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Nonlinear perturbations of systems of partial
differential equations with constant coefficients *

C. J. Vanegas

Abstract
In this article, we show the existence of solutions to boundary-value
problems, consisting of nonlinear systems of partial differential equations
with constant coefficients. For this purpose, we use the right inverse of
an associated operator and a fix point argument. As illustrations, we
apply this method to Helmholtz equations and to second order systems of
elliptic equations.

1 Introduction

Let G C R™ be a bounded region with smooth boundary, and let (B(G),|.||)
be a Banach space of functions defined on G. For each natural number n, let
B™(G) denote the space of functions f satisfying D™ f € B(G) for all multi-
index m with |m| < n. Then under the norm | f||, = max,, <y ||D™f]|, the
space B™(G) becomes a Banach space.

We consider the system

ow ow

DOw:f(Xﬂ"j?a—xla“'vE)

in G, (1)
where Dy is a linear differential operator of first order with respect to the real
variables 1, . .., z,, the vector x has components (z1, ..., zy), and the unknown
w

and the right-hand side f are vectors of m components, with m > n. To
this system of differential equations, we add the boundary condition

Aw =g on0G, (2)

where ¢ is a given m-dimensional vector-valued function that belongs to the
Banach space B'(0G). The operator A is chosen so that (2) leads to a well-
posed problem on B!(G) Nker Dy.

For finding a solution to this nonlinear problem, we use a right inverse of the
operator Dy and a fix point argument [9, 8]. First, we construct the right inverse
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for a first order differential operator of constant coefficients. Then using that
the operator Dy, in its matrix form, commutes with the elements of the formal
adjoint matrix, we obtain the right inverse. In fact, we obtain a formal algebraic
inversion through the associated operators determinant and adjoint matrix of
Dy. In the last section of this article, we describe a natural generalization to
high order systems, and show two applications of this method.

2 The Right Inverse of D,.

The operator Dy in (1) is represented in a matrix form as

D1 ... Dim
D() = ’
-Dml e Dmm

where D;; is the differential operator of first order with respect to the real
variables z1 ...x,.

The determinant of Dy is computed formally, and is a scalar linear differential
operator with constant coefficients. Note that det Dy maps the space B™(G)
into the space B(G). As a general hypothesis, we assume that the differential
operator det Dy possesses a continuous right inverse:

Tdet Do B(G) — Bm(G) (3)

which is an operator that improves the differentiability of functions in B(G) by
m orders.

The adjoint matrix associated with Dy, in algebraic sense, is computed for-
mally, resulting a linear matrix differential operator, denotes by adj Dy, with
constant coefficients and of order m — 1 respect to the real variables 1 ...xz,,
i.e., m — 1 is the order of the highest derivative that appears in the coefficients
of the matrix. We observe that adj Dy maps the space B™(G) into the space
B'(G). Under the assumptions above, we obtain the following result.

Theorem 2.1 The differential operator
adj Do(Taet py ) : B(G) — B*(G)
18 a right inverse operator for Dy.
Proof. Note that Dgadj Dy = det Do, which is satisfied due to the fact that

Dy is a differential operator with constant coefficients. From this remark and
(3) the proof follows. O
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3 First-Order Nonlinear Systems

We define the fitting operator
Q: BY0G) — B*(G) Nker Dy

by the relation
A(Q¢) = A(¢) for each ¢ € BY(9G). (4)
i.e., to each ¢ € B1(0G) we associate the unique B*(G)-solution to (4) in ker Dy.

Theorem 3.1 The boundary-value problem (1)-(2) is equivalent to the fixed
point problem for the operator

T(w,h1,...,hy) = (W,Hy,...,Hy,), (5)

where
W = Qg + (I - Q) adJ DO(TdetDoI)f(wawa h17 ceey hn) (6)
Hj = 52-(Qg + (I — Q) adj Do(Tuet 0, 1)) .f (@, w0, ha, .., ), (7)

with j =1,...,n.

Proof. Let w € B!(G) be a solution to (1)-(2). To the function
Ow Ow

\IJ:w_adeO(TdetDoI)f(xawa8—1‘17"'7E) (8)
we apply the operator Dy to obtain
. Ow Ow
DoV = Dow — Dy adj Do(Taet Do 1) f (%, w, FEREE E) =
Thus, ¥ € ker Dy. To ¥ we apply the operator A and obtain
. ow Ow
A‘I’ = Aw—AadJ DO(TdetDOI)f(X7w78—m7"'78—%)
. ow Ow
= g—AadJ Do(TdetDOI)f(X,w,8—:1:1,...,%).
According to the definition of the operator €2, we have
) ow ow
U = Qg — Qadj Do(Taet poI) f (%, w, FEREE a—xn) .

