
BANDITS IN THE CLOUD: A MOVING TARGET DEFENSE AGAINST

MULTI-ARMED BANDIT ATTACK POLICIES

by

Terrence Penner

A thesis submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
May 2016

Committee Members:

Mina Guirguis, Chair

Qijun Gu

Xiao Chen

COPYRIGHT

by

Terrence Penner

2016

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for financial gain without the author’s express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Terrence Penner, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. Mina Guirguis, for

working with me and helping me these past two years. I would also like to thank

the rest of my committee members, Dr. Qijun Gu and Dr. Xiao Chen.

This work was supported in part by NSF awards CNS-1149397 and

CNS-1156712.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

ABSTRACT . ix

CHAPTER

I. INTRODUCTION . 1

Cloud Definitions . 1
Cloud Security Flaws . 2
Attack and Defense Strategies . 4
Outline . 8

II. RELATED WORK . 9

Cloud Environment Security . 9
Multi-Armed Bandit . 10
Moving Target Defense . 12
Additional Works . 13

III.METHODOLOGY . 14

Multi-Armed Bandit . 14
Attack Strategies . 15
Moving Target Defense . 17

IV.RESULTS . 20

Theoretical Analysis . 20
Example System . 34

V. CONCLUSION . 38

REFERENCES . 40

v

LIST OF TABLES

Table Page

IV.1 Effect of Reward Saturation on Regret (Complete Restructure; Every

50,5 Turns) . 30

IV.2 Time for Live Migration for Stressed Memory (256 MB total) 35

vi

LIST OF FIGURES

Figure Page

I.1 Moving Target Defense Scenarios . 6

IV.1 1-1 9-0; No Variance; No Discount; Hide Max 22

IV.2 1-1 9-0; No Variance; No Discount; Hide Max; Final Regrets 23

IV.3 1-1 9-0; No Variance; Discount .999; Hide Max 24

IV.4 1-1 9-0; Poisson Variance of 1; No Discount; Hide Max 26

IV.5 1-1 9-0; No Discount; Hide Max; Defense Every 50 27

IV.6 1-1 9-0; No Discount; Hide Max; Defense Every 50 28

IV.7 Poisson Variance of 1; No Discount; Complete Restructure 29

IV.8 1-0.6 2-0.2 7-0; Poisson Variance of 1; No Discount;

Defense Every 500 . 31

IV.9 1-1 9-0; No Variance; No Discount; Duplicate and Deactivate 33

IV.10 Physical Nodes During Unstressed VM Migration 36

vii

LIST OF ABBREVIATIONS

IaaS Infrastructure as a Service

MAB Multi-Armed Bandit

MDP Markov Decision Process

MTD Moving Target Defence

PaaS Platform as a Service

SaaS Software as a Service

VM Virtual Machine

viii

ABSTRACT

The cloud is a very popular field in both business and computing right now, with

many companies starting to move their data and operations into clouds hosted

over the public Internet. Both the data stored on the hosts’ servers and the

operations on it are the customers’ proprietary information, so they want

assurance that their data will be safe, which makes the security of cloud

computing critical for its adoption. Given the complexity of cloud systems, many

different attack policies have been created, some of which are for the

Multi-Armed Bandit (MAB) problem. In this thesis, we develop a set of Moving

Target Defence (MTD) strategies that randomize the location of a cloud’s Virtual

Machines (VMs) to counter attacks from a MAB policy and we assess through

simulation the effect our defense has on a variety of MAB algorithms, showing

that it can make them no more effective than a randomized attack policy.

Additionally, we show the effect of the critical parameters (e.g. time between

randomizations of VM locations, variance in the effectiveness of an attack, etc.)

on the performance of our defense, and use a real OpenStack system to validate

our defense strategy through the collection of migration times and VM down

times for different VM memory loads.

ix

I. INTRODUCTION

One of the areas of computer technology that has had the most explosive growth

in recent years is cloud computing. According to Shetty (2013), by 2016 cloud

computing will be the the single largest new expense in the field, with “nearly

half of large enterprises” having some form of cloud deployment by the end of

2017. The amount of money in the cloud market is staggering, with an estimated

$191 Billion by 2020 according to Andrew Bartels (2014). Cloud deployments are

created and hosted by big name companies that offer cloud solutions to other

corporations and private individuals, such as Amazon, Microsoft, Google, IBM,

and Oracle.

Cloud Definitions

In broad terms, a cloud deployment is an application suite that provides

customers with various features in a highly scalable fashion through the use of

virtualization. These features are offered “as a service” over the Internet in a few

different variants: Software as a Service (SaaS), Infrastructure as a Service (IaaS),

and Platform as a Service (PaaS). SaaS is where the cloud provider hosts the

software on its servers and the subscribers simply use a local client to interface

with the remote server over the Internet. On the other side of things, IaaS is

much more open with what it can be used for, by giving subscribers the ability

to create their own VMs on the hardware the cloud provider has given them. PaaS

offers a sort of middle ground between SaaS and PaaS, where subscribers can

build their own applications, but also have access to functionality given by the

cloud provider.

These “as a service” offerings are possible through the power of virtualization.

The cloud consists of several physical nodes connected together in a network,

and each node runs VMs for the subscribers. For a traditional network, in order

1

to add a new machine, it would need to be purchased and attached to the

network, an expensive and time consuming process that also uses up a lot of

space in a data center. Virtualization changes all of that. Instead of each physical

machine simply being just one machine in the network, they can each have

multiple VMs that each take a portion of their resources, so each VM can pretend

to be multiple machines in the network. This makes an IaaS situation of adding a

machine to a network as easy as starting a new VM. This can be leveraged for

SaaS and PaaS situations as well: if a subscriber finds they need a more powerful

application, they can ask the cloud provider to upgrade their server to have more

RAM or access more CPUs, simple changes to make in a virtualized system.

There are three main types of clouds: private, public, and hybrid. Private clouds

are built with machines given for the sole use of one subscriber, and are often

run from data centers that the subscriber themselves own and are responsible for

maintaining. A public cloud is one that is provided over the Internet for the use

of anyone who will subscribe, hosted on the cloud provider’s servers. A hybrid

cloud is, as the name suggests, using a combination of a private and public

clouds.

Cloud Security Flaws

For any computer system, security must be taken into consideration during its

design, which is especially true for a new and rapidly growing area such as cloud

computing. A detailed overview of common security issues in cloud computing is

found in Subashini and Kavitha (2011), who describe flaws in all three variants

of service provided by clouds: SaaS, IaaS, and PaaS. We will be focusing on IaaS

systems, and the flaws we find most interesting are Network security, Data

breaches, and Vulnerability in Virtualization. Additionally, we are interested in

the VM Escape, Denial of Service, and VM Monitoring from Another VM

attacks from Reuben (2007). These are all facets of the cloud that can be

targeted in order to either gain access to the sensitive data of other subscribers,

2

or to render the cloud functionally unusable.

