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WEAK SOLUTIONS FOR THE p-LAPLACIAN WITH A
NONLINEAR BOUNDARY CONDITION AT RESONANCE

SANDRA MARTÍNEZ & JULIO D. ROSSI

Abstract. We study the existence of weak solutions to the equation

∆pu = |u|p−2u + f(x, u)

with the nonlinear boundary condition

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u− h(x, u) .

We assume Landesman-Lazer type conditions and use variational arguments
to prove the existence of solutions.

1. Introduction

This paper shows conditions for the existence of weak solutions to the problem

∆pu = |u|p−2u + f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u− h(x, u) on ∂Ω.

(1.1)

Here Ω is a bounded domain in RN with smooth boundary, ∆pu = div(|∇u|p−2∇u)
is the p-Laplacian with p > 1, and ∂

∂ν is the outer normal derivative. We as-
sume that the perturbations f : Ω × R → R and h : ∂Ω × R → R are bounded
Caratheodory functions. For a variational approach, the functional associated to
the problem is

Jλ(u) =
1
p

∫
Ω

|∇u|p +
1
p

∫
Ω

|u|p − λ

p

∫
∂Ω

|u|p +
∫

Ω

F (x, u) +
∫

∂Ω

H(x, u),

where F and H are primitives of f and h with respect to u respectively. Weak
solutions of (1.1) are critical points of Jλ in W 1,p(Ω). In fact if u ∈ W 1,p(Ω) is a
critical point of Jλ, we have

J ′λ(u) · v =
∫

Ω

|∇u|p−2∇u∇v +
∫

Ω

|u|p−2uv − λ

∫
∂Ω

|u|p−2uv

+
∫

Ω

f(x, u)v +
∫

∂Ω

h(x, u)v = 0, ∀ v ∈ W 1,p(Ω).
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Let us introduce some notation. We say that λ is an eigenvalue for the p-Laplacian
with a nonlinear boundary condition if the problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.

(1.2)

has non trivial solutions. The set of solutions (called eigenfunctions) for a given λ
will be denoted by Aλ. Problems of the form (1.2) appear in a natural way when one
considers the Sobolev trace inequality. In fact, the immersion W 1,p(Ω) ↪→ Lp(∂Ω)
is compact, hence there exits a constant λ1 such that

λ
1/p
1 ‖u‖Lp(∂Ω) ≤ ‖u‖W 1,p(Ω).

The Sobolev trace constant λ1 can be characterized as

λ1 = inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|p + |u|p dx such that
∫

∂Ω

|u|p = 1
}

, (1.3)

and is the first eigenvalue of (1.2) in the sense that λ1 ≤ λ for any other eigenvalue
λ. The extremals (functions where the constant is attained) are solutions of (1.2).
The first eigenvalue is simple and isolated with a first eigenfunction that is Cα(Ω)
and strictly positive in Ω, see [17]. In [11] it is proved that there exists a sequence
of eigenvalues λn of (1.2) such that λn → +∞ as n → +∞.

The study of the eigenvalue problem when the nonlinear term is placed in the
equation, that is when one considers a quasilinear problem of the form −∆pu =
λ|u|p−2u with Dirichlet boundary conditions, has received considerable attention,
see for example [1, 2, 13, 14, 16], etc.

Resonance problems are well known in the literature. For example, for the
resonance problem for the p-lapacian with Dirichlet boundary conditions see [3, 4, 9]
and references therein.

In problem (1.1) we have a perturbation of the eigenvalue problem (1.2) given
by the two nonlinear terms f(x, u), h(x, u). Following ideas from [9], we prove the
following result, that establishes Landesman-Lazer type conditions on the nonlinear
perturbation terms in order to have existence of weak solutions for (1.1).

Theorem 1.1. Let f± := limt→±∞ f(x, t), h± := limt→±∞ h(x, t). Assume that
there exists f̄ ∈ Lq(Ω) and h̄ ∈ Lq(∂Ω), such that |f(x, t)| ≤ f ∀(x, t) ∈ Ω×R and
|h(x, t)| ≤ h ∀(x, t) ∈ ∂Ω× R (where q = p/p− 1). Also assume that either∫

{v>0∩Ω}
f+v +

∫
{v>0∩∂Ω}

h+v +
∫
{v<0∩Ω}

f−v +
∫
{v<0∩∂Ω}

h−v > 0 (1.4)

for all v ∈ Aλ\{0}, or∫
{v>0∩Ω}

f+v +
∫
{v>0∩∂Ω}

h+v +
∫
{v<0∩Ω}

f−v +
∫
{v<0∩∂Ω}

h−v < 0 (1.5)

for all v ∈ Aλ\{0}, then (1.1) has a weak solution.

