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ABSTRACT

POWER AWARE TASK SCHEDULING
ON HOMOGENUS MULTI-CORE

SYSTEMS

by

Shwetha Shankar

Texas State University-San Marcos

May 2013

SUPERVISING PROFESSOR: DR. DAN TAMIR

Excessive power consumption afféiee reliability of processors, requires
expensive cooling mechanisms, reduces batteryniggtand causes extensive damage to
the device. Hence, managing the power consumptidrparformance of processors is an

important aspect of chip design.



This research aims to achieve efficient multi-qoogver monitoring and control via
operating system based power-aware task schediilvege is a significant amount of
research on efficient OS task scheduling algoritimaslving performance criteria like
execution time. However, there is considerable sdopdevelopingower and

performance efficient scheduling policies.

The main objectives of power aware scheduling Bréowering processor’s power
consumption level, 2) maintaining the system witiamallowable power envelope,

3) supporting hot-spot elimination, and 4) balagdime power consumption across
processors. These objectives are achieved by iocatipg power characteristics into the
scheduling policies. It is desired, however, toieah these goals without drastically

affecting performance.

Generally, intra-core task scheduling policies gega selecting a task to execute from a
gueue of ready tasks. On the other hand, intertestemigration policies refer to the
process of moving ready tasks from one processoesie to another processor’s queue.
A special case of task migration is known as tas&lgg. Task stealing policies involve
the concept of aarving thief processor stealing a task frorfoaded victim processor.
Therefore,Task Scheduling policies in general refer to the broad area obHtbre task

scheduling and inter-core task stealing policies.

This study concentrates on the two steps thatateopthe OS task scheduling in a

multi-core system, namely, intra-core task schedu$ind inter-core task stealing. In an

Xi



attempt to achieve maximum power efficiency, bb#h intra-core task scheduling and
inter-core task stealing policies have been maatpdlto consider the power aspects of

processors and tasks.

Moreover, this thesis explores classical singleedcask scheduling policies such as
Round Robin (RR), Shortest Remaining Time First{BRand Highest Response Ratio
Next (HRRN) by employing power features into thektaelection policy. A power-based
intra-core scheduling policy called Highest Enedgyay-product based Cost function
Next (HECN) that integrates HRRN and Energy-Delagelact into the selection criteria

is determined to be the most promising power efficpolicy.

In addition, power aware techniques for task migrain a multi-core system are
investigated. Ten variants of the work stealingqyohave been devised. Under these
policies, a thief processor considers both the p@md the performance attributes of the
system in the process of selecting a victim prameds addition, the thief's task

selection criterion includes power aspects of téls&sreside on potential victims.

A simulator has been developed to enable effi@gatuation of the formulated single
and multi-core scheduling policies. The simulagatfires the ability to perform power
aware and / or power agnostic intra-core task adiregland inter-core task stealing

while operating at a relatively high level of abstion. Simulations have been performed
for different task generation scenarios to thordyedploit all scheduling policies. The

simulator has the capability to provide performamssasures of important metrics such

Xii



as energy consumption level, turnaround time, amdpdetion time so that the effect on

power and performance can be analyzed.

The experiments conducted show that the intra-e&€N scheduling policy coupled

with power aware inter-core stealing policies hgwed potential for power efficient task

scheduling with tolerable effect on performance.

Xiii



[. INTRODUCTION

Power is a dominant obstacle for performance imgmments in the VLSI technology.
Excessive power consumption affects the reliabditprocessors. The higher the power
dissipation, the higher the heat generated. Thigrimrequires costly cooling
mechanisms, affects battery lifetime, and causesgada to semi-conductor devices.
Hence monitoring the power consumption is of higipartance in the semi-conductor

industry.

This study aims to address this significant powanagement issue by concentrating on
scheduling techniques available at the Operatirgge®y (OS) levellntra-core task
scheduling policies concentrate on selecting a ready task fmocessor whilster-core
task migration policies focus on moving ready tasks between msmes.Task stealing, a
specific type of task migration, is a multi-coréneduling algorithm that achieves
efficient dynamic load-balancingask scheduling encompasses the broad area of intra-
core task scheduling and inter-core task stealinthe classical work-stealing
environment, processors that are executing tagkseéerred to asorkers while idle
processors are potentthieves (or stealers). Depending on the state, working or idle,

processors make choices with regard to availablestaEach worker must choose the



next task to be executed. If the idle processooimes a thief, it must choose the victim
processor and the task to steal. The performantteedsk scheduling algorithms
depends heavily on the task choice. From the dals8S scheduling policies likearst
Come First Serve andRound Robin to the more sophisticated OS scheduling policies |
Multi-level Feedback Queue scheduler an@ompletely Fair Scheduler, these algorithms
do not consider the issues of power consumptionnstead mainly take into
consideration performance criteria like executiametand/or priority of tasks while

selecting the next process to run on an idle psmes

There is significant amount of research on algarghnvolving execution time as the
task selection criteria, focusing on real-time aggtlons, and interacting with hardware.
However, research on power aware task scheduliatggtes that focus on power
consumption issues and integrate power and perforenanetrics in the selection criteria
has considerable opportunities for extension. $tidy incorporates both execution time
and power considerations into the OS based tagldsting on homogeneous multi-core

systems.

Problem Definition

Maintaining a homogeneous multi-core system witdrrallowable power envelope
and/or balancing the power consumption across psote without drastically affecting
performance are the main problems addressed ipapier. The main objective is to

devise an efficient power aware multi-core OS tkeduler for single core and multi-



core systems so that both execution and power ogoisan of the task are taken into
consideration. In addition, this study aims to findchanisms to lower processor’s power
consumption level and support hot-spot eliminatiimese objectives are achieved by
integrating power characteristics into the intraeciask scheduling and inter-core

stealing policies.

Assumptions

This study assumes that a system has a set of lemm@ogs processors and the service
time of tasks to be executed is known a prioriadidition, it is assumed that estimates of

the power consumption rates of individual execugdasks are known.

Hypothesis

It is possible to devise power aware OS basedesic@le and multi-core scheduling
strategies by extending classical intra-core taleduling policies and formulating
variants of the inter-core work stealing algorittorinclude the power characteristic of
processor/tasks while stealing a task and/or getgatvictim processor achieving a
higher level of power efficiency without significaeffect on the performance or

execution time of the processes.



Contribution

This research has been successful in identifyiolgrigues to improve power and
performance for both single and multi-core systeh® main contributions of this study
are listed below:

1. A power aware intra-core task scheduling poliejerred to as HECN, that
considerably reduces the energy consumption lewgliraproves the turnaround time of
a processor has been developed.

2. Power efficient inter-core task stealing pokcikat significantly reduce the energy
consumption variance across processors and produuneticeable improvement in the

completion time, for different workload scenaribaye been devised.

Overview

The thesis report is organized in the following w@hapter 2 gives a brief description of
the Operating System concepts pertaining to CPkJgelseduling. It discusses classical
task scheduling policies that form the basis fovg@oaware scheduling algorithms. With
the aim of achieving power efficiency at the OSelexia power aware task scheduling, a
technique to integrate power characteristics inéoselection criteria of task scheduling is
introduced. Chapter 3 describes relevant reseamtiucted with regard to OS level
power management techniques. The literature sigiwews that significant research is
yet to be done and provokes studies seeking ctesttise power efficient OS task
scheduling policies for single and multi-core sgsteThis research explores this aspect

further. Chapter 4 outlines the power aware tabkdualing policies that have been



explored. It provides details on the experimengalig used to evaluate the devised power
efficient policies. The emphasis is on the detaiilhe steps involved in simulating an OS
based task scheduling environment. The in-depthlation steps enable the developed
simulator to thoroughly exercise the schedulinggied and analyze the potential in these
methods. Chapter 5 presents the details of aBithalation experiments conducted with
varied task generation scenarios. The resultsaf eaperiment are shown with figures
that compare the different power aware and poweostgc policies. The outcome of the
experiments is analyzed and the behavior and effdotroducing power features into

OS task scheduling is studied. Chapter 6 providesvarall analysis of the simulations
conducted and draws conclusions from the combiegdlts of all the experiments.
Finally, chapter 7 provides conclusion in the fayha report on the main contribution of
this study. It throws light on the fact that theearch aimed to achieve power aware
scheduling policies with minimal impact on performoa and has been successful in
suggesting power aware techniques with high paknti addition, proposals for future

research work have been recommended.



[I. BACKGROUND

This section provides background on the Operatygie®n concepts with respect to a

multiprogramming environment.

Task Scheduling Concepts and Terminology

A Processis a program ready for execution. A process inetuithe program code as well
as additional components. The process includeteitécode), current activity, stack,
heap, and data section. A process can be in ofieeddtates, namely:

New: The process has entered the system.

