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Boundary-value problems for the one-dimensional

p-Laplacian with even superlinearity ∗

Idris Addou & Abdelhamid Benmezäı

Abstract

This paper is concerned with a study of the quasilinear problem

−(|u′|p−2u′)′ = |u|p − λ, in (0, 1) ,

u(0) = u(1) = 0 ,

where p > 1 and λ ∈ R are parameters. For λ > 0, we determine a lower
bound for the number of solutions and establish their nodal properties.
For λ ≤ 0, we determine the exact number of solutions. In both cases we
use a quadrature method.

1 Introduction

This paper is devoted to a study of existence and multiplicity of solutions to
the quasilinear two-point boundary-value problem

−(ϕp(u′))′ = f(λ, u), in (0, 1) , (1)

u(0) = u(1) = 0 ,

where ϕp(s) = |s|p−2s and f(λ, u) = |u|p − λ. Here (ϕp(u′))′ is the one-
dimensional p-Laplacian, and p > 1.
When the differential operator is linear, i.e., p = 2, several existence and mul-

tiplicity results, related to superlinear boundary value problems with Dirichlet
boundary data, are available in the literature. Let us recall some of them for
the one-dimensional case.
Lupo et al [14] have studied the non-autonomous case

−u′′(x) = u2(x)− t sinx, in (0, π) , (2)

u(0) = u(π) = 0 .

Using a combination of shooting and topological arguments, they show that for
any k ∈ N there exists tk > 0 such that for all t ≥ tk, problem (2) admits at
least k solutions.
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Castro and Shivaji [8], using phase-plane analysis, consider the problem

−u′′(x) = g(u(x))− ρ(x) − t, in (0, 1) , (3)

u(0) = u(1) = 0 ,

where ρ a continuous function on [0, 1], g ∈ C1(R),

lim
s→−∞

g(s)

s
=M ∈ R, and lim

s→+∞

g(s)

s1+σ
= +∞ with σ > 0 .

They show that for k ∈ N there exists tk(M) such that limk→+∞ tk(M) = +∞,
and for all t > tk, problem (3) has at least two solutions with k nodes in (0, 1).
The autonomous case has been studied by many authors. Let us mention

some of them. Independently of Castro and Shivaji, Ruf and Solimini [16]
consider the problem

−u′′(x) = g(u(x))− t, in (0, π) , (4)

u(0) = u(π) = 0 ,

where

g ∈ C1(R), lim sup
s→−∞

g′(s) < +∞, and lim
s→+∞

g′(s) = +∞ .

Using variational methods, they show that for any k ∈ N there exists tk ∈ R
such that for t > tk problem (4) has at least k distinct solutions.
Prior to the papers mentioned above, Scovel [17] obtained the same result

as Ruf and Solimini [16] in the special case where g(u) = 6u2. He has shown
that for any integer k ≥ 1, there exist values t1 < · · · < tk such that for t > tk
problem (4) (with g(u) = 6u2) admits at least k distinct solutions.
Independently and prior to Scovel, in 1983, Ammar Khodja [7] obtained a

complete description of the solution set of the problem

−u′′(x) = u2(x)− λ, in (0, 1) , (5)

u(0) = u(1) = 0 .

He detects all the solutions to (5) for any value of λ ∈ R, and thus obtains the
exact number of solutions to (5) for all λ. To state his result, for any integer
k ≥ 1, denote

S+k =
{
u ∈ C20 [0, 1] : u

′(0) > 0, u admits k − 1 nodes in (0, 1)
}
,

S−k = −S
+
k and Sk = S

+
k ∪ S

−
k .

Theorem 1 [7] There exists a sequence (λk)k≥0 such that

−∞ < λ0 < 0 < λ1 < λ2 < · · · < λk < · · ·

and:
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(i) If λ < λ0, problem (5) admits no solution.
If λ0 < λ < 0, problem (5) admits exactly two solutions and they are
positive.
If λ = λ0 or 0 ≤ λ < λ1, there exists a unique positive solution.
If λ > λ1, there is no positive solution.

(ii) If λ > 0, there exists a unique solution in S−1 .

(iii) If (and only if ) λ > λk :

• there exist exactly 2 solutions in S2k

• there exists exactly one solution in S−2k+1

(iv) There exists a sequence (µk)k≥1 such that

λ1 < µ1 < λ2 < µ2 < · · · < µk < λk+1 < · · ·

and such that:
if (and only if ) µk < λ < λk+1, there exist exactly two solutions in S

+
2k+1,

if (and only if ) λ = µk or λ > λk+1, there exists a unique solution in
S+2k+1.

The objective of this paper is to extend Ammar Khodja’s result to the general
quasilinear case p > 1. In particular, we will show that if λ ≤ 0 the same result
holds for all p > 1, but if λ > 0 and p > 2 the situation is different from that
obtained in [7]. So, the behavior of the solution set of problem (1) depends not
only on the values of λ (as was shown in [7]) but also on those of the parameter
p.

These changes in the behavior of the solution set when the parameter p
varies is not new in the literature. Guedda and Veron [11] consider the problem

−(ϕp(u′))′ = λϕp(u)− f(u), in (0, 1) , (6)

u(0) = u(1) = 0 ,

where f is a C1 odd function such that the function s 7→ f(s)/sp−1 is strictly
increasing on (0,+∞) with limit 0 at 0 and lims→+∞ f(s)/sp−1 = +∞. They
denote by Eλ the solution set of problem (6) and show, under some technical
assumptions, that when 1 < p ≤ 2 the structure of Eλ is exactly the same as in
the case p = 2, and strictly different in the cases p > 2.

This paper is organized as follows. In Section 2 we introduce notation and
state the main results (Theorems 2 and 3). Section 3 is devoted to explain of
the method used in proving our results. In Section 4 we prove Theorem 2 and
finally, in Section 5, we prove Theorem 3.
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2 Notation and main results

In order to state the main results, for any k ∈ N∗, let

S+k =

{
u ∈ C1([α, β]) : u admits exactly (k − 1) zeros in (α, β)

all simple, u(α) = u(β) = 0 and u′(α) > 0

}
,

S−k = −S
+
k and Sk = S

+
k ∪ S

−
k .

Definition Let u ∈ C([α, β]) be a function with two consecutive zeros x1 < x2.
We call the I-hump of u the restriction of u to the open interval I = (x1, x2).
When there is no confusion we refer to a hump of u.

With this definition in mind, each function in S+k has exactly k humps such
that the first one is positive, the second is negative, and so on with alternations.
Let A+k (k ≥ 1) be the subset of S

+
k consisting of the functions u satisfying:

• Every hump of u is symmetrical about the center of the interval of its
definition.

• Every positive (resp. negative) hump of u can be obtained by translating
the first positive (resp. negative) hump.

• The derivative of each hump of u vanishes once and only once.

Let A−k = −A
+
k and Ak = A

+
k ∪ A

−
k . Let B

+
k (k ≥ 1) be the subset of

C1([α, β]) consisting of the functions u satisfying:

• u(x) ≥ 0, ∀x ∈ [α, β], and u(α) = u(β) = u′(α) = 0.

• u admits exactly (k − 1) zero(s), all double, in the open interval (α, β).

• If k > 1, u is ((β − α)/k)− periodic.

• Every hump of u (necessarily positive) is symmetrical about the center of
the interval of its definition.

• The derivative of each hump of u vanishes once and only once.

Let B−k = −B
+
k and Bk = B

+
k ∪B

−
k .

The first result concerns the case λ ≤ 0 and gives the exact number of
solutions to (1).

Theorem 2 (Case λ ≤ 0) There exists a number λ∗ < 0 such that:

(i) If λ < λ∗, problem (1) admits no solution.

(ii) If λ = λ∗, problem (1) admits a unique solution and it belongs to A
+
1 .

(iii) If λ∗ < λ < 0, problem (1) admits exactly two solutions and they belong
to A+1 .
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(iv) If λ = 0, beside the trivial solution, problem (1) admits a unique solution
and it belongs to A+1 .

The second result concerns the case λ > 0.

Theorem 3 (Case λ > 0) For any p > 1 there exist two real numbers J(p) >
J+(p) > 0 and for all p > 2 there exists a positive real number J−(p) < J(p)
such that for all integer n ≥ 1:

(i) Problem (1) admits a solution in B+n if and only if λ = (2nJ(p))
p2 , and in

this case, the solution is unique.

