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Boundary-value problems for the one-dimensional
p-Laplacian with even superlinearity *

Idris Addou & Abdelhamid Benmezal

Abstract

This paper is concerned with a study of the quasilinear problem

—(u'P7?) = ul” =X, i (0,1),
u(0) =u(1) =0,
where p > 1 and A € R are parameters. For A > 0, we determine a lower
bound for the number of solutions and establish their nodal properties.

For A <0, we determine the exact number of solutions. In both cases we
use a quadrature method.

1 Introduction

This paper is devoted to a study of existence and multiplicity of solutions to
the quasilinear two-point boundary-value problem

_(‘piﬂ(u,))/ = f()‘7 u)v in (07 1) ) (1)
u(0) =u(1) =0,

where ©,(s) = |s|P7%s and f(A\,u) = |u[P — X\. Here (¢,(u'))" is the one-
dimensional p-Laplacian, and p > 1.

When the differential operator is linear, i.e., p = 2, several existence and mul-
tiplicity results, related to superlinear boundary value problems with Dirichlet
boundary data, are available in the literature. Let us recall some of them for
the one-dimensional case.

Lupo et al [14] have studied the non-autonomous case

—u"(z) = u*(z) — tsinz, in (0,7), (2)
u(0) = u(w) =0.
Using a combination of shooting and topological arguments, they show that for

any k € N there exists ¢t > 0 such that for all ¢ > ¢, problem (2) admits at
least k solutions.
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Castro and Shivaji [8], using phase-plane analysis, consider the problem

—u"(z) = g(u(z)) — p(z) —t, in (0,1), 3)

lim M =MeceR, and lim gl(s) 400 with o>0.
s——o00 8§ s—+oo glto
They show that for k& € N there exists ¢, (M) such that limy_, o tx(M) = 400,
and for all ¢ > ¢, problem (3) has at least two solutions with & nodes in (0,1).
The autonomous case has been studied by many authors. Let us mention
some of them. Independently of Castro and Shivaji, Ruf and Solimini [16]
consider the problem

—u"(z) = g(u(z)) —t, in (0,m), (4)

where

g€ CY(R), limsupg/(s) < +oo, and lim ¢'(s) = +oo.

S——00 s—+00

Using variational methods, they show that for any k& € N there exists t € R
such that for ¢ > t;, problem (4) has at least k distinct solutions.

Prior to the papers mentioned above, Scovel [17] obtained the same result
as Ruf and Solimini [16] in the special case where g(u) = 6u®. He has shown
that for any integer k > 1, there exist values t; < --- < tx such that for t > ¢,
problem (4) (with g(u) = 6u?) admits at least k distinct solutions.

Independently and prior to Scovel, in 1983, Ammar Khodja [7] obtained a
complete description of the solution set of the problem

—u"(z) =u’(z) = A, in (0,1), (5)
u(0) = u(1) = 0.

He detects all the solutions to (5) for any value of A € R, and thus obtains the
exact number of solutions to (5) for all A. To state his result, for any integer
k > 1, denote

S ={ueC30,1] : v/ (0) > 0,u admits k — 1 nodes in (0,1)},
S, =-SF and S,=5US,.

Theorem 1 [7] There exists a sequence (Ag)r>0 such that
—00 < A <0< A <A< <A<

and:
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(1) If A < Ao, problem (5) admits no solution.
If Mo < A < 0, problem (5) admits exactly two solutions and they are
positive.
If X=Xy or 0 < X\ < Ay, there exists a unique positive solution.
If A\ > A1, there is no positive solution.

(ii) If A > 0, there exists a unique solution in Sy .
(iii) If (and only if ) A > A

e there exist exactly 2 solutions in Sai

e there exists exactly one solution in Sy
(iv) There exists a sequence (pk)k>1 such that
)\1</L1</\2</L2<"'<,uk</\k+1<'-'

and such that:
if (and only if ) pr < A < Agt1, there exist exactly two solutions in S;k+1’
if (and only if ) A = pr or A > Agy1, there exists a unique solution in

+
S2k+1 .

The objective of this paper is to extend Ammar Khodja’s result to the general
quasilinear case p > 1. In particular, we will show that if A < 0 the same result
holds for all p > 1, but if A > 0 and p > 2 the situation is different from that
obtained in [7]. So, the behavior of the solution set of problem (1) depends not
only on the values of A (as was shown in [7]) but also on those of the parameter
D.

These changes in the behavior of the solution set when the parameter p
varies is not new in the literature. Guedda and Veron [11] consider the problem

—(pp(u)) = App(u) — f(u), in(0,1), (6)
u(0) =u(l) =0,

where f is a C! odd function such that the function s — f(s)/sP~! is strictly
increasing on (0, +00) with limit 0 at 0 and lims_, ;o f(s)/sP~1 = +00. They
denote by E) the solution set of problem (6) and show, under some technical
assumptions, that when 1 < p < 2 the structure of F) is exactly the same as in
the case p = 2, and strictly different in the cases p > 2.