Running: The Process is executing on a processor.

Blocked: The process is waiting for an event, sasln 1/O, to complete.

Ready: The process is waiting in tready queue and is ready to be assigned to a
processor.

Terminated: The process has completed execution.



Figure 1 illustrates the different states of a pasc

Admitted Completed
New Terminated
Scheduled
Ready Running
1/0 \—/ 1/0 event
completed Interrupted
Waiting

Figure 1: Process State Diagram

A Process Control Block (PCB) is used by the operating system to represent@pso
The PCB contains several pieces of information@ased with a specific process,
including process id, process state, and scheduifognation. Another term for PCB is
Task Control Block. For the purpose of this research report, the PGBokan referred to

as simply aask.

Each task is placed in a differefask Queue based on the state of the task.
A Ready Queue has tasks ready to runBocked Queue contains tasks waiting for 1/0

operation to complete, andCampleted Queue stores tasks that have been completed.

Early computers ran one process at a time. Whdetbcess is waiting for an I/O event
to complete, the CPU is idle. In multiprogrammisgyeral processes that are in the
ready state are kept in memory. If one processdemit, the operating systetakes the

CPU away from that process and gives the CPU to angtioeess. The objective of



multiprogramming is to reduce CPU idle time and immaze the CPU utilization. The
activity of selecting a process to execute on &pdocessor is known &PU Intra-
core Task Scheduling. Basically,intra-core task scheduling moves a selected process

from the ready state to the running state.

A taskService Time or Execution Time is the estimate of the total time a task requives
complete execution on a processbdaiting Time is any time that a task spends, in
different queues, in the system waiting to be alled to a processor. The tefime-
Sicerefers to a pre-determined time that a processaltacated to execute a task before
it is released and re-allocated to the next wait&s. Task Eviction is the process of
removing a task from a processor and moving it ftbenrunning state to the ready state.

Task Switching includes task eviction and task replacement \iaioore task scheduling.

Non-preemptive intra-core task scheduling implies that a task is removed from a
processor only upon completion or if a task is imgifor an 1/0 event to complete.
Preemptive intra-core task scheduling implies that a currently running task is evictegd
to time-slice constraint or because another higbripy task just switched from the

waiting state to the ready state.



Classical Intra-core Task Scheduling Policies

This study uses several traditional intra-core &sieduling policies as the basis for
deriving power aware scheduling policies. The tmportant types of intra-core task
scheduling policies are preemptive and non-preammpiolicies. A few examples of both
these types of policies are provided next:

() The main non-preemptive intra-core task schiedupolicies are:

1. First-Come First-Served (FCFS); is the simplasa-core task scheduling policy. The
task that arrives in the ready queue first is alled to a processor first.

2. Shortest Job First (SJF); as the name sugdglestpplicy picks a task with the least
service time first from the ready queue.

3. Highest Response Ratio Next (HRRN); the tash thie highest response ratio in the

ready queue is picked next.

HRRN = W+S)

, Where w = waiting time of a task, s = servicediaof a task.

-~

This ratio gives priority to a task with shortensee time. In addition it gives
consideration to a task that has been waiting fong time.

All the above policies are non-preemptive sincertiet task in the queue is picked for
execution only after the current task is complefdte next section discusses preemptive
policies.

(I The main preemptive intra-core scheduling piels are:

1. Shortest Remaining Time First (SRTF); this polgsimilar to the SJF scheduling
policy described above; but, since it is preemptikie selection of the shortest task is

made every time a new task arrives to the readyejue
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2. Round Robin (RR); this policy is similar to tREFS scheduling policy mentioned
earlier, but preemption is added to reallocateptioeessor to the next task in the ready
gueue after a preset time slice.

3. Round Robin with priority: In addition to seleq} a new task after a preset time
guantum, this policy selects the next task basetth@mpriority of the task instead of

directly picking the first task in the queue as eam FCFS policy.

Power Aware Task Scheduling

Most scheduling policies, take into account exe&cutr service time of a task. In
addition to service time, Bower Aware Task Scheduling policy takes into consideration

the power consumption rate of a task.

Power is the rate of energy used. To effectivelyloime power and service time of a

task, a metric calleBnergy Delay Product is considered and derived below.

E
TaskPowelP) = —; whereE = Energy of a task,s=servicetime of a task.
S

EnergyDelayProduct{EDP)=sx E; where s=delay timeor servicetime of a task.

— TaskEnergy(E)= sx P;where P=power of atask.

— EDP=sxsxP=s’xP,

In this work, power aware task scheduling poli@essider EDP rather than the service

time of the task. Experiments are conducted toraete an effective power aware task
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scheduling policy. These experiments are desciibée@tail later and the results show

the potential in power aware task scheduling.

Multi-core Task Scheduling

The scheduling policies discussed so far focusrglescore processors. This section

talks about extending the scheduling policy to atgrsmulti-core processors.

Task Matching refers to the process of allocating newly arriteesks to processors/cores
by matching parameters of a given task to paramefea given processor/core (other

terms for this are task distribution).

Task Migration literally means moving tasks from the ready quafuene core to the
ready queue of another core (e.g., task stealingpdk stealing). Several performance
metrics described in the previous section, sudh@sength of the ready queues of each
core, the total energy consumed by every coreanitieipated wait time of tasks in the
ready queue of cores, and the anticipated complénee of these tasks can be used to
characterize the state of a multi-core systemelmegal, especially for a homogeneous
multi-core system, it is desirable to maintain Ebee with respect to these parameters
among cores. A system (or a state of the systemajasred to abalanced if the variance
of important parameters among the cores is lows bhlance can be achieved through
Task Migration. This is discussed in depth later. In general % is responsible for task

matching, intra-core scheduling, and inter-coreratign.
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Performance Metrics

The performance of the single and multi-core tatleduling policies can be evaluated
based on several important metrics. The followireyalist of performance measures that
can be utilized to study the behavior of schedupialicies.

1. Completion Time - the total time taken to conglexecuting an entire workload
(predetermined set of tasks).

2. CPU Utilization Percentage - the percentagd®icompletion time that the processor
is busy executing tasks.

3. Idle Time Percentage- the percentage of the t=imp time that the processor is un-
utilized and idle.

4. Throughput - the number of tasks completed ipg tnit.

5. Turnaround Time - the total time a task spendbe system from the time it enters the
system until it is completed.

6. Energy Consumed - the energy consumed by agsocen a time unit.

7. Ready Queue Length - the length of the readuejue

8. Wait Time - the time a task spends in any queaiéing to be executed.

9. Remaining Energy - the estimate of the energh®#tll tasks remaining in the ready
queue.

10. Remaining Service Time - the estimate of thecation time of all the tasks

remaining in the ready queue.



lll. LITERATURE SURVEY

This section discusses the relevant research alaiba single and multi-core task

scheduling policies that consider #yergy consumption of processors.

Task Scheduling Policies

Kashif et al. propose a Priority-based MultileveeBback Queue Scheduler (PMLFQS)
for mobile devices [9]. PMLFQS is a work-conservaigorithm that uses different CPU
speeds for different queues to minimize the ovenadrgy consumed by the CPU for
each task. Another policy called Dynamic Voltagd &equency Scaling (DVFS),
shares a similar approach to this policy whererdguency of the processor is adjusted
to conserve power [10]. The paper, however, focoseshanges to CPU speed to reflect
energy efficiency on single core processors. Orother hand, this research study
suggests changes at the software level, enablnglt&core operating system (OS) to

incorporate energy efficiency considerations i@ $cheduling algorithm.

Wu et al. propose LTEDF (Low Thermal Early Deadliest), a temperature-aware task
scheduling algorithm for real-time multi-core syate[11]. In LTEDF, a History Coolest

Neighborhood First (HCNF) task allocation algoritimyemployed to balance the

13



14

temperature loads. If cores are thermally saturaées#t migration is performed to
alleviate thermal saturation. Therefore, tasksjaeued based on deadline priority but
selected based on the power and temperature aatmnlof each task. The paper is
focused on real-time systems and on lowering tla& pewer and temperature
consumptions. This study, however, concentratasoorreal-time applications.
Moreover, rather than limiting the consideratiompéak power, this research considers

balancing the power consumption across processdheisystem.

Zhou et al. propose an algorithm referred to as EBRHOT that is based on the
observation that, given two tasks, one that iSil®t a high power consuming task) and
one that is cool (i.e., a low power consuming taskgcuting the hot task before the cool
one results in a lower final temperature than gwersed order as long as executing the
hot task itself does not violate the thermal thodsl2]. Consequently, at each step
THRESHHOT selects the hottest task that does nmezkthe thermal threshold using an
online temperature estimator, leveraging the peréorce counter-based power
estimation. The paper however, focuses on batotepses on a single core and is
intended to lower final core temperature. This gtaitns to consider varying type of
processes (beyond batch processes) on a multsgstem with a focus on lowering the
variance in energy consumption across processatsthurn balances the temperature of

processors as well.
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Work Stealing Algorithms

This section looks at several work stealing al¢pons to understand the variations in the

work stealing process.