(ii) Problem (1) admits no solution in
⋃
n≥1
B−n .

(iii) Problem (1) (with λ > 0) admits a solution in A+1 if and only if 0 < λ <

(2J(p))p
2

, and in this case, the solution is unique.

(iv) Problem (1) admits a solution in A−1 if and only if (1 < p ≤ 2 and λ > 0)

or (p > 2 and 0 < λ < (2J−(p))
p2), and in this case, the solution is

unique.

(v) Problem (1) admits a solution u±2n in A
±
2n provided 1 < p ≤ 2 and λ >

(2nJ(p))p
2

or p > 2 and

inf
{
(2nJ(p))p

2

, (2n(J−(p) + J+(p)))
p2
}

< λ < sup
{
(2nJ(p))p

2

, (2n(J−(p) + J+(p)))
p2
}

(vi) Problem (1) admits a solution in A+2n+1 provided 1 < p ≤ 2 and

λ > (2(n+ 1)J(p))p
2

or p > 2 and

inf
{
(2(n+ 1)J(p))p

2

, (2((n+ 1)J+(p) + nJ−(p)))
p2
}

< λ < sup
{
(2(n+ 1)J(p))p

2

, (2((n+ 1)J+(p) + nJ−(p)))
p2
}

(vii) Problem (1) admits a solution in A−2n+1 provided 1 < p ≤ 2 and λ >

(2nJ(p))p
2

or p > 2 and

inf
{
(2nJ(p))p

2

, (2((n+ 1)J−(p) + nJ+(p)))
p2
}

< λ < sup
{
(2nJ(p))p

2

, (2((n+ 1)J−(p) + nJ+(p)))
p2
}

Remark According to Proposition 5 below, if λ > 0 and p ∈ (1, 2] then
S̃ ⊂ (

⋃
k≥1
Ak) ∪ (

⋃
k≥1
Bk), where S̃ denotes the solution set of problem (1).
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Remark The results obtained in [7], for p = 2, concerning solutions in A2n,
A−2n+1, and A

+
2n+1, are more precise than those stated in Theorem 3, assertions

(v), (vi) and (vii) for p 6= 2. In fact, these assertions do not provide the exact
number of solutions in A2n, A

−
2n+1, and A

+
2n+1. The proof given in [7] uses

strongly the fact that the nonlinearity u 7→ u2−λ is a second degree polynomial
function. We were not able to obtain the same degree of precision.

3 The method used

To obtain our results, we make use of the well known time mapping approach.
See, for instance, Laetsch [12], de Mottoni & Tesei [9], [10], Smoller & Wasser-
man [19], Ammar Khodja [7], Shivaji [18], Guedda & Veron [11], Ubilla [20],
Manásevich et al [15], Addou & Ammar Khodja [1], Addou et al [4], Addou &
BenmezaÏ [2]. To describe this method we denote by g a nonlinearity and by p
a real parameter, and we assume one of the following conditions:

g ∈ C(R,R) and 1 < p < +∞ (7)

g ∈ C(R,R), 1 < p < +∞, and xg(x) > 0, ∀x ∈ R∗ (8)

g is locally Lipschitzian and 1 < p ≤ 2. (9)

One may observe that (8) or (9) implies (7), hence (8) and (9) are more restric-
tive than (7), but they furnish better results as we will see later (see Proposi-
tion 5).
We denote by S(p) the solution set of problem

−(|u′|p−2u′)′ = g(u), in (α, β) (10)

u(α) = u(β) = 0 .

When there is no confusion we write S instead of S(p).
Denote by p′ = p/(p − 1) the conjugate exponent of p. Define G(s) :=∫ s

0
g(t)dt. For any E ≥ 0 and κ = +,−, let

Xκ(E) = {s ∈ R : κs > 0 and Ep − p′G(ξ) > 0, ∀ ξ, 0 < κξ < κs}

and

rκ(E) =

{
0 if Xκ(E) = ∅ ,
κ sup(κXκ(E)) otherwise.

Note that rκ may be infinite. We shall also make use of the following sets:

Dκ = {E ≥ 0 : 0 < |rκ(E)| < +∞ and κg(rκ(E)) > 0}

and D = D+ ∩D−. Define the following time-maps:

Tκ(E) = κ
∫ rκ(E)
0 (Ep − p′G(t))−1/pdt, E ∈ Dκ .

T2n(E) = n(T+(E) + T−(E)), n ∈ N, E ∈ D ,

T κ2n+1(E) = T2n(E) + Tκ(E), n ∈ N, E ∈ D .
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Theorem 4 (Quadrature method) Assume that (7) holds. Let E ≥ 0, κ =
+,−. Then

1. Problem (10) admits a solution uκ ∈ Aκ1 satisfying u
′
κ(α) = κE if and

only if E ∈ Dκ ∩ (0,+∞) and Tκ(E) = (β − α)/2, and in this case the
solution is unique.

2. Problem (10) admits a solution uκ ∈ Aκ2n (n 6= 0) satisfying u
′
κ(α) = κE

if and only if E ∈ D ∩ (0,+∞) and T2n(E) = (β − α)/2, and in this case
the solution is unique.

3. Problem (10) admits a solution uκ ∈ Aκ2n+1 (n 6= 0) satisfying u
′
κ(α) = κE

if and only if E ∈ D ∩ (0,+∞) and T κ2n+1(E) = (β − α)/2, and in this
case the solution is unique.

4. Problem (10) admits a solution uκ ∈ Bκn (n 6= 0) if and only if 0 ∈ Dκ
and nTκ(0) = (β − α)/2, and in this case the solution is unique.

One may observe that this result does not give information about solutions
to (10) outside

⋃
k≥1
(Ak ∪ Bk). The following proposition gives some useful in-

formation.

Proposition 5 If (8) holds then S ⊂ {0} ∪ (
⋃
k≥1
Ak). If (9) holds then

(i) g(0) = 0 implies S ⊂ {0} ∪ (
⋃
k≥1
Ak),

(ii) g(0) 6= 0 implies S ⊂ (
⋃
k≥1
Ak) ∪ (

⋃
k≥1
Bk).

Theorem 4 and Proposition 5 are certainly well known, but we did not find
a convenient reference to the precise statements used later.

4 Proof of Theorem 2

Since λ ≤ 0, any solution to (1) is positive. In fact, if u is a solution to (1) then

u′(x) = ϕp′(ϕp(u
′(x))), ∀x ∈ (0, 1) .

Since x 7→ ϕp(u′(x)) is decreasing (from (ϕp(u′))′(x) = −|u(x)|p + λ, for all
x ∈ (0, 1) and λ ≤ 0) and ϕp′ is increasing, it follows that u′ is decreasing. This
shows that u is concave, and since u(0) = u(1) = 0 it follows that u is positive.
Moreover, the nonlinear term f(λ, u) = |u|p−λ satisfies (8) so, from Propo-

sition 5, it follows that any nontrivial solution is necessarily in A+1 . Hence, we
have only to define the time map T+. In order to do this, we need the following
technical lemma.
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Lemma 6 Consider the equation in s ∈ R:

Ep − p′F (λ, s) = 0 , (11)

where p > 1, λ ≤ 0 and E ≥ 0 are real parameters and F (λ, s) =
∫ s
0
f(λ, t)dt.

Then for any E > 0, (resp. E = 0) equation (11) admits a unique positive zero
s+ = s+(p, λ,E) (resp. a unique zero s+ = s+(p, λ, 0) = 0). Moreover:

(a) The function E 7−→ s+(p, λ,E) is C1 in (0,+∞) and

∂s+

∂E
(p, λ,E) =

(p− 1)Ep−1

f(λ, s+(p, λ,E))
> 0

for all p > 1, all λ ≤ 0, and all E > 0.

(b) lim
E→0+

s+(p, λ,E) = 0.

(c) lim
E→+∞

s+(p, λ,E) = +∞.

Proof. For a fixed p > 1, λ ≤ 0 and E ≥ 0, consider the function

s 7−→M(p, λ,E, s) := Ep − p′F (λ, s) = Ep − p′s(
|s|p

p+ 1
− λ) ,

defined in R, which is strictly decreasing and such that

M(p, λ,E, 0) = Ep ≥ 0 , and lim
s→+∞

M(s) = −∞ .