Substituting this expression in (8) and differentiating with respect to z;, we

conclude that (w, a‘r’—;"l, ce, 667“:) is a fixed point of (5).

On the other hand if (w, h1, ..., h,) is a fixed point of (5), we can carry out
the differentiation of (6) with respect to x; for each j = 1,...,n. Because w is
in B}(G), we obtain

ow 0

8—3334 = 8—1‘](99 + (I — Q) adj DO(Tdet DOI))f(X,w, hl, ey hn) .
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Comparing these equations with (7), it follows that 687“; =hjforj=1,...,n.
Substituting these equations in (6) and then applying the operator Dy we obtain
Dow = f(x,w, g_ai’ R 6‘37“;). Applying Q to (6) we conclude that
Quw = QQg + QI — Q) adj Do(Taet poI) f(x,w, b1, ... hy) = Qg
By the definition of the operator €, it follows that A(w) = g, and hence, w is a
solution of (1)-(2). O
Consider the polycylinder

n+1
M = {(wh1,....hn) € [[ B(G) : [lw — wol| < ao,
i=1

||hJ _thH < ajvj = 1;~-.,7’L}

where wy € BY(G) and h;, € B(G) are taken as the coordinates of the poly-
cylinder mid-point, and ag, a1, ..., a, are positive real numbers.

From the definition of the operators Tqet p,,adj Do, and €2, it follows that
the operators

(I =) adjDo(Taet 0o I) : B(G) = B(G) and 9)
ae- (I = Q) adj Do(Taet o 1) : B(G) — B(G) (10)
are continuous and hence bounded. Therefore, for all (w,hq,...,h,) € M we
have
||W_WO|| = ||Qg+(I_Q) adeO(TdetDOI)f(Xawahla'",hn)_WO“
(I — ) adj Do(Taet Do 1) [f (x,w, ha, ..., hpn) — Dowo]
+(I — Q) ad_] DO(Tdet DOI)DQWQ + Qg — CU()”
< (I — Q) adj Do(Taet po DIl f(x,w, b1, - ..., hn) — Dowol| + Ko
and
[ Hj — hjo
0 .
= ||87[Qg + (I — Q) adj Do(Taet o )] f (X, w, by ooy ) — By |l
J
0 .
< ||87(I - Q) ad.] DO(TdetDOI)””f(Xvwv h17 ey hn) - DOwOH + Kj ’
J
where

Ky = ||(I — Q) adj DO(Tdet DOI)DQLUO + Qg — u.)oH
EK; = |52 (I = Q) adj Do(Tuet py 1) Dowo + 52-29 — hyol,

forj=1,...,n.
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For a positive real number R and j = 1,2,...n, we set

ap = ||(I—Q) adj DO(TdetDoI)||R+KO

aj

a .
15— = ) adj Do(Taet p 1) R + K -
J

For the rest of this article, we will denote by Mg the polycylinder M with the
parameters ag, a1, ..., a, as defined above.

Theorem 3.2 Let R be a positive real number such that f maps the polycylinder
Mp into B(G) and satisfies the growth condition

||f(a:,w,h1,...,hn) _DOCU()” <R, V(w,hl,...,hn) € Mg .

Then the operator T maps continuously the polycylinder Mg into itself.

Proof. Let (w,hy,...,h,) be an element in Mg and (W, Hy, ..., H,) its im-
age under T. Since (w,h1,...,h,) € Mg, by the definitions of the opera-

tors Tyet Do, adj Do and €, it follows that W € B(G) C B(G). Since % :
BY(G) — B(G), it follows that H; € B(G) for all j = 1,...,n. Therefore,
T:Mp— H?:ll B(G). That (W, Hy, ..., H,) is in Mp follows from the bound-
edness of the operators (9)-(10), the hypotheses on f, and the definition of Mp.
O

Theorem 3.3 Suppose f maps the polycylinder Mg into the space B(G), and
that f is Lipschitz continuous with constant L satisfying

: . _ 0 . _
L < min{[(I — Q) adj Do(Taet 0o )|~ 5~ = @) adj Do(Taet po 1) | ',
J
forj=1,....n. Then T is a contraction.

Proof. Let (w,h1,...,hs), (W, h],..., k) be elements of Mg, and
(W,Hy,...,Hy,), W’ ,Hy,..., H}) be their images under 7. Since the operators
(9) and (10) are bounded and f is Lipschitz with constant L, it follows that
W —Ww'll < |l = 9Q)adj Do(Tact po DIILNI(w, has - - hn) — (W', By, - B

< {(wyhay. o hy) = (W R, R
Similarly,

||Hj - HJ/” < H(wvhlv : '7hn) - (w,7h/17' : vh%)”

for j =1,...,n. Therefore, T is a contraction. [

With the aid of Theorems 3.1, 3.2 and 3.3, we obtain existence and unique-
ness of a solution for Problem (1)-(2).

