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POSITIVE PERIODIC SOLUTIONS FOR THE KORTEWEG-DE
VRIES EQUATION

SVETLIN GEORGIEV GEORGIEV

ABSTRACT. In this paper we prove that the Korteweg-de Vries equation

Oru + 8;’11 + udzu =0
has unique positive solution u(t,z) which is w-periodic with respect to the
time variable ¢ and u(0,z) € By ([a,b]), v >0, v ¢ {1,2,...}, p>1,¢ > 1,

a < b are fixed constants, z € [a,b]. The period w > 0 is arbitrary chosen and
fixed.

1. INTRODUCTION

In this paper we consider the initial-value problem for the Korteweg-de Vries
equation

Ou+ Bu+udyu=0, teR, z¢€la,b] (1.1)
u is periodic in t, (1.2)
u(0,z) =wup, ug € B;}q([a,b])7 (1.3)

where ¢ > 1, 1 < p < oo,y >0, v ¢ {1,2,...}. We prove that the (L.I)—(L3)
has unique positive solution in the form (¢, z) = v(t)g(x), which is continuous w-
periodic with respect to the time variable . When we say that the solution u(t, z)
of the is positive we understand: u(t,z) > 0 for t € R, = € [a,b]. Here the
period w > 0 is arbitrary chosen and fixed.

Bourgain [I] consider the initial-value problem

Opu + O2u + udyu = 0,
u is periodic in x,
u(0,x) = up.

He proved that the above problem is globally well-posed for H*-data (s > 0, inte-
ger). Bourgain [I] used the Fourier restriction space method, which he introduced.

Here we use the theory of completely continuous vector field presented by Kras-
nosel’skii and Zabrejko and we prove that the Korteweg-de Vries has unique
positive solution u(t,z) = v(t)g(z), which is continuous w-periodic with respect to
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the time variable ¢ and infinitely differentiable with respect to the space variable
r € [a,b] and u(0,z) € BY ([a,0]),p>1,¢>1,7v>0,v¢ {1,2,... }.

To state our main result we use the following hypotheses:

(H1) g € C>=([a,b]), g(x) > 0 for all z € [a,b];

(H2) ¢'(z) <0, ¢"'(x) > 0 for all z € [a,b].

Theorem 1.1. Let ¢ > 1,1 < p < oo, v >0, v ¢ {1,2,...} be fired. Then
the initial-value problem (1.1)—(1.3) has unique positive solution u(t,x) = v(t)q(x),
which is continuous w-periodic with respect to the time variable t and infinitely

differentiable with respect to the space variable x € [a,b], where q(z) is a fized
function satisfying (H1)—(H2).

This paper is organized as follows: In section 2 we prove that the (1.1)—(1.3)) has
positive solution wu(t,z) = v(t)g(x) which is continuous w-periodic with respect to
the time variable ¢ and infinitely differentiable with respect to the space variable
x € [a,b], where ¢(x) is fixed function satisfying (H1)—(H2). In section 3 we prove
that the solution obtained in section 2, is unique.

2. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

Here and bellow we will suppose that () is fixed function satisfying (H1)-(H2).
As an example of such function, we have ¢(r) = 2 +sinx with [a, b] = [27/3, 57/6].

Proposition 2.1. If for every fixed x € [a,b], u(t,x) = v(t)q(x) satisfies

"

u(t,r) = — /O“’ gu%t —5,7) ¢'(x) ds, (2.1)

q'" (z)

1 — 67 q(z)/ w q('T)

then u(t,z) = v(t)q(x) satisfies the (1.1)) for every fized x € [a,b]. Here v(t) is a
positive continuous w-periodic function.