Quintin et al. detail the Classic Work Stealing édighm. A starving processor, with the
number of tasks in the ready queue less than d fixeshold, is referred to as a thief.
The thief identifies a processor, known as themwicat random and steals the oldest task
from the victim [13]. In addition, they propose tidea of grouping processorslasader

or Save. The risk of congestion between huge groups atgssors arises with the
amount of transferred data. To limit this risk,ytlehose to restrict in each group, the
number of processors that can steal from anotloerpgin each group, only one
processor sends remote steal requests. This pavéesslled a Leader. The leader
oversees a group of slave processors. Therefark,leader gives work to the cluster if
there is not enough work, and keeps the large taséSiciently balance the load
between leaders. Leaders execute only global task$alance the load between slave
groups. Slaves perform the classical work-stealggrithm within their group. The
policy described in this paper performs stealintyvatlevels, leader and slave level, that
may lead to redundancy. Instead in this reseatehlisg policies are being devised for a
homogeneous system such that all processors @hatlbad imbalance) can initiate

stealing with the help of one efficient centraltuni

Sarkar et al. propose two policies [14]. In thetfikork-first policy, the processor

executes the spawned task eagerly and leaves titiawztion to be stolen. In the second
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Help-first policy, the processor makes the spawned taskadlaifor stealing and
continues execution on the parent task. This pdiseusses policies mainly for parallel
workload with several spawned tasks that requiries gnowledge of the level of
parallelism and task dependency. On the other Hhigdwork aims at developing power
aware policies for all types of workload but sdillowing the victim processor to decide

on the task to volunteer.

Agarwal et al. propose a Central Task Schedulércdya maintain information of all the
processors in the system [15]. The thief compwgads a request to the Task Scheduler
and is routed to heavily loaded computer for steglasks. The thief computer cannot
have more than half the load of the victim compafézr work stealing.

The paper discusses a central scheduler that meniite loaded processors .On the other
hand, this research study goes a step furtherdpdpa global scheduler that tries to

balance the load and energy consumption acrose§sors.

Sudarshan et al. discuss a similar policy that m&ionsists of a Dispatcher and nodes
[16]. The main server forms a Minimal Spanning T{&&ST) of the idle nodes. If any
node is in an idle state or busy state, it hasaimsimit message to the dispatcher. As soon
as an IDLE node is given work it detaches itselfifrthe MST. After this, the detached
node begins independent processing of the worktdadssigned. The

dispatcher’s role is the management of tasks, dwetumaintenance of load balancing,
monitoring the status of each node, selection éoles for task execution, and assignment

and adjustment of tasks for each node. Wheneveda joins or exits the system, the
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table of candidate nodes is updated. The papeopespa dedicated monitor for idle
processors and focuses on CPU utilization while shiidy goes beyond considering the
idle processors by monitoring the power consumpdiodh load of running processors as

well.

Robison et al. propose that if a processepawns a task that has affinity for another
processorst processortputs a pointer to the task iistMailbox. If a processor is idle,
before it resorts to stealing, it checks the mailand first processes those tasks in FIFO
order. Since this mailed task is a part of the gareool, there could be more than one
thief attempting to steal it. So there isidle flag associated with each processor. The
flag indicates whether a processor is trying talssork. Thieves are not allowed to steal
a task that has been mailed to a processor whies#lagd indicates it is idle [17]. The
paper involves scheduling tasks with predetermafédity to processors but this
research involves tasks that can be executed opracgssor in the system with the same
level of efficiency and therefore focuses on thes@ocharacteristics of the task and

processor during scheduling.

Faxén et al. suggest two policies [18]. The fissgampling Victim selection. In this

policy, a thief does not steal the first taskiid. Instead, it samples several potential
victims and selects the one with the task thakaseast to the root of the computation. The
second policy is th&et Based Victim selection. If there are a significant number of active
thieves in the system, each thief only attempteal from a subset of the other workers.

The Sampling Victim policy determines the best taskteal based on the time of arrival
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in the system while the Set Based policy limitabig to a subset of processors.
However, in this research, the policies considethal available victim tasks but choose

the best task based on the power consideratiotie dask.



IV. EXPERIMENT SETUP

This section describes the simulation environmedtaetails the simulation steps. The
simulator emulates a multi-core processor systerimpba central unit that enables CPU

task scheduling similar to an Operating System.

Simulator Environment

The four major components required to simulate 8b@sed task scheduling
environment are: a Central Unit, a group of Prooessa set of Tasks, and a few Task
Queues. Within the simulator, each of these compisrigas been developed as
individual modules or simulation units. The simolais implemented as a finite-state
machine and the functionality of the system is@niprimarily by the state of two of the
components mentioned earlier; namely, a Processbad ask. The following are the
main states of these two components.

Task States:

1. Executing on a Processor

2. Ready (in ready queue)

3. Blocked [for I/0O] (in blocked queue)
4. Completed

19
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Basically, a Task that is ready to be executedbeawaiting in the ready queue, a task
that is selected from the ready queue can be ergoon the processor, a task can be
locked due to I/O interrupts, and a task can beptei® and terminated. A task can fork
or spawn a new task that is added to the readysjue, this has not been addressed in
this research.

Processor States:

a. Running or Executing a task

b. Idle

c. Working at particular frequency using DVFS (Thisipotential state for future work;
but, it is out of the scope of this research)

d. Turned off (by the firmware or by the OS; btiisialso out of the scope of this
research)

Hence, a processor can be executing a task androensower based on the task’s power
consumption rate. In fact, the processor can leedadtl consume power based on a pre-

determined idle power consumption rate.
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Figure 2 shows the main properties and functiorth®kimulator components along with
the relationship between components.

/— Maintains Processors
Central Unit \/ Utilizes Queues
Processor ]
= Stores Tasks
Clock Time Processor Id
Queue 1
Workload Processor ]
Size Status Queue Length Task —
System Schedule Task Queue Type Task Id ]
performance
Steal Task Add Task Task Status
Volunteer Task Remove Task Arrival Time
Service Time
I
Power
I
L
I

Figure 2: Simulator Components

EveryTask is identified in the system using a unique taskeach task has an attribute of
power and execution time associated with it. Tlee@ssor schedules tasks for execution

based on these task properties.

The Central Unit has been simulated to maintain global knowledgh®®ntire system
much like an operating system. This unit genertslss, sets task properties, and
allocates these tasks to processors for executi@ddition, it enables intra-core task

scheduling on each processor, monitors the taskdbavery processor, and enables
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inter-core task stealing between processors. Funibre, this unit monitors the

performance of all processors, reports systemsstaid updates simulation clock time.

All the Processors in the system are identical making the system lganeous. Each
processor simulated in the system has a schedol@ulethat determines the task to be
executed next. In addition, there is a processiaodute that simulates execution of the
task assigned to it. Thr&gueues, namely, the ready, the blocked, and the completsd
gueues are used by the processing module to sigks. {The tasks allocated to the
processor by the central unit are initially placethe ready queue. As the simulation
progresses, the scheduler module moves tasks bethe¢hree queues depending on the
state of a task. Based upon the length of the rgadye, the processor can be considered
asSarved when the number of tasks in the ready queue @balfixed threshold dor
Loaded when the number of tasks in the ready queue igseab@iven threshold, A

starved processor, known as a thief, picks a vi¢iiaded) processor identified by the
starving processor and / or by the central unie $&lected victim then volunteers a task

to the thief. This concept is discussed in detdéd in theTask Migration section.
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Figure 3 depicts the high-level interaction betwgenprocessing module and central

unit of the simulator discussed above.

I Central Monitoring Unit -
Stealer seeks Victim | 3 Indentifies Victim
Generates and Monitors System
Allocates Tasks Performance
v |

Multi Core Processor Svstem

As Stealer, steals Task

TN

Processor Py P, P3 Pn
/
Schedules Task
As Victim., volunteers Task

Figure 3: High Level Simulator Framework

Simulation Time Units

This section discusses the basic time units usadsimulation. The following are the two
main time units:

- A processor atomic time unit is referred to dila A tick is assumed to represent
n-cycles of execution by a processor.