There are two main types of attacks on a cloud: internal and external. External

attacks are primarily network focused, sometimes with the goal of infiltrating the

system and becoming an internal attack. Because clouds offer access through the

Internet, they are vulnerable to the same types of attacks that other web

applications are, such as SQL Injection or Denial of Service, the attack type that

has taken down Twitter and Facebook, as per McCarthy (2009). Internal attacks,

on the other hand, can only be done on systems that the attacker already has

access to. This is the type of attack that was used in the Heartland Payment

Systems attack Press (2009), where malicious software was uploaded to the

company’s network and credit card information from some 130 million customers

was stolen, costing Heartland $110 Million. In cloud systems, because the VMs of

different subscribers can be located on the same node as each other, it is

important to keep their data separate. Some of these subscribers are companies

that are uploading very sensitive data, including customer data and the

company’s own intellectual property. Naturally, they do not want anyone else

being able to access this information freely.

Consider the following attack scenario where the attacker uses the Data Breach

and Network Security flaws from Subashini and Kavitha (2011): there is an

attacker that has managed to load malicious code directly onto the physical

nodes of a cloud, something that can be done through a VM Escape exploit

Reuben (2007). This means that the attacker has the ability to sniff for packets

being sent to or from any of the VMs on the cloud. The attacker may value

finding certain information more than others; perhaps they are trying to find

credit card transactions that are all processed from one VM, located on an

unknown node. The attacker just needs to find which node has the VM that is

sending the packets containing the information that it is looking for, and sniff for

those packets on the node that VM resides on.

Another possible scenario that uses the Network Security flaw from Subashini

3

and Kavitha (2011) is an attacker who has placed their code on one of the VMs

that they have legally created. They can send packets to any of the other VMs

they have created, which may or may not be located on the same physical node,

in an attempt to map the underlying physical network. Once they have mapped

out as much of the network as they can see, the attacker can then determine

which of the virtual links it should attack in order to have the greatest effect on

the performance of the physical network. It can then flood that link with traffic

in an effort to degrade the performance of the entire cloud, an example of a

Denial of Service attack from Reuben (2007). A process for carrying out this

type of attack is given in Liu (2010).

Finally, consider a third scenario that uses the Vulnerability in Virturalization

security flaw from Subashini and Kavitha (2011): an attacker has loaded

malicious code onto their VM and uses a virtualization vulnerability that allows

them to read information from any of the VMs located on the same physical node

as theirs, an example of a VM Monioring from Another VM attack from Reuben

(2007). Unlike the credit card sniffing scenario, the attacker does not have full

access to the cloud’s network; instead, they have full access to the physical

node’s memory. They can use this to snoop around the live memory of the other

machines, looking for sensitive information to steal from the currently running

processes.

Attack and Defense Strategies

What do the scenarios given in the previous section have in common? For one,

the attacker can solve them all with a Multi-Armed Bandit (MAB) policy. MAB is

a well known statistical problem where a player (the gambler) is presented with

multiple slot machines. Each turn, they can pull the arm of one of the slot

machines, and receive some payout. Before starting the game, they have no idea

how much reward they can expect to get from each of the slot machines, which

all pay out with independent rewards. The gambler must choose every turn

4

whether they should exploit a well paying arm they have already found, or if they

should explore the other arms to see if there is a better paying one that exists.

The other similarity that these scenarios have is that they are good candidates

for the defender to apply a Moving Target Defence (MTD) strategy, from

Al-Shaer (2011). This is a defense strategy based on the exploitation of

randomization, where the idea is that the defender makes some changes to its

system’s configuration every so often. This should cause the attacker to have a

much more difficult time trying to be successful.

This MTD strategy matches our scenarios very well. For example, in the credit

card sniffing scenario, the attacker can apply a MAB policy to determine which of

the VMs it should sniff the packets of. However, we can create a literal moving

target by changing the layout of the system. We can use a MTD strategy of

migrating the VMs from one physical node to another, which will also change

which packets the attacker can see, since the VM it was sniffing the packets of

will no longer be located on the same physical node. This will then invalidate all

of the knowledge that the attacker has gained about where the packets with the

credit card information are located, but because the attacker doesn’t know that

the VMs have been moved, it may not equate the lack of packets with the VM

being moved for quite a while. A visual representation of this strategy can be

seen in Figure I.1, where the green dotted VMs are running, and the red dashed

VM is the one with the credit card information.

Our network mapping / flooding scenario also fits nicely with these strategies.

The attacker must choose between each of the links it can see, where each one

will have a different likelihood of getting congested based on how much traffic it

is responsible for at any given time. A MAB policy can be applied to help choose

which of these links to target. The MTD can once again create a moving target

by migrating the VMs between hosts every so often. In this scenario, the

attacker’s knowledge is invalidated by the fact that it itself was moved. The new

virtual network structure would be completely different; connections that

5

VM1 VM3

VM4

VM2

VM5

VM1 VM3

VM4

VM2

VM5

Node1 Node2

Node3

Node1 Node2

Node3

(a) Credit Card Sniffing

VM1 VM3

VM4

VM2

VM5

VM1

VM3

VM4

VM2

VM5

Node1 Node2

Node3

Node1 Node2

Node3

(b) Network Mapping / Flood

VM1 VM2 VM3

VM4 VM5

VM1 VM2 VM3

VM4 VM5

VM1 VM2 VM3

VM4 VM5

VM1 VM2 VM3

VM4 VM5

VM1 VM2 VM3

VM4 VM5

VM1 VM2 VM3

VM4 VM5

Node1 Node2

Node3

Node1 Node2

Node3

(c) Memory Snooping

Figure I.1: Moving Target Defense Scenarios

6

formerly went over physical links could be on the same physical node now,

resulting in no congestion at all. A visual representation of this strategy can be

seen in Figure I.1, where the green dotted VMs are running, the red dashed VMs

are the ones the attacker has created, and the red dashed network links are the

ones the attacker can see.

Our memory snooping scenario can also have these strategies applied to it. As in

the previous two scenarios, it is easy to use a MAB policy to choose which of the

VMs to attack. In addition, we decided to use a slightly different system design

and MTD strategy, for clouds that are worried about the potential failure of

nodes. This new system works by creating a copy of every VM on every physical

node, but having all of them suspended except for one of each at any given time.

This means that the attacker can see all of the VMs even without access to the

network. However, they cannot see all of the information on currently running

processes, only the information for the VMs active on that node. The MTD

strategy is to change which node each VM is currently active on, thus changing

the processes that can be snooped on. Unlike the credit card sniffing scenario,

the attacker does not have control of the network, so it cannot follow the VM

when it moves. A visual representation of this strategy can be seen in Figure I.1,

where the green dotted VMs are the active ones, the black solid VMs are the

suspended ones, the red dashed VM is the one the attacker is looking for, and the

red dashed node is the one the attacker is located on.