It is clear that (11) admits, for any E > 0, a unique positive zero, s+ =
s+(p, λ,E); and if E = 0, it admits a unique zero s+ = 0.
Now, for any p > 1 and λ ≤ 0, consider the real-valued function

(E, s) 7−→M+(E, s) := E
p − p′s(

sp

p+ 1
− λ)

defined on Ω+ = (0,+∞)2. One has M+ ∈ C1(Ω+) and

∂M+

∂s
(E, s) = −p′f(λ, s) = −p′(|s|p − λ) in Ω+,

hence
∂M+

∂s
(E, s) < 0 in Ω+

and one may observe that s+(p, λ,E) belongs to the open interval (0,+∞) and
satisfies from its definition

M+(E, s+(p, λ,E)) = 0 . (12)

So, one can make use of the implicit function theorem to show that the func-
tion E 7−→ s+(p, λ,E) is C

1((0,+∞),R) and to obtain the expression for
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∂s+
∂E
(p, λ,E) given in (a). Hence, for any fixed p > 1 and λ ≤ 0, the func-

tion defined in (0,+∞) by E 7−→ s+(p, λ,E) is strictly increasing and bounded
from below by 0 and from above by +∞. Thus the limit lim

E→0+
s+(p, λ,E) = l

+
0

exists as a real number and the limit lim
E→+∞

s+(p, λ,E) = l+∞ exists and belongs

to (0,+∞]. Moreover
0 ≤ l+0 < l+∞ ≤ +∞ .

One may observe that, for any fixed p > 1 and λ ≤ 0, the function (E, s) 7−→
M+(E, s) is continuous in [0,+∞)2 and the function E 7−→ s+(p, λ,E) is con-
tinuous in (0,+∞) and satisfies (12). So, by passing to the limit in (12) as E
tends to 0+ one gets:

0 = lim
E→0+

M+(E, s+(p, λ,E)) =M+(0, l
+
0 ).

Hence, l+0 is a zero, belonging to [0,+∞), of the equation in s: M+(0, s) = 0.
By resolving this equation in [0,+∞) one gets: l+0 = 0. The assertion (b) is
proved.
Assume that l+∞ < +∞ then by passing to the limit in (12) as E tends to

+∞ one gets:

+∞ = p′l+∞(
(l+∞)

p

p+ 1
− λ) < +∞,

which is impossible. So, l+∞ = +∞. Therefore, Lemma 6 is proved. ♦

Now we are ready to compute X+(p, λ,E) as defined in Section 3, for any
p > 1, λ ≤ 0 and E ≥ 0. In fact, X+(p, λ,E) = (0, s+(p, λ,E)) if E > 0 and
X+(p, λ, 0) = ∅. Thus

r+(p, λ,E) := supX+(p, λ,E) = s+(p, λ,E) if E > 0 and r+(p, λ, 0) = 0 ,

and since f(λ, s) = |s|p − λ > 0, ∀(λ, s) ∈ (−∞, 0]×R, (λ, s) 6= (0, 0), it follows
that

D+ := {E ≥ 0 : 0 < r+(p, λ,E) < +∞ and f(λ, r+(p, λ,E)) > 0}
= (0,+∞) .

Before going further in the investigation, we deduce from Lemma 6 the following:

lim
E→0+

r+(p, λ,E) = 0 and lim
E→+∞

r+(p, λ,E) = +∞ , (13)

∂r+
∂E
(p, λ,E) = (p−1)Ep−1

f(λ,r+(p,λ,E))
> 0, ∀E ∈ D+ = (0,+∞) ∀λ ≤ 0 . (14)

We define, for any p > 1, λ ≤ 0, and E ∈ D+ = (0,+∞) the time map

T+(p, λ,E) :=

∫ r+(p,λ,E)
0

{Ep − p′F (λ, ξ)}
−1/p

dξ, E ∈ D+ (15)

and a simple change of variables shows that

T+(p, λ,E) = r+(p, λ,E)

∫ 1
0

{Ep − p′F (λ, r+(p, λ,E)ξ)}
−1/p

dξ. (16)
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Observe that from the definition of s+(p, λ,E) one has

Ep − p′F (λ, s+(p, λ,E)) = 0

and so, from the definition of r+(p, λ,E), one has E
p = p′F (λ, r+(p, λ,E)). So,

(16) may be written as

T+(p, λ,E) (17)

= r+(p, λ,E)(p
′)−1/p

∫ 1
0

{F (λ, r+(p, λ,E))− F (λ, r+(p, λ,E)ξ)}
−1/p

dξ .

After some rearrangements one has

T+(p, λ,E) (18)

= r
1− 1p
+ (p, λ,E)(p′)−1/p

∫ 1
0

{
rp+(p, λ,E)(1 − ξ

p+1)

p+ 1
− λ(1− ξ)

}−1/p
dξ .

Lemma 7 If λ ≤ 0 then one has

(i) lim
E→0+

T+(p, λ,E) = 0, if λ < 0 and lim
E→0+

T+(p, 0, E) = +∞,

(ii) lim
E→+∞

T+(p, λ,E) = 0, ∀λ ≤ 0,

(iii) If λ < 0, T+(p, λ, ·) admits a unique critical point, E∗(λ), at which it
attains its global maximum value. Moreover,

(a) The function λ 7→ T+(p, λ,E∗(λ)) is strictly increasing in (−∞, 0).

(b) lim
λ→−∞

T+(p, λ,E
∗(λ)) = 0.

(c) lim
λ→0−

T+(p, λ,E
∗(λ)) = +∞.

(iv) If λ = 0, (∂T+/∂E)(p, 0, ·) < 0 in (0,+∞).

Proof. (i) If λ < 0, from (18) one has

0 ≤ T+(p, λ,E) ≤ r
1− 1p
+ (p, λ,E)(p′)−

1
p

∫ 1
0

{−λ(1− ξ)}−1/p dξ .

So, by passing to the limit as E tends to 0, one gets

0 ≤ lim
E→0
T+(p, λ,E) ≤ lim

E→0
r
1− 1p
+ (p, λ,E)(p′)−1/p

∫ 1
0

{−λ(1− ξ)}−1/p dξ = 0 .

If λ = 0, then from (18) one gets

T+(p, 0, E) = (p
′)−1/pr

−1/p
+ (p, 0, E)

∫ 1
0

(
1− ξp+1

p+ 1
)−1/p dξ,
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and from (13) one gets lim
E→0+

T+(p, 0, E) = +∞.

(ii) From (18) one has for any λ ≤ 0,

0 ≤ T+(p, λ,E) ≤ r
−1/p
+ (p, λ,E)(p′)−

1
p

∫ 1
0

{
1− ξp+1

p+ 1

}−1/p
dξ.

So, by passing to the limit as E tends to +∞, one gets

0 ≤ lim
E→+∞

T+(p, λ,E)

≤ lim
E→+∞

r
−1/p
+ (p, λ,E)(p′)−1/p

∫ 1
0

{
1− ξp+1

p+ 1

}−1/p
dξ = 0 .

(iii) If λ < 0, then from (i) and (ii) one deduces that T+(p, λ, ·) admits at least
one critical point. Here, we are going to prove its uniqueness. From (17), one
may observe that

T+(p, λ,E) = (p
′)−

1
pS(p, λ, ρ(p, λ,E))

where ρ(p, λ,E) = r+(p, λ,E) and

S(p, λ, ρ) =

∫ ρ
0

{F (p, λ, ρ)− F (p, λ, ξ)}−
1
p dξ .

On the other hand, observe that for each fixed λ < 0 the function E 7→ ρ(p, λ,E)
is an increasing C1-diffeomorphism from (0,+∞) onto itself (Lemma 6, asser-
tions (a), (b) and (c)), and

∂T+

∂E
(p, λ,E) = (p′)−1/p ×

∂S

∂ρ
(p, λ, ρ(p, λ,E))×

∂ρ

∂E
(p, λ,E). (19)

So, to study the variations of E 7→ T+(p, λ,E) it suffices to study those of
ρ 7→ S(p, λ, ρ). That is, S(p, λ, ·) attains a local maximum (resp. minimum)
value at ρ∗ iff T+(p, λ, ·) does so at ρ

−1
p,λ(ρ∗), where ρ

−1
p,λ is the function inverse

to ρ(p, λ, ·). From (i) and (ii), it follows that lim
ρ→0
S(ρ) = lim

ρ→+∞
S(ρ) = 0, that

is, S admits at least a maximum value. To prove uniqueness, we first find a
priori estimates on the critical points of S(p, λ, ·). That is, for each λ < 0, we
look for a compact interval J(λ) which contains all possible critical points of
S(p, λ, ·). Next, we prove that S(p, λ, ·) is concave in J(λ).
One has

∂S

∂ρ
(p, λ, ρ) =

∫ ρ
0

H(p, λ, ρ)−H(p, λ, u)

pρ(F (p, λ, ρ)− F (p, λ, u))
p+1
p

du (20)

where H(p, λ, u) = pF (p, λ, u) − uf(p, λ, u) = −up+1

p+1 − λ(p − 1)u, ∀u > 0.