- The operating system atomic unit is callediee. A dliceis derived from ticks and is

represented as k-ticks.
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The simulator is time based as opposed to eveertbasthis time based simulation
paradigm, ticks and slices are the two main tim&suA tick is the time set for the OS to
perform basic operations such as task switchinginfulation slice has the same meaning
as a time slice in the context of OS. Most of tl# @perations (e.g., intra-core
scheduling, inter-core stealing, etc.) occur &eshoundaries. The processor status is

updated on each tick. On the other hand, systetasssupdated on each slice.

Simulation Steps

This section describes all the steps involved dyuttire simulation. Figure 4 shows the

main steps involved in the simulation.

Generate Tasks for processors

v
Schedule Tasks on processors at Slice Intervals

v
Steal Tasks among processors at Slice Intervals

v
Report Performance of processors at Slice Intervals

Figure 4: Simulation Steps

First tasks are generated. These tasks are theddeld on different processors. Next,
stealing is performed between processors. Finpdlgformance of all the processors

during the entire simulation is reported. Theseusation steps are elaborated next.
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Simulation Step 1: Task Generation

The first step in the simulation is to establigtask load also known agorkload. This
simulator synthetically creates tasks. In this iyeke arrival (generation) of tasks in the
system follows a Poisson distribution. This progidesetting that is close to the certain
realistic scenario. Each task has attributes ofgs@md execution time associated with it.
Every task is given a random attribute of power execution time that follows an
exponential distribution as it efficiently repretera system with varying tasks. The unit
for the assigned task powerdsules/tick. The assignment is based on the realistic power
estimates of a set of tasks that are executedfdaraore system, on a core running at 1
GHz. The average arrival rate, average task paaver average service time of tasks are

parameters that can be altered in the simulator.

The simulation can be run for a fixed period ofdior until a fixed workload is

completed. In the former case, the tasks contipaative to the system and the

simulation runs for the given time period. In th&ér case, the tasks are generated until a
fixed workload size has been reached and the stionleuns until this workload is

completed.

This research study is focused on simulations foreml workload. In order to conduct
interesting experiments with varying conditions #verage arrival rate of tasks can be
manipulated to create the following two scenarios.

» Parallel Workload Scenario - has a fast task drrata so all the tasks in the

workload arrive to the system early in the simolatperiod. This causes a sudden
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increase in the processors’ queue size in thalmp@riod of the simulation. This
mode fits a scenario of fine granularity parallelighat has a few tasks, each of
which represents a single parallel program, forkingnerous tasks.

» Steady State Workload Scenario - involves a slek &rival rate that spreads the
arrival of all tasks in the workload across a l¢inge period in the simulation. In
contrast to the parallel workload scenario, heeggifocessors’ queue size remains
steady through most of the simulation period. Hxglores a system, such as a

communication system, in steady state that harmdiesnuous arrival of tasks.

Simulation Step 2: Intra-core Task Scheduling

Task scheduling policies used for single core suliregl can be utilized for the intra-core
scheduling in a multi-core system. There are tworapproaches to intra-core
scheduling: preemptive and non-preemptive. Need#s, in the context of multi-core
power aware scheduling, non-preemptive intra-coteigs are more restrictive and less
interesting, since the constraint of non-preempti@-core scheduling limits the OS
capability to affect power / performance. Moreovbeg research into preemptive intra-
core scheduling can be used for evaluating theeftsttiveness of non-preemptive intra-
core policies. For example, a slice based preemmiva-core scheduling with long
slices can be used to approximate non-preemptive-aore scheduling. The opposite is
not true. That is, results of research on non-ppgem intra-core scheduling cannot be
easily used for evaluating preemptive procedurescd, this research concentrates on
preemptive intra-core scheduling. The preemptionbEsynchronous or asynchronous.

Nevertheless, in synchronous preemptive intra-soheduling, the preemption can occur
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only on the boundary of an OS atomic unit refetreds slice, which is the most
commonly used preemption method. This researctoeepkliced based synchronous

preemptive intra-core scheduling.

The following intra-core scheduling policies haeeh implemented in the simulator:
1. Round Robin (RR)
2. Shortest Remaining Time First (SRTF)

3. Highest Response Ratio Next (HRRN)

Power Aware Intra-core Task Scheduling Policy

The goal of power aware intra-core scheduling isigoificantly improve energy
consumption with minimal effect to task completione. The three intra-core scheduling
policies mentioned earlier have been modified engimulator to consider power as
detailed below:

1. Power Aware Round Robin (pRR); in the power atjnadound robin, tasks are evicted
at every time slice. The power aware round robiesgo step further and evicts tasks
upon reaching a power consumption threshold as well

2. Power Aware Shortest Remaining Time First (pSRTfe power agnostic SRTF
policy picks a task with shortest time. In contréisé power aware SRTF policy selects a
task with shortest Energy-Delay-Product (EDP).

3. Highest EDP Cost function Next (HECN); thawer agnostic intra-core scheduling
mechanism uses the HRRN ratio to derive prioritg tdisk. Since thEnergy-Delay-

Product (EDP) metric is considered as a meaningful combinatfgoower and time, a
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newpower aware intra-core scheduling policy called HECN is dedissing the EDP
metric. The HECN policy determines thegority of a task by using a heuristic which is

an EDPbased Cost function that is similar to the HRRN ratio.

The cost function integrategit time andEDP, which is mix of two different units. This
is not a concern since it is solely used as a stwfor deciding on the task to execute
next. TheEDP metric allows power characteristics of a taskearzluded in the task

selection process.

Hence, the cost function gives high priority taak with low power consumption rate.
On the other hand, thveait time metric ensures that low priority tasks are not kept
waiting for an unreasonable amount of time. By cminlg the two units, a good
compromise is achieved between power consumptidrparformance degradation. The

derivation of the cost function is provided next.

EDP = s? x p ;
HECN = [w+ (EDP)] , Where w = waiting time of task,
(EDP)

s = service time of task,

p = power consumption rate of task

HECN = [WH(s™xp )]
= (s"xp)
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Simulation Step 3: Inter-core Task Migration

The central unit of the simulator enables task atign in the form of work or task
stealing. The central unit monitors the followinggessor level properties to facilitate
task stealing.

The Processor Properties are:

1) Starved; a processor with the number of reaslstaelow a fixed threshold {T

2) Loadeda processor with the number of ready tasks beléixed threshold (J).

3) Energy Consumed by the processor so far.

4) Energy Consumed by the processor in last kslice

5) Remaining Energy; the energy of the tasks inr¢laely queue shows the potential
amount of energy the processor may consume.

6) Remaining Service Time; the service time oftdsks in the ready queue shows the
potential amount of time the processor may eteec

7) Ready Queue Length.

Task Migration Process

Task migration occurs if the system is in extrembalance and certain cores experience
an extremely high peak in a given parameter wtitheiocores experience an extremely
low peak in that parameter. In this case, the ctiratsexperience extreme (high or low)
values of the given parameter might initiate a taglration transaction. In this study, the
ready queue size is considered as the parameter that indicateslamba since it aptly
measures the varying workload size of processask ©r work stealing (or task
volunteering) might be an essential remedy toHiitmbalance in the ready queues. A
core is considered &sarved if the number of tasks in the ready queue fallswwe

threshold T. On the other hand, a core is considereldoaded if the number of tasks in
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the ready queue is above a threshaldATcore is considered &ormal if it is neither
starving nor loaded. This type of core does naotigpate in work stealing.

A starving processor is a potential stealer arldagled processor is a potential victim of
stealing. A stealer initiates the stealing prod®sseeking a victim. The stealer identifies
a victim. The victim volunteers a task to be stolEine stealer steals this task by
migrating it to its own ready queue. This processeferred to a$ask Sealing or Task
Migration and is being performed at every slice during satiah.

Two stealing models are utilized:

1) The Local Knowledge model; each processor ig amlare of its own current status.
2) The Global Knowledge model; each processor erawf the state of every other

processor. This is enabled via the central unitiaintains the status of all processors.

Power Aware Inter-core Task Stealing Policies

The simulated central unit enables the followirepbhg policies.

(1) Local Knowledge

a.Random MinHECN_Task; the stealer chooses a random processor as dipbtactim
without knowledge of the processor’s load. Thigimgorocessor volunteers a task with
the lowest HECN. If that randomly chosen processaotloaded, then no stealing

OCCurs.

(2) Global Knowledge
a.MaxLoaded_MinHECN_Task; the stealer identifies a processor with the Isirgeady

gueue as a victim. This victim processor volunteetask with the lowest HECN
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(presumably is the most power consuming task).

b. MaxMin_HECN_Task; each loaded processor (a potential victim) vadarg a task
with lowest HECN (presumably is the most power conigig task). The stealer considers
the tasks volunteered by all potential victims &nds a task with the highest HECN
(presumably is the least power consuming task) gnadirvolunteered tasks.

Hence the name MaxMin, which implies that the MaxH\Etask is selected from

the available MinHECN tasks.