This paper is organized as follows. In Section 2 we introduce notation and
state the main results (Theorems 2 and 3). Section 3 is devoted to explain of
the method used in proving our results. In Section 4 we prove Theorem 2 and
finally, in Section 5, we prove Theorem 3.



4 Boundary-value problems EJDE-1999/09

2 Notation and main results
In order to state the main results, for any k € N*, let

gr_J uc C(a, B]) : u admits exactly (k — 1) zeros in (a, )
ko all simple, u(a) = u(8) =0 and v'(a) >0 [’

Sy :—S,j and Sk:S,jUSk_.
Definition Letu € C([a, 8]) be a function with two consecutive zeros 1 < 3.

We call the I-hump of w the restriction of u to the open interval I = (z1,x2).
When there is no confusion we refer to a hump of u.

With this definition in mind, each function in S,j' has exactly & humps such
that the first one is positive, the second is negative, and so on with alternations.
Let Ag (k > 1) be the subset of S’,j consisting of the functions u satisfying:

e Every hump of v is symmetrical about the center of the interval of its
definition.

e Every positive (resp. negative) hump of u can be obtained by translating
the first positive (resp. negative) hump.

e The derivative of each hump of u vanishes once and only once.

Let A, = —A{ and Ay = A U A, . Let B (k > 1) be the subset of
C1([a, B]) consisting of the functions u satisfying:

e u(z) >0,Vx € [a, B], and u(a) = u(B) = u'(a) = 0.
e v admits exactly (k — 1) zero(s), all double, in the open interval («, 3).
o If k>1,uis ((6 —«a)/k)— periodic.

e Every hump of u (necessarily positive) is symmetrical about the center of
the interval of its definition.

e The derivative of each hump of u vanishes once and only once.

Let B, = —B,j and B = B,j UB,.
The first result concerns the case A < 0 and gives the ezact number of
solutions to (1).

Theorem 2 (Case A < 0) There exists a number A\, < 0 such that:
(1) If A < A, problem (1) admits no solution.
(ii) If A = A, problem (1) admits a unique solution and it belongs to AT .

(iii) If A < X < 0, problem (1) admits exactly two solutions and they belong
to AT.



EJDE-1999/09 Idris Addou & Abdelhamid Benmezai 5

(iv) If A =0, beside the trivial solution, problem (1) admits a unique solution
and it belongs to A7 .

The second result concerns the case A > 0.

Theorem 3 (Case A > 0) For any p > 1 there exist two real numbers J(p) >
J+(p) > 0 and for all p > 2 there exists a positive real number J_(p) < J(p)
such that for all integer n > 1:

(i) Problem (1) admits a solution in B; if and only if X = (2nJ(p))?", and in
this case, the solution is unique.

(ii) Problem (1) admits no solution in |J B, .
n>1

(iii) Problem (1) (with A > 0) admits a solution in AT if and only if 0 < X <
(2J(p))P°, and in this case, the solution is unique.

(iv) Problem (1) admits a solution in AT if and only if (1 <p <2 and X >0)

or (p>2and 0 < A < (2J_(p))P"), and in this case, the solution is
unique.

(v) Problem (1) admits a solution ui, in AL, provided 1 < p < 2 and \ >
(27%](10))”2 or p> 2 and

inf { 2n7(p))"", (2n(J- () + T+ ()" }

< A <sup{nI()”, (- () + T+ ()" |

(vi) Problem (1) admits a solution in A3, | provided 1 < p <2 and
A> (2(n+1)J(p))* orp>2 and

inf { 2(n + 1)I(0))", (2((n + 1)1 () + - (@) }

< A <swp { @M+ DIE), @0+ DI 0) +nl-0) }

(vii) Problem (1) admits a solution in Ay, ., provided 1 < p < 2 and A >
(271(](10))”2 or p> 2 and

inf {20 (1), (2((n + 1)J-(p) + 0T @) |

< A <swp{EnI @), 2+ 1)) + 0T @) }

Remark According to Proposition 5 below, if A > 0 and p € (1,2] then
S c (U Ar)U(U Bg), where S denotes the solution set of problem (1).
k>1 k>1
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Remark The results obtained in [7], for p = 2, concerning solutions in As,,
Aj,41, and A3, ., are more precise than those stated in Theorem 3, assertions
(v), (vi) and (vii) for p # 2. In fact, these assertions do not provide the exact
number of solutions in Az, Aj,,, and Aj, ;. The proof given in [7] uses
strongly the fact that the nonlinearity v — u? — \ is a second degree polynomial
function. We were not able to obtain the same degree of precision.