With this thesis, we aim to show the effectiveness of our MTD strategy against

an attacker using a MAB policy. As we have just shown, this is a strategy that is

very relevant to our modern computer systems, and in particular to the field of

cloud computing. This thesis will show that using our proposed defense strategy

can make an attacker’s policy be effectively wasted effort compared to simply

choosing a random target to attack each turn. While it will not completely block

the attacker from having some small success, it will greatly reduce the potential

damage that can be caused. This will help protect customers’ data in enterprise

7

cloud environments.

The contributions of this thesis are as follows:

1. Develop a set of MTD strategies that introduce randomization to counter

attacks from a MAB policy.

2. Assess the impact of our defense on a variety of MAB algorithms and show

that it can make them no more effective than a randomized attack policy.

3. Study the effect of critical parameters (e.g. time to switch, variance in

rewards, reward saturation, etc.) on the performance of our defense.

4. Validate our mechanisms using a real OpenStack system to collect data on

migration times and VM down times for different memory loads.

Outline

In Section II we will cover what related work has been done in this field. Section

III will explain the methodology behind this problem and strategy in detail,

before Section IV introduces the results we gathered from our theoretical and

real system evaluations, and we conclude in Section V.

8

II. RELATED WORK

Cloud Environment Security

The main area we would like to apply our MTD strategy to is that of cloud

environments. Like any other fast growing area, security is a primary concern.

Earlier in Section I, we mentioned Subashini and Kavitha (2011), who give a

detailed list of types of security flaws that can be found in clouds from the

perspective of a software developer. Bisong and Rahman (2011) list seven major

ways cloud services can be at risk from the perspective of a business executive,

and give recommendations for how companies can prepare to leverage cloud

services.

Some solutions are given in Kaur et al. (2015), who give an overview of several

current techniques for protecting data through encryption, and by He et al.

(2014) who describe a new architecture for cloud systems designed with security

as the primary concern.

The authors of Liu (2010) proposed a migration based method for detecting and

avoiding Denial of Service attacks in a cloud environment that sounds similar to

our solution on the surface. The main difference is that their solution is to be

implemented by the clients running on the VMs on the cloud, whereas our

solution is built into the cloud system itself.

Similarly, the authors of Gillani et al. (2015) propose a system for cloud defense

based on the actual migration of VMs. While it shares many similarities with our

defensive strategy, our contributions are not the same. They focus exclusively on

preventing Denial of Service attacks, while we show the effectiveness against

other types of attacks as well, such as packet sniffing. In addition, in their

evaluation they gathered their results by using PlanetLab, a large scale

worldwide network research environment. We performed our evaluation on a

deployment of OpenStack, a cloud system that is currently used by actual cloud

9

provider companies, such as HP, IBM, and Oracle.

Our solution is one that aims to address a few of the security concerns listed in

the above papers, mostly focusing on the Network Security flaw from Subashini

and Kavitha (2011) and the Malicious Insiders flaw from Bisong and Rahman

(2011). Our MTD strategy can be used in tandem with encryption for extra

protection, and does not require a redesign of the existing cloud, so could be

implemented with a minimum of effort.

Multi-Armed Bandit

The MAB problem that we mentioned in Section I has been around for many

years. The standard version of the problem that we will define in Section III was

described in Robbins (1952). However, many variants of the problem have been

created over the years, which modify the process that determines how the arms

give rewards. There are two main versions of the MAB problem based on how its

rewards are generated: stochastic and non-stochastic. In the stochastic problem,

the rewards are generated based on some logical process, such as a probability

distribution, while in the non- stochastic problem there may not be any logic to

the choice of reward values.

The traditional stochastic MAB problem simply defines the rewards as being

given by a probability distribution like we use, but other ideas have been

proposed, such as the one by Bellman (1956), where each arm’s rewards are

given by a Markov Decision Process (MDP). Whenever an arm is pulled, it gives

some reward and causes the MDP to transition to the next state. A further

modification of this version is called Restless Bandits, defined in Whittle (1988),

where all the arms transition state each turn, not just the arm that was pulled.

There are also MAB variants that, like our work, modify the state of the game

over time. In Whittle (1981), they define a problem where more arms appear

over time, growing the number of choices the gambler is presented with. In

Chakrabarti et al. (2009), they define a variant where arms have a lifespan, and

10

will “die” after a number of turns, to be replaced by a completely new arm.

Many solutions to the stochastic problem have been proposed over the years.

One of the first popular ones was an optimal policy called the Gittins Index,

published by Gittins and Gittins (1979). In more recent years, the UCB

algorithm from Auer et al. (2002b) has been a standard, with it forming the base

of many other variations. We will go into more detail on solutions in Section III.

Solutions to the non-stochastic problem exist as well, such as the adversarial

bandit from Auer et al. (2002a). While they claim to make no assumptions about

there being any logic to the reward distributions of the arms, this also means

that they make fairly weak claims about what performance they can achieve.

As we showed in Section I, an attacker could very easily be applying a MAB

policy to decide where to target next, since it fits the cloud environment quite

well. The rewards that each arm pays out in our scenarios are all best modeled

by a standard probability distribution since it is trying to model the fluctuations

of the usage of the VMs, thus we are modeling a stochastic problem, and will

spend our effort competing against those policies.

Due to the nature of our MTD moving the reward distributions around at

random, it could be argued that the non-stochastic problem would be a better

fit, but the bounds on that are well known and weak, and we decided that it

would be more interesting to see how policies developed for the stochastic

problem would fare against our MTD, since our base scenarios without any

defense applied are stochastic themselves.

Some of the MAB variants that modify the game state (like Chakrabarti et al.

(2009)) are similar to our strategy. There are differences between their work and

ours however, such as how they model their scenario as a non-stochastic

problem, while we have intentionally avoided doing that. In addition, when they

talk about an arm “dying”, they mean that its reward distribution is replaced

with a completely new one. In our system, rather than replace old distributions,

we move them around, so that our system remains constant aside from the

11

mapping of reward distributions to arms.

Moving Target Defense

In order to combat the MAB policy, we are applying a MTD strategy. One of the

definitive works in this area is by Al-Shaer (2011). This book gives detailed

information about the definition of a MTD, various MTD strategies, and the

general effectiveness of these strategies against different classes of attacks and

exploits. Instead of the comprehensive overview that they gave, this thesis will

be delving into the effectiveness of a MTD against one specific attack strategy,

the MAB. In a shorter paper, Winterrose and Carter (2014) also give an overview

of several different types of Moving Target defense strategies and compare how

they perform in different attacking scenarios. A formalized theory of MTD

systems is laid out in Zhuang et al. (2014).

In their paper, Winterrose et al. (2014) go deeper into the migration based

defense strategy, which is the same type of strategy that we are using in this

thesis. However, they compare it to an attacker that acts based on a genetic

algorithm, rather than a MAB policy like we do.