¢. MaxRemainingService MinHECN_Task; the service time of tasks remaining in the
ready queue can be used to estimate the time tloegsor might execute and the power
that might be consumed. A queue with highest sertimoe has the maximum potential to
increase the power consumption of the processareftre, the stealer picks the
processor with a ready queue that has the maxireumaining task service or

execution time. The victim processor volunteerask with the lowest HECN.

d. MaxRemainingEnergy; the power of tasks remaining in the ready quedeates

the power that the processor might consume. A quatiehigh task power has the
maximum potential to increase the power consumpifdhe processor. Hence,

the stealer selects the processor with a readyegihiat has the maximum

remaining task energy. In addition, two variantsha$ policy are used:

(i) The victim processor volunteers a task with ltheest HECNMinHECN_Task.

(i) The victim processor volunteers a task withxmaum energyMaxEner gyTask.

e. MaxEnergylnLastKSlices; the stealer chooses a processor that has consumed

the maximum amount of energy in the lkslices of the simulation. Again, the

two different options for the victim processor are:
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(i) The victim processor volunteers a task with theest HECNMinHECN_Task.

(i) The victim processor volunteers a task withxmaum energyMaxEner gyTask.

f. MaxEnergyConsumed; the stealer opts for a processor that has corume

the maximum energy so far in the simulation. Twalfer options the victim has

are:

(i) The victim processor volunteers a task with ltheest HECNMinHECN_Task.

(i) The victim processor volunteers a task withxmaum energyMaxEnergyTask.

The power agnostic version of the above inter-task stealing policies uses the HRRN

ratio in place of the HECN cost function to deterenthe task to volunteer.

Each of the three simulation steps described scaiabe executed with different
variations, depending on the functionality requir€de simulator allows these variations
to be tested by providing several parameters. kxeets with different scenarios can be
performed by altering the values of the followireygmeters:

Simulation Parameters

1) Multi-core system parameters
a. Number of cores
Processor power consumption per tick (at idle ptate
Slice time (in ticks)
Threshold for starvation/loaded status
Workload size
f. Stealing policy
2) Task parameters
a. Task arrival rate
Task power consumption per tick
Task service time
Blocking probability
Unblocking probability

®oo0o

®ooo
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Simulator Modes:
1) The simulation can emulate power aware or p@agepostic task scheduling policies.

2) The simulation can emulate task scheduling aitth without task stealing.

Simulation Step 4: Performance Reporting

The central unit of the simulator monitors the ensiystem by capturing and reporting
the progress of the simulation and the statuseptbcessors. In addition, the simulator
provides all the performance measures on a slisis.bBhese simulation reports can be

used to analyze results, generate graphs, ancedariclusions.
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Simulation Flow

This section provides the details of the simulaflow. Figure 5 represents the

simulation steps, described in the previous sectisimg a flowchart.

Intra-core

task scheduling

<

N
/‘
Inter-core <
task stealing
—

Figure 5: Simulation Flowchart

The simulation progresses on a tick basis. At etieky the simulator determines if a
new task has to be generated. If so, a task isect@ad randomly allocated to a
processor. Next, the intra-core scheduling is peréal on every processor and the
processor status is updated. Followed by intra-stealing which is conducted on a slice
basis. The simulation proceeds until either thekioad is completed or the fixed time
period is reached. The next section details themxgnts conducted and provides the

corresponding performance reports.



V. EXPERIMENTS AND RESULTS

This section reports the experiments conductedesopthis study and provides the
results of these experiments. All the devised sa$leduling policies have been exercised
thoroughly by performing experiments with varyiragsarios. Moreover, the
experiments comprised of single core and multi-simaulations with bottixed time-

period andfixed workload situations. First the detail of each experimepetis listed.
Second, the format used to tabulate the simulatata for both single and multi-core
experiments is described. Next, the actual condéigom of the parameters used in each
experiment is provided. Finally, the result of gvexrperiment is reported and the

performance of all the policies is detailed.

35
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Figure 6 contains a flow chart of the differentagf experiments performed. Details on

each of the experiments are provided later ingagion.

Experiment Types

/ \

Fixed Time-Period Simulation Fixed Workload Simulation

Experiment 1

Experiment 4

Experiment 2

Experiment 3

Fast Task Slow Task Fast Task Slow Task

Arrival Rate Arrival Rate Arrival Rate Arrival Rate
(Single-Core (Multi-Core (Multi-Core (Multi-Core
System) System) System System)

Figure 6: Experiment Overview Chart

The following performance metrics are consideredaoh simulation to analyze the data
and tabulate the results.

1) Energy Consumption Variance; the variance inetiergy consumed by processors
during the simulation.

2) Average Turnaround Time; the average turnardune of all the tasks in the
workload.

3) Peak Ready-Queue Length; the maximum readyajlemgth recorded for any
processor in any slice of the simulation period.

4) Completion Time; the time required to complegraulation.
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Experiment Data Tabulation Format

This section provides information on the formatdigecollect data from the experiments
in order to analyze and generate results. Thea#sibanlformat used for single core and

multi-core simulations is explained below.

Single Core Simulation Data Format

The simulations are performed for single core s&dleduling policies. Each simulation
is repeated several times with different seedsdndom number generation. The
performance of the processor over the entire sitiomgeriod is monitored. The
simulation data is recorded for each intra-cork s&hieduling policy as explained next.
First, the performance metrics measured in evenylsition are tabulated (c.f., Table 1).
Next, the average of each performance metric a@bfise simulations, performed using
different seeds, is calculated. Finally, similatadis gathered for all the intra-core
scheduling policies and the simulation resultscarapared to determine the experiment
outcome.

Table 1 provides the format used to tabulate sitmalata for each intra-core task
scheduling policy.

Table 1: Single Core Simulation Data Table

Simulation data for scheduling policy 1:

Metricl Metric2 Metric n
Seed 1 | | ‘ |
Average — Average — Average I
Seed 2 across across across
Simulations __ Simulations _  Simulations

Seed n

| | |
Result (Average ) l l l
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Multi-Core Simulation Data Format

The simulations are performed for all the formulladéealing policies. Each simulation is
repeated several times with different random nungeeeration seeds. Every simulation
provides performance figures on a slice time bfasiall the processors (c.f., Table 2).
Data is gathered for each stealing policy as meatimext. First, for every slice, the
output of each performance metric in the simulatsotabulated as an average across all
processors. The metric can be tabulated as thencrior maximum across processors as
well. Next, the average across slices is determiRigglly, the result of each simulation
policy is reported as the average of all the sitha run using different seeds.

Similarly, the data is gathered for each stealiolicy. The final outcome of an

experiment is established by comparing the simufatesults of all steal policies.
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Table 2 shows the format used to tabulate theréataded for each performance metric
during the simulation.

Table 2: Multi-core Simulation Data Table

Simulation output of metric 1 for stealipy 1(seed 1)

Metricl | Processor 1 Processofr 2 Processorn Average
Slice 1
— Average / Max /Variance  =——p |
Slice 2 Average
across |
Slice n Slices
Result N I
M -_.I
1
1
: Average
v across

Simulation output of metric 1 for stealipy 1(seed n Simulations

Metricl | Processor 1 Processof2 Processorn Avere _ .
Slice 1

— Average / Max /Variance  =——p | I

Slice 2 Average
across I
Slicen Slices I
Result 2
\

|Fina| Result for Metric 1

Simulator Parameter Configuration
The simulator parameters have been tested withralexedues to determine a good basic
configuration. After careful analysis, a configuoatthat thoroughly exercises the system

functionalities has been selected and shown next.
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Table 3 shows the parameter values used for tiee thain experiments of this study.

Table 3 : Simulator Parameters of Experiments

Experiment Number 1 2 3

No. Of Processors 1 16 16
Fixed Workload Size ( No. of tasks ) - 500 1000
Fixed Simulation Time ( No. of ticks ) 1000 - -
Average Task Service Time (in ticks ) 1 500 400
Average Arrival Rate ( per tick) 5 0.5 0.02
Average Task Power ( Joules/tick) 5 4 4
Slice Time ( No. of ticks ) 0.1 100 100
Starved Queue Length ( No. of tasks ) - 2 2
Loaded Queue Length ( No. of tasks ) - 4 5
Idle Power Consumption Rate (Joules/tigk) - 2 2
Task blocking probability ( at each tick ) - 0.01 .00
Task unblocking probability ( at each tick]) - B00 0.005

Experiment 4 does not have separate parameteksisentalyses a specific phase of the
simulation time period in Experiment 3. The detailshe experiments are provided in

the next section.

Experiments

This section provides details on the four experit®eonducted as a part of this study

along with information on the simulation results.