Theorem 3.4 Suppose that f satisfies the hypotheses of Theorems 3.2 and 3.3.
Then Problem (1)-(2) possesses exactly one solution in the polycylinder Mg.
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Proof. By definition Mg is a closed subset in the space B(G). Applying Theo-
rems 3.2 and 3.3, we realize that T maps Mg into itself, and it is a contraction;
therefore, according to the Fixed Point Theorem there exists a unique fixed
point in Mp. As a consequence of Theorem 3.1 this fixed point is a solution to
Problem (1)-(2). O

4 High-Order Systems

In this section we apply the method developed in the above section to high-order
equations. Consider the system of differential equations

Dow = f(x,D"w) (11)

where D" is a differential operator of order r, and Dy is a linear differential
operator of order r. The unknown w and the right-hand side f are vector-valued
functions of m components, with m > n.

We will assume that the associated differential operator det Dy has a con-
tinuous right inverse, Tqet p, : B(G) — B"™(G).

To system (11) we add the boundary condition

Aw=g¢ ondG, (12)

where g is a vector-valued function with m components in B"(0G). The operator
A is chosen so that (12) becomes a well-posed problem on B"(G) Nker Dy.

We define the fitting operator Q : B"(0G) — B"(G) Nker Dy as follows: For

each function ¢ € B"(0G), Q(¢) is the unique B"(G)-solution in ker Dy to
the equation A(2(¢)) = A(9).

The results established in section 3 are also valid for systems of order r > 1.
However, (6) and (7) need to be increased to include equations corresponding
to the higher-order derivatives. We will analyze the case when Dy is a diagonal
operator. Let Dy be a linear differential operator of order r, which can be
represented as Dy = PI, where P is a linear differential operator of order r
with a continuous right inverse Tp : B(G) — B"(G). Let us assume that
the operator Tp satisfies homogeneous boundary condition A(Tp¢) = 0 for all
¢ € B(@G); thus the identity (I — Q) adj Do(T4et p,I) = TpI holds. Under these
conditions, the equivalent system (6)-(7) can be simplified. Furthermore, we
need only the continuity Tp for homogeneous conditions, and an estimate on 2
for non-homogeneous conditions. As a consequence of this we have the following
result

Theorem 4.1 Suppose that

Dow = Plw = f (13)
Alw) =0 (14)

is a well-posed problem in the sense of

Tp : B(G) — B"(G), (15)
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where f is a vector-valued function of dimension m, depending only on the
coordinates x1,...,Tn.

If the right-hand side in (11) satisfies a certain growth condition, and is
Lipschitz with a constant sufficiently small, then Problem (11)-(12) is well-posed
in the sense of (15).

5 Examples.

Example 1: Helmholtz type equations.

Let G = G; x Gy be a bounded simply connected region in R3 with smooth
boundary 0G. Here G; is the region containing the component z1, and Gy is
the region containing the components z2 and x3.

On the domain G, we consider the system

- 8&)1 8&)1 8&)2 8&)2 8(4)3 8(4)3
DOW - f(x,w, 81‘2’ 8.?3’ 8$1 ) 8.?3’ 81‘1’ 81‘2 )7 (16)

where x = (21,2, 73) is a vector in R3, w = (w1, ws,ws3) and f = (fi1, f2, f3) are
vector-valued functions, and the right-hand side f does not dependent on £

8xi’
i=1,2,3.
For A > 0, let
fé) 1él
A "o B
_ o) 1o}
D() = 8_933 )\ _6_331
fé) fé)
“ %% om A
From (16) it follows that for ¢ # j,
file,w, G2, 52, 0)
curlw + dw = fz(x,w,g—;’;,...,g?“’;,...)
2] Owi
fa(@,w, 5ok, 6‘;,...)
To the system (16) we add the Dirichlet boundary condition
wy=g¢1 ondG (17)

wy =gy on dG; X 0Gy,

where g1 and go are given real-valued functions in the space of a-Holder con-
tinuous and differentiable functions C1'*. We look for solutions to Problem
(16)-(17) in the space of a-Hélder continuous functions C*(G).