Note that when λ is not an eigenvalue the hypotheses trivially hold.
The integral conditions (of Landesman-Lazer type) that we impose for f and h

will be used to prove a Palais-Smale condition for the functional Jλ associated to
the problem (1.1). Observe that these conditions involve an integral balance (with
the eingenfunctions v as weights) between f and h. Hence we allow perturbations
both in the equation and in the boundary condition.
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Let us have a close look at the conditions for the first eigenvalue. As the first
eigenvalue is isolated and simple with an eigenfunction that do not change sign in
Ω (we call it φ1 and assume φ1 > 0 in Ω̄), [17], the conditions involved in Theorem
1.1 for λ1 read as∫

Ω

f+φ1 +
∫

∂Ω

h+φ1 > 0 and
∫

Ω

f−φ1 +
∫

∂Ω

h−φ1 < 0 (1.6)

or ∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 < 0 and
∫

Ω

f−φ1 +
∫

∂Ω

h−φ1 > 0. (1.7)

For this case, λ = λ1, we will prove a general result which improve the conditions
on f and h. In [3] the resonance problem for the Dirichlet problem was analyzed
using bifurcation theory. If we adapt the arguments of [3] to our situation, using
bifurcation techniques to deal with (1.1), we can improve the previous result by
measuring the speed and the form at which f and h approaches the limits f± and
h±. To this end, let us suppose that there exists α and β such that

lim
s→+∞

(f(x, s)− f+(x))sα = Aα(x),

lim
s→−∞

(f(x, s)− f−(x))sβ = Bβ(x), a.e. x ∈ Ω,

lim
s→+∞

(h(x, s)− h+(x))sα = Aα(x),

lim
s→−∞

(h(x, s)− h−(x))sβ = Bβ(x), a.e, x ∈ ∂Ω.

The limits Aα, Aα, Bβ and Bβ are taken in a pointwise sense and dominated by
functions in L1(Ω) and L1(∂Ω).

We consider the conditions:

(G+
α )

∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 > 0 or∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 = 0 and
∫

Ω

Aα(x)φ1−α
1 +

∫
∂Ω

Aα(x)φ1−α
1 > 0

(G−
β )

∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 < 0 or∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 = 0 and
∫

Ω

Bβ(x)φ1−β
1 +

∫
∂Ω

Bβ(x)φ1−β
1 < 0

(G+
β )

∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 > 0 or∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 = 0 and
∫

Ω

Bβ(x)φ1−β
1 +

∫
∂Ω

Bβ(x)φ1−β
1 > 0

(G−
α )

∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 < 0 or∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 = 0 and
∫

Ω

Aα(x)φ1−α
1 +

∫
∂Ω

Aα(x)φ1−α
1 < 0.

Where f± := limt→±∞ f(x, t) and h± := limt→±∞ h(x, t). We remark that this set
of conditions extend the hypothesis of Theorem 1.1.

Theorem 1.2. Let f and h be such that there exists f in Lq(Ω) and h in Lq(∂Ω),
with |f(x, t)| ≤ f for all (x, t) ∈ Ω × R and |h(x, t)| ≤ h for all (x, t) in ∂Ω × R
(where q = p/p − 1). If (G+

α ) and (G−
β ) or (G−

α ) and (G+
β ) hold then (1.1) with

λ = λ1 has at least one solution.
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We can continue with this procedure and obtain even more general conditions
considering the rate of convergence to zero of (f(x, s) − f+(x))sα − Aα(x), for
example. We leave the details to the reader. Also it is possible to consider different
rates of convergence, in this case the conditions involve signs of integrals of Aα and
Bα separately.

In the case p = 2, we have a linear operator in the Hilbert space H1(Ω), so using
the Spectral Theorem for compact self-adjoint linear operators and the Fredholm
alternative, we have that when λ is not an eigenvalue we do not need any addi-
tional condition to have solutions for (1.1), and if λ is an eigenvalue, we need an
orthogonality condition. However when dealing with p 6= 2 we have to consider the
problem in W 1,p(Ω) (which is not Hilbert) and the results is not straightforward.

Note that nonlinear boundary conditions have only been considered in recent
years. For reference purposes, we cite previous works. For the Laplace operator
with nonlinear boundary conditions see for example [7, 8, 12]. For previous work for
the p-Laplacian with nonlinear boundary conditions of different types see [6], [11],
[18] and [17]. Also, one is lead to nonlinear boundary conditions in the study of
conformal deformations on Riemannian manifolds with boundary, see for example
[10].