3 The method used

To obtain our results, we make use of the well known time mapping approach.
See, for instance, Laetsch [12], de Mottoni & Tesei [9], [10], Smoller & Wasser-
man [19], Ammar Khodja [7], Shivaji [18], Guedda & Veron [11], Ubilla [20],
Mandsevich et al [15], Addou & Ammar Khodja [1], Addou et al [4], Addou &
Benmezal [2]. To describe this method we denote by g a nonlinearity and by p
a real parameter, and we assume one of the following conditions:

g€ CR,R) and 1<p<+4oo (7)
g€ CR,R), 1<p<—+oo, and zg(z)>0,VeeR" (8)
g is locally Lipschitzian and 1 < p < 2. (9)

One may observe that (8) or (9) implies (7), hence (8) and (9) are more restric-
tive than (7), but they furnish better results as we will see later (see Proposi-
tion 5).

We denote by S(p) the solution set of problem

—(u'P~2) = g(u), in (o, p) (10)
u(a) = u(f) = 0.

When there is no confusion we write S instead of S(p).
Denote by p’ = p/(p — 1) the conjugate exponent of p. Define G(s) :=
Jy g(t)dt. For any E >0 and k = +, —, let

X.(E)={s€R:ks>0 and EP—p'G(§) >0,V 0 < k€ < ks}
and

(o0 if X.(E)=20,
re(E) { ksup(kX.(E)) otherwise.

Note that r, may be infinite. We shall also make use of the following sets:
D,={E>0:0<|r.(EF)| < +o0 and kg(r.(E)) > 0}
and D = Dy N D_. Define the following time-maps:
T.(E) = & [~ (EP — pG(t))~Y/?dt, EeD,.

Ton(E) =n(T4(E) +T-(E)), neN, EeD,
T8, 1(E) =Tsn(E)+Tu(E), neN, EeD.
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Theorem 4 (Quadrature method) Assume that (7) holds. Let E > 0, x =
—. Then

1. Problem (10) admits a solution u, € Af satisfying u.(a) = KE if and
only if E € D, N (0,4+00) and T.(E) = (8 — «)/2, and in this case the
solution is unique.

2. Problem (10) admits a solution u, € A%, (n # 0) satisfying u),(a) = KE
if and only if E € DN (0,400) and Tgn( )= (8 —a)/2, and in this case
the solution is unique.

3. Problem (10) admits a solution u, € A%, (n # 0) satisfying u (a) = kE
if and only if E € DN (0,+00) and Ty, (E) = (8 — «)/2, and in this
case the solution is unique.

4. Problem (10) admits a solution u, € B (n # 0) if and only if 0 € D,
and nT(0) = (8 — «)/2, and in this case the solution is unique.

One may observe that this result does not give information about solutions

o (10) outside |J (Ax U By). The following proposition gives some useful in-
k>1
formation.

Proposition 5 If (8) holds then S C {0} U (|J Ax). If (9) holds then

k>1
(i) g(0) =0 implies S C {0} U (kL>Jl Ayg),
(i) ¢(0) # 0 implies S C (kL>Jl Ap) U (kL>Jl By).

Theorem 4 and Proposition 5 are certainly well known, but we did not find
a convenient reference to the precise statements used later.

4 Proof of Theorem 2

Since A < 0, any solution to (1) is positive. In fact, if u is a solution to (1) then

u'(z) = ¢y (pp(u'(2))), Vo € (0,1).

Since x — p,(u'(x)) is decreasing (from (p,(u')) (z) = —|u(z)|? + A, for all
z € (0,1) and XA < 0) and ¢, is increasing, it follows that u’ is decreasing. This
shows that w is concave, and since u(0) = u(1) = 0 it follows that u is positive.

Moreover, the nonlinear term f(A, u) = |u|P — A satisfies (8) so, from Propo-
sition 5, it follows that any nontrivial solution is necessarily in Af. Hence, we
have only to define the time map T'y. In order to do this, we need the following
technical lemma.
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Lemma 6 Consider the equation in s € R:
EP —p'F(\s) =0, (11)

where p > 1, A < 0 and E > 0 are real parameters and F(\,s) = fos F(A t)de.
Then for any E > 0, (resp. E =0) equation (11) admils a unique positive zero
sy = $+(p, A\, E) (resp. a unique zero s4 = s4(p,A\,0) = 0). Moreover:

a e function E — s (p, A, 18 in (0, +00) an
The f E +(p,\,E ct 0 d

(p—1E"!
f(Aa‘SJr(p?AaE))
forallp>1, all A <0, and all E > 0.

b) Il ANE)=0.
( ) ELH(}‘*'SJF(p’ ) )

05+

5E (P, \, E) =

>0

(C) EEI-Ii-loo 8+(p7 /\7 E) = +o00.

