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ABSTRACT 

 

 
POWER AWARE TASK SCHEDULING 

                                       ON   HOMOGENEOUS MULTI-CORE  

                                                                SYSTEMS 

 

by 

 

Shwetha Shankar 

 

Texas State University-San Marcos 

May 2013 

 

SUPERVISING PROFESSOR: DR. DAN TAMIR 

 

                 Excessive power consumption affects the reliability of processors, requires 

expensive cooling mechanisms, reduces battery lifetime, and causes extensive damage to 

the device. Hence, managing the power consumption and performance of processors is an 

important aspect of chip design.  



 

 xi 

This research aims to achieve efficient multi-core power monitoring and control via 

operating system based power-aware task scheduling. There is a significant amount of 

research on efficient OS task scheduling algorithms involving performance criteria like 

execution time. However, there is considerable scope for developing power and 

performance efficient scheduling policies. 

 

The main objectives of power aware scheduling are: 1) lowering processor’s power 

consumption level, 2) maintaining the system within an allowable power envelope,  

3) supporting hot-spot elimination, and 4) balancing the power consumption across 

processors. These objectives are achieved by incorporating power characteristics into the 

scheduling policies. It is desired, however, to achieve these goals without drastically 

affecting performance.  

 

Generally, intra-core task scheduling policies engage in selecting a task to execute from a 

queue of ready tasks. On the other hand, inter-core task migration policies refer to the 

process of moving ready tasks from one processor’s queue to another processor’s queue. 

A special case of task migration is known as task stealing. Task stealing policies involve 

the concept of a starving thief processor stealing a task from a loaded victim processor. 

Therefore, Task Scheduling policies in general refer to the broad area of intra-core task 

scheduling and inter-core task stealing policies. 

 

This study concentrates on the two steps that are part of the OS task scheduling in a 

multi-core system, namely, intra-core task scheduling and inter-core task stealing. In an 



 

 xii  

attempt to achieve maximum power efficiency, both the intra-core task scheduling and 

inter-core task stealing policies have been manipulated to consider the power aspects of 

processors and tasks.  

 

Moreover, this thesis explores classical single-core task scheduling policies such as 

Round Robin (RR), Shortest Remaining Time First (SRTF), and Highest Response Ratio 

Next (HRRN) by employing power features into the task selection policy. A power-based 

intra-core scheduling policy called Highest Energy-delay-product based Cost function 

Next (HECN) that integrates HRRN and Energy-Delay-Product into the selection criteria 

is determined to be the most promising power efficient policy. 

 

In addition, power aware techniques for task migration in a multi-core system are 

investigated. Ten variants of the work stealing policy have been devised. Under these 

policies, a thief processor considers both the power and the performance attributes of the 

system in the process of selecting a victim processor. In addition, the thief’s task 

selection criterion includes power aspects of tasks that reside on potential victims.  

 

A simulator has been developed to enable efficient evaluation of the formulated single 

and multi-core scheduling policies. The simulator features the ability to perform power 

aware and / or power agnostic intra-core task scheduling and inter-core task stealing 

while operating at a relatively high level of abstraction. Simulations have been performed 

for different task generation scenarios to thoroughly exploit all scheduling policies. The 

simulator has the capability to provide performance measures of important metrics such 



 

 xiii  

as energy consumption level, turnaround time, and completion time so that the effect on 

power and performance can be analyzed.  

 

The experiments conducted show that the intra-core HECN scheduling policy coupled 

with power aware inter-core stealing policies have good potential for power efficient task 

scheduling with tolerable effect on performance. 



 

 1 

I. INTRODUCTION 

 

 

Power is a dominant obstacle for performance improvements in the VLSI technology. 

Excessive power consumption affects the reliability of processors. The higher the power 

dissipation, the higher the heat generated. This in turn requires costly cooling 

mechanisms, affects battery lifetime, and causes damage to semi-conductor devices. 

Hence monitoring the power consumption is of high importance in the semi-conductor 

industry.  

 

This study aims to address this significant power management issue by concentrating on 

scheduling techniques available at the Operating System (OS) level. Intra-core task 

scheduling policies concentrate on selecting a ready task for a processor while inter-core 

task migration policies focus on moving ready tasks between processors. Task stealing, a 

specific type of task migration, is a multi-core scheduling algorithm that achieves 

efficient dynamic load-balancing. Task scheduling encompasses the broad area of intra-

core task scheduling and inter-core task stealing. In the classical work-stealing 

environment, processors that are executing tasks are referred to as workers while idle 

processors are potential thieves (or stealers). Depending on the state, working or idle, 

processors make choices with regard to available tasks.  Each worker must choose the 
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next task to be executed. If the idle processor becomes a thief, it must choose the victim 

processor and the task to steal. The performance of the task scheduling algorithms 

depends heavily on the task choice. From the classical OS scheduling policies like First 

Come First Serve and Round Robin to the more sophisticated OS scheduling policies like 

Multi-level Feedback Queue scheduler and Completely Fair Scheduler, these algorithms 

do not consider the issues of power consumption but instead mainly take into 

consideration performance criteria like execution time and/or priority of tasks while 

selecting the next process to run on an idle processor.  

 

There is significant amount of research on algorithms involving execution time as the 

task selection criteria, focusing on real-time applications, and interacting with hardware. 

However, research on power aware task scheduling strategies that focus on power 

consumption issues and integrate power and performance metrics in the selection criteria 

has considerable opportunities for extension. This study incorporates both execution time 

and power considerations into the OS based task scheduling on homogeneous multi-core 

systems. 

 

Problem Definition 

 

Maintaining a homogeneous multi-core system within an allowable power envelope 

and/or balancing the power consumption across processors without drastically affecting 

performance are the main problems addressed in this paper. The main objective is to 

devise an efficient power aware multi-core OS task scheduler for single core and multi-
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core systems so that both execution and power consumption of the task are taken into 

consideration. In addition, this study aims to find mechanisms to lower processor’s power 

consumption level and support hot-spot elimination. These objectives are achieved by 

integrating power characteristics into the intra-core task scheduling and inter-core 

stealing policies. 

 

Assumptions 

 

This study assumes that a system has a set of homogeneous processors and the service 

time of tasks to be executed is known a priori. In addition, it is assumed that estimates of 

the power consumption rates of individual executable tasks are known. 

 

Hypothesis 

 

It is possible to devise power aware OS based single core and multi-core scheduling 

strategies by extending classical intra-core task scheduling policies and formulating 

variants of the inter-core work stealing algorithm to include the power characteristic of 

processor/tasks while stealing a task and/or selecting a victim processor achieving a 

higher level of power efficiency without significant effect on the performance or 

execution time of the processes.    
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Contribution 

 

This research has been successful in identifying techniques to improve power and 

performance for both single and multi-core systems. The main contributions of this study 

are listed below: 

1. A power aware intra-core task scheduling policy, referred to as HECN, that 

considerably reduces the energy consumption level and improves the turnaround time of 

a processor has been developed. 

2. Power efficient inter-core task stealing policies that significantly reduce the energy 

consumption variance across processors and produces a noticeable improvement in the 

completion time, for different workload scenarios, have been devised. 

 

Overview 

 

The thesis report is organized in the following way. Chapter 2 gives a brief description of 

the Operating System concepts pertaining to CPU task scheduling. It discusses classical 

task scheduling policies that form the basis for power aware scheduling algorithms. With 

the aim of achieving power efficiency at the OS level via power aware task scheduling, a 

technique to integrate power characteristics into the selection criteria of task scheduling is 

introduced. Chapter 3 describes relevant research conducted with regard to OS level 

power management techniques. The literature survey shows that significant research is 

yet to be done and provokes studies seeking cost-effective power efficient OS task 

scheduling policies for single and multi-core systems. This research explores this aspect 

further. Chapter 4 outlines the power aware task scheduling policies that have been 
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explored. It provides details on the experimental setup used to evaluate the devised power 

efficient policies. The emphasis is on the details of the steps involved in simulating an OS 

based task scheduling environment. The in-depth simulation steps enable the developed 

simulator to thoroughly exercise the scheduling policies and analyze the potential in these 

methods. Chapter 5 presents the details of all the simulation experiments conducted with 

varied task generation scenarios. The results of each experiment are shown with figures 

that compare the different power aware and power agnostic policies. The outcome of the 

experiments is analyzed and the behavior and effect of introducing power features into 

OS task scheduling is studied. Chapter 6 provides an overall analysis of the simulations 

conducted and draws conclusions from the combined results of all the experiments.  

Finally, chapter 7 provides conclusion in the form of a report on the main contribution of 

this study. It throws light on the fact that the research aimed to achieve power aware 

scheduling policies with minimal impact on performance and has been successful in 

suggesting power aware techniques with high potential. In addition, proposals for future 

research work have been recommended. 
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II. BACKGROUND 

 

 

This section provides background on the Operating System concepts with respect to a 

multiprogramming environment.  