Proof. For every fixed x € [a,b] if u(t,x) = v(t)q(x) is a solution to (2.1)), we have

///(T

w — !
= ) L ds
/0 1—e" (S)"” Q(x)
ql//(m)
w q(x) 2 ,
—y (t —s)q(x)q' (x)ds.
0 1—¢ a@ “

From here,

”/(:r)

/ )
,,,(Iw (tfs)q (z)ds;
01— ¢

i.e., for every fixed z € [a,b], if u(t,z) = v(t)g(x) is a solution to (2.1]) we have

w

q'" (z)

1—e @

(
o) = - L@ [T S o
(t) /0 @ v (t — s)ds. (2.2)

Let us consider the integral

w q///<z) 9
/ e 1@ "t — s)ds.
0
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We make the change of variable s =t — z, from where ds = —dz and

w 1" t—w 1"
_ a7 (=) _a(®) oy
/ e a@ v (t — s)ds = —/ e a2 (2)dz
0 t
t t—w
A" () ' () A" ()
- t
=e 1@ (/ e 1@ “p?(2)dz —/ e i@ sz(Z)dz)
0 0
Then the equality (2.2)) takes the form
/ " t 11 t—w "
q(x o (m)y a(x) a(x)
v(t) = 7(7,?/6 e e 1@ “v?(2)dz — e 1@ “v?(2)dz).
_da" (=),
1—e a@ 0 0

From the above equality, for every fixed = € [a, b], we get

1"

/ " () " t " (&)
U/(t) = —7(] (ql;?,(T) e qq(w) t [—q (.I) (/ eqq(z) Z'UQ(z)dZ
1—e" @) ¥ Q(x) 0

11

t—w 11 11
— / eth(vE?}zUQ(Z)dZ) + eqq(ig)c)tqﬂ(t) — eth(;w) (t_w)v2(t — w)}
0
" / "1 (z) t e t—w e
= q ({E) q (.’E”),(w) 6,‘1‘1(1) t(/ eqq(z) ZU2(z)dz—/ eqq(x) 2’1}2(2)(12)
q(z) 1 _ e~ @ 0 0

/ e
0 ()

q'" (z)

1—e a@

@)

-0 (a2
i.e., for every fixed z € [a, b] we have

11y _q”/(z)v —d(z)v?
v'(t) = 00) (t) = q'(z)v™(t)
Then
q(2)v'(t) = —q"" (@)v(t) — ' (x)q(2)v* (1) (2.3)

for every fixed = € [a, b]. Since for every fixed x € [a,b] we have
up = v'(t)q(w),
Opu = q" (z)v(t),
ulpu = ¢ (x)q(x)v?(t).
From the equality we take

Uy = —8i’u — ulyu;
i.e., for every fixed x € [a,b], if u(t,z) = v(t)q(x) is a solution to the (2.1), then
u(t, x) satisfies the Korteweg-de Vries equation (|L.1]). O

Proposition 2.2. If for every fited x € [a,b], u(t,z) = v(t)q(z) satisfies the
Korteweg-de Vries equation (1.1]) then u(t, ) = v(t)q(x) satisfies the integral (2.1)).

Here v(t) is positive continuous w-periodic function.

Proof. Let x € [a,b] is fixed and u(t,x) = v(t)q(z) is a solution to the Korteweg-
de Vries (1.1)), where v(¢) is positive continuous w-periodic function. Then

V(H)g(@) = =" (@)v(t) = v* ()¢ (2)q(x).
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After we use the definition of the function ¢(x) (see (H1), (H2)) from the last
equation we get

o) = =L D) - ).

Since = € [a,b] is fixed, the last equation we may consider as ordinary differential
equation with respect to the variable ¢. Therefore

" (=) "

ds ¢ s q'@) 4
v(t)=e" 0 0w ( (O)—/ ¢ (z)v%(s)elo T Tds)
0

' () 1"

—e a® t(q)(O) - /Ot q’(x)vz(s)eqq(Tisds).

g (z

For ¢’ (z) > 0, ¢(x) > 0 for = € [a,b] we have lim;_, o, e @@

)
t
= 00. Therefore,

0 e )

"
q

0(0) = ¢'() /O_mv2<s>e%~ s = —(a) [ o) s

—00

or

s t " (2)
v(t) = —¢'(x)e” @ t/ v2(s)e 7@ “ds. (2.4)

Now we consider the integral

t "t
(@)
/ v2(s)qu<w> *ds.