The variations of u 7→ H(p, λ, u) can be described as follows. H(p, λ, ·) is
strictly increasing in (0, ρ1(p, λ)) and strictly decreasing in (ρ1(p, λ),+∞) where
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ρ1(p, λ) = (−λ(p − 1))1/p. Moreover, H(p, λ, 0) = H(p, λ, ρ2(p, λ)) = 0 where
ρ2(p, λ) = (−λ(p2 − 1))1/p > ρ1(p, λ). So, it follows that:

∂S

∂ρ
(p, λ, ρ) > 0, ∀ρ ∈ (0, ρ1(p, λ))

and
∂S

∂ρ
(p, λ, ρ) < 0, ∀ρ ∈ (ρ2(p, λ),+∞).

That is, we get the a priori estimates as follows : ∀p > 1, ∀λ < 0, ∀ρ∗ > 0,

∂S

∂ρ
(p, λ, ρ∗) = 0 =⇒ ρ∗ ∈ J(λ) := [ρ1(p, λ), ρ2(p, λ)].

Easy computations show that for any ρ > 0 and λ < 0, one has

∂2S

∂ρ2
(p, λ, ρ) =

∫ 1
0

(p+ 1)(H(p, λ, ρ)−H(p, λ, ρξ))2

p2ρ(F (p, λ, ρ)− F (p, λ, ρξ))
2p+1
p

dξ

+

∫ 1
0

p(Ψ(p, λ, ρ)−Ψ(p, λ, ρξ))(F (p, λ, ρ) − F (p, λ, ρξ))

p2ρ(F (p, λ, ρ)− F (p, λ, ρξ))
2p+1
p

dξ ,

where

Ψ(p, λ, u) = −p(p+ 1)F (p, λ, u) + 2puf(p, λ, u)− u2f ′u(p, λ, u)

= λp(p− 1)u, ∀u > 0 .

After some substitutions one gets

∂2S

∂ρ2
(p, λ, ρ) =

∫ 1
0

ρ(1− ξ)2P (X(ξ))

p2(F (p, λ, ρ)− F (p, λ, ρξ))
2p+1
p

dξ ,

where

X(ξ) =

{
p+ 1 if ξ = 1
1−ξp+1

1−ξ if ξ ∈ [0, 1)

and P is the polynomial function

P (X) = (
ρ2p

p+ 1
)X2 +

(p− 1)(p2 + 2p+ 2)

(p+ 1)
λρpX − (p− 1)λ2.

An easily checked fact is that X(ξ) ∈ [1, p + 1], for all ξ ∈ [0, 1]. In fact, the
function ξ 7→ h(ξ) := ξp+1 is convex in (0,+∞), and

X(ξ) =
h(1)− h(ξ)

1− ξ
≤ h′(1) = p+ 1 , ∀ξ ∈ (0, 1) .

So, we are interested in the sign of P (X) when X ∈ [1, p+1]. First, its discrim-
inant is ∆ = (µ(p)/(p+ 1)2)λ2ρ2p > 0, where

µ(p) = (p− 1)2(p2 + 2p+ 2)2 + 4(p2 − 1) ,
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and its roots are, for each λ < 0 and ρ > 0,

X1(p, λ, ρ) =
λ

2ρp
(
√
µ(p)− (p− 1)(p2 + 2p+ 2)) < 0 ,

X2(p, λ, ρ) =
−λ

2ρp
(
√
µ(p) + (p− 1)(p2 + 2p+ 2)) > 0 .

It can be verified that ρ 7→ X2(p, λ, ρ) is decreasing in (0,+∞) and one can
deduce, from H(p, λ, ρ2(p, λ)) = 0, that

X2(p, λ, ρ2(p, λ)) =

√
µ(p) + (p− 1)(p2 + 2p+ 2)

2(p2 − 1)
, ∀λ < 0 .

Hence, one can deduce that X2(p, λ, ρ2(p, λ)) > p+ 1. (In fact, to prove this it
suffices to show that√

µ(p) + (p− 1)(p2 + 2p+ 2) > 2(p+ 1)(p2 − 1)

which is equivalent to proving that µ(p) > (p(p− 1)(p+ 2))2, and this is (after
some simple computations) equivalent to 4(p + 1)p2 > 0 which is true since
p > 1). Then

[1, p+ 1] ⊂ (X1(p, λ, ρ), X2(p, λ, ρ)) : ∀λ < 0, ∀ρ ∈ [ρ1(p, λ), ρ2(p, λ)],

hence, P (X(ξ)) < 0 , for all ξ ∈ [0, 1], so,

∂2S

∂ρ2
(p, λ, ρ) < 0 ∀λ < 0, ∀ρ ∈ J(λ) := [ρ1(p, λ), ρ2(p, λ)] ,

which proves the uniqueness of the critical point of S(p, λ, ·) and of T+(p, λ, ·).
(a) Some easy computations show that

∂T+

∂E
(p, λ,E) (21)

= (p′)−1/p
∂r+

∂E
(p, λ,E)

∫ r+(p,λ,E)
0

H(p, λ, r+)−H(p, λ, ξ)

pr+(F (p, λ, r+)− F (p, λ, ξ))
p+1
p

dξ ,

and that

∂T+

∂λ
(p, λ,E) (22)

= (p′)−1/p
∂r+

∂λ
(p, λ,E)

∫ r+(p,λ,E)
0

H(p, λ, r+)−H(p, λ, ξ)

pr+(F (p, λ, r+)− F (p, λ, ξ))
p+1
p

dξ

+(p′)−
1
p

∫ r+(p,λ,E)
0

r+(p, λ,E)− ξ

p(F (p, λ, r+)− F (p, λ, ξ))
p+1
p

dξ ,
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and then combining (21) and (22) one gets

−
∂r+

∂λ

∂T+

∂E
+
∂r+

∂E

∂T+

∂λ

= (p′)−1/p
∂r+

∂E
(p, λ,E)

∫ r+(p,λ,E)
0

r+(p, λ,E)− ξ

p(F (p, λ, r+)− F (p, λ, ξ))
p+1
p

dξ ,

so,

−
∂r+

∂λ

∂T+

∂E
+
∂r+

∂E

∂T+

∂λ
> 0, ∀E > 0 , λ < 0 . (23)

Since, (∂T+/∂E)(p, λ,E
∗(λ)) = 0, using (23) and (14) one gets:

∂T+

∂λ
(p, λ,E∗(λ)) > 0, ∀λ < 0 .

(b) Since H(p, λ, ·) is strictly increasing on (0, ρ1(p, λ)),

∂T+

∂E
(p, λ,E) > 0, ∀E ∈ (0, E1(p, λ))

where E1(p, λ) := (p
′F (p, λ, ρ1(p, λ)))

1/p. Since (∂T+/∂E)(p, λ,E
∗(λ)) = 0, it

follows that E∗(λ) ≥ E1(λ), and since

F (r+(E
∗(λ))) =

(E∗)p(λ)

p′
≥
Ep1 (p, λ)

p′
= F (ρ1(p, λ))

and F is continuous and strictly increasing (λ < 0), it follows that

r+(p, λ,E
∗(λ)) ≥ ρ1(p, λ) = r+(p, λ,E1(p, λ)).

One has from (18),

T+(p, λ,E
∗(λ)) ≤ (p′)−1/pr

−1/p
+ (p, λ,E∗(λ))

∫ 1
0

(
1− ξp+1

p+ 1
)−1/pdξ

≤ (p′)−1/p {ρ1(p, λ)}
−1/p

∫ 1
0

(
1− ξp+1

p+ 1
)−1/p dξ

and by passing to the limit as λ tends to −∞, one gets

0 ≤ lim
λ→−∞

T+(p, λ,E
∗(λ))

≤ (p′)−1/p
∫ 1
0

(
1 − ξp+1

p+ 1
)−1/pdξ lim

λ→−∞
{−λ(p− 1)}−1/p

2

= 0 .