 

Task Scheduling Concepts and Terminology 

 

A Process is a program ready for execution. A process includes the program code as well 

as additional components. The process includes the text (code), current activity, stack, 

heap, and data section. A process can be in one of five states, namely: 

New: The process has entered the system. 

Running: The Process is executing on a processor. 

Blocked: The process is waiting for an event, such as an I/O, to complete. 

Ready: The process is waiting in the ready queue and is ready to be assigned to a 

processor. 

Terminated: The process has completed execution. 
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Figure 1 illustrates the different states of a process. 

 

                                                            Figure 1: Process State Diagram 

 

A Process Control Block (PCB) is used by the operating system to represent a process. 

The PCB contains several pieces of information associated with a specific process, 

including process id, process state, and scheduling information. Another term for PCB is 

Task Control Block. For the purpose of this research report, the PCB has been referred to 

as simply a task.  

 

Each task is placed in a different Task Queue based on the state of the task. 

A Ready Queue has tasks ready to run, a Blocked Queue contains tasks waiting for I/O 

operation to complete, and a Completed Queue stores tasks that have been completed. 

 

Early computers ran one process at a time. While the process is waiting for an I/O event 

to complete, the CPU is idle. In multiprogramming, several processes that are in the 

ready state are kept in memory. If one process has to wait, the operating system takes the 

CPU away from that process and gives the CPU to another process. The objective of 
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multiprogramming is to reduce CPU idle time and maximize the CPU utilization. The 

activity of selecting a process to execute on an idle processor is known as CPU Intra-

core Task Scheduling. Basically, intra-core task scheduling moves a selected process 

from the ready state to the running state. 

 

A task Service Time or Execution Time is the estimate of the total time a task requires to 

complete execution on a processor. Waiting Time is any time that a task spends, in 

different queues, in the system waiting to be allocated to a processor. The term Time-

Slice refers to a pre-determined time that a processor is allocated to execute a task before 

it is released and re-allocated to the next waiting task. Task Eviction is the process of 

removing a task from a processor and moving it from the running state to the ready state. 

Task Switching includes task eviction and task replacement via intra-core task scheduling. 

 

Non-preemptive intra-core task scheduling implies that a task is removed from a 

processor only upon completion or if a task is waiting for an I/O event to complete. 

Preemptive intra-core task scheduling implies that a currently running task is evicted due 

to time-slice constraint or because another high priority task just switched from the 

waiting state to the ready state. 
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Classical Intra-core Task Scheduling Policies 

 

This study uses several traditional intra-core task scheduling policies as the basis for 

deriving power aware scheduling policies. The two important types of intra-core task 

scheduling policies are preemptive and non-preemptive policies. A few examples of both 

these types of policies are provided next: 

(I) The main non-preemptive intra-core task scheduling policies are: 

1. First-Come First-Served (FCFS); is the simplest intra-core task scheduling policy. The 

task that arrives in the ready queue first is allocated to a processor first.  

2. Shortest Job First (SJF); as the name suggests, the policy picks a task with the least 

service time first from the ready queue. 

3. Highest Response Ratio Next (HRRN); the task with the highest response ratio in the 

ready queue is picked next.  

          
s

sw
HRRN

)( += , where w = waiting time of a task, s = service time of a task. 

This ratio gives priority to a task with shorter service time. In addition it gives 

consideration to a task that has been waiting for a long time.  

All the above policies are non-preemptive since the next task in the queue is picked for 

execution only after the current task is completed. The next section discusses preemptive 

policies. 

(II) The main preemptive intra-core scheduling policies are: 

1. Shortest Remaining Time First (SRTF); this policy is similar to the SJF scheduling 

policy described above; but, since it is preemptive, the selection of the shortest task is 

made every time a new task arrives to the ready queue. 
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2. Round Robin (RR); this policy is similar to the FCFS scheduling policy mentioned 

earlier, but preemption is added to reallocate the processor to the next task in the ready 

queue after a preset time slice. 

3. Round Robin with priority: In addition to selecting a new task after a preset time 

quantum, this policy selects the next task based on the priority of the task instead of 

directly picking the first task in the queue as done in FCFS policy. 

 

Power Aware Task Scheduling 

 

Most scheduling policies, take into account execution or service time of a task. In 

addition to service time, a Power Aware Task Scheduling policy takes into consideration 

the power consumption rate of a task.  

 

Power is the rate of energy used. To effectively combine power and service time of a 

task, a metric called Energy Delay Product is considered and derived below.     

.PsPss  EDP  

 task.a ofpower   P  whereP; s  Energy(E)Task 

 task.a of  timeserviceor  delay time  s  whereE;s  (EDP)Product Delay Energy 

 task.a of  timeservice  s  task,a ofEnergy   E where;
s

E
(P)TaskPower 

2 ×=××=⇒

=×=⇒

=×=

===

 

 

In this work, power aware task scheduling policies consider EDP rather than the service 

time of the task. Experiments are conducted to determine an effective power aware task 



 

 

11 

scheduling policy. These experiments are described in detail later and the results show 

the potential in power aware task scheduling. 

 

Multi-core Task Scheduling 

 

The scheduling policies discussed so far focus on single core processors. This section 

talks about extending the scheduling policy to consider multi-core processors. 

 

Task Matching refers to the process of allocating newly arrived tasks to processors/cores 

by matching parameters of a given task to parameters of a given processor/core (other 

terms for this are task distribution). 

 

Task Migration literally means moving tasks from the ready queue of one core to the 

ready queue of another core (e.g., task stealing or work stealing). Several performance 

metrics described in the previous section, such as the length of the ready queues of each 

core, the total energy consumed by every core, the anticipated wait time of tasks in the 

ready queue of cores, and the anticipated completion time of these tasks can be used to 

characterize the state of a multi-core system. In general, especially for a homogeneous 

multi-core system, it is desirable to maintain a balance with respect to these parameters 

among cores. A system (or a state of the system) is referred to as balanced if the variance 

of important parameters among the cores is low. This balance can be achieved through 

Task Migration. This is discussed in depth later. In general, the OS is responsible for task 

matching, intra-core scheduling, and inter-core migration. 
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Performance Metrics 

 

The performance of the single and multi-core task scheduling policies can be evaluated 

based on several important metrics. The following are a list of performance measures that 

can be utilized to study the behavior of scheduling policies. 

1. Completion Time - the total time taken to complete executing an entire workload 

(predetermined set of tasks). 

2. CPU Utilization Percentage - the percentage of the completion time that the processor 

is busy executing tasks. 

3. Idle Time Percentage- the percentage of the completion time that the processor is un-

utilized and idle. 

4. Throughput - the number of tasks completed per time unit. 

5. Turnaround Time - the total time a task spends in the system from the time it enters the 

system until it is completed. 

6. Energy Consumed - the energy consumed by a processor in a time unit. 

7. Ready Queue Length - the length of the ready queue. 

8. Wait Time - the time a task spends in any queue waiting to be executed. 

9. Remaining Energy - the estimate of the energy of the all tasks remaining in the ready 

queue.  

10. Remaining Service Time - the estimate of the execution time of all the tasks 

remaining in the ready queue. 
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III. LITERATURE SURVEY 

 

 

This section discusses the relevant research available on single and multi-core task 

scheduling policies that consider the energy consumption of processors.  

 

Task Scheduling Policies 

 

Kashif et al. propose a Priority-based Multilevel Feedback Queue Scheduler (PMLFQS) 

for mobile devices [9]. PMLFQS is a work-conserving algorithm that uses different CPU 

speeds for different queues to minimize the overall energy consumed by the CPU for 

each task. Another policy called Dynamic Voltage and Frequency Scaling (DVFS), 

shares a similar approach to this policy where the frequency of the processor is adjusted 

to conserve power [10]. The paper, however, focuses on changes to CPU speed to reflect 

energy efficiency on single core processors. On the other hand, this research study 

suggests changes at the software level, enabling a multi-core operating system (OS) to 

incorporate energy efficiency considerations into the scheduling algorithm. 

 

Wu et al. propose LTEDF (Low Thermal Early Deadline First), a temperature-aware task 

scheduling algorithm for real-time multi-core systems [11]. In LTEDF, a History Coolest 

Neighborhood First (HCNF) task allocation algorithm is employed to balance the 
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temperature loads. If cores are thermally saturated, task migration is performed to 

alleviate thermal saturation. Therefore, tasks are queued based on deadline priority but 

selected based on the power and temperature contribution of each task. The paper is 

focused on real-time systems and on lowering the peak power and temperature 

consumptions. This study, however, concentrates on non-real-time applications. 