Proof. For afixed p > 1, A <0 and F > 0, consider the function

|s[”

s+— M(p,\,E,s):=FEP —p'F(\,s)=EF —p's
(p ) P'E(As) p (pJr1

_)‘)7

defined in R, which is strictly decreasing and such that

M(pv)HEaO):EpZO, and lim M(S):—oo.

s——+oo

It is clear that (11) admits, for any £ > 0, a unique positive zero, s; =
sy(p, A, E); and if E =0, it admits a unique zero s; = 0.
Now, for any p > 1 and A < 0, consider the real-valued function
sP

E, s)— M, (E,s):=EP —p's —
(B,s) — M. (B,5) = B¥ —plo(=2

A)

defined on Q, = (0, +00)2. One has M, € C'(Q4) and

OM
0s

(B,s) = _p/f(/\vs) = _p/(|s|p —A) inQy,

hence

oM
Os

and one may observe that sy (p, A, E) belongs to the open interval (0, 400) and
satisfies from its definition

(E,s) <0 in Q4

M+(E,S+(p,)\,E)):O. (12)

So, one can make use of the implicit function theorem to show that the func-
tion E — sy(p,\, E) is C*((0,4+00),R) and to obtain the expression for
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‘?—E(p,/\,E) given in (a). Hence, for any fixed p > 1 and A < 0, the func-
tion defined in (0, +00) by E — s4(p, A, E) is strictly increasing and bounded

from below by 0 and from above by +oco. Thus the limit Elirn+ si+(p, \,E) =17
—0
exists as a real number and the limit Elim s$4+(py A, E) = 40 exists and belongs
—+0o0

to (0, +o0]. Moreover
0<If <ljoo < +00.

One may observe that, for any fixed p > 1 and A < 0, the function (E, ) —
M, (E,s) is continuous in [0, +00)? and the function E — s (p, A, E) is con-
tinuous in (0, +00) and satisfies (12). So, by passing to the limit in (12) as E
tends to 0T one gets:

0= lim M+(E7s+(p7)‘7E)):MJr(O?l(;r)‘
E—0+t

Hence, [ is a zero, belonging to [0, +00), of the equation in s: M, (0,s) = 0.
By resolving this equation in [0, +00) one gets: Ij = 0. The assertion (b) is
proved.
Assume that [} < 400 then by passing to the limit in (12) as F tends to
+00 one gets:
(lJrOO)p

p+1
which is impossible. So, l4. = +00. Therefore, Lemma 6 is proved. <

00 = Pl — ) < +os,

Now we are ready to compute X (p, A, E) as defined in Section 3, for any
p>1,A<0and E > 0. In fact, X;(p,\,E) = (0,s+(p, \, E)) if E > 0 and
X+ (p,A,0) =0. Thus

rJr(p?AaE) = SupXJr(pa )‘7E) = SJr(p?AvE) if £>0 and rJr(pa )‘70) = 07

and since f(A,s) = [s|P — A >0, V(A,s) € (—00,0] X R, (A, s) # (0,0), it follows
that

D, = {E>0:0<ry(p,\,E) < +o0and f(A\,ry(p,\ E)) > 0}
= (0,400).

Before going further in the investigation, we deduce from Lemma 6 the following;:

li FE) = li FE) = 1
ELHOI‘*' 7‘+(p,)\, ) 0 and E—1>r-{-1<>o ’I"+(p,)\, ) +OO, ( 3)

or - p—1
5 (0, B) = s > 0,YE € Dy = (0,400) VA<O0.  (14)

We define, for any p > 1,A <0, and F € Dy = (0,400) the time map
r+(p,AE) ny
TpAB)= [ B -yF09) de BeD. (19)
0
and a simple change of variables shows that

To(p M\ E) = 1+ (p, A, E) / (B~ FAre (A E)E)) VP de. (16)
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Observe that from the definition of s (p, A\, E) one has
EP — p,F(A7 SJr(pa >‘7 E)) =0

and so, from the definition of r (p, A, E), one has EP = p'F(\,r4(p, \, E)). So,
(16) may be written as

T, (p, )\ E) (17)
= A E)E) / O (.M B)) — FO 1 (p A B)E)} 7 de.
After some rearrangements one has
T+(p7/\7E) (18)

1 L (0P (p )\ _ ¢p+l -1/p
= P eam) e [{EEAE0ED) agl

Lemma 7 If A <0 then one has
i) lim T NE)Y=0,ifA<0and lim T 0,F) =
(1) ELI%JF +(p7 ) ) ’ Zf < an ELH(}Jr +(p7 ) ) +OO,
(i) lim T, (p,\,E)=0,VA<O0,
E—+oco

(iii) If A < 0, T+(p, A,-) admits a unique critical point, E*(\), at which it
attains its global maximum value. Moreover,

(a) The function X\ — Ty (p, A\, E*(X\)) is strictly increasing in (—o0,0).
——0c0