2. Proof of the results

In this section we prove theorems 1.1 and 1.2 that provide existence of solutions
to (1.1). First, let us prove Theorem 1.1. We will divide the proof in two steps.
Following [9], we first prove a Palais-Smale condition for the functional Jλ using
the conditions of Theorem 1.1. Then we split the proof of the theorem in two cases,
first we deal with λk < λ < λk+1, where λk are the variational eigenvalues of (1.2)
this allows us to obtain some geometric structure on Jλ (see [11]), and finally we
treat the case where λ = λk. In this case we obtain solutions as limit of solutions
for a sequence λn → λk. We will see that if there is any bifurcation from infinity in
λ = λk then the bifurcation is subcritical. This fact provides a priori bounds that
allow us to pass to the limit in a sequence of solutions as λn → λk.

To prove these results we will need some preliminary lemmas (the proofs are
straightforward, see [11]).

Lemma 2.1. Let A : W 1,p(Ω) → W 1,p(Ω)∗ be given by

A(u) · v :=
∫

Ω

|∇u|p−2∇u∇v +
∫

Ω

|u|p−2uv,

then A is a continuous, odd, (p− 1)-homogeneous and continuously invertible.

Lemma 2.2. Let B : W 1,p(Ω) → W 1,p(Ω)∗ be given by

B(u) · v :=
∫

∂Ω

|u|p−2uv.

Then B is a continuous, odd, (p− 1)-homogeneous and compact.

Lemma 2.3. Let C : W 1,p(Ω) → W 1,p(Ω)∗ be given by

C(u) · v :=
∫

Ω

f(x, u)v +
∫

∂Ω

h(x, u)v.

Then C is continuous and compact and ‖C(u)‖W 1,p(Ω)∗ ≤ ‖f‖Lq(Ω) + K‖h‖Lq(∂Ω).
where K is the best constant for the Sobolev trace inequality W 1,p(Ω) ↪→ Lp(∂Ω).
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With these lemmas we can prove the following theorem.

Theorem 2.4. Suppose that the hypotheses of Theorem 1.1 are satisfied, then Jλ

satisfies the Palais-Smale condition, that is, for any sequence {un} ⊂ W 1,p(Ω)
such that ‖Jλ(un)‖W 1,p(Ω) ≤ c and J ′λ(un) → 0 there exists u ∈ W 1,p(Ω) such that
un → u strongly in W 1,p(Ω).

Proof. Let {un} be a Palais-Smale sequence. If un is bounded then we have that
there exists u ∈ W 1,p(Ω) such that un ⇀ u weakly in W 1,p(Ω). Using that

A(un)− λB(un) + C(un) = J ′λ(un) → 0,

the compactness of B and C, and the continuity of A−1 we have that

un → A−1(λB(u)− C(u))

strongly in W 1,p(Ω). Hence if we prove that Palais-Smale sequences are bounded,
the result follows. To see this, let us argue by contradiction. Assume that un is a
Palais-Smale sequence and that ‖un‖W 1,p(Ω) →∞. Let

vn :=
un

‖un‖W 1,p(Ω)

then there exists v such that vn ⇀ v in W 1,p(Ω) and vn → v in Lp(∂Ω). We have,

J ′λ(un)
‖un‖p−1

W 1,p(Ω)

= A(vn)− λB(vn) +
C(un)

‖un‖p−1
W 1,p(Ω)

. (2.1)

Using compactness of B, continuity of A−1 and the fact that

C(un)
‖un‖p−1

W 1,p(Ω)

→ 0

we have that vn → A−1(λB(v)) in W 1,p(Ω). Hence vn → v in W 1,p(Ω) and then
A(v)− λB(v) = 0 with ‖v‖W 1,p(Ω) = 1. That means that v ∈ Aλ\{0}.

Observe that, for a.e. x ∈ {v(x) > 0}, we have un(x) → +∞ so,

lim
n→∞

f(x, un(x))vn(x) + h(x, un(x))vn(x) = f+(x)v(x) + h+(x)v(x),

and

lim
n→∞

F (x, un(x))
‖un‖W 1,p(Ω)

+
H(x, un(x))
‖un‖W 1,p(Ω)

= lim
n→∞

vn(x)
1

un(x)

∫ un(x)

0

f(t, un(t)) + vn(x)
1

un(x)

∫ un(x)

0

h(t, un(t))

= v(x)f+(x) + v(x)h+(x).

In a similar way we obtain that, for a.e. x ∈ {x : v(x) < 0}, we have

lim
n→∞

f(x, un(x))vn(x) + h(x, un(x))vn(x) = f−(x)v(x) + h−(x)v(x),

and therefore

lim
n→∞

F (x, un(x))
‖un‖W 1,p(Ω)

+
H(x, un(x))
‖un‖W 1,p(Ω)

= v(x)f−(x) + v(x)h−(x).

On the other hand, we have

pJλ(un)− J ′λ(un) · un
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= p

∫
Ω

F (x, un(x)) + p

∫
∂Ω

H(x, un(x))−
∫

Ω

f(x, un(x))un −
∫

∂Ω

h(x, un(x))un.