Moreover, rather than limiting the considerations to peak power, this research considers 

balancing the power consumption across processors in the system. 

 

Zhou et al. propose an algorithm referred to as THRESHHOT that is based on the 

observation that, given two tasks, one that is hot (i.e., a high power consuming task) and 

one that is cool (i.e., a low power consuming task), executing the hot task before the cool 

one results in a lower final temperature than the reversed order as long as executing the 

hot task itself does not violate the thermal threshold [12]. Consequently, at each step 

THRESHHOT selects the hottest task that does not exceed the thermal threshold using an 

online temperature estimator, leveraging the performance counter-based power 

estimation. The paper however, focuses on batch processes on a single core and is 

intended to lower final core temperature. This study aims to consider varying type of 

processes (beyond batch processes) on a multi-core system with a focus on lowering the 

variance in energy consumption across processors that in turn balances the temperature of 

processors as well.  
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Work Stealing Algorithms 

 

This section looks at several work stealing algorithms to understand the variations in the 

work stealing process. 

 

Quintin et al. detail the Classic Work Stealing Algorithm. A starving processor, with the 

number of tasks in the ready queue less than a fixed threshold, is referred to as a thief. 

The thief identifies a processor, known as the victim, at random and steals the oldest task 

from the victim [13]. In addition, they propose the idea of grouping processors as Leader 

or Slave. The risk of congestion between huge groups of processors arises with the 

amount of transferred data. To limit this risk, they chose to restrict in each group, the 

number of processors that can steal from another group. In each group, only one 

processor sends remote steal requests. This processor is called a Leader. The leader 

oversees a group of slave processors. Therefore, each leader gives work to the cluster if 

there is not enough work, and keeps the large tasks to efficiently balance the load 

between leaders. Leaders execute only global tasks and balance the load between slave 

groups. Slaves perform the classical work-stealing algorithm within their group. The 

policy described in this paper performs stealing at two levels, leader and slave level, that 

may lead to redundancy. Instead in this research, stealing policies are being devised for a 

homogeneous system such that all processors (that have load imbalance) can initiate 

stealing with the help of one efficient central unit. 

 

Sarkar et al. propose two policies [14]. In the first Work-first policy, the processor 

executes the spawned task eagerly and leaves the continuation to be stolen. In the second 
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Help-first policy, the processor makes the spawned task available for stealing and 

continues execution on the parent task. This paper discusses policies mainly for parallel 

workload with several spawned tasks that requires prior knowledge of the level of 

parallelism and task dependency. On the other hand, this work aims at developing power 

aware policies for all types of workload but still allowing the victim processor to decide 

on the task to volunteer. 

 

Agarwal et al. propose a Central Task Scheduler that can maintain information of all the 

processors in the system [15]. The thief computer sends a request to the Task Scheduler 

and is routed to heavily loaded computer for stealing tasks. The thief computer cannot 

have more than half the load of the victim computer after work stealing.  

The paper discusses a central scheduler that monitors the loaded processors .On the other 

hand, this research study goes a step further by having a global scheduler that tries to 

balance the load and energy consumption across processors. 

 

Sudarshan et al. discuss a similar policy that mainly consists of a Dispatcher and nodes 

[16]. The main server forms a Minimal Spanning Tree (MST) of the idle nodes. If any 

node is in an idle state or busy state, it has to transmit message to the dispatcher. As soon 

as an IDLE node is given work it detaches itself from the MST. After this, the detached 

node begins independent processing of the workload it is assigned. The  

dispatcher’s role is the management of tasks, including maintenance of load balancing, 

monitoring the status of each node, selection for nodes for task execution, and assignment 

and adjustment of tasks for each node. Whenever a node joins or exits the system, the 
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table of candidate nodes is updated. The paper proposes a dedicated monitor for idle 

processors and focuses on CPU utilization while this study goes beyond considering the 

idle processors by monitoring the power consumption and load of running processors as 

well. 

 

Robison et al. propose that if a processor t1 spawns a task that has affinity for another 

processor t2, processor t1 puts a pointer to the task in t2’s Mailbox. If a processor is idle, 

before it resorts to stealing, it checks the mailbox and first processes those tasks in FIFO 

order. Since this mailed task is a part of the general pool, there could be more than one 

thief attempting to steal it. So there is an idle flag associated with each processor. The 

flag indicates whether a processor is trying to steal work. Thieves are not allowed to steal 

a task that has been mailed to a processor whose idle flag indicates it is idle [17]. The 

paper involves scheduling tasks with predetermined affinity to processors but this 

research involves tasks that can be executed on any processor in the system with the same 

level of efficiency and therefore focuses on the power characteristics of the task and 

processor during scheduling. 

 

Faxén et al. suggest two policies [18]. The first is Sampling Victim selection. In this 

policy, a thief does not steal the first task it finds. Instead, it samples several potential 

victims and selects the one with the task that is closest to the root of the computation. The 

second policy is the Set Based Victim selection. If there are a significant number of active 

thieves in the system, each thief only attempts to steal from a subset of the other workers. 

The Sampling Victim policy determines the best task to steal based on the time of arrival 
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in the system while the Set Based policy limits stealing to a subset of processors. 

However, in this research, the policies consider all the available victim tasks but choose 

the best task based on the power considerations of the task. 
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IV. EXPERIMENT SETUP 

 

 

This section describes the simulation environment and details the simulation steps. The 

simulator emulates a multi-core processor system having a central unit that enables CPU 

task scheduling similar to an Operating System. 

 

Simulator Environment 

 
The four major components required to simulate an OS based task scheduling 

environment are: a Central Unit, a group of Processors, a set of Tasks, and a few Task 

Queues. Within the simulator, each of these components has been developed as 

individual modules or simulation units. The simulator is implemented as a finite-state 

machine and the functionality of the system is driven primarily by the state of two of the 

components mentioned earlier; namely, a Processor and a Task. The following are the 

main states of these two components. 

Task States: 
1. Executing on a Processor 
2. Ready (in ready queue) 
3. Blocked [for I/O] (in blocked queue) 
4. Completed 
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Basically, a Task that is ready to be executed can be waiting in the ready queue, a task 

that is selected from the ready queue can be executing on the processor, a task can be 

locked due to I/O interrupts, and a task can be complete and terminated. A task can fork 

or spawn a new task that is added to the ready queue; but, this has not been addressed in 

this research.  

Processor States: 
a. Running or Executing a task 
b. Idle 
c.   Working at particular frequency using DVFS (This is a potential state for future work; 
but, it is out of the scope of this research) 
d. Turned off (by the firmware or by the OS; but, it is also out of the scope of this 
research) 
 

 
Hence, a processor can be executing a task and consume power based on the task’s power 

consumption rate. In fact, the processor can be idle and consume power based on a pre-

determined idle power consumption rate. 
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Figure 2 shows the main properties and functions of the simulator components along with 
the relationship between components. 
 

 

Figure 2: Simulator Components 

Every Task is identified in the system using a unique task id. Each task has an attribute of 

power and execution time associated with it. The processor schedules tasks for execution 

based on these task properties. 

 

The Central Unit has been simulated to maintain global knowledge of the entire system 

much like an operating system. This unit generates tasks, sets task properties, and 

allocates these tasks to processors for execution. In addition, it enables intra-core task 

scheduling on each processor, monitors the task load of every processor, and enables 
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inter-core task stealing between processors. Furthermore, this unit monitors the 

performance of all processors, reports system status, and updates simulation clock time. 

 
 
All the Processors in the system are identical making the system homogeneous. Each 

processor simulated in the system has a scheduler module that determines the task to be 

executed next. In addition, there is a processing module that simulates execution of the 

task assigned to it. Three Queues, namely, the ready, the blocked, and the completed task 

queues are used by the processing module to store tasks. The tasks allocated to the 

processor by the central unit are initially placed in the ready queue. As the simulation 

progresses, the scheduler module moves tasks between the three queues depending on the 

state of a task. Based upon the length of the ready queue, the processor can be considered 

as Starved when the number of tasks in the ready queue is below a fixed threshold Ts or 

Loaded when the number of tasks in the ready queue is above a given threshold Tl. A 

starved processor, known as a thief, picks a victim (loaded) processor identified by the 

starving processor and / or by the central unit. The selected victim then volunteers a task 

to the thief. This concept is discussed in detail later in the Task Migration section. 
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Figure 3 depicts the high-level interaction between the processing module and central 

unit of the simulator discussed above. 

 
                                                     

Figure 3: High Level Simulator Framework 

 

Simulation Time Units 

 

This section discusses the basic time units used in a simulation. The following are the two 

main time units:  

 - A processor atomic time unit is referred to as a tick. A tick is assumed to represent  

n-cycles of execution by a processor.   