() Tim T4(p, A E*(N)) = +ov.
A—=0—
(iv) If A=0,(0T+/0E)(p,0,-) < 0 in (0,+00).
Proof. (i) If A <0, from (18) one has
0< T (A E) <r. * (A B)p ‘%/ (=M1 -6}V de.
So, by passing to the limit as E tends to 0, one gets
< lim T E) < li E)(p)~Y/P “UPge =
0< lim T4 (p, A, B) < lim r' 7 (p, ) / a1 dé =0

If A =0, then from (18) one gets

_ 11 _¢ptl
T+(p’0’E) = (pl)_l/prJrl/p(va:E)/ (pig)_l/p d£7
0
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and from (13) one gets lim T4 (p,0, E) = +o0.
E—0+t
(ii) From (18) one has for any A <0,
1 -1/p
1 — gptl
STy
0 p+1

So, by passing to the limit as E tends to +o00, one gets

=

0<Ti(p,A\E) <1 P\ E)p')~

0 < lim Ty(p,\E)

E—+4oco
B L] gptl —-1/p
< li 1/p E / —l/p/ —-0.
< Jhm vy (p, A, E)(p") B d¢ =0

(iif) If A < 0, then from (i) and (ii) one deduces that T (p, A, -) admits at least
one critical point. Here, we are going to prove its uniqueness. From (17), one
may observe that

Ty (p,\ E) = (') "7 S(p, A, p(p, A, E))

where p(p, \, E) = r+(p, A\, E) and

ﬂnxm—AQmem—me@riﬁ.

On the other hand, observe that for each fixed A < 0 the function E — p(p, A, E)
is an increasing C*-diffeomorphism from (0, +00) onto itself (Lemma 6, asser-
tions (a), (b) and (c)), and

8T+ N—1 85 8/)

—(p,\, E) = 5 —=(p,\, p(p, N, E)) X == (p, \, E). 19

ag PN E) = () Xap(p, (A, E)) X 25 (9 A E) (19)
So, to study the variations of E — Ty (p,\, E) it suffices to study those of
p — S(p,\, p). That is, S(p,A,-) attains a local maximum (resp. minimum)
value at p, iff T (p, A, -) does so at p;;\(p*), where p;;\ is the function inverse
to p(p, A, -). From (i) and (ii), it follows that lin}) S(p) = liIJP S(p) =0, that

p— p—r~o0

is, S admits at least a maximum value. To prove uniqueness, we first find a
priori estimates on the critical points of S(p, A,:). That is, for each A < 0, we
look for a compact interval J(A) which contains all possible critical points of
S(p, A, ). Next, we prove that S(p, A, -) is concave in J(A).

One has

a8 P H(p, A\ p)— H(p, \u
P 0 pp(F(p, A, p) — F(p, A\, u)) »

du (20)

_uPt?

where H(p,A,u) = pF(p, A\, u) — uf(p, A\, u) = =44 — AMp — Du, Vu > 0.
The variations of v — H(p,\,u) can be described as follows. H(p,A,-) is
strictly increasing in (0, p1(p, \)) and strictly decreasing in (p1(p, A), +00) where
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pl(pa >‘) = (_)‘(p - 1))1/1) Moreover, H(pa >‘7 0) = H(p7 >‘a P2(Pa )‘)) = 0 where
pa(p, A) = (—=A(p? — 1))Y/? > p1(p, \). So, it follows that:

oS
3—p(p,>\,p) >0, Vp € (0,p1(p, \))
and
oS
8_/)(1)7 )‘7 p) < 07 Vp € (p2(p7 A),-FOO)
That is, we get the a priori estimates as follows : Vp > 1,VA < 0,Vp, > 0,
oS
a—p(p,k,p*) =0=p. € J(A) == [p1(p, A), p2(p, A)].

Easy computations show that for any p > 0 and A < 0, one has

s, _ /1 (p+ 1)(H(p, A\, p) — H(p, A, pt))*
0 2 b, A, ) - 9 2p+1
p 0 b p(F(pv)‘7p) - F(pv)‘7p€)) P

+ /1 p(‘I’(p, )‘7/)) B \I/(p, )‘7 Pf))(F(Pa )\7 p) - F(p, )‘7/)5))
0

dg

Ty dg ,
P?p(F(p, A, p) — F(p,\, p)) #

where

= Ap(p—Du,Vu >0.

After some substitutions one gets

9%s _ [ p(1—€)*P(X(¢))
Op? (B2 0) /0 P2(F(p, A, p) — F(p, A, p€)) 5 “

where
p+1 ifeE=1

X@:{ S e e o, 1)

and P is the polynomial function
p* )X (p—1)(»*+2p+2)
p+1 (p+1)

An easily checked fact is that X (£) € [1,p + 1], for all £ € [0,1]. In fact, the
function ¢ ~ h(£) := £P*! is convex in (0, +00), and

h(l) — h(f) <y
1-¢ =

So, we are interested in the sign of P(X) when X € [1,p+ 1]. First, its discrim-
inant is A = (u(p)/(p + 1)?)A\2p* > 0, where

w(p) = (p—1)2(p* +2p +2)° +4(p* — 1),

P(X)=( MPX — (p—1)\2.