Then

p
Jλ(un)

‖un‖W 1,p(Ω)
− J ′λ(un) · vn

= p

∫
Ω

F (x, un(x))
‖un‖W 1,p(Ω)

+ p

∫
∂Ω

H(x, un(x))
‖un‖W 1,p(Ω)

−
∫

Ω

f(x, un(x))vn −
∫

∂Ω

h(x, un(x))vn.

The left hand side approaches 0 as n →∞. Hence

0 = (p− 1)
[ ∫

{v>0∩Ω}
f+v +

∫
{v>0∩∂Ω}

h+v +
∫
{v<0∩Ω}

f−v +
∫
{v<0∩∂Ω}

h−v
]

which contradicts the hypothesis on f and h in Theorem 1.1. �

Now that we have proved the Palais-Smale condition, we can state a deformation
theorem that will be used later to show that Jλ has critical points (see [19]).

Theorem 2.5. Suppose that Jλ satisfies the Palais-Smale condition. Let β ∈ R be
a regular value of Jλ and let ε̄ > 0. Then there exists ε ∈ (0, ε̄) and a continuous
one-parameter family of homeomorphisms, Φ : W 1,p(Ω)× [0, 1] → W 1,p(Ω) with the
following properties:

(1) Φ(u, t) = u if t = 0 or if |Jλ − β| ≥ ε̄.
(2) Jλ(Φ(u, t)) is non decreasing in t for any u ∈ W 1,p(Ω).
(3) If Jλ(u) ≤ β + ε then Jλ(Φ(u, 1)) ≤ β − ε.

We now use a variational characterization for a sequence of eigenvalues for the
problem (1.2). Indeed, solutions of (1.2) we can understood as critical points of the
associated energy functional

I(u) =
∫

Ω

|∇u|p +
∫

Ω

|u|p,

under the constraint u ∈ M , where M = {u ∈ W 1,p(Ω) : ‖u‖Lp(∂Ω) = 1}. We can
find a sequence of variational eigenvalues with the characterization,

λk := inf
A∈Ck

sup
u∈A

I(u),

where

Ck := {A ⊂ M : there exists h : Sk−1 → A continuous, odd and surjective }.
To prove that these λk are critical values one first proves a Palais-Smale condition
for the functional. Next, using a deformation argument, we prove that λk is an
eigenvalue (see [11] for the details), but it is not known if this sequence contains all
the eigenvalues.

As we mentioned before, we divide the proof in two cases, λk < λ < λk+1 and
λ = λk.
Case λk < λ < λk+1. Let A ∈ Ck such that supu∈A I(u) = m ∈ (λk, λ) (here we
are using the definition of λk). Then we have, for u ∈ A, t > 0, that

Jλ(tu) =
tp

p
[‖u‖p

W 1,p(Ω) − λ] +
∫

Ω

F (x, tu) +
∫

∂Ω

H(x, tu)

≤ tp

p
(m− λ) +

∣∣∣ ∫
Ω

F (x, tu)
∣∣∣ +

∣∣∣ ∫
∂Ω

H(x, tu)
∣∣∣
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≤ tp

p
(m− λ)t

( ∫
Ω

|u|p
)1/p( ∫

Ω

|f |q
)1/q

+ t
( ∫

∂Ω

|u|p
)1/p( ∫

∂Ω

|h|q
)1/q

≤ tp

p
(m− λ) + t

(
m‖f‖Lq(Ω) + ‖h‖Lq(∂Ω)

)
.

Let

ξk+1 =
{

u ∈ W 1,p(Ω) :
∫

Ω

|∇u|p +
∫

Ω

|u|p ≥ λk+1

∫
∂Ω

|u|p
}

.

If u ∈ ξk+1 then,

Jλ(u) =
1
p

[ ∫
Ω

|∇u|p +
∫

Ω

|u|p
]
− λ

p

∫
∂Ω

|u|p +
∫

Ω

F (x, u) +
∫

∂Ω

H(x, u)

≥ 1
p
‖u‖p

W 1,p(Ω)

[
1− λ

λk+1

]
+

∫
Ω

F (x, u) +
∫

∂Ω

H(x, u)

≥ 1
p
‖u‖p

W 1,p(Ω)

[
1− λ

λk+1

]
− ‖u‖W 1,p(Ω)‖f‖Lq(Ω)

−K‖u‖W 1,p(Ω))‖h‖Lq(∂Ω).

This proves the coercitivity of Jλ in ξk+1, then there exists α such that,

α := inf
u∈ξk+1

Jλ(u).