- The operating system atomic unit is called a slice. A slice is derived from ticks and is 

represented as k-ticks.  
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The simulator is time based as opposed to event based; in this time based simulation 

paradigm, ticks and slices are the two main time units. A tick is the time set for the OS to 

perform basic operations such as task switching. A simulation slice has the same meaning 

as a time slice in the context of OS. Most of the OS operations (e.g., intra-core 

scheduling, inter-core stealing, etc.) occur at slice boundaries. The processor status is 

updated on each tick. On the other hand, system status is updated on each slice. 

 

Simulation Steps 

 

This section describes all the steps involved during the simulation. Figure 4 shows the 

main steps involved in the simulation. 

                                              

Figure 4: Simulation Steps 

First tasks are generated. These tasks are then scheduled on different processors. Next, 

stealing is performed between processors. Finally, performance of all the processors 

during the entire simulation is reported. These simulation steps are elaborated next. 
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Simulation Step 1: Task Generation  

 

The first step in the simulation is to establish a task load also known as workload. This 

simulator synthetically creates tasks. In this thesis, the arrival (generation) of tasks in the 

system follows a Poisson distribution. This provides a setting that is close to the certain 

realistic scenario. Each task has attributes of power and execution time associated with it. 

Every task is given a random attribute of power and execution time that follows an 

exponential distribution as it efficiently represents a system with varying tasks. The unit 

for the assigned task power is Joules/tick. The assignment is based on the realistic power 

estimates of a set of tasks that are executed, in a four core system, on a core running at 1 

GHz. The average arrival rate, average task power, and average service time of tasks are 

parameters that can be altered in the simulator.  

 

The simulation can be run for a fixed period of time or until a fixed workload is 

completed. In the former case, the tasks continually arrive to the system and the 

simulation runs for the given time period. In the latter case, the tasks are generated until a 

fixed workload size has been reached and the simulation runs until this workload is 

completed.  

 

This research study is focused on simulations for a fixed workload. In order to conduct 

interesting experiments with varying conditions, the average arrival rate of tasks can be 

manipulated to create the following two scenarios.  

• Parallel Workload Scenario - has a fast task arrival rate so all the tasks in the 

workload arrive to the system early in the simulation period. This causes a sudden 
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increase in the processors’ queue size in the initial period of the simulation. This 

mode fits a scenario of fine granularity parallelism that has a few tasks, each of 

which represents a single parallel program, forking numerous tasks. 

• Steady State Workload Scenario - involves a slow task arrival rate that spreads the 

arrival of all tasks in the workload across a long time period in the simulation. In 

contrast to the parallel workload scenario, here the processors’ queue size remains 

steady through most of the simulation period. This explores a system, such as a 

communication system, in steady state that handles continuous arrival of tasks. 

 

Simulation Step 2: Intra-core Task Scheduling 

 

Task scheduling policies used for single core scheduling can be utilized for the intra-core 

scheduling in a multi-core system. There are two main approaches to intra-core 

scheduling: preemptive and non-preemptive.  Nevertheless, in the context of multi-core 

power aware scheduling, non-preemptive intra-core policies are more restrictive and less 

interesting, since the constraint of non-preemptive intra-core scheduling limits the OS 

capability to affect power / performance. Moreover, the research into preemptive intra-

core scheduling can be used for evaluating the cost effectiveness of non-preemptive intra-

core policies. For example, a slice based preemptive intra-core scheduling with long 

slices can be used to approximate non-preemptive intra-core scheduling. The opposite is 

not true. That is, results of research on non-preemptive intra-core scheduling cannot be 

easily used for evaluating preemptive procedures. Hence, this research concentrates on 

preemptive intra-core scheduling. The preemption can be synchronous or asynchronous. 

Nevertheless, in synchronous preemptive intra-core scheduling, the preemption can occur 
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only on the boundary of an OS atomic unit referred to as slice, which is the most 

commonly used preemption method. This research explores sliced based synchronous 

preemptive intra-core scheduling. 

 

The following intra-core scheduling policies have been implemented in the simulator: 

1. Round Robin (RR)  

2. Shortest Remaining Time First (SRTF) 

3. Highest Response Ratio Next (HRRN) 

 

Power Aware Intra-core Task Scheduling Policy 

The goal of power aware intra-core scheduling is to significantly improve energy 

consumption with minimal effect to task completion time. The three intra-core scheduling 

policies mentioned earlier have been modified in the simulator to consider power as 

detailed below: 

1. Power Aware Round Robin (pRR); in the power agnostic round robin, tasks are evicted 

at every time slice. The power aware round robin goes a step further and evicts tasks 

upon reaching a power consumption threshold as well.  

2. Power Aware Shortest Remaining Time First (pSRTF); the power agnostic SRTF 

policy picks a task with shortest time. In contrast, the power aware SRTF policy selects a 

task with shortest Energy-Delay-Product (EDP). 

3. Highest EDP Cost function Next (HECN); the power agnostic intra-core scheduling 

mechanism uses the HRRN ratio to derive priority of a task. Since the Energy-Delay-

Product (EDP) metric is considered as a meaningful combination of power and time, a 
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new power aware intra-core scheduling policy called HECN is devised using the EDP 

metric. The HECN policy determines the priority of a task by using a heuristic which is 

an EDP based Cost function that is similar to the HRRN ratio.  

 

The cost function integrates wait time and EDP, which is mix of two different units. This 

is not a concern since it is solely used as a heuristic for deciding on the task to execute 

next. The EDP metric allows power characteristics of a task to be included in the task 

selection process. 

 

Hence, the cost function gives high priority to a task with low power consumption rate. 

On the other hand, the wait time metric ensures that low priority tasks are not kept 

waiting for an unreasonable amount of time. By combining the two units, a good 

compromise is achieved between power consumption and performance degradation. The 

derivation of the cost function is provided next. 
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Simulation Step 3: Inter-core Task Migration  

 

The central unit of the simulator enables task migration in the form of work or task 

stealing. The central unit monitors the following processor level properties to facilitate 

task stealing.  

The Processor Properties are: 

1) Starved; a processor with the number of ready tasks below a fixed threshold (Ts). 
2) Loaded; a processor with the number of ready tasks below a fixed threshold (Tl). 
3) Energy Consumed by the processor so far.  
4) Energy Consumed by the processor in last k slices. 
5) Remaining Energy; the energy of the tasks in the ready queue shows the potential  
     amount of energy the processor may consume. 
6) Remaining Service Time; the service time of the tasks in the ready queue shows the  
    potential amount of time the processor may execute. 
7) Ready Queue Length. 
 
 
Task Migration Process 

Task migration occurs if the system is in extreme imbalance and certain cores experience 

an extremely high peak in a given parameter while other cores experience an extremely 

low peak in that parameter. In this case, the cores that experience extreme (high or low) 

values of the given parameter might initiate a task migration transaction. In this study, the 

ready queue size is considered as the parameter that indicates imbalance since it aptly 

measures the varying workload size of processors. Task or work stealing (or task 

volunteering) might be an essential remedy to fix the imbalance in the ready queues. A 

core is considered as Starved if the number of tasks in the ready queue falls below a 

threshold Ts. On the other hand, a core is considered as Loaded if the number of tasks in 
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the ready queue is above a threshold Ts. A core is considered as Normal if it is neither 

starving nor loaded. This type of core does not participate in work stealing. 

A starving processor is a potential stealer and a loaded processor is a potential victim of 

stealing. A stealer initiates the stealing process by seeking a victim. The stealer identifies 

a victim. The victim volunteers a task to be stolen. The stealer steals this task by 

migrating it to its own ready queue. This process is referred to as Task Stealing or Task 

Migration and is being performed at every slice during simulation. 

Two stealing models are utilized:  

1) The Local Knowledge model; each processor is only aware of its own current status. 

2) The Global Knowledge model; each processor is aware of the state of every other 

processor. This is enabled via the central unit that maintains the status of all processors. 

 

Power Aware Inter-core Task Stealing Policies 

The simulated central unit enables the following stealing policies. 

(1) Local Knowledge 

a. Random_MinHECN_Task; the stealer chooses a random processor as a potential victim 

without knowledge of the processor’s load. This victim processor volunteers a task with 

the lowest HECN. If that randomly chosen processor is not loaded, then no stealing 

occurs. 

 

(2)   Global Knowledge  

a. MaxLoaded_MinHECN_Task; the stealer identifies a processor with the largest ready  

queue as a victim. This victim processor volunteers a task with the lowest HECN  
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(presumably is the most power consuming task). 

b. MaxMin_ HECN_Task; each loaded processor (a potential victim) volunteers a task 

with lowest HECN (presumably is the most power consuming task). The stealer considers 

the tasks volunteered by all potential victims and finds a task with the highest HECN 

(presumably is the least power consuming task) among all volunteered tasks. 