In Zhuang et al. (2012), the authors look at the effectiveness of a network based

defense. They adapt their system through the complete refresh of the VMs, where

all prior state information is lost. In our scenario, we are simply migrating the

VMs from node to node, with no information lost, and almost zero expected

downtime. They are also using a configuration manager component to decide

where to refresh the VM, whereas we are simply migrating them at random, since

all the physical nodes in our network are equivalent.

Although all MTD strategies are based on the same fundamental idea (to increase

the difficulty for the attacker by introducing change into the system’s structure),

the other strategies go about this in a different way than we do. We are

presenting a novel idea of near continuous VM migration.

12

Additional Works

Another type of game that is very similar to the MAB problem is the Stakelberg

game, first described in Kaldor (1936). These games also function by having the

attacker and the defender take turns making their move, one the “leader” and one

the “follower”. The main difference between this and our work is that the leader

and follower can both see each other’s moves, in a way making it a more general

version of our problem. These have been applied to the security of physical

locations already, as seen in Jain et al. (2011) and Kiekintveld et al. (2008).

13

III. METHODOLOGY

Multi-Armed Bandit

Let us now expand on our definition of the MAB problem from Section I more

formally. In the game, the gambler is presented with K slot machines to choose

between, and it will last for T turns. Each turn t ∈ {1, ..., T}, the gambler will

select one of the slot machines m ∈ {1, ..., K}, and will pull its arm, receiving

some reward rm,t. This reward is decided upon by the slot machine m, and the

gambler is not privy to any knowledge about how this reward was generated.

The goal of the gambler is gain as much total reward as possible, maximizing

Equation III.1 through the clever choice of m at each turn.

R =
T∑
t=1

rm,t (III.1)

Traditionally, as well as in our case, the rewards that each machine m arm gives

are chosen based on some probability distribution dm, where each of the K

machines have their own distribution independent of the others.

In order to win this game, the gambler creates a policy to select which m to pull

each turn. Because the gambler has no foreknowledge of how the machines select

their rewards, they must explore the arms before they can choose which to

exploit. Policies are designed to choose when to explore and when to exploit

based on the rewards that were earned in previous turns. Policies are not

evaluated in terms of maximizing rewards, but instead in terms of minimizing

the regret ρ.

Generally speaking, regret is defined as the cumulative total of the difference

between the optimal arm and the arm that was actually pulled by the policy.

Because the arms can give rewards with some variance, a common way to decide

the regret is by calculating the difference in the expected rewards, as in Bubeck

14

et al. (2013). We call the expected value of pulling machine m’s arm µm, and the

best expectation µ∗ = max1≤m≤K µm. This then defines regret after T turns as:

ρ = T ∗ µ∗ −
K∑

m=1

µm ∗ Pm(T) (III.2)

where Pm(t) is the number of times machine m’s arm has been pulled by time t.

This equation can also be reformulated in terms of T , becoming:

ρ =
T∑
t=1

(µ∗ − µmt) (III.3)

where mt is the index of the arm that was pulled at time t.

Sometimes the situation arises where we would like to model the attacker valuing

successful attacks earlier more. To do this, we can introduce a discount factor

0 < d < 1, as in Varaiya et al. (1985). Equation III.1 would become:

R =
T∑
t=1

dt ∗ rm,t (III.4)

and Equation III.3 would become:

ρ =
T∑
t=1

dt ∗ (µ∗ − µmt) (III.5)

Attack Strategies

One important note to make about the MAB is that it has many different policies

that can be applied. In order to truly gauge the success of our MTD, we will need

to compare it to several of these policies. The policies that we chose are those

implemented in the maBandits library by Cappe et al. (2012). Full details for

each of these policies can be found in their respective sources, but a brief

description of each follows:

• UCB: This is the most basic of the strategies, from Auer et al. (2002b). It

15

is very straightforward: it pulls every arm once, and then it chooses the

arm that maximizes µ̄m +
√

c∗log t
Pm(t)

where µ̄m is the current sample expected

reward, c is a constant positive number, t is the current turn number, and

Pm(t) is the number of times arm m has been pulled at time t. The log t

term is included to have a non-decreasing sequence of values that are an

order of magnitude below t, which is what allows it to explore again over

time if the rewards it is receiving are not very large.

• UCB-V: A fairly straightforward modification of the UCB policy, from

Audibert et al. (2009). It chooses the arm that maximizes

µ̄m +
√

2∗log t∗v̄m
s

+ c ∗ 3∗b∗logt
s

, where v̄m is the current sample variance, c

and s are constant positive numbers (s usually is Pm(t)), and b is the

bound on the rewards. It adds in the information that it knows about the

bound on the rewards to try and fine-tune which arm is the most likely to

pay out well.

• KL-UCB: This policy is from Garivier (2011). It always selects the arm

with the maximum Pm(t) ∗BKLD(µ̄m, log t+ c ∗ log log t), where BKLD

is the Bernoulli Kullback-Leibler divergence, a measure of information gain,

so it is trying to select the arm with the most gain likely. Also used was a

variant tuned for use specifically with exponentially distributed rewards.

• MOSS: This policy from yves Audibert et al. (2004) selects the arm that

will maximize µ̄m +

√
max(log (h

Pm(t)∗n),0)

Pm(t)
, where h is the horizon and n is the

number of arms. It is inspired by the UCB algorithm, and it looks for the

arm with the highest upper confidence bound.

• Empirical Likelihood UCB: This policy is from Cappe et al. (2012), written

by the authors of the maBandits package. It is a variation on the KLUCB

policy, so is also trying to pick the arm with the greatest information gain.

16

Moving Target Defense

At this point, a more detailed definition of a MTD strategy is required. At its

heart, a MTD is a defensive strategy applied to a configurable system with the

goal of adding some randomness to invalidate any knowledge that a potential

attacker could have gained over time. A configurable system Γ consists of a set of

states S, a set of actions Λ, and a transition function τ that maps S × Λ→ S. A

state si ∈ S is a unique system setting, and an action α ∈ Λ is a set of steps that

will change one state into another valid state. A MTD system Σ is thus defined as

a configurable system Γ, a set of goals G (including goals for both the system’s

proper operation go, and its security gs), and a set of policies P (rules for what

constitutes a valid system configuration). The set of all valid states Sv is referred

to as the configuration space, and a MTD aims to make things more difficult for

an attacker by moving the current state throughout the configuration space. For

a more thorough definition, see Zhuang et al. (2014).

Of course, in order to actually use a MTD strategy, some additional components

must be added to the configurable system to facilitate the making of the

changes. As per Zhuang et al. (2012), the two essential components that must be

added are the adaption engine and the configuration manager (the logical

mission model they mention is the same as our polices P). The adaption engine

is the component that decides what changes should be made to the system, as

well as how often they should be made. The configuration manager is the

component that actually makes and enforces the changes. If desired, an

additional analysis engine component can be added that feeds current system

information into the adaption engine to help make more informed decisions.