On the other hand we have, for u ∈ A,

Jλ(tu) ≤ tp

p
(m− λ) + t

(
m‖f‖Lq(Ω) + ‖h‖Lq(∂Ω)

)
,

where m − λ < 0. Then for all u ∈ A, as t → +∞ Jλ(tu) → −∞. Hence there
exists T > 0 such that

max
u∈A,t≥T

Jλ(tu) = γ < α. (2.2)

Let TA := {tu : u ∈ A, t ≥ T} and

χ := {h ∈ C(Bk(0, 1),W 1,p(Ω)) : h|Sk−1 is odd into TA}.

Let us show that χ is nonempty. By the definition of Ck, there exists continuous
function h : Sk−1 → A odd and surjective. Let us define h : Bk → W 1,p(Ω) as
h(ts) = tTh(s) s ∈ Sk−1, t ∈ [0, 1]. Clearly h ∈ χ.

Next, let we prove that if h ∈ χ then h(Bk) ∩ ξk+1 6= ∅. If there exists any
u ∈ h(Bk) such that

∫
∂Ω
|u|p = 0 then u ∈ ξk+1. Suppose now that

∫
∂Ω
|u|p 6= 0 for

all u ∈ h(Bk), and let us consider

h̃(x1, . . . , xk+1) =

{
πh(x1, . . . , xk) xk+1 ≥ 0
−πh(−x1, . . . ,−xk) xk+1 < 0,

where πu = u/‖u‖Lp(∂Ω). Then, if xk+1 ≥ 0,

h̃(x1, . . . , xk+1) = π(−h(−x1, . . . ,−xk)) = −πh(−x1, . . . ,−xk)

and hence

h̃(−x1, . . . ,−xk+1) = −πh(x1, . . . , xk) = −h̃(x1, . . . , xk+1).

In an analogous way for xk+1 < 0, we have

h̃(x1, . . . , xk+1) = −h̃(−x1, . . . ,−xk+1),
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then h̃ is odd. Hence h̃(Sk) ∈ Ck+1. On the other hand, we have,

λk+1 = inf
A∈Ck+1

sup
u∈A

I(u),

then
λk+1 ≤ sup

u∈h̃(Sk)

I(u).

Hence, for some u ∈ h̃(Sk), that is, for some x ∈ Sk such that u = h̃(x) we have
λk+1 ≤ I(u). This implies that h̃(x) ∈ ξk+1. Using the definition of h̃ we obtain
that h(x) ∈ ξk+1. Then h(Bk) ∩ ξk+1 6= ∅.

Theorem 2.6. The value

c := inf
h∈χ

sup
x∈Bk

Jλh(x),

is a critical value for Jλ, with c ≥ α.

Proof. For each h ∈ χ, there exists x ∈ Bk such that h(x) ∈ ξk+1, then Jλ(h(x)) ≥
α. Hence

sup
x∈Bk

Jλ(h(x)) ≥ α ∀ h ∈ χ.

Therefore, c ≥ α > γ, where γ is given by (2.2).
Let us argue by contradiction. Suppose that c is a regular value, then using the

deformation Theorem 2.5, with β = c and ε̄ < c − γ, we have that there exists a
deformation Φ(u, t) that verifies the usual properties. If u ∈ TA then,

Jλ(u) ≤ γ < β − ε̄,

then by one of the properties of the deformation lemma we have Φ(u, t) = u. By
the definition of c, there exists h ∈ χ such that,

sup
x∈Bk

Jλ(h(x)) ≤ c + ε. (2.3)

Let h̃(·) := Φ(h(·), 1), if x ∈ Sk−1 we have that h(x) ∈ TA , then h̃(x) =
Φ(h(x), 1) = h(x) and hence h̃|Sk−1 = h|Sk−1 . We also have h̃(−x) = Φ(h(−x), 1) =
Φ(−h(x), 1) = −h̃(x). We obtain that h̃ ∈ χ. Using (2.3) and the deformation the-
orem we have

sup
x∈Bk

Jλ(h̃(x)) = sup
x∈Bk

Jλ(Φ(h(x), 1)) ≤ c− ε,

a contradiction that proves that c is a critical value. �

Case λ = λk. We will prove the result under condition (LL)+λk
, the case where

(LL)−λk
holds is completely analogous.

Lemma 2.7. If (LL)+λk
is satisfied, then there exists δ > 0 such that (LL)+µ is

satisfied for all µ ∈ (λk − δ, λk + δ).