(c) For each λ < 0, one has

T+(p, λ,E
∗(λ)) = sup

E>0
T+(p, λ,E) ≥ T+(p, λ,E1(λ))
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and from (18) and the fact ρ1(p, λ) = r+(p, λ,E1(p, λ)) one has

T+(p, λ,E1(λ))

= (−λ)−1/p
2

(p′)−1/p(p− 1)
p−1

p2

∫ 1
0

{
p− 1

p+ 1
(1− ξp+1) + (1 − ξ)

}−1/p
dξ .

So,
lim
λ→0−

T+(p, λ,E
∗(λ)) ≥ lim

λ→0−
T+(p, λ,E1(λ)) = +∞ .

(iv) If λ = 0, the function ρ 7→ S(p, λ, ρ) decreases strictly on (0,+∞),
since the function u 7→ H(p, 0, u) := −up+1/(p + 1) does so in (0,+∞) (see
(20)). Then, from (19) and (14) it follows that (∂T+/∂E)(p, 0, ·) < 0 in (0,+∞).
Therefore, Lemma 7 is proved. ♦

Completion of the proof of Theorem 2. The proof is an easy consequence
of the previous lemmas. In fact, there exists a unique λ∗ < 0 which satisfies
T+(p, λ

∗, E∗(λ∗)) = 1
2 , and the function λ 7→ T+(p, λ,E

∗(λ)) is strictly increas-
ing in (−∞, 0). So, if λ < λ∗, for any E > 0 and λ < 0,

T+(p, λ,E) ≤ sup
E>0
T+(p, λ,E) = T+(p, λ,E

∗(λ)) < T+(p, λ
∗, E∗(λ∗)) =

1

2
.

Thus equation T+(p, λ,E) =
1
2 admits no solution. If λ = λ

∗, E∗(λ∗) is the
unique solution of the equation T+(p, λ

∗, E) = 1
2 . So, problem (1) admits

a unique positive solution and this one is in A+1 . Finally, if 0 > λ > λ
∗,

then T+(p, λ,E
∗(λ)) > T+(p, λ

∗, E∗(λ∗)) = 1
2 . So, equation T+(p, λ,E) =

1
2

admits exactly two solutions and then problem (1) admits exactly two pos-
itive solutions in A+1 . If λ = 0, T+(p, 0, ·) is strictly decreasing in (0,+∞)
and limE→0+ T+(p, 0, E) = +∞ and limE→+∞ T+(p, 0, E) = 0. So, equation
T+(p, 0, E) = (1/2) admits a unique solution in (0,+∞). Thus, Theorem 2 is
proved. ♦

5 Proof of Theorem 3

As for the proof of Theorem 2, we begin this section by some preliminary lem-
mas. In order to define the time-maps we need as usual the following technical
lemma.

Lemma 8 Consider the equation in the variable s ∈ R∗,

Ep − p′F (λ, s) = 0 (24)

where p > 1, λ > 0 and E ≥ 0 are real parameters. First, if E = 0, equation
(24) admits a unique positive zero s+ = s+(p, λ, 0) and a unique negative zero
s− = s−(p, λ, 0) such that |s±| = (λ(p + 1))1/p. Moreover, for any E > 0,
equation ( 24) admits a unique positive zero s+ = s+(p, λ,E) and this zero
belongs to the open interval ((λ(p + 1))1/p,+∞). On the other hand,



16 Boundary-value problems EJDE–1999/09

(i) If E > E∗(p, λ) := ((
pp′
p+1 )λ

1+ 1p )1/p, equation (24) admits no negative zero.

(ii) If E = E∗(p, λ), equation (24) admits a unique negative zero
s− = s−(p, λ) = −λ1/p.

(iii) If 0 < E < E∗(p, λ), equation (24) admits, in the open interval (−λ1/p, 0),
a unique zero s− = s−(p, λ,E).

Moreover,

(a) The function E 7−→ s±(p, λ,E) is C1 in (0,+∞) (resp. (0, E∗(p, λ))) and

±
∂s±

∂E
(p, λ,E) =

±(p− 1)Ep−1

f(λ, s±(p, λ,E))
> 0 ,

for all p > 1, for all λ > 0, and for all E > 0. (resp. for all E ∈
(0, E∗(p, λ))).

(b) lim
E→0+

s+(p, λ,E) = ((p+ 1)λ)
1/p and lim

E→0+
s−(p, λ,E) = 0.

(c) lim
E→+∞

s+(p, λ,E) = +∞ and lim
E→E∗

s−(p, λ,E) = −λ1/p.

Proof. For a fixed p > 1, λ > 0 and E ≥ 0, consider the function

s 7−→ N(p, λ,E, s) := Ep − p′F (λ, s) = Ep − p′s(
|s|p

p+ 1
− λ),

defined in R. From a study of its variations, it is clear that equation (24) admits,
if E = 0, a unique positive zero s+ and a unique negative zero s−. Their values
are obtained by simple resolution of equation (24). Moreover, for any E > 0,
equation (24) admits a unique positive zero, s+ = s+(p, λ,E), and this zero
belongs to the open interval ((λ(p+ 1))1/p,+∞) (since

N(p, λ,E, (λ(p+ 1))
1
p ) = N(p, λ,E, 0) = Ep > 0).

Also, the assertions (i) (ii) and (iii) follow readily from the variations of
N(p, λ,E, ·).
Now, for any p > 1 and λ > 0, consider the real-valued function

(E, s) 7−→ N±(E, s) = E
p − p′s(

(±s)p

p+ 1
− λ)

defined on Ω+ = (0,+∞) × ((λ(p + 1))1/p,+∞) (resp. Ω− = (0, E∗(p, λ)) ×
(−λ1/p, 0)). One has N± ∈ C1(Ω±) and

∂N±

∂s
(E, s) = −p′f(λ, s) = −p′(|s|p − λ) in Ω±,

hence

∓
∂N±

∂s
(E, s) > 0 in Ω±
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and one may observe that s±(p, λ,E) belongs to the open interval ((λ(p +
1))1/p,+∞) (resp. (−λ1/p, 0)) and satisfies (from its definition)

N±(E, s±(p, λ,E)) = 0. (25)

So, one can make use of the implicit function theorem to show that the function
E 7−→ s±(p, λ,E) is C1((0,+∞),R) (resp. C1((0, E∗(p, λ)),R)) and to obtain

the expression of ∂s±
∂E
(p, λ,E) given in (a). Hence, for any fixed p > 1 and

λ > 0, the function defined in (0,+∞) (resp. (0, E∗(p, λ))) by E 7−→ s±(p, λ,E)
is strictly increasing (resp. decreasing) and bounded from below by (λ(p +
1))1/p (resp. −λ1/p ) and from above by +∞ (resp. by 0). Then, the limit
lim
E→0+

s±(p, λ,E) = l
±
0 exists as a real number and the limit lim

E→+∞
s+(p, λ,E) =

l+∞ (resp. lim
E→E∗

s−(p, λ,E) = l∗) exists and belongs to ((λ(p + 1))
1/p,+∞]

(resp. [−λ1/p, 0]). Moreover

−∞ < −λ1/p ≤ l∗ < l
−
0 ≤ 0 < (λ(p+ 1))

1/p ≤ l+0 < l+∞ ≤ +∞ .

One may observe that, for any fixed p > 1 and λ > 0, the function

(E, s) 7−→ N±(E, s)

is continuous in [0,+∞)× [(λ(p+1))1/p,+∞) (resp. [0, E∗(p, λ)]×(−∞, 0]) and
the function E 7−→ s±(p, λ,E) is continuous in (0,+∞) (resp. (0, E∗(p, λ))) and
satisfies (25)±. So, by passing to the limit in (25)± as E tends to 0

+ one gets

0 = lim
E→0+

N±(E, s±(p, λ,E)) = N±(0, l
±
0 ).

Hence, l±0 is a zero, belonging to [(λ(p + 1))
1/p,+∞) (resp. [−λ1/p, 0]), to the

equation in the variable s:

N±(0, s) = 0.