— 00
We have
t 9 q///(z)s t 9 ' (@) s t—w ) ///(I)S
/ ve(s)e 7@ °ds :/ vo(s)e = ds+/ vo(s)e 1@ “ds+.... (2.5)
—00 t—w t—2w
Let

i ///(T)
J:/ v2(s)e @) °ds.
t—w

Let us consider the integral

t—w " (2)
/ v3(s)e T *ds.
t

—2w
After the change of variable s + w = 7, we obtain
t—w 1" " t 11 mr
""" (z) _ad" (=) """ (z) _a" (=)
/ v2(s)e 7@ *ds = e a® w/ vi(s)e T *ds = e am “J.
t—2w t—w
In the same way,
t—2w " 1 t—w " J'
(2 o _d" (=) (=) _94 (=)
/ v2(s)e @ “ds = e aw) w/ v2(s)e T *ds = e CTawm Y J
t—3w t—2w
and so on and so forth. Then the equality (2.5) takes the form

a"'( " (z) " (= 1

t
_4 —92
/ ’U2(8)€ q(l) dS_ (1—|—e q(z) W_|_€ q(z) W+) = Jiq'”(m) s
— W

—00 1—e @
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" ”/(m) w
because 2 (S) > 0 for every fixed z € [a,b], e 7@ “ < 1 for every fixed z € [a, b].

Therefore, from (2.4), for every fixed x € [a, b] we get

_ ///(m) 1 t /”(.1:)
o(t) = —q(@)e” T / v (s)e T “ds.
1—e @ Y Jt—w

Now we make the change of variable s — ¢t = 7. Then

0
_d"(=) 1 (@) a"(=)
o(t) = —¢/(z)e” T t — / V2 (t + 7)e T T T tdr
1—e @ ¥ J-w
1 O ql// ‘ﬂ)
= —q’(x)iq,,,m U2(t—|—7')e at@) " dr.
l—e a@ ¥ J-w

Let 7 = —z. Then

/ 1 “ 2 _d(@)
v(t) = ~¢'(@) g [ vt —2)e T Tda
1—e am “JoO

From where for every fixed = € [a, b],

’ 1 w (@)
u(t,x) = _4@) e / u?(t — z,z)e @) “dz;
q(x) 1— e @ Jo
i. e., for every fixed x € [a, b], u(t, x) satisfies (2.1)). O

Let C(w) be the space of the real continuous w-periodic functions defined on the
whole axis. With C4(w) we denote the space of the positive continuous w-periodic
functions defined on the whole axis. Let

""" ()

D;’ = max e a@ f, D, = min e 4@
0<s<w, z€[a,b] 0<s<w, z€[a,b]

With CS (w) C C4(w) we denote the cone

Co(w) ={zeli(w): mtina:(t) > g—qmtaxa:(t)}.

+
q
For every fixed x € [a, b] we define the operator
, » _ " (=) s
/(@) T
x(u) = — / u?(t — s,x) iy 4
Q(x) 0 1loe a@ “

where u(t,z) = v(t)q(x), v(t) is a positive continuous w-periodic function, ¢(z) is a
function satisfying (H1), (H2).

Proposition 2.3. For every fized x € [a,b] we have x : C1(w) — C3 (w).
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Proof. Let x € [a,b] is fixed. Let also u(t,z) € C4+(w). u(t,z) is continuous w-
periodic with respect to the time variable ¢. Then

" () )

' w ~ 5w e
xw ==L [ s
q(z) 0 1— 6_ q(x) w
1 / W
> D, IS (_q (z) / u?(t — s,x)ds)
1— e_ q(x) w Q(x) 0

=D, 1Mw (—q/((;f)) /Ow u2(s7x)ds);