Proof. Arguing by contradiction, let us assume that there exists µn → λk and
corresponding eigenfunctions {vn}, ‖vn‖W 1,p(Ω) = 1, such that∫

Ω

|∇vn|p−2∇vn∇w +
∫

Ω

|vn|p−2vnw = µn

∫
∂Ω

|vn|p−2vn ∀w ∈ W 1,p(Ω) (2.4)
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and∫
{vn>0∩Ω}

f+vn +
∫
{vn>0∩∂Ω}

h+vn +
∫
{vn<0∩Ω}

f−vn +
∫
{vn<0∩∂Ω}

h−vn ≤ 0,

(2.5)
for all n. Then, since {vn} is bounded, there exists v ∈ W 1,p(Ω) such that vn → v
in Lp(∂Ω). Taking

φn(w) = µn

∫
∂Ω

|vn|p−2vnw and φ(w) = λk

∫
∂Ω

|v|p−2vw,

we have that φn → φ in (W 1,p(Ω))∗. Using the continuity of A−1, we have that
vn → v in W 1,p(Ω). Then, taking limits in (2.4) and (2.5) we have∫

Ω

|∇v|p−2∇v∇w +
∫

Ω

|v|p−2vw = λk

∫
∂Ω

|v|p−2v, ∀w ∈ W 1,p(Ω),

and ∫
{v>0∩Ω}

f+v +
∫
{v>0∩∂Ω}

h+v +
∫
{v<0∩Ω}

f−v +
∫
{v<0∩∂Ω}

h−v ≤ 0.

Which contradicts the fact that (LL)+λk
is satisfied. �

Now we assume that λk−1 ≤ λk − δ and let {µn} ⊂ (λk − δ, λk) be an increasing
sequence such that µn → λk. We will construct a decreasing sequence {cn} of
critical values corresponding to Jµn

, and then we will see that the sequence corre-
sponding to the critical points {un} is bounded and converges to a certain u that
is a critical point for Jλk

.

Lemma 2.8. There exists a decreasing sequence of critical values, {cn} associated
with the functional Jµn .

Proof. Let A ∈ Ck−1, T1 > 0, ξk and χ1 as in the first part (λk < λ < λk+1) such
that,

c1 := inf
h∈χ1

sup
x∈Bk−1

Jµ1(h(x))

is a critical value for Jµ1 . To define c2, let us chose the same A and ξk, but we take
T2 > T1 that provides the correspondent χ2. Then T2A ⊂ T1A, χ2 ⊂ χ1 and,

inf
h∈χ2

sup
x∈Bk−1

Jµ1(h(x)) ≥ inf
h∈χ1

sup
x∈Bk−1

Jµ1(h(x)) = c1.

Let

h2(x) :=

{
h1(2x) |x| ≤ 1

2 ,

h1

(
x
|x|

)
[1 + 2(|x| − 1

2 )T2] |x| > 1
2 .

For |x| ≥ 1/2, h2(x) ∈ T1A; therefore,

Jµ1(h2(x)) ≤ γ < α ≤ Jµ1(u), ∀u ∈ ξk+1.

Then there exists y ∈ Bk such that h2(y) ∈ ξk+1 and

Jµ1(h2(x)) ≤ γ < α ≤ Jµ1(h2(y)).

That is, for all x with |x| ≥ 1/2 there exists y ∈ Bk such that Jµ1(h2(x)) <
Jµ1(h2(y)). Then

sup
x∈Bk−1

Jµ1(h2(x)) = sup
|x|≤1/2

Jµ1(h2(x)) = sup
|x|≤1/2

Jµ1(h1(2x)) = sup
x∈Bk−1

Jµ1(h1(x)).
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Hence
c1 := inf

h∈χ1
sup

x∈Bk−1

Jµ1(h(x)) = inf
h∈χ2

sup
x∈Bk−1

Jµ1(h(x)).

On the other hand we have,

Jµ2(u) = Jµ1(u) +
1
p
(µ1 − µ2)

∫
∂Ω

|u|p ≤ Jµ1(u) ∀u ∈ W 1,p(Ω),

then
inf

h∈χ2
sup

x∈Bk−1

Jµ1(h(x)) ≥ inf
h∈χ2

sup
x∈Bk−1

Jµ2(h(x)) := c2.

We conclude that c1 ≥ c2. Continuing with this procedure we find a sequence cn

with the desired properties. �

Let {un} be the sequence of critical points associated with {cn} then

J ′µn
(un) = A(un)− µnB(un) + C(un) = 0.

If {un} is bounded then there exists u ∈ W 1,p(Ω) such that un ⇀ u, then un →
A−1(λkB(u) − C(u)) in W 1,p(Ω). Hence u is a critical point for Jλk

and we have
proved our result.

Next, we show that {un} must be bounded. This means that if there exists
(µn, un) solutions of (1.1) with µn → λk such that ‖un‖W 1,p(Ω) → ∞ then the
sequence µn verifies µn > λk, that is the only possible bifurcation from infinity at
λ = λk is subcritical.