By resolving this equation in the indicated interval one gets : l+0 = ((p+1)λ)
1/p

(resp. l−0 = 0). The assertion (b) is proved.
Assume that l+∞ < +∞. Then by passing to the limit in (25)+ as E tends

to +∞ one gets

+∞ = p′l+∞(
(l+∞)

p

p+ 1
− λ) < +∞,

which is impossible. So, l+∞ = +∞.
To prove that l∗ = −λ1/p, it suffices to pass to the limit in (25)− as E tends

to E∗(p, λ) to get

N−(E∗(p, λ), l∗) = 0

and to resolve this equation in [−λ1/p, 0]. (To this end, one may observe that
the function s 7−→ N−(E∗(p, λ), s) is strictly increasing in [−λ1/p, 0] and

N−(E∗(p, λ),−λ
1/p) = 0).
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Therefore, Lemma 8 is proved. ♦

Now we are ready to compute X±(p, λ,E) as defined in Section 3, for any
p > 1, λ > 0 and E ≥ 0. In fact, X+(p, λ,E) = (0, s+(p, λ,E)) and

X−(p, λ,E) =

{
(−∞, 0) if E > E∗(p, λ)

(s−(p, λ,E), 0) if 0 ≤ E ≤ E∗(p, λ) ,

where s±(p, λ,E) is defined in Lemma 8. Then

r+(p, λ,E) := supX+(p, λ,E) = s+(p, λ,E)

and

r−(p, λ,E) := infX−(p, λ,E) =

{
−∞ if E > E∗(p, λ)

s−(p, λ,E) if 0 ≤ E ≤ E∗(p, λ).

Recall that for any E ≥ 0, s+(p, λ,E) belongs to [(λ(p+ 1))
1
p ,+∞). Thus

0 < r+(p, λ,E) < +∞ if and only if E > 0 .

Also recall that, for any 0 < E ≤ E∗(p, λ), s−(p, λ,E) belongs to [−λ1/p, 0) and
s−(p, λ, 0) = −((p+ 1)λ)1/p, so

−∞ < r−(p, λ,E) < 0 if and only if 0 ≤ E ≤ E∗(p, λ) .

One may observe thatf(λ, r+(p, λ,E)) = r
p
+(p, λ,E)− λ > 0, ∀E ≥ 0 and

f(λ, r−(p, λ,E)) = (−r−(p, λ,E))
p − λ < 0↔ E ∈ (0, E∗(p, λ)),

so that

D+ := {E ≥ 0 | 0 < r+(p, λ,E) < +∞ and f(λ, r+(p, λ,E)) > 0} = [0,+∞).

and

D− := {E ≥ 0 | −∞ < r−(p, λ,E) < 0 and f(λ, r−(p, λ,E)) < 0} = (0, E∗(p, λ)).

So, D := D+ ∩D− = (0, E∗(p, λ)).
Before going further in the investigation, we deduce from Lemma 8 that

lim
E→0+

r+(p, λ,E) = ((p+ 1)λ)
1/p and lim

E→0+
r−(p, λ,E) = 0, (26)

lim
E→+∞

r+(p, λ,E) = +∞ and lim
E→E∗

r−(p, λ,E) = −λ
1/p, (27)

∂r±

∂E
(p, λ,E) =

(p− 1)Ep−1

f(λ, r±(p, λ,E))
, ∀E ∈ int(D±), (28)

±
∂r±

∂E
(p, λ,E) > 0, ∀E ∈ int(D±) . (29)
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At present, we define, for any p > 1, λ > 0, and E ∈ D±, the time map

T±(p, λ,E) := ±

∫ r±(p,λ,E)
0

{Ep − p′F (λ, ξ)}
−1/p

dξ, E ∈ D±, (30)

and a simple change of variables shows that

T±(p, λ,E) = ±r±(p, λ,E)

∫ 1
0

{Ep − p′F (λ, r±(p, λ,E)ξ)}
−1/p

dξ . (31)

Observe that from the definition of s±(p, λ,E) one hasE
p−p′F (λ, s±(p, λ,E)) =

0, and so, from the definition of r±(p, λ,E), one has E
p = p′F (λ, r±(p, λ,E)).

So, (31) may be written as

T±(p, λ,E) = ±r±(p, λ,E)(p
′)−1/p × (32)∫ 1

0

{F (λ, r±(p, λ,E)) − F (λ, r±(p, λ,E)ξ)}
−1/p

dξ .

After some substitutions one has

T+(p, λ,E) = (r+(p, λ,E))
−1/p(p′)−1/p × (33)∫ 1

0

{
1− ξp+1

p+ 1
− λ

1− ξ

(r+(p, λ,E))p

}−1/p
dξ, E ∈ D+

and

T−(p, λ,E) = (−r−(p, λ,E))
1− 1p (p′)−1/p × (34)∫ 1

0

{
λ(1− ξ)−

(−r−(p, λ,E))p

p+ 1
(1− ξp+1)

}−1/p
dξ, E ∈ D− .

Also, we define for any E ∈ D = D+ ∩D− and n ∈ N the time maps:

T2n(p, λ,E) := n(T+(p, λ,E) + T−(p, λ,E)), E ∈ D, (35)

T±2n+1(p, λ,E) := T2n(p, λ,E) + T±(p, λ,E), E ∈ D . (36)

The limits of these time maps are the aim of the following lemmas.

Lemma 9 For any p > 1 and λ > 0, one has T+(p, λ,E∗(p, λ)) = λ
−1/p2 ×

J+(p), where

J+(p) := (p
′)−1/p(p+ 1)1/pθ(p)×

∫ 1
0

{
p− (θ(p)ξ)p+1 + (p+ 1)θ(p)ξ

}−1/p
dξ

and θ(p) > (p+ 1)1/p is the unique positive zero of the equation

θp+1 − (p+ 1)θ − p = 0 . (37)
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Lemma 10 For any p > 1 and λ > 0, let

J(p) :=
1

p
(p′)−1/p(p+ 1)

p−1

p2 ·
Γ(p−1

p2
)Γ(p−1

p
)

Γ( (p−1)(p+1)
p2

)

and

J−(p) := (p
′)−1/p(p+ 1)1/p

∫ 1
0

{
p− (p+ 1)ξ + ξp+1

}−1/p
dξ.

Then one has:

J−(p) < +∞↔ p > 2, (38)

(i) lim
E→0+

T+(p, λ,E) = J(p)λ
−1/p2 , (ii) lim

E→0+
T−(p, λ,E) = 0,

(iii) lim
E→+∞

T+(p, λ,E) = 0, (iv) lim
E→E∗

T−(p, λ,E) = J−(p)λ
−1/p2 .

Lemma 11 For any p > 1 and λ > 0, one has

(a) lim
E→0+

T2n(p, λ,E) = nJ(p)λ
−1/p2

(b) lim
E→0+

T+2n+1(p, λ,E) = (n+ 1)J(p)λ
−1/p2 ,

(c) lim
E→0+

T−2n+1(p, λ,E) = nJ(p)λ
−1/p2 ,

(d) lim
E→E∗

T2n(p, λ,E) = n(J+(p) + J−(p))× λ−1/p
2

,

(e) lim
E→E∗

T+2n+1(p, λ,E) = ((n+ 1)J+(p) + nJ−(p))× λ
−1/p2 ,

(f) lim
E→E∗

T−2n+1(p, λ,E) = (nJ+(p) + (n+ 1)J−(p))× λ
−1/p2 .

Proof of Lemma 9. For any p > 1, let us consider the function Θ defined in
(0,+∞) by Θ(θ) := θp+1 − (p + 1)θ − p. A study of its variations implies that
equation (37) admits a unique zero in (0,+∞), denoted by θ(p), and this zero
belongs to ((p+1)1/p,+∞) (Note that Θ((p+1)1/p) = −p). Furthermore, recall
(Lemma 8) that, for any λ > 0 and E > 0, r+(p, λ,E) is the unique positive

solution of equation (24). In particular, if E = E∗(p, λ) := ((
pp′

p+1 )λ
1+ 1p )1/p then

r+(p, λ,E∗(p, λ)) is the unique positive solution of the following equation in the
variable s :

sp+1 − λ(p+ 1)s− pλ1+
1
p = 0. (39)

Some easy computations show that θ(p)λ1/p is also a positive solution of (39),
and since (39) admits a unique positive solution (which is r+(p, λ,E∗(p, λ))) it
follows that

r+(p, λ,E∗(p, λ)) = θ(p)λ
1/p, ∀p > 1, ∀λ > 0.
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Now, from (33), some simple computations show that T+(p, λ,E∗(p, λ)) =

λ−1/p
2

J+(p) where

J+(p) := (p
′)−1/p(p+ 1)1/pθ(p)

∫ 1
0

(p− (θ(p)ξ)p+1 + (p+ 1)θ(p)ξ)−1/pdξ .