Hence the name MaxMin, which implies that the MaxHECN task is selected from 

the available MinHECN tasks. 

c. MaxRemainingService_MinHECN_Task; the service time of tasks remaining in the 

ready queue can be used to estimate the time the processor might execute and the power 

that might be consumed. A queue with highest service time has the maximum potential to 

increase the power consumption of the processor. Therefore, the stealer picks the 

processor with a ready queue that has the maximum remaining task service or 

execution time. The victim processor volunteers a task with the lowest HECN. 

d. MaxRemainingEnergy; the power of tasks remaining in the ready queue indicates 

the power that the processor might consume. A queue with high task power has the 

maximum potential to increase the power consumption of the processor. Hence, 

the stealer selects the processor with a ready queue that has the maximum 

remaining task energy. In addition, two variants of this policy are used: 

(i) The victim processor volunteers a task with the lowest HECN, MinHECN_Task. 

(ii) The victim processor volunteers a task with maximum energy, MaxEnergyTask. 

e. MaxEnergyInLastKSlices; the stealer chooses a processor that has consumed 

the maximum amount of energy in the last k slices of the simulation. Again, the 

two different options for the victim processor are: 



 

 

32 

(i) The victim processor volunteers a task with the lowest HECN, MinHECN_Task. 

(ii) The victim processor volunteers a task with maximum energy, MaxEnergyTask. 

f. MaxEnergyConsumed; the stealer opts for a processor that has consumed 

the maximum energy so far in the simulation. Two further options the victim has 

are: 

(i) The victim processor volunteers a task with the lowest HECN, MinHECN_Task. 

(ii) The victim processor volunteers a task with maximum energy, MaxEnergyTask. 

The power agnostic version of the above inter-core task stealing policies uses the HRRN 

ratio in place of the HECN cost function to determine the task to volunteer. 

 

Each of the three simulation steps described so far can be executed with different 

variations, depending on the functionality required. The simulator allows these variations 

to be tested by providing several parameters. Experiments with different scenarios can be 

performed by altering the values of the following parameters: 

Simulation Parameters 

1) Multi-core system parameters 
a. Number of cores   
b. Processor power consumption per tick (at idle state) 
c. Slice time (in ticks) 
d. Threshold for starvation/loaded status 
e. Workload size  
f. Stealing policy 

2) Task parameters 
a. Task arrival rate 
b. Task power consumption per tick 
c. Task service time 
d. Blocking probability 
e. Unblocking probability 
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Simulator Modes: 

1) The simulation can emulate power aware or power agnostic task scheduling policies. 

2) The simulation can emulate task scheduling with and without task stealing.     

 

Simulation Step 4: Performance Reporting 

 

The central unit of the simulator monitors the entire system by capturing and reporting 

the progress of the simulation and the status of the processors. In addition, the simulator 

provides all the performance measures on a slice basis. These simulation reports can be 

used to analyze results, generate graphs, and derive conclusions. 
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Simulation Flow 

 

This section provides the details of the simulation flow. Figure 5 represents the 

simulation steps, described in the previous section, using a flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 5: Simulation Flowchart 

The simulation progresses on a tick basis. At every tick, the simulator determines if a 

new task has to be generated. If so, a task is created and randomly allocated to a 

processor. Next, the intra-core scheduling is performed on every processor and the 

processor status is updated. Followed by intra-core stealing which is conducted on a slice 

basis. The simulation proceeds until either the workload is completed or the fixed time 

period is reached. The next section details the experiments conducted and provides the 

corresponding performance reports.
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V. EXPERIMENTS AND RESULTS 

 

 

This section reports the experiments conducted as part of this study and provides the 

results of these experiments. All the devised task scheduling policies have been exercised 

thoroughly by performing experiments with varying scenarios. Moreover, the 

experiments comprised of single core and multi-core simulations with both fixed time-

period and fixed workload situations. First the detail of each experiment type is listed. 

Second, the format used to tabulate the simulation data for both single and multi-core 

experiments is described. Next, the actual configuration of the parameters used in each 

experiment is provided. Finally, the result of every experiment is reported and the 

performance of all the policies is detailed. 
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Figure 6 contains a flow chart of the different types of experiments performed. Details on 

each of the experiments are provided later in this section. 

                                            

Figure 6: Experiment Overview Chart 

The following performance metrics are considered in each simulation to analyze the data 

and tabulate the results. 

1) Energy Consumption Variance; the variance in the energy consumed by processors 

during the simulation. 

2) Average Turnaround Time; the average turnaround time of all the tasks in the 

workload. 

3)  Peak Ready-Queue Length; the maximum ready queue length recorded for any 

processor in any slice of the simulation period. 

4) Completion Time; the time required to complete a simulation. 
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Experiment Data Tabulation Format 

 

This section provides information on the format used to collect data from the experiments 

in order to analyze and generate results. The tabulation format used for single core and 

multi-core simulations is explained below. 

 

Single Core Simulation Data Format 

The simulations are performed for single core task scheduling policies. Each simulation 

is repeated several times with different seeds for random number generation. The 

performance of the processor over the entire simulation period is monitored. The 

simulation data is recorded for each intra-core task scheduling policy as explained next. 

First, the performance metrics measured in every simulation are tabulated (c.f., Table 1). 

Next, the average of each performance metric across all the simulations, performed using 

different seeds, is calculated. Finally, similar data is gathered for all the intra-core 

scheduling policies and the simulation results are compared to determine the experiment 

outcome. 

Table 1 provides the format used to tabulate simulation data for each intra-core task 
scheduling policy. 
 

Table 1: Single Core Simulation Data Table 

          Simulation data for scheduling policy 1:  
 Metric1 Metric 2          Metric n 

Seed 1    

Seed 2    

Seed n    

Result (Average )     

Average    

across 

Simulations 

…….. 

Average    

across 

Simulations 

Average    

across 

Simulations 
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Multi-Core Simulation Data Format 

The simulations are performed for all the formulated stealing policies. Each simulation is 

repeated several times with different random number generation seeds. Every simulation 

provides performance figures on a slice time basis for all the processors (c.f., Table 2). 

Data is gathered for each stealing policy as mentioned next. First, for every slice, the 

output of each performance metric in the simulation is tabulated as an average across all 

processors. The metric can be tabulated as the variance or maximum across processors as 

well. Next, the average across slices is determined. Finally, the result of each simulation 

policy is reported as the average of all the simulations run using different seeds. 

Similarly, the data is gathered for each stealing policy. The final outcome of an 

experiment is established by comparing the simulation results of all steal policies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

39 

 
Table 2 shows the format used to tabulate the data recorded for each performance metric 
during the simulation.  

 

Table 2: Multi-core Simulation Data Table 

          Simulation output of metric 1 for steal policy 1(seed 1) 
Metric1 Processor 1 Processor 2 Processor n Average   

Slice 1     

Slice 2     

Slice n     

Result  

                                   

           
          Simulation output of metric 1 for steal policy 1(seed n) 

Metric1 Processor 1 Processor 2 Processor n Average   

Slice 1     

Slice 2     

Slice n     

Result  

                         

                                                                                                                           Final Result for Metric 1 

 

Simulator Parameter Configuration  

The simulator parameters have been tested with several values to determine a good basic 

configuration. After careful analysis, a configuration that thoroughly exercises the system 

functionalities has been selected and shown next. 
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Average    
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Table 3 shows the parameter values used for the three main experiments of this study. 

Table 3 : Simulator Parameters of Experiments 

Experiment Number 1 2 3 
No. Of Processors  1 16 16 
Fixed Workload Size ( No. of tasks ) - 500 1000 
Fixed Simulation Time ( No. of ticks ) 1000 - - 
Average Task Service Time (in ticks ) 1 500 400 
Average Arrival Rate ( per tick) 5 0.5 0.02 
Average Task Power ( Joules/tick) 5 4 4 
Slice Time ( No. of ticks ) 0.1 100 100 
Starved Queue Length ( No. of tasks ) - 2 2 
Loaded Queue Length ( No. of tasks ) - 4 5 
Idle Power Consumption Rate (Joules/tick) - 2 2 
Task blocking probability ( at each tick ) - 0.01 0.01 
Task unblocking probability ( at each tick ) - 0.005 0.005 
 

Experiment 4 does not have separate parameters since it analyses a specific phase of the 

simulation time period in Experiment 3. The details of the experiments are provided in 

the next section. 

 
 
Experiments 

This section provides details on the four experiments conducted as a part of this study 

along with information on the simulation results. 