Lemma 2.9. If ‖un‖W 1,p(Ω) →∞, then there exists v ∈ Aλk
\ {0} such that

un

‖un‖W 1,p(Ω)
→ v.

Proof. Let vn := un/‖un‖W 1,p(Ω). Then vn ⇀ v. Using that

A(vn)− µnB(vn)− C(un)
‖un‖p−1

= 0, (2.6)

the compactness of B and the continuity of A−1, we have vn → A−1(λkB(v)). Then
vn → v, with ‖v‖W 1,p(Ω) = 1. Taking limits in (2.6) we have A(v) = λkB(v), then
v ∈ Aλk

\ {0}. �

Making similar calculations to those in the proof of Theorem 2.1, we get

pcn = pJµn(un)− J ′µn
(un) · un

= p

∫
Ω

F (x, un) + p

∫
∂Ω

H(x, un)−
∫

Ω

f(x, un)un −
∫

∂Ω

h(x, un)un.

Then

lim
n→∞

p

∫
Ω

F (x, un)
‖un‖W 1,p(Ω)

+ p

∫
∂Ω

H(x, un)
‖un‖W 1,p(Ω)

−
∫

Ω

f(x, un)vn −
∫

∂Ω

h(x, un)vn

= (p− 1)
( ∫

{v>0∩Ω}
f+v +

∫
{v>0∩∂Ω}

h+v +
∫
{v<0∩Ω}

f−v +
∫
{v<0∩∂Ω}

h−v
)

> 0.

Then,
lim

n→∞

pcn

‖un‖W 1,p(Ω)
> 0,

which contradicts the fact that {cn} is bounded from above.
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Then we have that {un} is bounded. Hence there exists u ∈ W 1,p(Ω) such that
un ⇀ u weak in W 1,p(Ω), using the compactness of B and C and the continuity of
A−1 we have un → u strong in W 1,p(Ω).
Case λ = λ1 This corresponds to Theorem 1.2. In this theorem we improve the
conditions on f and h for the case where λ = λ1. We use ideas from [3], but first
we find some estimates.

Lemma 2.10. Let u ∈ Cα(Ω) be a solution of (1.1) strictly positive in Ω. Then

−

∫
∂Ω

h(x, u)
φp

1

|u|p−2u
+

∫
Ω

f(x, u)
φp

1

|u|p−2u∫
∂Ω

φp
1

≤ λ1−λ ≤ −

∫
∂Ω

h(x, u)u +
∫

Ω

f(x, u)u∫
∂Ω

|u|p
.

Proof. In the weak form with v = u, we have

−
∫

∂Ω

g(x, u)u−
∫

Ω

f(x, u)u =
∫

Ω

|∇u|p +
∫

Ω

|u|p − λ

∫
∂Ω

|u|p

≥ (λ1 − λ)
∫

∂Ω

|u|p,

then we get the second inequality. If we take v = φp
1/(|u|p−2u) we have,

−
∫

∂Ω

h(x, u)
φ1

p

|u|p−2u
−

∫
Ω

f(x, u)
φ1

p

|u|p−2u
− (λ1 − λ)

∫
∂Ω

φ1
p

=
∫

Ω

|∇u|p−2∇u∇
( φp

1

|u|p−2u

)
+

∫
Ω

|u|p−2u
φp

1

|u|p−2u
−

∫
Ω

|∇φ1|p −
∫

∂Ω

|φ1|p

=
∫

Ω

p|∇u|p−2 φ1
p−1

|u|p−2u
∇u∇φ1 −

∫
Ω

(p− 1)
φ1

p

|u|p
|∇u|p −

∫
Ω

|∇φ1|p

≤
∫

Ω

p
φ1

p−1

|u|p−1
|∇u|p−1|∇φ1| −

∫
Ω

(p− 1)
φ1

p

|u|p
|∇u|p −

∫
Ω

|∇φ1|p.

Using that
ptp−1s− (p− 1)tp − sp ≤ 0, ∀t, s ≥ 0

with t = φ1
|u| |∇u| and s = |∇φ1| we have that

−
∫

∂Ω

h(x, u)
φ1

|u|p−2u
−

∫
Ω

f(x, u)
φ1

|u|p−2u
− (λ1 − λ)

∫
∂Ω

φ1
p ≤ 0,

the result follows. �

Now, let us proceed with the proof of the main theorem.

Proof of Theorem 1.2. Let us suppose that f and h satisfy conditions (G−
α ) and

(G+
β ). We will prove that there exists (λn, un) solutions of problem (1.1) with

λn → λ1 such that ‖un‖W 1,p(Ω) ≤ K. This will follows from the fact that any
possible bifurcation from infinity must be subcritical.