Therefore, Lemma 9 is proved. ♦

Proof of Lemma 10. In order to prove the first assertion we first claim that
there exists ε0 > 0 (sufficiently small) such that for any ξ ∈ (1− ε0, 1),

p(p+ 1)

4
(1− ξ)2 ≤ p− (p+ 1)ξ + ξp+1 ≤ p(p+ 1)(1− ξ)2.

To proof this claim, for any x > 0, let

hx(ξ) := p− (p+ 1)ξ + ξ
p+1 − x(1 − ξ)2, ξ ∈ (0, 1] .

Simple computations lead to

dhx

dξ
(ξ) = 2(1− ξ)(x − (

p+ 1

2
)
1− ξp

1− ξ
), ξ ∈ (0, 1) .

Using l’Hôpital’s rule one gets

lim
ξ→1−

(x− (
p+ 1

2
)
1− ξp

1− ξ
) = (x−

p(p+ 1)

2
).

So, because of continuity properties, there exists ε1 > 0 (resp. ε2 > 0) suffi-
ciently small such that

dhp(p+1)

dξ
(ξ) > 0, ∀ξ ∈ (1 − ε1, 1)

(resp.
dhp(p+1)/4

dξ
(ξ) < 0, ∀ξ ∈ (1 − ε2, 1)).

Notice that hx(1) = 0, ∀x > 0, so that

hp(p+1)(ξ) < 0, ∀ξ ∈ (1− ε0, 1)

(resp. hp(p+1)/4(ξ) > 0, ∀ξ ∈ (1−ε0, 1)) where ε0 = min(ε1, ε2). Then the claim
is proved.

With this claim we are able to prove easily the first assertion of this lemma.
In fact, the integral which appears in the definition of J−(p) may be written as

∫ 1−ε0
0

(p− (p+ 1)ξ + ξp+1)−1/pdξ +

∫ 1
1−ε0

(p− (p+ 1)ξ + ξp+1)−1/pdξ .
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The first integral converges because the integrand function is continuous on the
compact interval [0, 1− ε0]. For the second integral, one has from the claim

A(p)

∫ 1
1−ε0

dξ

(1− ξ)
2
p

≤

∫ 1
1−ε0

(p− (p+ 1)ξ + ξp+1)−1/pdξ ≤ B(p)

∫ 1
1−ε0

dξ

(1− ξ)
2
p

where A(p) = (p(p + 1))−1/p and B(p) = (p(p + 1)/4)−1/p. So, from the well-
known fact ∫ 1

1−ε0

dξ

(1− ξ)
2
p

< +∞↔ p > 2

the first assertion follows.

Proof of (i). One has from (31)

T+(p, λ,E) = r+(p, λ,E)

∫ 1
0

(Ep − p′F (λ, r+(p, λ,E)ξ))
−1/pdξ.

Using (26) one gets:

lim
E→0+

Ep − p′F (λ, r+(p, λ,E)ξ) = −p′F (λ, ((p + 1)λ)1/pξ)

= p′((p+ 1)λ)1/pλξ(1 − ξp),

so, some simple computations yield

lim
E→0+

T+(p, λ,E) = (p+ 1)
p−1
p2 (p′)−1/pλ−1/p

2

∫ 1
0

ξ−1/p(1− ξp)−1/pdξ .

To compute this integral, one can make use of the change of variables x = ξp and
then make use of the relationship between the Euler beta and gamma functions,
see for instance [13, Chap. VII, no 90, example 2, pp. 595-596], to obtain:∫ 1

0

ξ−1/p(1− ξp)−1/pdξ =
1

p

Γ(p−1
p2
)Γ(p−1

p
)

Γ( (p−1)(p+1)
p2

)
.

This completes the proof of (i).

Proof of (ii). Consider the expression for T−(p, λ,E) given by (34). From
(26) one gets

lim
E→0+

∫ 1
0

(λ(1 − ξ)−
(−r−(p, λ,E))p

p+ 1
(1− ξp+1))−1/pdξ

=

∫ 1
0

(λ(1− ξ))−1/pdξ = λ−1/pp′ .

So, from (26) and (34) one gets

lim
E→0+

T−(p, λ,E) = (p
′)−1/p × (0)1−

1
p × λ−1/p × p′ = 0.

This completes the proof of (ii).
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Proof of (iii). Consider the expression for T+(p, λ,E) given by (33). From
(26) one gets

lim
E→+∞

∫ 1
0

(
1− ξp+1

p+ 1
− λ

1− ξ

rp+(p, λ,E)
)−

1
p dξ =

1

(p+ 1)−1/p

∫ 1
0

(1− ξp+1)−1/pdξ,

and this integral may be computed by making use of the change of variables
x = ξp+1 to get

∫ 1
0

(1− ξp+1)−1/pdξ =
1

p+ 1

Γ( 1p+1 )Γ(
p−1
p )

Γ( p−1
p(p+1) )

.

So, from (26) and (33) one gets

lim
E→+∞

T+(p, λ,E) = (p
′)−1/p × 0×

1

(p+ 1)1−
1
p

×
Γ( 1
p+1 )Γ(

p−1
p
)

Γ( p−1p(p+1) )
= 0 .

This completes the proof of (iii).

Proof of (iv). Consider the expression for T−(p, λ,E) given by (32). One has

lim
E→E∗

(F (λ, r−(p, λ,E))− F (λ, r−(p, λ,E)ξ)) = lim
x→−λ1/p

(F (λ, x) − F (λ, xξ))

=
λ1+

1
p

p+ 1
(p− (p+ 1)ξ + ξp+1)

so that

lim
E→E∗

T−(p, λ,E) = λ
1/p×(p′)−1/p×(

λ1+
1
p

p+ 1
)−1/p×

∫ 1
0

(p−(p+1)ξ+ξp+1)−1/pdξ

which is the same as

lim
E→E∗

T−(p, λ,E) = λ
−1/p2×(p′)−1/p×(p+1)1/p×

∫ 1
0

(p−(p+1)ξ+ξp+1)−1/pdξ.

This completes the proof of (iv) and of Lemma 10. ♦

Proof of Lemma 11. This proof is an immediate consequence of the two
preceding lemmas and the definitions (35) and (36) of the time maps T2n, T

±
2n+1.

Lemma 12 For any p > 1, λ > 0, one has:

±
∂T±

∂E
(p, λ,E) < 0, ∀E ∈ D±.
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Proof. From (32) one has

±
∂T±

∂E
(p, λ,E)

= (p′)−1/p
{
∂r±

∂E
(p, λ,E)

∫ 1
0

(F (λ, r±(p, λ,E))− F (λ, r±(p, λ,E)ξ))
−1/pdξ

+r±(p, λ,E)

∫ 1
0

∂

∂E
(F (λ, r±(p, λ,E))− F (λ, r±(p, λ,E)ξ))

−1/pdξ

}

= (p′)−1/p
{
∂r±

∂E
(p, λ,E)

∫ 1
0

(F (λ, r±(p, λ,E))− F (λ, r±(p, λ,E)ξ))

(F (λ, r±(p, λ,E)) − F (λ, r±(p, λ,E)ξ))
1+ 1p
dξ

−
1

p
r±(p, λ,E)

∂r±

∂E
(p, λ,E)×∫ 1

0

f(λ, r±(p, λ,E))− f(λ, r±(p, λ,E)ξ)ξ

(F (λ, r±(p, λ,E))− F (λ, r±(p, λ,E)ξ))
1+ 1p
dξ

}

so that

±
∂T±

∂E
(p, λ,E) =

1

p
(p′)−1/p(

±∂r±
∂E

(p, λ,E))× (40)∫ 1
0

±(H(λ, r±(p, λ,E)) −H(λ, r±(p, λ,E)ξ))

(F (λ, r±(p, λ,E))− F (λ, r±(p, λ,E)ξ))
1+ 1p
dξ

where H(λ, x) = pF (λ, x) − xf(λ, x) = −1
p+1 |x|

px − (p − 1)λx. Because the

function x 7→ H(λ, x) is decreasing for each fixed λ > 0 (in fact, ∂H∂x (λ, x) < 0),
it follows that

±(H(λ, r±(p, λ,E))−H(λ, r±(p, λ,E)ξ)) < 0, ∀λ > 0, ∀ξ ∈ (0, 1).