After some calculations, we obtain det Dy = A(\?2 + A), where A denotes
the Laplace operator, and A2 is not an eigenvalue for the Helmholtz operator
A + X2, Therefore, this operator possesses a continuous right inverse Th |z :

C(G) — C¥2(G).
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Similarly, we obtain the associated adjoint matrix

2, 0% ok 9 9>y 8
A”+ 6:2% Ox20x1 + )\8933 Ox10x3 )\8932
: _ 5 d 2 o 8 8
adjDo = | az05; oz AN T8 Bmedm T om
8 3 A 2 ot
6%36%1 + )\6_%2 6%36%2 )\6_%1 A + %g

Note that the operator Ta, 2/ improves the differentiability properties of a
function by two, not by three orders. The operator adj Dy decreases the differ-
entiability properties by two orders only in the i components with respect to
x;. However, it was assumed that the derivatives g::, i =1,2,3 do not appear
in the right-hand side f of (16). Therefore, adj Do(Tax2]) improves the prop-
erties of differentiability by one order, and we can consider all the equations
except those associated with g‘;:j, i =1,2,3 in Problem (6)-(7).

Now, we study the kernel of Dy. Let (w1, w2, ws) be a solution of the homo-

geneous problem

Dow = 0. (18)

When we apply the operator adj Dy on the left in the above equation, it follows
that (A + A?)w; = 0 for i = 1,2,3. Due to (18), the three components are
linearly dependent. Therefore, we will assume w; as an arbitrary given function
which satisfies the equation (A% + A)w; = 0 and is also defined on dG.

In view of (18), we obtain

8(4)2 8W3
Ay — — 4+ =2 = 0
w1 8.733 8:1:2
8&)1 aw'g,
A\wo — —2 = 1
8$3 2 15) 1 0 ( 9)
3&)1 8(4)2
= ws = 0.
8$2 + 81)1 + Aws 0

When we differentiate the first equation respect to x1, the second respect to
22, and the third respect to x3, after summing the results, we have

8&)1 8(4)2 8W3
[ ] _— = . 2
8$1 8.732 8:1:3 0 ( 0)

Using (19) and (20) we have, in matrix form,

6(1.)1
wWo — 29
D = oz 21
(o) = () @)
and
w2 _%
D = z3 22
() - & .
where

o 8 N o
D1 = &E; 6§3 and D2 = F) 91 .
P 0o 9ar A
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. 2 2 2 .
Since det D1 = % + % and det Dy = A2+ %, we can assume the existence of
2 3 1

right inverse operators for D1 and Ds. Since (A2 + A)w; = 0, the integrability

condition
_ Ows _ %
D o1 = D T3
2 —>\’w1 ! _gw1
o

is fulfilled for the system (21)-(22). Put w = ws + w3 and z = x5 — ix3. Then
from (21), we obtain the non-homogeneous Cauchy-Riemann System
Oow Oowy
) (23)

EZF(Wl,a—xl

where F' is known. Thus w can be uniquely determined up to a holomorphic
function in z. Since w satisfies Dow = 0, we apply the operator adj D2 on the
left to this equation, and obtain
2, 0°

A+ —)w=0. 24

(02 + 52) (24)
From (24) it follows that (A\? + 86—;2)102 =0 and (A2 + 86—;2)103 = 0. When we

1 1
prescribe the boundary values on 0G1 X 0G4, wo becomes a uniquely determined
function. Finally from the last equation in (19), we obtain ws = %(g—“;; - g—“ﬂ:f),
and we cannot require additional values for ws.
Since this is a well-posed problem, it follows that (17) is well formulated.

Therefore, applying the theory developed in section 3, we assure the existence
of an unique solution for Problem (16)-(17).

Example 2: A second order elliptic operator.

Let G be a bounded simply connected region in R™ with boundary sufficiently
smooth. Consider the system

Dow = f(z,D?w) inG, (25)

where D? is a second-order differential operator, not necessarily linear, and
Dy is a linear differential operator of second order. The unknown w and the
right-hand side f are vectors of m components.

We assume that Dy is a diagonal operator of the form Dy = PI, where
P is an elliptic differential operator of second order with constant coefficients,
P = szzl ai»j%;wj' In addition to (25) we impose the Dirichlet boundary
condition

w=g ondG, (26)

where g is a given vector-valued m-dimensional function belonging to C*%(9G).
Then we look for a solution to (25)-(26) in the space C%(G).

It is known that the operator P possesses a continuous right inverse [7],
Tp : C%(G) — C?%(G), which satisfies A(Tp¢) = 0 for all ¢ € C*(G). Since
det Dy = P™, there is a continuous right inverse operator Tyetp, = Tpm :
B(G) — B?*™(G). We conclude by observing that now all the theory developed

in sections 3 and 4 can be applied to this problem.
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