Let λn ↘ λ1, and un be the solutions of (1.1). Remark that Theorem 1.1 shows
the existence of un for every λn close but not equal to λ1 (as λ1 is isolated the
conditions on f and h of Theorem 1.1 are trivially verified for any λn close to λ1).

Suppose that ‖un‖W 1,p(Ω) →∞. If un/‖un‖W 1,p(Ω) → φ1 and∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 < 0
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then we arrive to a contradiction. Otherwise, if un/‖un‖W 1,p(Ω) → −φ1 and∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 < 0

we also arrive to a contradiction. Hence in both cases any bifurcation from infinity
must be subcritical. Hence {un} is bounded (see [3] for the details).

We have to consider only the case where∫
Ω

f+φ1 +
∫

∂Ω

h+φ1 = 0,∫
Ω

f−φ1 +
∫

∂Ω

h−φ1 = 0,

(2.7)

and ∫
∂Ω

Aαφ1−α
1 +

∫
Ω

Aαφ1−α
1 < 0,∫

∂Ω

Bαφ1−α
1 +

∫
Ω

Bαφ1−α
1 > 0.

Let us assume by contradiction that ‖un‖W 1,p(Ω) →∞. Then by Lemma 2.9,
un

‖un‖W 1,p(Ω)
→ ±φ1.

The convergence is uniform by regularity results that show that un ∈ Cα(Ω), see
[15]. Using the previous lemma,

0 > (λ1 − λn)
∫

∂Ω

φp
1 ≥ −

∫
∂Ω

h(x, un)
φp

1

|un|p−2un
−

∫
Ω

f(x, un)
φp

1

|un|p−2un
.

Using (2.7),

0 <

∫
∂Ω

(h(x, un)φp−1
1

‖un‖p−1

|un|p−2un
− h+(x))φ1

+
∫

Ω

(f(x, un)φp−1
1

‖un‖p−1

|un|p−2un
− f+(x))φ1

=
∫

∂Ω

(h(x, un)− h+(x))φp−1
1

‖un‖p−1

|un|p−2un
φ1

−
∫

∂Ω

h+(x)φ1(1− φp−1
1

‖un‖p−1

|un|p−2un
)

+
∫

Ω

(f(x, un)− f+(x))φp−1
1

‖un‖p−1

|un|p−2un
φ1

−
∫

Ω

f+(x)φ1(1− φp−1
1

‖un‖p−1

|un|p−2un
).

(2.8)

If un/‖un‖W 1,p(Ω) → φ1, using our hypothesis on the dominated convergence of
(h(x, un) − h+(x))uα

n by a function in L1(∂Ω) and the uniform convergence of
un/‖un‖W 1,p(Ω) to φ1, we have the hypotheses of the Lebesgue’s Dominated Con-
vergence Theorem. The second term also verifies these hypotheses. Then using our
hypothesis over f and h, and taking the limit we have

lim
n→∞

∫
∂Ω

(h(x, un)− h+(x))‖un‖αφp
1

‖un‖p−1

|un|p−2
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+
∫

Ω

(f(x, un)− f+(x))‖un‖αφp
1

‖un‖p−1

|un|p−2un

=
∫

∂Ω

Aαφ1−α
1 +

∫
Ω

Aαφ1−α
1 < 0.

Therefore, for n large enough∫
∂Ω

(h(x, un)− h+(x))‖un‖αφp
1

‖un‖p−1

|un|p−2

+
∫

Ω

(f(x, un)− f+(x))‖un‖αφp
1

‖un‖p−1

|un|p−2un
< C < 0.

Using that the two negative terms of (2.8) go to zero (by the Lebesgue’s Dominated
Convergence Theorem), we have for n large enough that∫

∂Ω

(h(x, un)φp−1
1

‖un‖p−1

|un|p−2un
− h+(x))φ1

+
∫

Ω

(f(x, un)φp−1
1

‖un‖p−1

|un|p−2un
− f+(x))φ1 < 0,

which contradicts inequality (2.8). On the other hand if un/‖un‖W 1,p(Ω) → −φ1,
using ∫

∂Ω

Bβφ1−β
1 +

∫
Ω

Bβφ1−β
1 > 0,

and proceeding as before we arrive to a contradiction. Hence {un}must be bounded.
If f and h satisfy condition (G+

α ) and (G−
β ), using the other inequality we prove

that if we take (λn, un) solutions of (1.1) with λn ↗ λ1 then {un} must be bounded.
Using the same argument as in the previous theorem we see that there exists u ∈
W 1,p(Ω) such that un → u and u is a solution for (1.1) with λ = λ1. This completes
the proof. �

We can observe that in the proof of the previous theorem we prove that if f and h
satisfy the condition (G−

α ) and (G+
β ) then any bifurcation from infinity must be sub-

critical, and in the second case any bifurcation from infinity must be supercritical.
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