To apply the formal definition to our example cloud system,

si = {(VM1, Node1), (VM2, Node4), ...}, defined by its mapping of each VM to a

physical node, with S being the set of all possible permutations of this mapping.

α would be migration commands to move VMs from one node to another, with Λ

17

being the set of all such possible migrations. The transition function τ would be

where the details of a particular strategy would be encoded. The set of goals G

would include things like go1, “allow customer access to VMs,” and gs1, “prevent

customer traffic from being intercepted.” Finally, the set of policies P would

include rules such as p1: “The sum of the disk space required by all VMs on a

node must not exceed the disk space of that node.” With this, it is easy to see

that a cloud environment works well as a configurable system.

We developed three MTD strategies for use with our system. The first one we call

Complete Restructure, because it has the goal of changing the location of every

single VM in the system. In this strategy, the transition function τ would consist

of only tuples (si, ak)→ sj that result in a new configuration where none of the

VMs in sj are located on the same physical node as they were in si.

We also use a more relaxed version of this we call Hide Max, where the only VM

we migrate is the one that rewards the attacker the most, assuming it is known

to the defender. The transition function τ would consist of only tuples

(si, ak)→ sj that result in a new configuration where the only change is that the

maximum rewarding VM has swapped locations with a single other VM.

Our third strategy is what we call Duplicate and Deactivate, because it keeps a

copy of every VM on every node, and deactivates all but one of each at any given

time (see the memory snooping scenario in Section I). In this case, the transition

function τ would consist of only tuples (si, ak)→ sj that result in a new

configuration where every VM in sj is listed only once with the node it is

activated on.

Since the only changes we are making in our strategy are migrations of VMs and

it can be safely assumed that all the physical nodes that they are being migrated

between are identical, we decided that our adaption engine needed to be only as

complex as a random number generator used to decide the new nodes the VMs

would move to. Since the adaption engine is also responsible for deciding when

to trigger the defense, we chose to set it as a fixed interval that we would be able

18

to vary to better see how it effects the performance. Because of this simplicity in

the adaption engine, we had no need of an analysis engine at all. The

configuration manager is only responsible for initiating the migrations, which is a

tool that is already provided by most cloud systems.

19

IV. RESULTS

Theoretical Analysis

As we mentioned in section III, there are several different policies for finding

solutions to the MAB problem. In order to get a good range of techniques, we

used the open source maBandits package from Cappe et al. (2012) as a base and

modified the MATLAB implementation to allow for our MTD strategies.

The base maBandits implementation is a fairly straightforward simulation. It

assumes a finite horizon, and takes advantage of that to pre-calculate all reward

payouts for each of the arms at every step, if they are chosen at that point. The

program then proceeds to test each policy in order, letting it choose which arm

to pull for each turn, and returning the appropriate reward from the table it has

pre-calculated. The policy then updates its internal state and comes back for the

next turn. The program continues the game this way until the horizon is

reached, at which point the game ends. It then starts a new game with the same

policy and repeats it all, doing this for every policy. Once this has completed, it

averages the results from each policy in terms of regret and how many times the

attacker chose a sub-optimal arm to pull. The full details and original source are

available from Cappe et al. (2012).

In order to add our MTD strategy to this code, we had to make some

modifications. We simulated our adaption engine by adding a section of code

that would, when triggered, swap the rows in the reward table. This would

therefore cause the distribution and reward payout of each arm to swap as well.

We set it so it would be triggered at a set interval, and we varied the interval to

see how the frequency of swaps would affect the MAB policies.

For all of our experiments, we set our horizon to be 2000 turns and 20 tests to be

repeated and averaged. We ran tests with 10 arms, where the sum of the

expected rewards for all the arms was equal to 1. We also made sure to have a

20

control test where our added MTD code would not be triggered, in order to

better see what effect our strategy had.

For our first experiment we created the simplest situation where the regret was

calculated by Equation III.3, and all the variance in the rewards was removed so

each arm would always pay out the exact same amount each time it was pulled.

This allowed us to more clearly see the effect of our defense, since we effectively

removed any randomness of the data. We decided to use our simplest defense

strategy first, Hide Max, and we created a situation where there are 10 arms,

and only one of them pays out any reward for the attacker. It had a paid 1, while

all other arms paid 0. The detailed results for this are shown in Figure IV.1.

What you can see from this sequence of figures is that as we increase the

frequency of our swapping defense, the effectiveness of the attack strategies all

decrease dramatically. We decided to set the defense frequency to every 500, 50,

and 5 turns to see the results on a logarithmic scale. There is a noticeable effect

by shuffling every 500 turns, and by the time it reaches every 5 turns, the attacks

are nearly indistinguishable from a random strategy.

In order to explore the effect the frequency of swapping had in more detail, we

created plots that combined all those results into one. This is seen in Figure

IV.2, where the x values are the number of turns the defense waits between

swapping, and the y values are the average regret of the policies at the end of the

game. The first plot shows the regret when the defense frequency varies from 5

to 455 in steps of 50. It shows that at around 50, the attack policies all start to

bunch up somewhat, so we ran a second set of tests where we varied the

frequency from 5 to 43 in steps of 2, shown in the second plot. The takeaway

from these results is clear: from the attacker’s perspective, the more frequently

the defense is activated, the more similar the attack policies’ performances

become, with all of them approaching the performance of the random strategy.

For our next experiment, we changed our regret calculation to use Equation

III.5, adding the discount factor in for situations where the attacker is on a time

21

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s
KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) No Defense

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Defense Every 500

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(c) Defense Every 50

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(d) Defense Every 5

Figure IV.1: 1-1 9-0; No Variance; No Discount; Hide Max

22

0 100 200 300 400 500
200

400

600

800

1000

1200

1400

1600

1800

2000

Defence Frequency

R
eg

re
t

KLUCB
UCB
UCBtuned
UCBV
MOSS
KLempUCB
KLUCBexp
Random

(a) Defense Frequency from 5 to 455; Step of 50

5 10 15 20 25 30 35 40 45
1100

1200

1300

1400

1500

1600

1700

1800

1900

Defence Frequency

R
eg

re
t

KLUCB
UCB
UCBtuned
UCBV
MOSS
KLempUCB
KLUCBexp
Random

(b) Defense Frequency from 5 to 43; Step of 2

Figure IV.2: 1-1 9-0; No Variance; No Discount; Hide Max; Final Regrets

23

0 1000 2000
0

200

400

600

800

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s
KLUCB

0 1000 2000
0

200

400

600

800

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

200

400

600

800

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

200

400

600

800

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

200

400

600

800

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

200

400

600

800

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

200

400

600

800

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

200

400

600

800

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) No Defense

0 1000 2000
0

200

400

600

800

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

200

400

600

800

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

200

400

600

800

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

200

400

600

800

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

200

400

600

800

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

200

400

600

800

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

200

400

600

800

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

200

400

600

800

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Defense Every 500

0 1000 2000
0

200

400

600

800

1000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

200

400

600

800

1000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

200

400

600

800

1000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

200

400

600

800

1000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

200

400

600

800

1000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

200

400

600

800

1000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

200

400

600

800

1000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

200

400

600

800

1000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(c) Defense Every 50

0 1000 2000
0

200

400

600

800

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

200

400

600

800

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

200

400

600

800

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

200

400

600

800

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

200

400

600

800

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

200

400

600

800

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

200

400

600

800

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

200

400

600

800

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(d) Defense Every 5

Figure IV.3: 1-1 9-0; No Variance; Discount .999; Hide Max

24

sensitive schedule and must collect rewards as near the start of the game as

possible. An example of this could be when the attacker in on a system that is

being actively monitored by a security program, and the more attacks it

commits, the more likely it will be caught and removed from the system. We set

our discount to be d = 0.999, or a tenth of a percent decrease each game. The

effect of the defense is even more pronounced in this situation, with even the

defense every 500 turns showing a significant advantage over no defense at all.