1—e @ q
i.e., for every fixed x € [a,b] we have
- 1 g (@) ¥ 5
X(U) 2 D (e <_ / u (S,l’)dS)
? 1—e” qq(;i))w Q(z) 0
From where, for every fixed x € [a, b], we have
. — 1 q(x) [
min y(u) > D e (— / u (s,w)ds). (2.6)
t 1 1—e” qq(:i))w Q(I) 0
On the other hand, for every fixed x € [a, b], we have
1 / w
x(u) < D; e (_q (z) / u2(s,x)ds).
1— 6_ qq(z) w Q(x) 0
Therefore, for every fixed = € [a, b], we have
1 q(x) [ o
max y(u) < D e (— / U (s,x)ds).
t ? 1—e" q(é)')“’ Q(x) 0
From this inequality and ({2.6]),

q

D

min y(u) >
t q

max x(u)

for every fixed x € [a,b]. Consequently for every fixed = € [a, b] we have
X :Cy(w) = CL(w).
([l

From proposition we have that x : C3 (w) — C$(w), i.e. the operator x is
positive with respect to the cone CS (w) for every fixed x € [a, b].

Proposition 2.4. The operator x is completely continuous in the space C(w) for
every fized x € [a, b].

Proof. Let x € [a,b] be fixed. Let also u(t,z) € C(w), maxycjo.|u(t,z)| = r,
r > 0. u(t,x) is continuous w- periodic with respect to the time variable ¢. From
the definition of the operator xy we have

Ix(w)|(t) < max <7q/(x))wr2 1

et @) e ()
—e

Consequently the functions x(w)(t) are uniformly bounded in the space C(w) for
every fixed z € [a, b].
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Let € > 0. Then there exists § > 0 such that
' (x)

/ T Tq(@)
ORI |u2(t1—s,x)—u2(t2—s,x)|<£

w

7' (z)

q(;v) 1—e d=@ e
for |t; — t2] < ¢ and for every s € [0, w], for every fixed = € [a, b]. Therefore

IX(u)(t1) = x(u)(t2)] <€
for [t; — ta] < 4, for every fixed z € [a,b]. Then x(u) is equicontinuous for every
fixed x € [a,b]. From the Arzela-Ascoli theorem follows that the set {x(u)(¢)} is
compact subset in the space C(w) for every fixed = € [a,b]. From here and from
uniformly bounded of the functions x(u)(t) follows that the operator y is completely
continuous in the space C(w) for every fixed z € [a, b]. O

S

Proposition 2.5. Let v(t) is continuous w-periodic function and g(z) € C*([a, b]).
Then for every v >0, v ¢ {1,2,...}, p > 1, ¢ > 1 we have u(t,z) = v(t)q(z)
By ([a,b]) for every t € [0,w].

Proof. Here we use the following definition of the B;’q([a, b])-norm (see [3]).

1 k
d
. _ [ p-6-ma
el oo /0 " |20 e

q

)

Lz ([a,b])
where
Apu(t,x) =u(t,z + h) — u(t, z),
ke {0,1,2,...}, v —k = {v}, {7} is the fractional part of v, 0 < {y} < 1. Then,
after we use the middle point theorem we have

1 k
0
‘ _ [ p-G-ma “
el o) = /0 " A0 gz el oo @

ak+1

Ok +1 “qu[a,b] dh

<a | e
0

1
< 02/ p—(—Rata—14p 0,
0

because ¢ — (v — k)g > 0. Here Cy and Cy are positive constants. O

The proof for existence of nontrivial solution to the Korteweg-de Vries equation,
which is positive continuous w-periodic with respect to the variable ¢ and positive
continuous with respect to the variable x is based on the theory of completely con-
tinuous vector field presented by Krasnosel’skii and Zabrejko in [2]. More precisely
we will prove that the has nontrivial solution, which is positive continuous
w-periodic with respect to the variable ¢ and positive continuous with respect to
the variable = after we use the following theorem which is extracted from [2].

Theorem 2.6 (|2]). LetY be a real Banach space with a cone @ and L : Y — Y be
a completely continuous and positive with respect to @ operator. Then the following
propositions are valid.