 

Experiment 1: Single Core Task Scheduling  

 

For reasons discussed in the Intra-core Task Scheduling step of Chapter IV, the 

experiments concentrate on preemptive rather than non-preemptive intra-core task 

scheduling. In this case, the simulations are performed in a single core system for a fixed 

time-period to compare the intra-core preemptive scheduling policies such as Shortest 
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Remaining Time First (SRTF), Round Robin (RR), and Round Robin with HECN 

priority. This experiment is intended to determine the best intra-core task scheduling 

policy and the most promising policy is to be used as the intra-core scheduling policy in 

the multi-core experiments. The results from this experiment are provided in the next 

section. For each intra-core scheduling policy, the total energy consumed, turnaround 

time, and EDP is presented.  

 
 
Figure 7 shows the power aware/power agnostic ratio for energy consumed, turnaround 

time, and EDP metrics for the intra-core task scheduling policies considered. Each metric 

in Figure 7 is a ratio of the value obtained from the power aware policy over the value 

obtained from the power agnostic version of the same policy. Thus, a value of less than 

one indicates that the power aware version is able to improve performance or improve 

energy consumption. 

 

 

Figure 7: Performance Comparison of single core task scheduling policies 
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It can be seen that for Round Robin, the ratio of the power consumed under the power 

aware policy to the power consumed under the power agnostic policy is 0.93. The ratio of 

the agnostic turnaround time to the aware turnaround time is 0.97.This implies that there 

is a minor improvement in power consumption with barely any effect on turnaround time. 

For SRTF, the energy consumed ratio is 0.51 and turnaround time ratio is 1.46. This 

demonstrates marked improvement in power consumption; but, with noticeable 

degradation in the turnaround time. On the other hand, the energy consumed ratio under 

Round Robin with HECN priority is 0.72 and the turnaround time ratio is 0.97. This 

shows reasonably good improvement in power consumption with virtually no degradation 

in the turnaround time. This is further validated with the EDP ratio that, again, shows that 

Round Robin with HECN has the best improvement in the energy and time metric. The 

HECN policy considers both the energy demands and the remaining service time in 

prioritizing tasks for execution. Because of this, it outperforms both the Round Robin and   

Shortest Remaining Time First policies. Based on this result, in the simulation 

experiments discussed next, all the power aware inter-core task stealing policies use 

HECN policy for intra-core task scheduling and all the power agnostic inter-core task 

stealing policies use HRRN policy during intra-core task scheduling.  

 

The following three experiments of this section focus on a multi-core system.  The next 

section provides details about figure formats and legend. 
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Multi-core Experiment Figure Nomenclature  

In all the figures of this section, PAG denotes power agnostic and PAW denotes power 

aware version of the inter-core task stealing policies. Each figure represents data gathered 

for a particular performance metric. The energy consumption variance is the main 

performance metric shown in the figures. It is measured in Joules since the power unit of 

a task is Joules/tick as discussed in the Task Generation Step in Chapter IV. Every power 

aware inter-core task stealing policy, shown in the experiment figures, performs the 

HECN intra-core scheduling policy whereas every power agnostic inter-core task stealing 

policy performs the HRRN intra-core scheduling policy. Each policy is denoted by a 

unique stealing policy and a task scheduling type (PAW or PAG) as shown next with 

examples. 

The high level representation format for a stealing policy is shown below:   

 < Task Scheduling Type >_<Victim Processor Selection Property >_ 

 <Task Selection Property> 

Examples:  

(1) PAW_NoSteal => No stealing, only intra-core power aware task scheduling using   

     HECN. 

(2) PAG_NoSteal => No stealing, only intra-core power agnostic task scheduling using  

      HRRN. 

(3) PAG_MaxEnergyConsumed_MinHRRN_Task => The power agnostic intra-core task  

      scheduling policy uses HRRN. The victim processor is the processor with the  

      Maximum Energy Consumption so far. The task with minimum HRRN is stolen.  

(4) PAW_MaxEnergyConsumed_MaxEnergyTask => The power aware intra-core task  
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      scheduling policy uses HECN. The victim processor is the processor with the  

      Maximum Energy Consumption so far. The task with maximum energy consumption      

      rate is stolen.     

(5) PAW_MaxMin_HECN_Task => As the MaxMin steal policy is slightly different, this  

      format implies that the MaxHECN_Task is selected from all the potential  

      MinHECN_Tasks for the power aware version. 

(6) PAG_MaxMin_ HRRN_Task => this format implies that the Max HRRN_Task is    

      selected from all the potential Min HRRN_Tasks for the power agnostic version. 

 

The following are the main inferences that can be derived from the experiment figures: 

- Comparison between stealing policies identifying the best power aware and best 

power agnostic policy for a specific metric.  

- Comparison between the power aware version (displayed in the first half of each 

figure) and the power agnostic version (displayed in the second half of each 

figure) of each policy intended to derive the effect of considering power in each 

policy. 

 

Experiment 2: Multi-core Task Scheduling for a Parallel Workload Scenario 

 

In this experiment, a fixed workload simulation is performed in a system having a fast 

task arrival rate. This simulates a parallel workload scenario described in Chapter IV. 

This experiment is intended to study the behavior of the formulated policies and identify 

the policy that performs the best under this specific scenario. The four main performance 

figures provided from this experiment are the energy consumption variance, the average 
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turnaround time, the peak ready-queue length, and the completion time of all the policies.  

The parallel workload scenario is explained with an example in Figure 8. 

 

Figure 8 shows the processors’ average ready queue length in one instance of the 

simulation.  
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Figure 8: Average Ready Queue Length of Experiment 2 

 

According to the figure, the ready queue length is rapidly increasing in the first few time 

slices of the simulation and then gradually decreasing as the simulation progresses 

thereby emulating a parallel workload scenario.                                                           
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Figure 9 shows the processors’ energy consumption variance. This is used as an indicator 

of load balancing.   
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Figure 9: Energy Consumption Variance of Experiment 2 

 

Here, work stealing provides a reduction of about 18% in variance compared to PAG_No 

Steal policy. The PAW_MaxMin_HECN_Task is the best stealing policy. The power 

aware policies provide a marginally better power performance than the power agnostic 

method. 
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Figure 10 displays the turnaround time.  
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Figure 10: Average Turnaround Time of Experiment 2 

 

In this case, the PAW_NoSteal policy has a lower turnaround time than PAG_NoSteal 

policy. This implies that power aware intra-core task scheduling, without any stealing, 

lowers turnaround time by about 4%. By including stealing, the PAW_MaxMin_ 

HECN_Task is the best stealing policy and it improves (reduces) turnaround time further 

by approx 31% compared to PAG_NoSteal policy. This shows that in the process of 

trying to gain power efficiency, time factor is improved as well. This can be due to the 

fact that the EDP metric used in the selection criteria considers time along with power 

attributes. Again, power aware is slightly better than power agnostic. 
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Figure 11 presents the peak ready-queue length.  
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Figure 11: Peak ready-queue length of Experiment 2 

 

Here, again, the PAW_NoSteal policy performs better than PAG_NoSteal policy by 

lowering the peak ready-queue length by almost 6%. With stealing introduced, the 

PAW_MaxLoaded_MinHECN_Task policy is the best as it targets stealing from 

processors with large queues. This policy further reduces the peak queue length by about 

8% compared to PAG_NoSteal policy. The PAG_MaxRemainingService_Min 

HRRN_Task policy is just marginally better than the PAW_MaxLoaded_Min 

HECN_Task policy.  
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Figure 12 shows the completion time of the entire workload.  
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Figure 12: Completion Time of Experiment 2 

 

In this case, PAW_NoSteal policy increases the total completion by about 3.5%. This can 

be attributed to the fact that power aware scheduling may increase task wait time and 

there is no stealing to help reduce wait time. On the other hand, stealing significantly 

reduces the completion time with PAW_MaxMin_ HECN_Task policy being the best 

stealer as it reduces the completion time by about 17% compared to PAG_NoSteal 

Policy. The PAG_MaxMin_ HRRN_Task policy is very slightly better than 

PAW_MaxMin_ HECN_Task policy with just around 3% more reduction. But since 

PAG_MaxMin_ HRRN_Task policy does not perform as well with regard to the energy 

consumption variance and turnaround time metrics seen earlier, it is not regarded highly. 
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From all of the results of this experiment, it can be seen that the PAW_MaxMin_ 

HECN_Task is the best stealing policy for a fast task arrival rate scenario. It significantly 

improves three important metrics, namely, energy consumption variance, turnaround 

time, and completion time.  

 

Experiment 3: Multi-core Task Scheduling for a Steady State Workload Scenario  

 

For this test, a fixed workload simulation is performed in a system having a slow task 

arrival rate. This emulates a steady state workload scenario as described in Chapter IV. 

This experiment, in similarity to the previous experiment, aims to study the performance 

of policies until the entire workload is completed but this time, a system with a steady 

stream of incoming tasks is considered. Figures representing the performance of the 

policies with regard to the processor’s energy consumption variance, the average 

turnaround time, the peak ready-queue length, and the completion time are provided. 