Once again, swapping every 5 turns lead to all the attacks performing on par

with a random strategy. This is all shown in Figure IV.3.

Our next experiment removed the discount factor, switching our regret

calculation back to Equation III.3, and we added variance to the data. This was

done through generating Poisson distributed random values with a mean of 1,

just like in the first experiment. As shown in Figure IV.4, the average case

performance is nearly identical or better than that of the case with no variance

from IV.1. In fact, the most noticeable difference is the UCB-V algorithm with a

defense frequency of 50, which shows a marked improvement when the variance

is added into the data. The other best and worst case results can vary a little,

but not dramatically; all in all, it is quite consistent.

To further explore the effect of variance on our defense, we decided to look at a

range of variances. We did this by making sure that the mean of the rewards was

always 1, but we changed the variance to be 1, 0.1, and 0.01. As you can see in

Figure IV.5, particularly with the UCB-V algorithm, as the variance increases,

the defense gets more and more effective.

The effect of variance on the MAB policies is laid out fairly clearly in Figure IV.6.

For all of the tests in it, the mean reward was fixed at 1, the arms were set up

with only one paying out anything, and the Hide Max strategy was used every

50 turns. The figure shows what the final regret was after all 2000 turns. Since

the only thing that changed was the variance, it’s quite apparent that the more

varied the data is, the better our defense performs. The Worst Regret line refers

25

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s
KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) No Defense

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Defense Every 500

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(c) Defense Every 50

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(d) Defense Every 5

Figure IV.4: 1-1 9-0; Poisson Variance of 1; No Discount; Hide Max

26

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) Poisson Variance of 1

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Poisson Variance of 0.1

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(c) Poisson Variance of 0.01

Figure IV.5: 1-1 9-0; No Discount; Hide Max; Defense Every 50

27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

re
gr

et

variance

random regret
best regret
worst regret

(a) Variance 0, 0.1, 0.2, 0.3, 0.5

Figure IV.6: 1-1 9-0; No Discount; Hide Max; Defense Every 50

to the policy that had the lowest regret against our defense, while the Best

Regret refers to the one with the highest regret (excluding the exponentially

tuned KL-UCB, since it uniformly performed as poorly as the random policy).

Looking at the figure, it quickly becomes apparent that as the variance is

increasing, the worst and best performances are approaching each other, and are

also approaching the random performance. This means that, since most every

real world situation will involve some amount of variance in how much reward

the attacher receives, our defense will perform even better than under static lab

conditions.

Another aspect we looked into was how the saturation of rewards affected our

Complete Restructure strategy’s effectiveness. By saturation of rewards, we

mean what percentage of the potential arms actually give a reward. To do this,

instead of having just 1 arm with an expected reward of 1, we had 2 arms with

an expected reward of 0.5, or 3 arms with an expected reward of 0.33, etc. The

results can be seen with the raw data in Table IV.1 and scaled data in Figure

IV.7.

Several things can be learned from these results. First off, it is quite clear that as

the reward saturation increases, the effectiveness of our strategy decreases.

28

10% 20% 30% 50%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reward saturation

pe
rc

en
ta

ge
 o

f r
an

do
m

 r
eg

re
t

worst regret
best regret

(a) Defense Every 50

10% 20% 30% 50%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reward saturation

pe
rc

en
ta

ge
 o

f r
an

do
m

 r
eg

re
t

worst regret
best regret

(b) Defense Every 5

Figure IV.7: Poisson Variance of 1; No Discount; Complete Restructure

29

Table IV.1: Effect of Reward Saturation on Regret (Complete Restructure; Every 50,5
Turns)

Shuffle Freq Saturation Worst Regret Best Regret Random Regret
5 10% 1617 1808 1797
5 20% 582 762 799
5 30% 270 412 465
5 50% 103 190 199
50 10% 570 1780 1797
50 20% 144 711 801
50 30% 76 301 462
50 50% 32 136 200

Figure IV.7 shows for the defense frequency of 5 that the regret of the policy

that our defense performs the worst against goes from 90% of the random

strategy at 10% saturation down to 50% of the random at 50% saturation.

That’s a drastic change, and not in the defense’s favor. However, this is not as

much of a problem as it might seem at first. If we compare the results of a

defense frequency of 5 to that of 50, we see that both the policy that we perform

the best against and the policy we perform the worst against show a significant

improvement as the defense frequency gets smaller. This means that, while our

defense may not be as effective at higher saturations, it is still significantly more

effective than doing nothing.

The final experiment we conducted at with the simulation was the situation

where there was an uneven distribution of rewards. In the previous example,

when we increased the saturation of rewards, we gave all the arms the same

payout. In this case, we gave them slightly different payouts: 1 arm gave an

expected reward of 0.6, and 2 arms gave an expected reward of 0.2 each time.

We did this so we could try and see any differences between the Complete

Restructure and Hide Max strategies in this unbalanced situation. The results

can be seen in Figure IV.8.

It quickly becomes apparent by looking at the results that there isn’t really

30

0 1000 2000
0

500

1000

1500

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) Hide Max

0 1000 2000
0

500

1000

1500

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Complete Restructure

Figure IV.8: 1-0.6 2-0.2 7-0; Poisson Variance of 1; No Discount;
Defense Every 500

31

much of a difference at all. In fact, the two defense strategies are nearly identical.

The only real difference seems to be the best and worst case performances

(shown by the lighter grey areas), which are slightly larger for the Complete

Restructure strategy, though even that could simply be the product of different

random numbers generated between the runs.

The reason for this is most likely because in the situation where we compared

the two strategies, there was one VM that paid out more than the others

combined, meaning it was nearly guaranteed to be targeted by the attacker.

Since all shuffles in both strategies are completely random, both strategies have

the same likelihood of swapping a lesser paying VM or a non-paying VM into the

location that the max had been in before.

In short, it doesn’t seem to make much of a difference whether you shuffle all the

arms around or just the maximum valued one, at least in a case where one VM

pays significantly higher rewards than all the others. Likewise, if you do not

know which VM is the most desirable target, it will not hurt your effectiveness to

simply shuffle them all to be safe.