X(¢) = (1)=p+1,v6€(0,1).
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and its roots are, for each A < 0 and p > 0,

Xl(p,kp)zz—;p( u(p) — (p— 1)(p* +2p+2)) <0,
Xa(p, N, p) = _/\( u(p) + (p— 1)(p* +2p+2)) > 0.

2pP

It can be verified that p — Xa(p, A, p) is decreasing in (0,+00) and one can
deduce, from H(p, A, p2(p, A)) = 0, that

u(p) + (p —1)(P* +2p+2)
2(p? - 1)

Xz(p,/\,p2(p, /\)) = , VA<O.

Hence, one can deduce that Xo(p, A, p2(p, X)) > p+ 1. (In fact, to prove this it
suffices to show that

u(p) + (p—1)(P* +2p+2)>2(p+1)(p* - 1)

which is equivalent to proving that u(p) > (p(p — 1)(p + 2))?, and this is (after
some simple computations) equivalent to 4(p + 1)p?> > 0 which is true since
p>1). Then

[17p+ 1] C (Xl(p7A7p)7X2(p7 >‘7 p)) (VAL Oav/) € [pl(pa )\)7/)2(17? /\)]7
hence, P(X(€)) <0, for all £ € [0, 1], so,

%S
8—/)2(177)‘7/)) < 0 V)‘ < 07 vp € J()‘) = [pl(p7 )‘)7 p2(p7 )‘)] )
which proves the uniqueness of the critical point of S(p, A, -) and of T4 (p, A, -).
(a) Some easy computations show that
oT,

8—E(pa )‘7E) (21)

7’+(p,>\,E) -
_ (p/)_l/paa%(p,AaE)/ H(p7/\7r+) H(p7/\7§) — d{,
0 pTJr(F(p,/\,T’Jr) - F(pv )‘75))7

-y (P A E) (22)

'I"+(p,>\7E) —
= (p/)_l/paﬁ(]h)\’E)/ H(p7 )\,T’+) H(p7 )\75) — dg
0 pr+(F(p, )\7 TJr) - F(pv )‘75))7

_1/”(])’&) r+ (A E) — ¢ d¢
pt1 ’
0 p(F(p,Ary) — F(p, A €))7
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and then combining (21) and (22) one gets

87‘+ 8T+ 87‘_4_ 8T+

o\N OE ' OE O\
r+(D,\E) _

- e | AP ZE g
0 p(F(

pt1
b, A77'Jr) - F(pa )‘7 g)) P
SO0,

87‘+ 8T+ 87“+ 8T+

~xap T op oy >0 VE>0,X<0. (23)

Since, (0T /0E)(p, A, E*(\)) = 0, using (23) and (14) one gets:
orTy

S PAET() >0, VA <0.

(b) Since H(p, A, ) is strictly increasing on (0, p1(p, \)),

aﬂ(l% /\7 E) > 07VE € (07 El(p7 A))
OF
where Ey(p,\) := (p'F(p, \, p1(p,\)))*/?. Since (9T /OE)(p,\, E*(\)) = 0, it
follows that E*(A\) > E1()\), and since

(E*Z);’()\) . B (,f N _ Pl (p, 1)

F(ri(E*(N)) =

and F' is continuous and strictly increasing (A < 0), it follows that

rJr(pa >‘7 E*(A)) > pl(p7 >‘) = r+(p7A7E1(p7 )‘))

One has from (18),

TJr(pa >‘7E*(>‘)) < (p/)_l/prjrl/p(p7/\aE*(>‘))/0 (71

1 1_§p+1

IA
—
s}
\;
L
~
b
—
s
=
—
=
>
SN—
—
A
~
3
—~

and by passing to the limit as A tends to —oo, one gets

A——00

11 _¢eptl ‘ o
< (p/)—1/p/0 (p%)_l/pdﬁkgrfm{—)\(p_l)} p" _q.

(c) For each A < 0, one has

TJr(pa >‘7 E*(/\)) = EU%TJr(p?/\aE) > TJr(pa >‘7 EI(A))
>
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and from (18) and the fact p1(p, A) = r4+(p, A, E1(p, A)) one has

T+(p7 /\7 El(A))

-1

1 -1/p
P e S [ 1P e _
= A ere-n® [P Saema-g) e
So,
)\li%li T (p,\,E*(N\)) > )\li%li T (p, A\, E1(N)) = +o0.