(i) Let L(0) = 0. Let also for every sufficiently small r > 0 there is no y € @,
lylly = r, withy < L(y). Then there exists ind(0, L; Q) = 1.

(ii) Let for every sufficiently large R there is no y € Q with |lylly = R and
L(y) % y. Then there ezists ind(oco, L; Q) = 0.
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(iii) Let L(0) = 0 and let there exist ind(0, L; Q) # ind(oco, L; Q). Then L has
nontrivial fized point in Q.

Here ind(-, L; Q) denotes an index of a point with respect to L and . The
[e]
symbol < denotes the semiordering generated by Q.

Theorem 2.7. Lety>0,~v¢ {1,2,...}, p>1, ¢ > 1. Let also q(x) is a function
which satisfies the hypothesis (H1) and (H2). Then the Korteweg- de Vries has
a positive solution in the form u(t,x) = v(t)q(x), which is w-periodic with respect
to the time variable t and u(0,x) € B;q([a,b]).

Proof. First we note that x(0) = 0. Also, from Propositions and we have
that the operator x is positive and completely continuous with respect to the cone
CS (w) for every fixed x € [a,b]. Let = € [a, b] is fixed.

(1) Let r > 0 satisfy the inequality

D maxX,ciq (—ql(f))w
r< “ (176 BN ) (2.7)

2 "z
D;'_ max$e[a7b] (—(2((1,)))0)

We suppose that there exists u(t,z) € C$ (w) for which
mtaxu(t,x) =r, u<x(u), telo,uw],

for every fixed z € [a,b]. Then

/ 1 w
u(t.2) < D max (-2 / Wit —s,z)ds.  (2.8)
L) — Gy
. z€la, q(z
From the definition of the cone CS (w) we have for every fixed x € [a, b],
Dy . Dy Dy
u(t,z) < mtaxu(t,x) <+ mtlnu(t,x) < = m?xu(t,x) =r——.

q q q

From this and (2.8)), we have
+2 !

u(t,z) < quf max (— i]](($)> ! %> /Ow u(t — s, x)ds.

Dy welad] z) | el (* @
—e

Now we integrate the last inequality from 0 to w with respect to the time variable
t and we get

+2 / x)

u(s, x)ds < wr—— max (— u(s, z)ds.
/0 ( ) - Dq_ we[a,b]( q(.’L‘) ) q/(;)> 0 ( )

max‘e[ ,b] (—
e rela a(z)

From the last inequality we have
2
Df q’(@f)) 1

1<wr—I— max (—
maXgela,b) (f q/(m))
—e J q(x)

¢ z€lab]\  q(z)

or

- ’ x
s 2, (1 o (-48)0)
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which is a contradiction with (2.7). Consequently for every enough small r > 0
there is no u(t,z) € C{(w) such that max, u(t,z) = r for every fixed z € [a,b],
u(t,z) < x(u) for every fixed x € [a,b] and ¢ € [0, w]. From here and from Theorem
E(l) we get that there exists ind(0, x; C$ (w)) = 1.

(2) Let R > 0 be large enough so that

l)Jr mingcr, (7‘1/@))(»
R> “ ) (1—e rele (7 ) (2.9)

_2 . ' (x
Dq Mg ¢ [q,b] (_ {51((:70))

We suppose that there exists u(t,z) € C$ (w) for which
max u(t,z) =R, u>x(u)

for every fixed = € [a,b] and for every t € [0,w]. Then

q
e€lab]\  q(x) minge /. (-%

/ 1 w
ult.2) > Dy min (~L2) / C(t—s,0)ds. (2.10)
0
1-e )
From the definition of the cone C% (w) we have for every fixed x € [a, b]

D _

> mi >4 = R—%
u(t,z) > mtlnu(t, x) > % mtaxu(t,x) RD(J['
Therefore, from (2.10), we have

!

u(t,z) > RD;2 m(lznb](z((m)) ! ) /Ow u(t — s, z)ds.