The steady state workload scenario is illustrated with a sample case in Figure 13. 
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Figure 13 shows the processors’ average ready queue length in one instance of the 

simulation.                                                           
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Figure 13: Average Ready Queue Length of Experiment 3 

 

In the first few time slices of the simulation, the ready queue length gradually increases. 

Then as the simulation progresses, the queue length remains steady for several slices 

thereby simulating a steady state workload scenario. 
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Figure 14 shows the processors’ energy consumption variance.   

Energy Consumption Variance

320

325

330

335

340

345

350

355

Stealing Policy

V
ar

ia
n

ce
 (

in
 J

o
u

le
s)

PAW_NoSteal
PAW_Random_MinHECN_Task
PAW_MaxLoaded_MinHECN_Task
PAW_MaxMin_HECN_Task
PAW_MaxEnergyConsumed_MinHECN_Task
PAW_MaxRemainingEnergy_MinHECN_Task
PAW_MaxRemainingService_MinHECN_Task
PAW_MaxEnergyInKSlices_MinHECN_Task
PAW_MaxEnergyConsumed_MaxEnergyTask
PAW_MaxRemainingEnergy_MaxEnergyTask
PAW_MaxEnergyInKSlices_MaxEnergyTask
PAG_NoSteal
PAG_Random_MinHRRN_Task
PAG_MaxLoaded_MinHRRN_Task
PAG_MaxMin_HRRN_Task
PAG_MaxEnergyConsumed_MinHRRN_Task
PAG_MaxRemainingEnergy_MinHRRN_Task
PAG_MaxRemainingService_MinHRRN_Task
PAG_MaxEnergyInKSlices_MinHRRN_Task
PAG_MaxEnergyConsumed_MaxEnergyTask
PAG_MaxRemainingEnergy_MaxEnergyTask
PAG_MaxEnergyInKSlices_MaxEnergyTask

 

Figure 14: Energy Consumption Variance of Experiment 3 

 

It is noticed that PAW_NoSteal policy performs slightly better than PAG_NoSteal policy 

by lowering the energy consumption variance by about 2%. By including stealing, the 

PAW_MaxEnergyInKSlices_MaxEnergyTask is seen as the best power aware stealing 

policy. This policy further reduces the variance by 5% compared to PAG_NoSteal policy. 

The PAG_MaxEnergyConsumed_MinHRRN_Task stealing policy provides a marginally 

better power performance than the PAW_MaxEnergyInKSlices_MaxEnergyTask method 

but it is not considered significant since it does not perform as well for the turnaround 

time metric seen next. 
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Figure 15 displays the turnaround time.  
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                                                        Figure 15: Average Turnaround Time of Experiment 3 

 

Again, PAW_NoSteal policy is better than PAG_NoSteal policy by almost 13%. The 

power aware intra-core task scheduling coupled with inter-core task stealing further 

improves turnaround time. PAW_MaxEnergyInKSlices_MaxEnergyTask is again the 

best stealing policy with approx 17% lower turnaround time compared to PAG_NoSteal 

policy. The power aware policies are noticeably better than the power agnostic policies. 
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Figure 16 presents the peak ready-queue length.  
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Figure 16: Peak ready-queue length of Experiment 3 

 

Continuing the trend of this experiment, the PAW_NoSteal policy lowers the peak ready-

queue length by 21% compared to PAG_NoSteal policy. With stealing included, 

PAW_MaxEnergyInKSlices_MaxEnergyTask remains one of the best stealing policies as 

it significantly reduces the peak queue length further by approx 57% compared to 

PAG_NoSteal policy. Here power aware is marginally better than power agnostic.  
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Figure 17 shows the completion time of the entire workload. 
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Figure 17: Completion Time of Experiment 3 

 

In this case, an important difference can be noted compared to the previous experiment 2. 

The PAW_NoSteal policy is better than PAG_NoSteal policy with a 3% lower 

completion time but the opposite is true in experiment 2 which involves larger ready 

queue sizes. This shows that a power aware intra-core scheduling policy provides a better 

completion time for a small ready queue size scenario but a power agnostic intra-core 

scheduling policy is better suited for a large ready queue size scenario.  

Furthermore, the best power aware stealer of this experiment is again the 

PAW_MaxEnergyInKSlices_MaxEnergyTask policy with about 8% reduction in 

completion time compared to PAG_NoSteal policy. The PAG_MaxMin_HRRN_Task 

policy shows slightly better completion time compared to the 

PAW_MaxEnergyInKSlices_MaxEnergyTask policy but it cannot be appreciated since it 
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fails to be the best in terms of efficiency in the energy consumption variance and 

turnaround time metrics. 

 

Experiment 4: Multi-core Task Scheduling for Fixed Time 

 

This experiment is a special case study of the previous experiment. The main intent is to 

analyze the performance of the policies during the steady state phase of experiment 3 and 

determine if power efficiency is better achieved by the scheduling policies during this 

particular phase. The following figures, derived from this experiment, show the 

processor’s energy consumption variance, the average turnaround time, and average wait 

time of tasks.  

 

Figure 18 shows the processors’ energy consumption variance.  
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Figure 18: Energy Consumption Variance of Experiment 4 
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According to the graph, the PAW_NoSteal policy is the best policy. It reduces the energy 

consumption variance by about 2% compared to the PAG_NoSteal policy. This implies 

that a simple power aware intra-core scheduling policy with no stealing can reduce the 

energy consumption variance. But it important to note that this occurs during the steady 

state phase of the entire simulation implying that all processors keep selecting the low 

energy consuming tasks first and keep the high energy consuming tasks waiting thereby 

reducing the overall variance in energy consumption during this period. Consequently, as 

seen, the stealing tends to increase the variance since more high energy tasks are now 

available in ready queues for stealing. 

 

 
Figure 19 displays the turnaround time.  
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Figure 19: Average Turnaround Time of Experiment 4 
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It is observed that the PAW_NoSteal is again the best policy. This policy reduces the 

turnaround time by about 9% compared to the PAG_NoSteal policy. The processor’s task 

selection criterion gives tasks with low execution time and/or power more priority 

thereby the completed tasks have lower turnaround time. But since this is only during the 

steady phase, it is important to note that while the low power short tasks may be getting 

more priority, the lower priority tasks continue to wait causing a high waiting time in the 

ready queue. This reasoning is validated in the next figure. 

 

Figure 20 presents the Ready-Queue Average Wait Time.  
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Figure 20: Ready-Queue Average Wait Time of Experiment 4 

 

As expected, this graph illustrates that the PAW_NoSteal policy increases the ready 

queue wait time of tasks by about 21% compared to PAG_NoSteal policy.  
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From this experiment result it is seen that for a scenario with tasks arriving in a steady 

continuous pattern, introducing stealing during the steady phase does not impact the 

energy consumption variance much. It is observed that the PAW_NoSteal policy is more 

efficient during the steady phase while the PAW_MaxEnergyInKSlices_MaxEnergyTask 

policy improves energy consumption variance during the transient phase of the 

simulation. 
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VI. RESULT EVALUATION 

 

 

The previous section provided the performance results of all the individual experiments 

conducted for this study. This section analyses the combined results of all the 

experiments to identify the overall effect of introducing power aware intra-core task 

scheduling and inter-core stealing in a multi-core system. The behavior of the devised 

intra-core task scheduling and inter-core task stealing policies has been studied under 

different workload scenarios.  

The four types of experiments that have been conducted are: 

1. Single core task scheduling simulations for a fast task arrival rate system. 

2. Multi-core task scheduling simulations for a fast task arrival rate system. 

3. Multi-core task scheduling simulations for a slow task arrival rate system. 

4. Multi-core task scheduling analysis during the steady state phase of a simulation. 
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Table 4 provides the summary of the experiment results.  

Table 4: Summary of Experiments’ Results  

% Reduction Compared to PAG_NoSteal   
 

Experiment Type 

 

Best Scheduling  

Policy 

Energy 
Consumed/ 
Variance 

Turnaround 
Time 

Completion 
Time 

1 Single Core, 
Fixed Time 

HECN 28 % 3% N/A 

2 Multi-Core, 
Fixed Workload, 
Fast Task Arrival 

PAW_MaxMin_HECN
_Task 
 

18% 31% 17% 

3 Multi-core, 
Fixed Workload, 
Slow Task Arrival 

PAW_MaxEnergyInK 
Slices_MaxEnergyTask 
 

5% 17% 8% 

4 Multi-Core, 
Fixed Time, 
Slow Task Arrival 

PAW_NoSteal 2% 9% N/A 

 

 

The classical HRRN intra-core task scheduling policy has been utilized as the basis of all 

newly formulated power efficient policies. The power aware HECN intra-core task 

scheduling policy has been devised by extending this basic HRRN policy. Furthermore, 

inter-core task stealing policies have been introduced by incorporating power 

characteristics. Hence, the power agnostic HRRN policy with no stealing, also referred to 

as PAG_NoSteal is used as the base policy to compare the performance of all the other 

policies.  