Hence, the integral in (40) is negative. So, because of (29), the proof of
Lemma 12 is achieved. ♦

Completion of the proof of Theorem 3. The proof is carried out by mak-
ing use of the quadrature method (Theorem 4). We have to resolve equations
of the type T (E) = 1

2 , where T designates, in each case, the appropriate time
map.

Solution in B+n . Recall that r+(p, λ, 0) = ((p+ 1)λ)
1/p. Furthermore

T+(p, λ, 0) =

∫ r+(p,λ,0)
0

(−p′F (p, λ, ξ))−1/pdξ = J(p)λ−1/p
2

,

where J(p) is defined in Lemma 10. Then problem (1) admits a solution in B+n
if and only if nJ(p)λ−1/p

2

= (1/2), that is, if and only if λ = (2nJ(p))p
2

.
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Solution in B−n . Since 0 /∈ D− = (0, E∗(p, λ)), problem (1) admits no solution
in
⋃
n≥1
B−n .

Solution in A+1 . Recall that for any p > 1 and λ > 0 the function E 7→
T+(p, λ,E) is defined in [0,+∞), is strictly decreasing (Lemma 12), and by
Lemma 10,

lim
E→0+

T+(p, λ,E) = J(p)λ
−1/p2 , lim

E→+∞
T+(p, λ,E) = 0 .

Then, the equation T+(p, λ,E) = (1/2) in the variable E ∈ (0,+∞) admits

a solution in [0,+∞) if and only if J(p)λ−1/p
2

> 1/2, that is, if and only

if λ < (2J(p))p
2

, and in this case, the solution is unique since the function
T+(p, λ, ·) is strictly decreasing.

Solution in A−1 . Case 1 < p ≤ 2. In this case, for each λ > 0, the function
E 7→ T−(p, λ,E) is defined in D− = (0, E∗(p, λ)), is strictly increasing (Lemma
12), and

lim
E→0+

T−(p, λ,E) = 0, lim
E→E∗

T−(p, λ,E) = +∞

(Lemma 10, (ii) and assertion (38)). So, the equation T−(p, λ,E) = (1/2) in
the variable E ∈ D− admits a unique solution in D− for any λ > 0.
Case p > 2. In this case, for each λ > 0, the function E 7→ T−(p, λ,E) is

defined in D− = (0, E∗(p, λ)), is strictly increasing (Lemma 12), and

lim
E→0+

T−(p, λ,E) = 0, lim
E→E∗

T−(p, λ,E) = J−(p)λ
−1/p2 < +∞

(Lemma 10). So, the equation T−(p, λ,E) = (1/2) in the variable E ∈ D−
admits a solution in D− if and only if (1/2) < J−(p)λ

−1/p2 , that is, if and only

if λ < (2J−(p))
p2 , and in this case the solution is unique since T−(p, λ, ·) is

strictly increasing.

Solution in A±2n. Case 1 < p ≤ 2. In this case, for each λ > 0, the function
E 7→ T2n(p, λ,E) is defined in D = (0, E∗(p, λ)), and

lim
E→0+

T2n(p, λ,E) = nJ(p)λ
−1/p2 , lim

E→E∗
T2n(p, λ,E) = +∞

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T2n(p, λ,E) =
(1/2) in the variable E ∈ D admits a solution in D provided that (1/2) >

nJ(p)λ−1/p
2

, that is, provided that λ > (2nJ(p))p
2

.
Case p > 2. In this case, for each λ > 0, the function E 7→ T2n(p, λ,E) is

defined in D = (0, E∗(p, λ)), and

lim
E→0+

T2n(p, λ,E) = nJ(p)λ
−1/p2 ,

lim
E→E∗

T2n(p, λ,E) = nλ
−1/p2(J−(p) + J+(p)) < +∞
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(Lemma 11 and Lemma 10, assertion (38)). So, the equation T2n(p, λ,E) =
(1/2) in the variable E ∈ D admits a solution in D provided that

nλ−1/p
2

inf(J(p), J−(p) + J+(p)) <
1

2
< nλ

− 1
p2 sup(J(p), J−(p) + J+(p)),

that is, provided that

{2n inf(J(p), J−(p) + J+(p))}
p2
< λ < {2n sup(J(p), J−(p) + J+(p))}

p2
.

Solution in A+2n+1. Case 1 < p ≤ 2. In this case, for each λ > 0, the function
E 7→ T+2n+1(p, λ,E) is defined in D = (0, E∗(p, λ)), and

lim
E→0+

T+2n+1(p, λ,E) = (n+ 1)J(p)λ
−1/p2 , lim

E→E∗
T+2n+1(p, λ,E) = +∞

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T+2n+1(p, λ,E) =
(1/2) in the variable E ∈ D admits a solution in D provided that

(n+ 1)J(p)λ−1/p
2

< (1/2), that is, provided that λ > (2(n+ 1)J(p))p
2

.
Case p > 2. In this case, for each λ > 0, the function E 7→ T+2n+1(p, λ,E) is

defined in D = (0, E∗(p, λ)), and

lim
E→0+

T+2n+1(p, λ,E) = (n+ 1)J(p)λ
−1/p2 ,

lim
E→E∗

T+2n+1(p, λ,E) = λ
−1/p2((n+ 1)J+(p) + nJ−(p)) < +∞

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T+2n+1(p, λ,E) =
(1/2) in the variable E ∈ D admits a solution in D provided that

λ−1/p
2

inf((n+ 1)J(p), (n+ 1)J+(p) + nJ−(p))

< 1
2 < λ

− 1
p2 sup((n+ 1)J(p), (n+ 1)J+(p) + nJ−(p)),

that is, provided that

{2 inf((n+ 1)J(p), (n+ 1)J+(p) + nJ−(p))}
p2

< λ < {2 sup((n+ 1)J(p), (n+ 1)J+(p) + nJ−(p))}
p2
.

Solution in A−2n+1. Case 1 < p ≤ 2. In this case, for each λ > 0, the function
E 7→ T−2n+1(p, λ,E) is defined in D = (0, E∗(p, λ)), and

lim
E→0+

T−2n+1(p, λ,E) = nJ(p)λ
−1/p2 , lim

E→E∗
T−2n+1(p, λ,E) = +∞

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T−2n+1(p, λ,E) =

(1/2) in the variable E ∈ D admits a solution in D provided that nJ(p)λ−1/p
2

<

(1/2), that is, provided that λ > (2nJ(p))p
2

.
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Case p > 2. In this case, for each λ > 0, the function E 7→ T−2n+1(p, λ,E) is
defined in D = (0, E∗(p, λ)), and

lim
E→0+

T−2n+1(p, λ,E) = nJ(p)λ
−1/p2 ,

lim
E→E∗

T−2n+1(p, λ,E) = λ
−1/p2(nJ+(p) + (n+ 1)J−(p)) < +∞

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T−2n+1(p, λ,E) =
(1/2) in the variable E ∈ D admits a solution in D provided that

λ−1/p
2

inf(nJ(p), nJ+(p) + (n+ 1)J−(p))

< 1
2 < λ−1/p

2

sup(nJ(p), nJ+(p) + (n+ 1)J−(p)),

that is, provided that

{2 inf((nJ(p), nJ+(p) + (n+ 1)J−(p)))}
p2

< λ < {2 sup((nJ(p), nJ+(p) + (n+ 1)J−(p)))}
p2
.

Then the proof of Theorem 3 is complete.

Remark. Theorem 3 shows that for 1 < p ≤ 2 (resp. p > 2) solutions to (
1) with k ≥ 1 interior nodes exist for all λ belonging to an interval unbounded
from above (resp. a bounded interval). Hence, for 1 < p ≤ 2, if problem (1)
admits a solution with a prescribed number k0 ≥ 1 of nodes for a certain value
λ0 of λ, it still admits solutions with k0 nodes for all λ greater than λ0. In
[5] it was shown that this is not the case for p > 2, and these changes in the
behavior of the solution set as p varies depend strongly on the nonlinearity of
the problem.
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