Experiment 1: Single Core Task Scheduling

For reasons discussed in lim&ra-core Task Scheduling step of Chapter 1V, the
experiments concentrate on preemptive rather tbampneemptive intra-core task
scheduling. In this case, the simulations are pewd in a single core system for a fixed

time-period to compare the intra-core preemptiveedaling policies such as Shortest
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Remaining Time First (SRTF), Round Robin (RR), &wlind Robin with HECN
priority. This experiment is intended to determihe best intra-core task scheduling
policy and the most promising policy is to be uasdhe intra-core scheduling policy in
the multi-core experiments. The results from thigezgiment are provided in the next
section. For each intra-core scheduling policy,tttal energy consumed, turnaround

time, and EDP is presented.

Figure 7 shows the power aware/power agnostic fatienergy consumed, turnaround
time, and EDP metrics for the intra-core task salieg policies considered. Each metric
in Figure 7 is a ratio of the value obtained frdra power aware policy over the value
obtained from the power agnostic version of theespolicy. Thus, a value of less than
one indicates that the power aware version is @bil@prove performance or improve

energy consumption.

Performance Comparison using
Power Aware vs Power Agnostic Ratios

1.60

1.40

1.20

@ RoundRobin
1.00

0.80 B SRTF

—— |0 RoundRobin
( HRRN priority )

0.60

0.40

Power Aware/ Power Agnostic Ratio

0.20

0.00
Energy Consumed Turnaround Time EDP

Figure 7: Performance Comparison of single core $abeduling policies
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It can be seen that for Round Robin, the ratidhefgower consumed under the power
aware policy to the power consumed under the pagrostic policy is 0.93. The ratio of
theagnostic turnaround time to thaware turnaround time is 0.97.This implies that there
is a minor improvement in power consumption withebaany effect on turnaround time.
For SRTF, the energy consumed ratio is 0.51 andhtaund time ratio is 1.46. This
demonstrates marked improvement in power consumpgbiat, with noticeable
degradation in the turnaround time. On the othedhthe energy consumed ratio under
Round Robin with HECN priority is 0.72 and the taround time ratio is 0.97. This
shows reasonably good improvement in power consomptith virtually no degradation
in the turnaround time. This is further validatethwthe EDP ratio that, again, shows that
Round Robin with HECN has the best improvemenhéénergy and time metric. The
HECN policy considers both the energy demands lamdemaining service time in
prioritizing tasks for execution. Because of titigutperforms both thBound Robin and
Shortest Remaining Time First policies. Based on this result, in the simulation
experiments discussed next, all the power awaee-otre task stealing policies use
HECN policy for intra-core task scheduling andth# power agnostic inter-core task

stealing policies use HRRN policy during intra-ctask scheduling.

The following three experiments of this sectiond®on a multi-core system. The next

section provides details about figure formats agdhd.
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Multi-core Experiment Figure Nomenclature

In all the figures of this sectioRAG denotes power agnostic aRAW denotes power

aware version of the inter-core task stealing jpedicEach figure represents data gathered

for a particular performance metric. Té®ergy consumption variance is the main

performance metric shown in the figures. It is nuees inJoules since the power unit of

a task is Joules/tick as discussed inTiagk Generation Sep in Chapter 1V. Every power

aware inter-core task stealing policy, shown indgkperiment figures, performs the

HECN intra-core scheduling policy whereas every power agnostic inter-core taskistgal

policy performs thédRRN intra-core scheduling policy. Each policy is denoted by a

unique stealing policy and a task scheduling typ&W or PAG) as shown next with

examples.

The high level representation format for a steapolicy is shown below:

< Task Scheduling Type > <Victim Processor SedecBroperty >

<Task Selection Property>

Examples:

(1) PAW_NoSteal => No stealing, only intra-core gowware task scheduling using
HECN.

(2) PAG_NoSteal => No stealing, only intra-core powagnostic task scheduling using
HRRN.

(3) PAG_MaxEnergyConsumed_MinHRRN_Task => The poaggrostic intra-core task
scheduling policy uses HRRN. The victim psm® is the processor with the
Maximum Energy Consumption so far. The task with minimum HRRN is stolen.

(4) PAW_MaxEnergyConsumed_MaxEnergyTask => The p@ware intra-core task
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scheduling policy uses HECN. The victim pssm# is the processor with the
Maximum Energy Consumption so far. The task with maximum energy consumption
rate is stolen.

(5) PAW_MaxMin_HECN_Task => As the MaxMin steal jglis slightly different, this
format implies that the MaxHECN_Task is seddrom all the potential
MIinHECN_Tasks for the power aware version.

(6) PAG_MaxMin_ HRRN_Task => this format impliesatlthe Max HRRN_Task is

selected from all the potential Min HRRN_Ta$tr the power agnostic version.

The following are the main inferences that can é&eved from the experiment figures:
- Comparison between stealing policies identifying est power aware and best
power agnostic policy for a specific metric.
- Comparison between the power aware version (displaythe first half of each
figure) and the power agnostic version (displayethe second half of each

figure) of each policy intended to derive the effefcconsidering power in each

policy.

Experiment 2: Multi-core Task Scheduling for a HataVorkload Scenario

In this experiment, a fixed workload simulatiorperformed in a system having a fast
task arrival rate. This simulateparallel workload scenario described in Chapter V.
This experiment is intended to study the behavidhe formulated policies and identify
the policy that performs the best under this spesidenario. The four main performance

figures provided from this experiment are the ep@@nsumption variance, the average
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turnaround time, the peak ready-queue length, laadampletion time of all the policies.

The parallel workload scenario is explained witreaample in Figure 8.

Figure 8 shows the processors’ average ready daergth in one instance of the

simulation.

Average Ready Queue Length of Processors
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Figure 8: Average Ready Queue Length of Experirgent

According to the figure, the ready queue lengttagdly increasing in the first few time
slices of the simulation and then gradually decéngpas the simulation progresses

thereby emulating paralle workload scenario.
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Figure 9 shows the processors’ energy consumptaaance. This is used as an indicator

of load balancing.

Energy Consumption Variation
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Figure 9: Energy Consumption Variance of Experintent

Here, work stealing provides a reduction of ab@%olin variance compared to PAG_No
Steal policy. The PAW_MaxMin_HECN_Task is the bastling policy. The power
aware policies provide a marginally better poweafgrenance than the power agnostic

method.
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Average TurnAroundTime of WorkLoad
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Figure 10: Average Turnaround Time of Experiment 2

In this case, the PAW_NoSteal policy has a lowardround time than PAG_NoSteal

policy. This implies that power aware intra-corsktacheduling, without any stealing,

lowers turnaround time by about 4%. By includinggding, the PAW_MaxMin_

HECN_Task is the best stealing policy and it img®{reduces) turnaround time further

by approx 31% compared to PAG_NoSteal policy. Bhisws that in the process of

trying to gain power efficiency, time factor is ingped as well. This can be due to the

fact that the EDP metric used in the selectioreddtconsiders time along with power

attributes. Again, power aware is slightly betteart power agnostic.
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Figure 11 presents the peak ready-queue length.

Peak Ready-Queue Length
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Figure 11: Peak ready-queue length of Experiment 2

Here, again, the PAW_NoSteal policy performs bdttan PAG_NoSteal policy by
lowering the peak ready-queue length by almost\8dih stealing introduced, the
PAW_MaxLoaded MIinHECN_Task policy is the best daigets stealing from
processors with large queues. This policy furtleeiuces the peak queue length by about
8% compared to PAG_NoSteal policy. The PAG_MaxRemgService_Min
HRRN_Task policy is just marginally better than B¥&W_MaxLoaded_Min

HECN_Task policy.
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Figure 12 shows the completion time of the enticeldoad.

Completion Time Of Workload
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Figure 12: Completion Time of Experiment 2

In this case, PAW_NoSteal policy increases thd tmtapletion by about 3.5%. This can
be attributed to the fact that power aware schaduhay increase task wait time and
there is no stealing to help reduce wait time. @ndther hand, stealing significantly
reduces the completion time with PAW_MaxMin_ HECMNsK policy being the best
stealer as it reduces the completion time by ab@¥% compared to PAG_NoSteal
Policy. The PAG_MaxMin_ HRRN_Task policy is verygsitly better than
PAW_MaxMin_ HECN_Task policy with just around 3% rageduction. But since
PAG_MaxMin_ HRRN_Task policy does not perform adlwéh regard to the energy

consumption variance and turnaround time metriea garlier, it is not regarded highly.
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From all of the results of this experiment, it ¢c@nseen that the PAW_MaxMin_
HECN_Task is the best stealing policy for a fasktarrival rate scenario. It significantly
improves three important metrics, namely, energyamption variance, turnaround

time, and completion time.