 

According to the data shown in Table 4, in every experiment, a power aware policy 

emerges as the policy that successfully reduces energy consumption variance, turnaround 

time and completion time concurrently. In addition to accomplishing energy efficiency, 

the performance time has been improved as well. The PAW_MaxMin_ HECN_Task  

policy shows the highest potential with 18% reduction in energy consumption variance, 



 

 

62 

31% improvement in turnaround time, and 17% more efficiency in completion time 

compared to the PAG_NoSteal policy. 

 

Furthermore, the key points noted from the combined results of all the experiments are 

listed next. 

1. The HECN intra-core scheduling policy outperforms Round Robin and Shortest 

Remaining Time First policies in Experiment 1. This policy provides the best power 

efficiency and turnaround time. This can be attributed to the fact that the HECN cost 

function gives priority to tasks with low power and service time and also ensures low 

priority tasks are not waiting for long.  

2. The PAW_MaxMin_ HECN_Task policy emerges as the best policy in Experiment 2. 

The reason for this might be because the MaxMin policy is the only policy that directly 

selects a task to steal by choosing the least power consuming task among the high power 

consuming tasks of all potential victim processors. All the other stealing policies first 

select a potential victim processor and then select a task from that chosen processor. 

Therefore, for scenarios that have the system flooded with tasks, the ready queues of 

processors are large, and the policies have to choose from a large set of tasks, the stealing 

policy that considers all the tasks in the system such as the MaxMin policy outperforms 

other policies.  

3. The PAW_MaxEnergyConsumedInKSlices_MaxEnergyTask  policy is the most 

efficient policy in Experiment 3. This can be best explained by the following analysis. 

Excluding the MaxMin policy, all the stealing policies first consider the power properties 

related to a processor to determine a victim. Most properties are related to the number of 
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tasks (like the PAW_MaxLoaded_MinHECN_Task policy) or type of tasks in the ready 

queue (like the PAW_MaxRemainingEnergy_MinHECN_Task policy) but only two of 

the policies consider the past history of the processor, namely, the 

MaxEnergyConsumedInKSlices policy which uses recent past data and the 

MaxEnergyConsumed policy which uses all the past data. If there is a steady continuous 

stream of incoming tasks in the system then the ready queues are reasonably small. 

Hence, if the selection policy has to choose from a small set of tasks in the queue, the 

policy that considers properties related to the recent past history of potential victim 

processors rather than the processor’s tasks is most promising like the 

MaxEnergyConsumedInKSlices_MaxEnergyTask policy.  

4. The PAW_NoSteal policy which is simply the HECN intra-core task scheduling policy 

outperforms all other policies during the steady phase of the simulation in Experiment 4. 

This policy schedules the low power consuming and low service time tasks first to ensure 

the power consumption variance across processors is reasonably low but pays the price 

by making low priority tasks wait for increased amounts of time. For situations that 

consider the power consumption level and variance of a multi-core system to be more 

critical then the waiting time of tasks, the intra-core power aware HECN policy with no 

stealing shows good potential for power efficiency during the steady phase of the 

simulation whereas task stealing performs well during the transient phase. 

5. Based on the experiment results, the PAW_MaxMin_HECN_Task procedure is the 

policy with the most potential for power efficiency even if the task arrival rate is 

unknown. From experiments 2 and 3, it is observed that this policy performs the best for 
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cases with fast task arrival rate and also performs reasonable well in situations with 

steady task arrival rate. 

6. In all the experiments, there is no significant difference in performance amongst many 

of the stealing policies. This could be attributed to the fact that the variations in work 

stealing are very minute and have subtle differences as explained in the following 

examples:  

(i) The MaxLoaded, the MaxRemainingService, and the MaxRemainingEnergy policies 

can pick the same victim processor because a processor with a huge queue is most likely 

the one with the most remaining energy or service as well.  

(ii)The MaxEnergyConsumed_MinHECN_Task and the 

MaxEnergyConsumed_MaxEnergyTask policy pick the same victim processor since the 

policy is the same in that regard. However, the former steals a task with lowest HECN 

but the latter steals a task with the maximum power consuming rate. If the wait times of 

the task are almost the same like in experiment 2, where all tasks arrive nearly at the 

same time, then the task with lowest HECN task is most likely the task with the 

maximum power consuming rate since lower the HECN cost function, the higher the 

power of the task and vice-versa. 

7. The turnaround time is improved much more than the power efficiency level in all the 

experiments. This implies that the Energy-Delay-Product (EDP) metric integrated into 

the HECN policy might be giving more consideration to the task time rather than the task 

power attribute as seen below. 

 task.of raten consumptiopower P                                                                          

 task,a of  timeservice  s whereP;ss  (EDP)Product Delay Energy 

=

=××=
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In the EDP formula, clearly the service time of a task is used more than the power of a 

task thereby giving more importance to task service time than task power. 

Having reviewed all the results generated from the four experiments, it is evident that the 

energy consumption variance, a key indicator of load balancing has been improved in 

every experiment by one of the devised power aware policies. In addition to 

accomplishing energy efficiency, the performance time has been improved as well. This 

validates the initial hypothesis that it is possible to devise power aware task scheduling 

policies by incorporating power characteristics such that energy efficiency and 

performance time is improved. It is observed that the improvement in energy efficiency 

level varies from marginal to significant depending on the experiment scenario. However, 

this research has been successful in devising power management techniques at the OS 

scheduling level and opening prospective avenues for further advancement. 
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VII. CONCLUSION 

 

 

The growing concern of the semi-conductor industry with regard to efficient power 

management within the processor chips is addressed at the OS level via power aware OS 

intra-core task scheduling and inter-core task stealing. The primary goal of this research 

work is to develop power aware intra-core task scheduling and inter-core task stealing 

policies. In an attempt to achieve the desired goal, the following steps have been 

implemented. 

 

First, three classical intra-core task scheduling policies, namely, Round Robin(RR), 

Shortest Remaining Time First (SRTF) and Highest Response Ratio Next (HRRN) have 

been considered. This leads to the creation of a power aware intra-core task scheduling 

policy referred to as HECN that extends the HRRN policy to include power 

characteristics of tasks in the system.  

 

Next, building on the new intra-core HECN policy, various inter-core work stealing 

policies have been explored. Several different power aware variations of work stealing 

have been formulated that consider power features of the processors and its tasks before 

identifying the task to steal. Finally, an in-house simulator has been developed solely to 

evaluate the potential of the policies devised. Single core simulations have been 
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conducted to determine the viability of HECN with respect to power management. With 

this result being positive, further extensive multi-core experiments have been performed 

to study the effect of coupling power aware intra-core task scheduling (HECN) with 

power aware inter-core task stealing. The outcome suggests that the 

PAW_MaxMin_HECN_Task procedure is the most promising policy that attains power 

efficiency and manages minimal effect to performance.  

The main conclusion drawn from this research is that there has been success in 

identifying potential OS based power management methods and provoking further study 

into OS level power management techniques. The next section provides 

recommendations for future work. 

 

Recommendation for Future Work 

 

The following are proposals for future work related to this study. 

1. In the intra-core power aware HECN policy, the HECN derivative to determine task 

priority is calculated as  

     
)(

 )]p  (s  w(
_ γβ

γβα

ps
PRIORITYHECN

×
×+= where variables w = task wait 

      time, s= task service time, and p = task power consumption rate. The constants  

      α = 1, β = 2, and γ = 1. The values for α, β, and γ can be tested with several  

      combinations of values to vary the importance of the task properties such as task  

      service time, wait time of tasks, and power consumption rate of tasks. 
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2. The experiments can be conducted using a test workbench with realistic task data 

such as task execution time and power consumption rate of a task. The power aware 

policies can then make task selections based on actual task information. 

3. The work stealing policy can consider an affinity model. The central unit can be 

extended to have knowledge of task’s affinity to a processor and a stealing policy can 

be devised based on the task’s affinity information. 

4. Several inter-core scheduling policies require global system knowledge such as the 

most energy consuming processor and power consumption level of the system. Such 

parameters of power and performance available at the hardware/firmware level can be 

exposed to the operating system. They can be utized by the simulator  by using 

vendor boards. This can enable more realistic intra-core task scheduling and inter-

core task stealing, and possibly further improve power/performance. 

5. The experiments can explore DVFS based scheduling within a simulated 

environment. 

6. The experiments can consider shutting down idle processors by interacting with the 

firmware.
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