(iv) If A = 0, the function p — S(p, A, p) decreases strictly on (0, +o0),
since the function u +— H(p,0,u) := —uP™1/(p + 1) does so in (0,+00) (see
(20)). Then, from (19) and (14) it follows that (0T /OE)(p,0,-) < 0in (0, +00).
Therefore, Lemma 7 is proved. <

Completion of the proof of Theorem 2. The proof is an easy consequence
of the previous lemmas. In fact, there exists a unique A* < 0 which satisfies
Ty (p, A", E*(X)) = %, and the function A — T (p, A\, E*(X)) is strictly increas-
ing in (—00,0). So, if A < A*, for any F > 0 and A < 0,

1

T.(p, M\ E) < sup Ti(p, X B) = Th(p, A EY(N)) < T (p, A, E° (X)) = 5.
Thus equation T4 (p, \, E) = % admits no solution. If A = \*; E*(\*) is the
unique solution of the equation T (p, \*, E) = % So, problem (1) admits
a unique positive solution and this one is in Af. Finally, if 0 > A > \*,
then T4 (p, A, E*(X)) > T4 (p, A*, E*(\*)) = % So, equation T (p, A\, E) = %
admits exactly two solutions and then problem (1) admits exactly two pos-
itive solutions in Af. If A = 0, T'(p,0,-) is strictly decreasing in (0, +oc0)
and limg_,o+ T4 (p,0, E) = 400 and limg_, 10, T4 (p,0, E) = 0. So, equation
T, (p,0,E) = (1/2) admits a unique solution in (0, +00). Thus, Theorem 2 is
proved. &

5 Proof of Theorem 3

As for the proof of Theorem 2, we begin this section by some preliminary lem-
mas. In order to define the time-maps we need as usual the following technical
lemma.

Lemma 8 Consider the equation in the variable s € R*,
EP —p'F()\,s) =0 (24)

where p > 1, A > 0 and E > 0 are real parameters. First, if E = 0, equation
(24) admits a unique positive zero sy = s4(p, \,0) and a unique negative zero
s_ = s_(p,\0) such that |s+| = (A(p + 1))Y/2.  Moreover, for any E > 0,
equation ( 24) admits a unique positive zero sy = si(p, A\, E) and this zero
belongs to the open interval (A(p +1))Y/P, +00). On the other hand,
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(i) If E > E.(p,)\) == ((;—J’r"l))\H%)I/Z’, equation (24) admits no negative zero.

(ii) If E = E.(p,\), equation (24) admits a unique negative zero
5. =s5_(p,A) = =A/P,

(iii) If0 < E < E.(p, \), equation (24) admits, in the open interval (—\'/?,0),
a unique zero s_ = s_(p, A\, E).

Moreover,
(a) The function E — s1(p, A\, E) is C! in (0,4+00) (resp. (0, E.(p,\))) and

+(p— DE!
O s£(p, A E))

for all p > 1, for all A\ > 0, and for all E > 0. (resp. for all E €

1 = 1/p 1 =
(b) E11_>H01+ s+(p, A\, E) = ((p+1DA)Y? and E11_>H01+ s—(p,\,E)=0.

195\ B) =

9E >0,

i = i — _)\/p
(C) EI—I)IEOO SJr(p?AaE) 400 and EIL>HI}]* 8*(p7A7E) A .

Proof. For a fixed p > 1, A > 0 and F > 0, consider the function
|s|”

p+1

s— N(p,\,E,s) := EP —p'F(\,s) = E? —p's( A),

defined in R. From a study of its variations, it is clear that equation (24) admits,
if E = 0, a unique positive zero s; and a unique negative zero s_. Their values
are obtained by simple resolution of equation (24). Moreover, for any E > 0,
equation (24) admits a unique positive zero, s; = sy(p, A, E), and this zero
belongs to the open interval ((A(p 4+ 1))*/?, +00) (since

N(p, A\ E,(\(p+1))7) = N(p, A\, E,0) = E? > 0).

Also, the assertions (i) (ii) and (iii) follow readily from the variations of

N(pa AE, )
Now, for any p > 1 and A > 0, consider the real-valued function
+s)P
E,s)— Ni(E,s :E”—’s( — A
(B.s) — Ne(B,s) = 7 = p/s(C—0 = )

defined on Q; = (0,400) x ((A(p + 1))V/P, +00) (resp. Q_ = (0, E.(p,\)) x
(=AYP_0)). One has N1+ € C*(Q4) and

ON4
Os

(E,s)=—p'f(\,s) =—p'(|s|P —A) in Qx,
hence aN
8—:(E, s)>0 in Qg



EJDE-1999/09 Idris Addou & Abdelhamid Benmezai 17

and one may observe that sy(p,\, F) belongs to the open interval ((A(p +
1))Y/P, +00) (resp. (—AY/P,0)) and satisfies (from its definition)

Ni(E, Si(p,)\,E)) =0. (25)

