = t0

√
1 +

Nd1−p

2t20
≥ t0

√
1 +

1
2p+1

, (6.4)

which combined with (2.2) gives∫ t1

t0

tnγup+1(t)dt ≥
∫ t̂0

t0

tnγup+1(t)dt

≥ γ(d/4)p+1 t̂N0 − tN0
N

≥ γ

4p+1N
tN0

((
1 +

1
2p+1

)N/2 − 1
)
dp+1

≥ γ

4p+1N

((
1 +

1
2p+1

)N/2 − 1
)
NN/2dξ.

(6.5)

Using (1.7), we have |u(t)|q+1 ≤ (q + 1)dp+1/(p + 1). Also from (2.3) and (2.4), we
have tN1 |u′(t1)|2/2 = t1H(t1) ≥ c1d

ξ. This implies that k2|u′(t1)|(1−q)/(1+q) < t1
for d > 0 large. These inequalities and Lemma 4.1 imply∫ t2

t1

tn|u(t)|q+1dt ≤
(q + 1
p + 1

dp+1
) tN2 − tN1

N

≤
(q + 1
p + 1

dp+1
) (t1 + k2|u′(t1)|(1−q)/(1+q))N − tN1

N

≤
(q + 1
p + 1

dp+1
)
tn1

(2N − 1)k2|u′(t1)|(1−q)/(1+q)

N

≤
(q + 1
p + 1

dp+1
) (2N − 1)k2

N
tn1

(
dξ/2t

−N/2
1

)(1−q)/(1+q)

=
(q + 1
p + 1

) (2N − 1)k2

N
dp+1+(ξ(1−q)/(2(1+q))t

N−1−N(1−q)/(2(1+q))
1

≤
(q + 1
p + 1

) (2N − 1)k2

N
lnM/γ(d) dη,

(6.6)
where

η = p + 1 +
ξ(1− q) + (1− p)(2(N − 1)(1 + q)−N(1− q))

2(1 + q)
,

M = (2(N − 1)(1 + q)−N(1− q))/(2(1 + q)).
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An elementary calculation shows that ξ > η. Thus from (6.5) and (6.6), (6.2)
follows. Thus for t ∈ [t1, τ2],

tnH(t) = tn0H(t0) +
∫ t

t0

sn

(
NG(u(s))− N − 2

2
u(s)g(u(s))

)
ds

≥ tn0H(t0) +
∫ t2

t0

sn

(
NG(u(s))− N − 2

2
u(s)g(u(s))

)
ds

≥ tn0H(t0)

≥ c1d
ξ,

(6.7)

which proves the lemma. �

7. Proof of Theorem 1.1

Arguing as in Lemmas 2.1 and 4.1, we see that for d > 0 sufficiently large there
exist numbers

t3 < · · · < tk ≤ 1 (7.1)

such that

u(t) < 0 in (t2i−1, t2i), and u(t) > 0 in (t2i, t2i+1), i = 1, . . . min{k

2
,
k + 1

2
}.

(7.2)
Imitating the arguments leading to (6.2), one sees that∫ t2i+1

t2i

tnγup+1(t)dt ≥
∫ t2i+2

t2i+1

tnγ1|u(t)q+1|dt. (7.3)

This in turn (see (6.7)) leads to

tnH(t) ≥ c1d
ξ for all t ∈ [t0, 1]. (7.4)

This, together with Lemma 2.1, proves Theorem 1.2. From (7.4) we see that

ρ2(t) ≡ u2(t) + (u′(t))2 →∞ as d → +∞, (7.5)

uniformly for t ∈ [0, 1]. Therefore, there exists a continuous argument function
θ(t, d) ≡ θ(t) such that

u(t) = ρ(t) cos(θ(t)) and u′(t) = −ρ(t) sin(θ(t)). (7.6)

From this we see that θ′(t) = {((n/t)u′(t) + g(u(t)))u(t) + (u′(t))2}/ρ2(t). Thus
θ′(t) > 0 for θ(t) = jπ/2 with j = 1, . . . , which implies that if θ(t) = jπ/2 then
θ(s) > jπ/2 for all s ∈ (t, 1].

Imitating the arguments of Lemmas 2.1 and 4.1, we see that t2i − t2(i−1) ≤
c3 ln1/γ(d)d(1−p)/2. Thus k ≥ c4 ln−1/γ(d)d(p−1)/2 (see (7.1)), which implies that

lim
d→+∞

θ(1, d) = +∞. (7.7)

By the continuity of θ and the intermediate value theorem we see that there exists
a sequence d1 < · · · < dj < · · · → ∞ such that θ(1, dj) = jπ+(π/2). Hence u(t, dj)
is a solution to (1.1) having exactly j zeroes in (0, 1), which proves Theorem 1.1.
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