Experiment 3: Multi-core Task Scheduling for a Stestate Workload Scenario

For this test, a fixed workload simulation is penfied in a system having a slow task
arrival rate. This emulatessteady state workload scenario as described in Chapter IV.
This experiment, in similarity to the previous expent, aims to study the performance
of policies until the entire workload is completaat this time, a system with a steady
stream of incoming tasks is considered. Figuresesgmting the performance of the
policies with regard to the processor’s energy oongion variance, the average
turnaround time, the peak ready-queue length, lsaddmpletion time are provided.

The steady state workload scenario is illustrated &sample case in Figure 13.
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Figure 13 shows the processors’ average ready daegth in one instance of the

simulation.
Average Ready Queue Length of Processors
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Figure 13: Average Ready Queue Length of Experirient

In the first few time slices of the simulation, tleady queue length gradually increases.
Then as the simulation progresses, the queue leagthins steady for several slices

thereby simulating ateady state workload scenario.
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Figure 14 shows the processors’ energy consumpgéaadance.

Energy Consumption Variance
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Figure 14: Energy Consumption Variance of Experitigen

It is noticed that PAW_NoSteal policy performs blig better than PAG_NoSteal policy
by lowering the energy consumption variance by &86t. By including stealing, the
PAW_MaxEnergylnKSlices_MaxEnergyTask is seen ad#s power aware stealing
policy. This policy further reduces the varianced3% compared to PAG_NoSteal policy.
The PAG_MaxEnergyConsumed_MinHRRN_Task stealingcpgrovides a marginally
better power performance than the PAW_MaxEnergylid€S MaxEnergyTask method
but it is not considered significant since it does perform as well for the turnaround

time metric seen next.
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Figure 15 displays the turnaround time.

Average Turnaround Time Of Workload
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Figure 15: Average Turnaround Time of Expenir

Again, PAW_NoSteal policy is better than PAG_No§gedicy by almost 13%. The
power aware intra-core task scheduling coupled nitr-core task stealing further
improves turnaround time. PAW_MaxEnergylnKSlices xMaergyTask is again the
best stealing policy with approx 17% lower turnarddime compared to PAG_NoSteal

policy. The power aware policies are noticeablydydhan the power agnostic policies
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Figure 16 presents the peak ready-queue length.

Peak Ready-Queue Length
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Figure 16: Peak ready-queue length of Experiment 3

Continuing the trend of this experiment, the PAW Sl policy lowers the peak ready-
gueue length by 21% compared to PAG_NoSteal pdiMith stealing included,
PAW_MaxEnergylnKSlices_MaxEnergyTask remains onthefbest stealing policies as
it significantly reduces the peak queue lengthhierrtoy approx 57% compared to

PAG_NosSteal policy. Here power aware is marginbéiter than power agnostic
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Figure 17 shows the completion time of the enticeldoad.

Completion Time Of Workload
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Figure 17: Completion Time of Experiment 3

In this case, an important difference can be notedpared to the previous experiment 2.
The PAW_NoSteal policy is better than PAG_NoStedicy with a 3% lower

completion time but the opposite is true in expent? which involves larger ready
gueue sizes. This shows that a power aware intesaiheduling policy provides a better
completion time for amall ready queue size scenario but a power agnostic intra-core
scheduling policy is better suited folasige ready queue size scenario.

Furthermore, the best power aware stealer of #psrament is again the
PAW_MaxEnergylnKSlices_MaxEnergyTask policy withoab8% reduction in
completion time compared to PAG_NoSteal policy. PA&_MaxMin_ HRRN_Task
policy shows slightly better completion time comgzhto the

PAW_MaxEnergylnKSlices_MaxEnergyTask policy butannot be appreciated since it
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fails to be the best in terms of efficiency in #reergy consumption variance and

turnaround time metrics.

Experiment 4: Multi-core Task Scheduling for FixEiche

This experiment is a special case study of theipusvexperiment. The main intent is to
analyze the performance of the policies duringstbady state phase of experiment 3 and
determine if power efficiency is better achievedityy scheduling policies during this
particular phase. The following figures, deriveonfrthis experiment, show the
processor’s energy consumption variance, the aegdragaround time, and average wait

time of tasks.

Figure 18 shows the processors’ energy consump#dance.

Energy Consumption Variance

405 O PAW_NoSteal

B PAW_Random_MInHECN_Task

400 - O PAW_MaxLoadedMinHECN_Task

0O PAW_MaxMin_HECN_Task

395 1 | || = PAW_MaxEnergyConsumed_MnHECN_Task
O PAW_MaxRemainingEnergy_ MInHECN_Task

1 B PAW_MaxRemainingService_MinHECN_Task

390 + - O PAW_MaxEnergyInKSlices_MnHECN_Task

B PAW_MaxEnergyConsumed_MaxEnergy Task

385 A | | B PAW_MaxRemainingEnergy_MaxEnergyTask

0O PAW_MaxEnergyInKSlices_MaxEnergy Task

O PAG_NoSteal

380 - — ®PAG_Random MinHRRN_Task

B PAG_MaxLoaded_MInHRRN_Task

375 A B PAG_MaxMin_HRRN_Task

B PAG_MaxEnergyConsumed_MnHRRN_Task

@ PAG_MaxRemainingEnergy_MinHRRN_Task

370 - 71 O PAG_MaxRemainingService_ MinHRRN_Task

0O PAG_MaxEnergyInKSlices_MinHRRN_Task

365 - 0O PAG_MaxEnergyConsumed_MaxEnergy Task

O PAG_MaxRemainingEnergy_MaxEnergy Task

O PAG_MaxEnergyInKSlices_MaxEnergy Task

Variance (in Joules)

360 -

Stealing Policy

Figure 18: Energy Consumption Variance of Experingen
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According to the graph, the PAW_NoSteal policyhie best policy. It reduces the energy
consumption variance by about 2% compared to th®@ BoSteal policy. This implies
that a simple power aware intra-core schedulingcpaetlith no stealing can reduce the
energy consumption variance. But it important teertbat this occurs during the steady
state phase of the entire simulation implying eidbprocessors keep selecting the low
energy consuming tasks first and keep the highgymssnsuming tasks waiting thereby
reducing the overall variance in energy consumpti@rng this period. Consequently, as
seen, the stealing tends to increase the variance siore high energy tasks are now

available in ready queues for stealing.

Figure 19 displays the turnaround time.

Average Turnaround Time Of Workload
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Figure 19: Average Turnaround Time of Experiment 4
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It is observed that the PAW_NoSteal is again thst pelicy. This policy reduces the
turnaround time by about 9% compared to the PAG tdaPolicy. The processor’s task
selection criterion gives tasks with low executione and/or power more priority
thereby the completed tasks have lower turnaroumel But since this is only during the
steady phase, it is important to note that whigeltw power short tasks may be getting
more priority, the lower priority tasks continuevait causing a high waiting time in the

ready queue. This reasoning is validated in thé figure.

Figure 20 presents the Ready-Queue Average Wak.Tim

Average Wait time of Tasks in the Ready Queue
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Figure 20: Ready-Queue Average Wait Time of Experitd

As expected, this graph illustrates that the PAWStdal policy increases the ready

gueue wait time of tasks by about 21% compared®@ MNoSteal policy.
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From this experiment result it is seen that focengrio with tasks arriving in a steady
continuous pattern, introducing stealing duringgteady phase does not impact the
energy consumption variance much. It is observatlittte PAW_NoSteal policy is more
efficient during the steady phase while the PAW_MiaargyIinKSlices _MaxEnergyTask
policy improves energy consumption variance dutirggtransient phase of the

simulation.



VI. RESULT EVALUATION

The previous section provided the performance tesdlall the individual experiments
conducted for this study. This section analysestmbined results of all the
experiments to identify the overall effect of irdtecing power aware intra-core task
scheduling and inter-core stealing in a multi-ceystem. The behavior of the devised
intra-core task scheduling and inter-core taskKisig@olicies has been studied under
different workload scenarios.

The four types of experiments that have been cdeduare:

1. Single core task scheduling simulations forsh fask arrival rate system.

2. Multi-core task scheduling simulations for at fi@sk arrival rate system.

3. Multi-core task scheduling simulations for avglask arrival rate system.

4. Multi-core task scheduling analysis during tteady state phase of a simulation.

60
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Table 4 provides the summary of the experimentligsu

Table 4: Summary of Experiments’ Results

Single Core, HECN
Fixed Time
2 | Multi-Core, PAW_MaxMin_HECN 18% 31% 17%

Fixed Workload, | _Task
Fast Task Arrival
3 | Multi-core, PAW_MaxEnergyInK 5% 17% 8%
Fixed Workload, | Slices_MaxEnergyTask
Slow Task Arrival
4 | Multi-Core, PAW_NoSteal 2% 9% N/A
Fixed Time,

Slow Task Arrival

The classical HRRN intra-core task scheduling ydhias been utilized as the basis of all
newly formulated power efficient policies. The povagvare HECN intra-core task
scheduling policy has been devised by extendirglihsic HRRN policy. Furthermore,
inter-core task stealing policies have been intceduby incorporating power
characteristics. Hence, thpewer agnostic HRRN policy with no stealing, also referred to
as PAG_NosSteal is used as the base policy to cantbarperformance of all the other

policies.