+ /
Dy el z) 1 rimecto (‘%(‘(f))
—e

Now we integrate the above inequality from 0 to w with respect to ¢t and obtain

u(s,z)ds > wR—%— min (— / u(s, z)ds.
/0 (s,2) DT aze[a,b]( q(m)) (_%) o (s,2)

q minge(a,b)

From the above inequality we have
2
D ! 1
1>wR q+ min (_q (I)>
Dq ze[a,b] q(w) min b (— q,(x))
1—¢ x€[a,b] q(z)

or
+ ; ‘(=
RS 2 Dq ’ (1_ e 7({1((1)) w)
Dy minze[a,b] <—[f]((;)))w

which is a contradiction with (2.9). Consequently for every enough large R > 0
there is no u(t,z) € C{(w) such that max; u(t,r) = R for every fixed x € [a, ],
u(t, ) > x(u) for every fixed © € [a,b] and ¢ € [0,w]. From here and from Theorem
(ii) we get that there exists ind(oo, x;CS (w)) = 0.

From (1) and (2) follows that there exist

ind(o0, x; €% (w)) # ind(0, x; C§ (w))-
Consequently, from Theorem [2.6] (iii), we conclude that the operator x has a non-

trivial fixed point in the cone CS (w) for every fixed x € [a,b]. Therefore the
Korteweg - de Vries equation (L.1)) has positive solution u(t,z) = v(t)q(x), which
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is continuous w-periodic with respect to the time variable ¢ and from Proposition
We have u(0,z) € By ,([a,b]) for every x € [a,b]. O

3. UNIQUENESS OF THE POSITIVE PERIODIC SOLUTIONS
Here we use the following theorem.

Theorem 3.1 ([2]). Let Q is a physical cone in the Banach space Y and the
operator A :'Y — @ is monotonous ug-convez operator (ug € Q). Let also for every
two solutions x1 and xo to the equation x = Ax one of the differences x1—xs, xo—x1
is equal to zero or is inside element for the cone Q. Then the equation x = Ax has
in the cone Q@ mo more than one nontrivial solution.

We say that the operator A:Y — Y, Where Yisa Banach space with a cone (@,

is monotonous if: y1 € Y, yo € Y, with y; < yo then Ay, < Ayo. Here < denotes
the semiordering generating by Q.

We say that the operator A : Y — Y, Y is a Banach space with a cone Q,
A:Q — Q, is a ug-convez operator (ug € Q) if for every z € Q, x # 0, then

a(z)ug < Az < B(x)ug,
where a(x) > 0, S(x) > 0; and for every x € @ for which
ai(z)ug < Az < Bi(z)uo
(a1(x) > 0, B1(x) > 0) we have
Adx) <1 —nlx, )]AAz, 0< A<,
where n(z, \) > 0.
Here and bellow we suppose that ¢(x) is the function satisfying the conditions

in Theorem Let

" (z)

! a(e)
K(x,s):_‘m“") e zclablsc 0w
Q(m) 1— e_iqq(:z) w

From the above assumptions follows that there exist constants m > 0, M > 0 such
that

m< K(z,s) <M, Vzxé€lab], Vsel0,w]
For instance

a’’’(x)
q(zx)

— MaXgela,b)

" (z) )

zelab]\  q(x) ) _ - maxaeian Toite
" 1
M = max (—q( )) 17 (z)

Now we consider the integral equation (for a fixed z € [a, b])
u(t,z) = / K(z,s)u*(t — s,x)ds, t€[0,w]. (3.1)
The operator x (see section 2) we may rewriten in the form

/ K(z, s)u?(t — s, z)ds. (3.2)
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Theorem 3.2. Letv>0,v¢ {1,2,...}, p>1, ¢ > 1. Let also
M2 m? 1

R VNS
Then (1.1) has a unique positive solution u(t,z) = v(t)q(x) which is continuous
w-periodic with respect to the time variable t and u(0,z) € By  ([a,b]).