Unfortunately, our Duplicate and Deactivate strategy did not fare as well. We

tried doing the same as our firsts experiment with the Hide Max strategy, where

the regret was calculated by Equation III.3 and all the variance in the rewards

was removed, the results of which can be seen in Figure IV.9.

It is very quickly made apparent from the results that the Duplicate and

Deactivate strategy is not as effective as the Hide Max or Complete Restructure

strategies. It is, however, more effective than no defense at all. One of the most

interesting things from Figure IV.9 is that the average regret seems nearly

constant from changing the activated VMs every 500 turns all the way down to

15. The main thing that seems to change is the range of best and worst case

scenarios (the light-gray areas). This is most likely because the less frequently

the system changes, the easier it is to be either extremely lucky (or unlucky) for

a long period of time with the randomized configuration.

32

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s
KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(a) No Defense

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(b) Defense Every 500

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(c) Defense Every 50

0 1000 2000
0

500

1000

1500

2000

time

re
gr

et

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

su
bo

pt
im

al
 d

ra
w

s

KLUCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCB

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBtuned

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

UCBV

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

MOSS

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLempUCB

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

KLUCBexp

0 1000 2000
0

500

1000

1500

2000

time

Random

0 1000 2000
0

500

1000

1500

2000

time

Random

(d) Defense Every 15

Figure IV.9: 1-1 9-0; No Variance; No Discount; Duplicate and Deactivate

33

Example System

In order to collect real world data to show the feasibility of this defense strategy,

we created a cloud for our use locally. Our setup was OpenStack Kilo devstack

running across 3 machines, each with 4 Intel Xeon 2.66GHz processors and 4Gb

of ram. The network speed between the nodes was 940Mb/s, measured at

380Mb/s in practice. We tested to see how long live migrations took to complete,

as well as the memory and network usage of the physical nodes during

migrations. The VM image we used was Ubuntu Trusty 14.04, and it was given

100GB of ephemeral storage and 256MB RAM.

According to Michal Jastrzebski (2015), the way that OpenStack implements live

migrations is by taking the current memory of the VM on the physical node it is

on and copying it over to the new node it is moving to. It copies it over as

quickly as it can, but since the VM is still in use, the state of the memory is still

changing even while it is being copied. So, by the time that the entire memory

has been copied, it is no longer the same across the two physical nodes. To fix

this, the parts of the memory that have been changed, called “dirty pages”, are

then copied over. Of course, the memory is still changing while this is going on

as well, so it must find more dirty pages to move. This continues until the

memory to be moved is small enough that it can be done all at once in a very

small amount of time. The VM is suspended during this time, and when it

finishes, the migration is complete, and the VM is resumed on the new node and

deleted from the previous node.

It is important to note that the network speed can be a limiting factor. If the

dirty pages cannot be transfered between physical nodes faster than the VM is

creating them, the migration will never complete.

It is clear from this process that the length of time the migration takes is

dependent on the size of the VM memory, and on how long it took to get the

memory synced between the machines. To test this length of time, we used the

34

Table IV.2: Time for Live Migration for Stressed Memory (256 MB total)

Stress (MB) Migration Time (s) Down Time (s)
0 22.6 2.0
16 23.4 2.5
32 22.8 2.7
64 27.5 3.3
128 29.4 3.2
200 29.4 2.8

“stress” program to specify how much memory we wanted to be used on the VM

at any given time. The process to discover if a migration has been completed has

a slight delay built into it, so there could be up to 2 seconds of variance between

the results. To help minimize this, we ran each configuration 3 times and

computed the average times. We used the “ping” command with a 0.1 second

interval to test how long the VM was unreachable during the migration. Our

results can be seen in Table IV.2.

Looking at these results, we can see that as the stress on the memory increases,

so too does the length of time it takes to complete the migration. However, even

with the stress levels being as high as 200MB, most of the memory of the VM,

the migration took less than 30 seconds to complete on average with around 3

seconds of down time, which are very reasonable numbers.

We also collected some data from the physical nodes during the migration of an

unstressed VM. We tested migrating the VM back and forth from Machine C to

Machine B, starting on C, once every minute. During this process, we tracked

both the inbound and outbound network traffic, and the usage of the memory on

all of the nodes, with data points collected once every second. The results can be

seen in Figure IV.10.

What these results show is that during the migration process, there is a sudden

flurry of activity, and as soon as the migration has completed, the system returns

to a more stable state. A large amount of bandwidth is used to transfer the data,

35

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

time (s)

ne
tw

or
k

us
ag

e
(M

B
/s

)

Machine A
Machine B
Machine C

(a) Outbound Network Traffic

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

time (s)

ne
tw

or
k

us
ag

e
(M

B
/s

)

Machine A
Machine B
Machine C

(b) Inbound Network Traffic

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

time (s)

m
em

or
y

us
ag

e
(G

B
)

Machine A
Machine B
Machine C

(c) Memory Usage

Figure IV.10: Physical Nodes During Unstressed VM Migration

36

but only between the nodes that are the endpoints of the migration. The third

node in this scenario doesn’t show any increase in network traffic or memory

usage at all. The reason Machine A’s base memory usage is higher than the other

two nodes is because it is also functioning as the controller node, so is responsible

for other functions in the cloud, while the other two nodes in our cloud were only

responsible for running VMs. The memory plot also shows how the memory of

the node the VM is running on is constant until the migration is nearly complete,

at which point it is deleted and the memory freed, while the memory of the node

that is being migrated to slowly grows throughout the migration.

A more thorough examination of the downtime and network usage during a live

migration can be found from the authors at cima and Bohnert (2014). We

followed their example to collect the timing data for the migrations. They found

that their down time was less than 1 second for all sizes of virtual machines

during live migration, and their actual migration time was almost always less

than 20 seconds, presumably due to the fact that their cloud was running on

more powerful servers.

37

V. CONCLUSION

The result of this thesis is very promising. Through our theoretical analysis, we

found that our MTD is indeed effective against the various types of MAB attack

policies. Obviously, the more frequently the system is changed, the more effective

the defense is. What is especially encouraging is that if we make changes often

enough, all of the policies become indistinguishable from a random strategy,

meaning that the attacker has no hope of ever really learning anything useful

about the system we are defending.

Another positive result is how the introduction of a discount factor made no

change to the effectiveness of our defense, and how we found that the addition of

variance into our data only served to improve our defense. In other words, the

more varied the data, the better our defense performs. This is because our

defensive strategy to move everything around takes advantage of the variance

already in the data and adds even more unpredictable variance on top of it. The

MTD policies are written in part to attempt to compensate for the variance that

they assume is in the data, so when we subtly change what they are expecting to

find, they may not notice immediately that they are suddenly receiving

sub-optimal rewards.