According to the data shown in Table 4, in evergeziment, gpower aware policy
emerges as the policy that successfully reducaggiensumption variance, turnaround
time and completion time concurrently. In addittoraccomplishing energy efficiency,
the performance time has been improved as well PAW _MaxMin_HECN_Task

policy shows the highest potential with 18% redurtin energy consumption variance,
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31% improvement in turnaround time, and 17% mofieiehcy in completion time

compared to the PAG_NoSteal policy.

Furthermore, the key points noted from the combmesdlts of all the experiments are
listed next.

1. TheHECN intra-core scheduling policy outperforisund Robin andShortest
Remaining Time First policies in Experiment 1. This policy provides thest power
efficiency and turnaround time. This can be atteluo the fact that the HECN cost
function gives priority to tasks with low power aseérvice time and also ensures low
priority tasks are not waiting for long.

2. ThePAW_MaxMin_HECN_Task policy emerges as the best policy in Experiment 2.
The reason for this might be becauseMa@Min policy is the only policy that directly
selects a task to steal by choosing the least poaresuming task among the high power
consuming tasks of all potential victim processétkthe other stealing policies first
select a potential victim processor and then seléask from that chosen processor.
Therefore, for scenarios that have the system #dawith tasks, the ready queues of
processors are large, and the policies have tosehfvom a large set of tasks, the stealing
policy that considers all the tasks in the systaohsas thévlaxMin policy outperforms
other policies.

3. ThePAW_MaxEnergyConsumedinKSices MaxEnergyTask policy is the most
efficient policy in Experiment 3. This can be begplained by the following analysis.
Excluding theMaxMin policy, all the stealing policies first consideethower properties

related to a processor to determine a victim. Ndosperties are related to the number of
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tasks (like the PAWMaxLoaded MinHECN_Task policy) or type of tasks in the ready
gueue (like the PAWMaxRemainingEnergy MinHECN_Task policy) but only two of

the policies consider the past history of the pssog namely, the
MaxEnergyConsumedinKSices policy which uses recent past data and the
MaxEnergyConsumed policy which uses all the past data. If there ssemdy continuous
stream of incoming tasks in the system then théyrgaeues are reasonably small.
Hence, if the selection policy has to choose frosmall set of tasks in the queue, the
policy that considers properties related to themépast history of potential victim
processors rather than the processor’s tasks ispraising like the
MaxEnergyConsumedinKSices MaxEnergyTask policy.

4. ThePAW_NoSeal policy which is simply thédECN intra-core task scheduling policy
outperforms all other policies during the steadggghof the simulation in Experiment 4.
This policy schedules the low power consuming awddervice time tasks first to ensure
the power consumption variance across processoeassnably low but pays the price
by making low priority tasks wait for increased amts of time. For situations that
consider the power consumption level and variafi@erulti-core system to be more
critical then the waiting time of tasks, the int@e power awarelECN policy with no
stealing shows good potential for power efficiedaying the steady phase of the
simulation whereas task stealing performs wellmythe transient phase.

5. Based on the experiment results,PA&V MaxMin HECN_Task procedure is the

policy with the most potential for power efficieneyen if the task arrival rate is

unknown. From experiments 2 and 3, it is obserhatlithis policy performs the best for
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cases with fast task arrival rate and also perfagasonable well in situations with
steady task arrival rate.

6. In all the experiments, there is no significdifference in performance amongst many
of the stealing policies. This could be attributedhe fact that the variations in work
stealing are very minute and have subtle differsaseexplained in the following
examples:

(i) The MaxLoaded, theMaxRemainingService, and theMlaxRemainingEnergy policies

can pick the same victim processor because a mocesth a huge queue is most likely
the one with the most remaining energy or servicerell.

(i) The MaxEnergyConsumed_MIinHECN_Task and the

MaxEnergyConsumed MaxEnergyTask policy pick the same victim processor since the
policy is the same in that regard. However, thenfarsteals a task with lowest HECN
but the latter steals a task with the maximum pave@isuming rate. If the wait times of
the task are almost the same like in experimenth2re all tasks arrive nearly at the
same time, then the task with lowest HECN taskastrtikely the task with the
maximum power consuming rate since lower the HEG#$t tunction, the higher the
power of the task and vice-versa.

7. The turnaround time is improved much more tt@npower efficiency level in all the
experiments. This implies that tBmergy-Delay-Product (EDP) metric integrated into
the HECN policy might be giving more consideration to task time rather than th&ask

power attribute as seen below.

EnergyDelay Product(EDP) =sx sx P;wheres= servicetime of a task,
P = powerconsumptio rateof task.
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In the EDP formula, clearly theervice time of a task is used more than the power of a
task thereby giving more importancetésk service time than task power.

Having reviewed all the results generated fromftioe experiments, it is evident that the
energy consumption variance, a key indicator ofl lbalancing has been improved in
every experiment by one of the devised power apwalieies. In addition to
accomplishing energy efficiency, the performanogethas been improved as well. This
validates the initial hypothesis that it is possitd devise power aware task scheduling
policies by incorporating power characteristicststi@at energy efficiency and
performance time is improved. It is observed thatitnprovement in energy efficiency
level varies from marginal to significant dependorgthe experiment scenario. However,
this research has been successful in devising pmaaagement techniques at the OS

scheduling level and opening prospective avenuelsifther advancement.



VII. CONCLUSION

The growing concern of the semi-conductor industiti regard to efficient power
management within the processor chips is addresistbe OS level via power aware OS
intra-core task scheduling and inter-core tasKisigalhe primary goal of this research
work is to develop power aware intra-core task dahieg and inter-core task stealing
policies. In an attempt to achieve the desired,gbalfollowing steps have been

implemented.

First, three classical intra-core task scheduliolices, namely, Round Robin(RR),
Shortest Remaining Time First (SRTF) and HighesRase Ratio Next (HRRN) have
been considered. This leads to the creation ofxeepaware intra-core task scheduling
policy referred to as HECN that extends the HRRhAcgdo include power

characteristics of tasks in the system.

Next, building on the new intra-core HECN policgrus inter-core work stealing
policies have been explored. Several different pawmere variations of work stealing
have been formulated that consider power featurdseqorocessors and its tasks before
identifying the task to steal. Finally, an in-hoss®ulator has been developed solely to

evaluate the potential of the policies devisedglgicore simulations have been
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conducted to determine the viability of HECN wi#spect to power management. With
this result being positive, further extensive muatire experiments have been performed
to study the effect of coupling power aware intosectask scheduling (HECN) with

power aware inter-core task stealing. The outcamgests that the

PAW_ MaxMin_HECN_ Task procedure is the most promising politwt attains power

efficiency and manages minimal effect to perforneanc

The main conclusion drawn from this research is ttiere has been success in
identifying potential OS based power managemenhaust and provoking further study
into OS level power management techniques. Thesestion provides

recommendations for future work.

Recommendation for Future Work

The following are proposals for future work relatedhis study.

1. Inthe intra-core power aware HECN policy, the HE@#ivative to determine task
priority is calculated as

(W + (" xp")]
(s’ x p’)

time, s= task service time, and p = task paeasumption rate. The constants

HECN _ PRIORITY = where variables w = task wait

a =1, B =2, andy=1. The values fon, (3, andy can be tested with several
combinations of values to vary the importaatthe task properties such as task

service time, wait time of tasks, and powarsumption rate of tasks.
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. The experiments can be conducted using a test wndkbwith realistic task data
such as task execution time and power consumpi@nof a task. The power aware
policies can then make task selections based oalaesk information.

. The work stealing policy can consider an affinitgasl. The central unit can be
extended to have knowledge of task’s affinity faracessor and a stealing policy can
be devised based on the task’s affinity information

. Several inter-core scheduling policies require gldystem knowledge such as the
most energy consuming processor and power consoimigtrel of the system. Such
parameters of power and performance availableegh@indware/firmware level can be
exposed to the operating system. They can be ubigdlde simulator by using
vendor boards. This can enable more realisticHora task scheduling and inter-
core task stealing, and possibly further improvegdperformance.

. The experiments can explore DVFS based schedulithgva simulated

environment.

. The experiments can consider shutting down idlegssors by interacting with the

firmware.
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