Proof. From Theorem [2.7] follows that the problem (1.1))-(1.3) has positive solution
u(t,x) = v(t)q(x). Let = € [a,b] is fixed. Let also T' C CS (w) is the set

T = {u(t,z) € C%(w), Mﬂzw <uft,z) < vt € [0,0]}.

m2w’
If u(t, z) is positive solution to ([L.1)), which is w-periodic with respect to the time
variable ¢ then u(t,z) € T Indeed, for every fixed = € [a,b] we have

2
u(t,x) = x(u) < (max u(t,x)) Mw
te(0,w]
for every t € [0,w]. From where,
2
max u(t,z) < (max u(t,x)) Mw
te[0,w] te[0,w]
or maxye[o,.] u(t,r) > 1/Mw for every fixed x € [a,b]. On the other hand from
proposition we have

u(t,x) > % tr&&)j} u(t,z) >

e vt € [0,w],

for every fixed = € [a,b]. Also, for every fixed x € [a, D]
2
u(t,z) = x(u) > mw( rr[lgn]u(t,x)> , Vte[0,w].
te|0,w
From the above inequality,
1
min u(t,x) < —
te[0,w] mw
Since u(t, z) € CS (w), we have
m
i t > — t
tg[l(}g]u( RS trerf&flu( @)
for every fixed = € [a,b]. From the above inequality and (3.3)),

max u(t,z) < A (3.4)

te[0,w] m2w
for every fixed x € [a,b]. From (3]) and (3.4)) it follows that u(t,z) € T for every
t € [0,w] and for every fixed z € [a, b].
Let u; and us be two solutions to the integral equation (3.1). Let y = uy — us.
We suppose that y changes its sign. Then for every positive constants ¢ we have

1
—cll > =yl
ly el > Iyl
(because y changes your sign) We note that in our case |ly|| = max;c,.) |y| for
every fixed z € [a,b], y € C(w). Let
2 M2
by=2— =2

M2y’ miw
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In particular we have

by +by ¥ 1
lv="52 [ w(s)as] = 51wl

for every fixed z € [a,b]. Also, we have

y(t,x) = /Ow K(z,s)(u?(t — s,x) —u3(t — s,2))ds = 2/: K(x,s8)z(s)y(s)ds

for every fixed z € [a,b]. In the last equality we use the middle point theorem.
Here

min{uy, us} < z < max{uy,us}.

From where it follows that z € T for every fixed x € [a,b]. Then

m

2K (z,8)z(s) > 2mM2w = by,
M

2K (x,8)2(s) < 2M —— = by.

m2w
Consequently

‘ZK(m,s)z(s) _bht bz‘ < b2 — b

2 2
for every fixed = € [a,b]. On the other hand

y(t) — # /Ow y(s)ds = ‘Q/W K(z,s)z(s)y(s)ds — # /Ow y(s)ds‘
*‘/ 2K:17 s) )fbl;rb2>y(s)ds’

b1 + b
/’2[(;05 - 1+2’| )|ds

by — by
<20 [y < 25

for every fixed = € [a,b]. From where,

b1 +b
Iy =52 [ vt < 25 e

for every fixed x € [a,b]. Now we use the inequality and we get

1 ba
— <
Syl <

1< (by—b)w= 2<M—22 - m—2)w7

m2w  M3w

1
i

or

from where,

M2’
which is a contradiction with the conditions of the theorem Consequently, if
up and wug are two solutions to the integral equation u = x(u) we have u; = us or
U1 — U Or ug — uy is inside element for the cone C$ (w). Now we will show that the
operator y is 1-convex operator with respect to the cone C§ (w). First we note that
1€CS(w). Let n(z,A\) =1 =X, A€ (0,1). Then we have

X)) = Ax(u) = (1= n(z, ) Ax(u).

N | =
3
[\v]
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Consequently the operator x is 1-convex operator with respect to the cone C§ (w).

From here and from Theorems it follows that the Korteveg-de Vries
has unique positive solution u(t,z) = v(t)q(z), which is w-periodic with respect to
the time variable ¢ and u(0,z) € B;’q([a, b)). O
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