One final set of conclusions we can take from our theoretical experiments is that

although our MTD strategy gets less effective when there are more targets that

give rewards to the attacker, we still found that it was still better to use our

defense than to completely ignore it, even in cases where the arms did not pay

out with equal expectations. Clearly doing something, anything, to confuse and

invalidate the attacker’s knowledge is better than not trying at all.

Our real world OpenStack example shows that this is a very feasible strategy to

implement on actual systems. Since the time it takes to migrate virtual machines

isn’t very large, and there is essentially no downtime for the customer, there is

no reason to not spend that little bit of time every so often and shuffle the

38

system a bit in order to confuse any attacks that may be happening. By noticing

that network traffic only exists between the nodes directly involved in the

migration, we can see that in a system with more physical nodes, multiple

migrations can be carried out simultaneously between any nodes not currently

involved in a migration, reducing the time it would take to migrate all VMs.

Security is essential in the modern world, and attacks are getting more and more

clever. As we have shown, a moving target defense is one way to make those

attacks less clever than they think they are.

39

REFERENCES

Al-Shaer, E. (2011). Moving Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats, chapter Toward Network Configuration Randomization for
Moving Target Defense, pages 153–159. Springer New York, New York, NY.

Andrew Bartels, John R. Rymer, J. S. w. K. K. J. C. D. W. (2014). The public
cloud market is now in hypergrowth. https://www.forrester.com/report/
The+Public+Cloud+Market+Is+Now+In+Hypergrowth/-/E-RES113365.

Audibert, J.-Y., Munos, R., and Szepesvari, C. (2009). Exploration-exploitation
tradeoff using variance estimates in multi-armed bandits. Theoretical
Computer Science, 410(19):1876–1902.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002a). The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing,
32(1):48–77.

Auer, P., Fischer, P., and Kivinen, J. (2002b). Finite-time analysis of the
multiarmed bandit problem. In Machine Learning.

Bellman, R. (1956). A problem in the sequential design of experiments. Sankhya:
The Indian Journal of Statistics (1933-1960), 16(3/4):221–229.

Bisong, A. and Rahman, S. M. (2011). An overview of the security concerns in
enterprise cloud computing. CoRR, abs/1101.5613.

Bubeck, S., Perchet, V., and Rigollet, P. (2013). Bounded regret in stochastic
multi-armed bandits. ArXiv e-prints.

Cappe, O., Garivier, A., and Kaufmann, E. (2012). pymabandits.
http://mloss.org/software/view/415/.

Chakrabarti, D., Kumar, R., Radlinski, F., and Upfal, E. (2009). Mortal
multi-armed bandits. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 21, pages
273–280. Curran Associates, Inc.

cima and Bohnert, T. M. (2014). An analysis of the performance of live
migration in openstack. https://blog.zhaw.ch/icclab/
an-analysis-of-the-performance-of-live-migration-in-openstack/.

Garivier, A. (2011). The kl-ucb algorithm for bounded stochastic bandits and
beyond. In In Proceedings of COLT.

Gillani, F., Al-Shaer, E., Lo, S., Duan, Q., Ammar, M., and Zegura, E. (2015).
Agile virtualized infrastructure to proactively defend against cyber attacks. In
Computer Communications (INFOCOM), 2015 IEEE Conference on, pages
729–737.

Gittins, A. J. C. and Gittins, J. C. (1979). Bandit processes and dynamic
allocation indices. Journal of the Royal Statistical Society, Series B, pages
148–177.

40

He, J., Dong, M., Ota, K., Fan, M., and Wang, G. (2014). Netseccc: A scalable
and fault-tolerant architecture for cloud computing security. Peer-to-Peer
Networking and Applications, 9(1):67–81.

Jain, M., Kardeş, E., Kiekintveld, C., Tambe, M., and nez, F. O. (2011).
Security games with arbitrary schedules: A branch-and-price approach. In
Security and Game Theory, pages 177–190. Cambridge University Press.
Cambridge Books Online.

Kaldor, N. (1936). Economica, 3(10):227–230.

Kaur, J., Garg, S., Principal, R., and Gobindgarh, M. (2015). Survey paper on
security in cloud computing.

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., nez, O. O., and Tambe, M. (2008).
Computing optimal randomized resource allocations for massive security
games.

Liu, H. (2010). A new form of dos attack in a cloud and its avoidance
mechanism. In Proceedings of the 2010 ACM workshop on Cloud computing
security workshop, pages 65–76. ACM.

McCarthy, C. (2009). Twitter crippled by denial-of-service attack. http://www.
cnet.com/news/twitter-crippled-by-denial-of-service-attack/.

Michal Jastrzebski, Michal Dulko, P. K. (2015). Dive into vm live migration.
https://www.openstack.org/summit/vancouver-2015/summit-videos/
presentation/dive-into-vm-live-migration.

Press, A. (2009). Heartland payment systems hacked.
http://www.nbcnews.com/id/28758856/ns/technology_and_
science-security/t/heartland-payment-systems-hacked/.

Reuben, J. S. (2007). A survey on virtual machine security. Helsinki University
of Technology, 2:36.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bull.
Amer. Math. Soc., 58(5):527–535.

Shetty, S. (2013). Gartner says cloud computing will become the bulk of new it
spend by 2016. http://www.gartner.com/newsroom/id/2613015.

Subashini, S. and Kavitha, V. (2011). A survey on security issues in service
delivery models of cloud computing. Journal of Network and Computer
Applications, 34(1):1 – 11.

Varaiya, P., Walrand, J., and Buyukkoc, C. (1985). Extensions of the
multiarmed bandit problem: The discounted case. IEEE Transactions on
Automatic Control, 30(5):426–439.

Whittle, P. (1981). Arm-acquiring bandits. Ann. Probab., 9(2):284–292.

41

Whittle, P. (1988). Restless bandits: Activity allocation in a changing world.
Journal of Applied Probability, 25:287–298.

Winterrose, M. L. and Carter, K. M. (2014). Strategic evolution of adversaries
against temporal platform diversity active cyber defenses. CoRR,
abs/1408.0023.

Winterrose, M. L., Carter, K. M., Wagner, N., and Streilein, W. W. (2014).
Adaptive attacker strategy development against moving target cyber defenses.
CoRR, abs/1407.8540.

yves Audibert, J., Est, U. P., and Bubeck, S. (2004). Minimax policies for
adversarial and stochastic bandits, in. In Proceedings of the 22nd Annual
Conference on Learning Theory, Omnipress, pages 773–818.

Zhuang, R., DeLoach, S. A., and Ou, X. (2014). Towards a theory of moving
target defense. In Proceedings of the First ACM Workshop on Moving Target
Defense, MTD ’14, pages 31–40, New York, NY, USA. ACM.

Zhuang, R., Zhang, S., DeLoach, S. A., Ou, X., and Singhal, A. (2012).
Simulation-based approaches to studying effectiveness of moving-target
network defense. In National symposium on moving target research.

42