So, one can make use of the implicit function theorem to show that the function
E+—— si(p,\, E) is C1((0,+00),R) (resp. C1((0,E.(p,\)),R)) and to obtain
the expression of %sEi (p, A\, E) given in (a). Hence, for any fixed p > 1 and
A > 0, the function defined in (0, 4+00) (resp. (0, E«(p,A))) by E — si(p, \, E)
is strictly increasing (resp. decreasing) and bounded from below by (A(p +
1))}/P (resp. —A'/P ) and from above by 4oo (resp. by 0). Then, the limit

lim si(p, A, E) = I3 exists as a real number and the limit _lim s, (p,\, E) =
E—0+ E—+o0

l40o (resp. Elin]}J s_(p,\,E) = l,) exists and belongs to ((A(p + 1))/?, +o0]
— LUy
(resp. [~AY/P 0]). Moreover

—00 < AP <L <l <0< Ap+1)YP <IF <lyoo < +00.
One may observe that, for any fixed p > 1 and A > 0, the function
(E,s) — Ny (E,s)

is continuous in [0, +00) x [(A(p+1))}/P, +-00) (resp. [0, E.(p, \)] x (—00,0]) and
the function E +—— s4.(p, A, E) is continuous in (0, +00) (resp. (0, E.(p, A))) and
satisfies (25)+. So, by passing to the limit in (25)+ as F tends to 0T one gets

0= lim Ni(E,s+(p,\E)) = N(0,i3).
E—0t
Hence, IF is a zero, belonging to [(A(p + 1))Y/?, 400) (resp. [-A}?,0]), to the

equation in the variable s:
Ni(O, S) =0.

By resolving this equation in the indicated interval one gets : Ij = ((p+1)A\)'/?
(resp. I, =0). The assertion (b) is proved.
Assume that [; o, < +00. Then by passing to the limit in (25); as E tends
to +00 one gets
(l+<>0)p

p+1

+00 = p'l1 oo — ) < +oo,
which is impossible. So, I; o = +00.
To prove that I, = —\'/?, it suffices to pass to the limit in (25)_ as F tends
to E.«(p, A) to get
N_(E.«(p,A),l.) =0

and to resolve this equation in [-A'/?,0]. (To this end, one may observe that
the function s — N_(E.(p, \), s) is strictly increasing in [~A}/? 0] and

N_(E.(p,\),=A?) = 0).
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Therefore, Lemma 8 is proved. <

Now we are ready to compute X4 (p, A\, E) as defined in Section 3, for any
p>1,A>0and E > 0. In fact, X4 (p,\, E) = (0,s+(p, \, E)) and

(—00,0) if E> E.(p,\)
X (p7 /\7 E) = .

(s—(p, A\, E),0) if0<E<E.p,A),
where s1(p, A, E) is defined in Lemma 8. Then

ry(p,\,E) :=sup X4 (p,\, E) = s4(p,\, E)

and

—00 it B> E.(p,\)

(P M\E) = inf X_(p,\,E) =
r-(p, A E) = nf X_(p, . B) {s_(p,)\,E) if0< E<E.(p\).

Recall that for any E > 0, sy (p, A, E) belongs to [(A(p + 1))%,4—00). Thus
0<ri(p,A\,E) <+oo ifandonlyif E >0.

Also recall that, for any 0 < E < E,(p, \), s_(p, \, E) belongs to [-A'/?,0) and
s-(p,A,0) = —((p+ DA)?, s0

oo <r_(p,A\E) <0 ifandonlyif 0<E <E.(pN\).
One may observe thatf(A, 7+ (p, A, E)) = 1% (p, A, E) — A > 0,VE > 0 and
fsr—(p, A, E)) = (=r—(p, A, E))P = A <0 E € (0, Ex(p,A)),
so that
={E>0]0<7+(p,\,E) <400 and f(A\,74+(p,\, E)) >0} = [0, +00).
and
D_:={E>0|-oco<r_(p,\,E) <0and f(\,7—(p,\, E)) <0} = (0, E<(p, \)).

So, D:=D;ND_ =(0,E.(p,N)).
Before going further in the investigation, we deduce from Lemma 8 that

lim 7y (p,\,E)=((p+1NY? and lim r_(p,\,E) =0, (26)
E—0t

E—0+
lim ri(p,\,E) =400 and lim r_(p,\, E) = —AYP, (27)
E—+o0o E—E,
Oory (p—1)EP~1 )
NE)= P27 )T B e int(Dy), 28
(R (P W2) (D) >
L 9% () A E) > 0, VE € int(Dy). (29)

OFE
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At present, we define, for any p > 1,A > 0, and E € D4, the time map
ri(p\E) Y
TpAE) =% [ (B -pFO09) s BeDs (0
0

and a simple change of variables shows that

1
T.(p, )\ E) = +rs (p, \, E) /0 (B» g FO\rs (o N E)O)) VPde. (31)

Observe that from the definition of s4 (p, A\, E') one has EP—p'F(\, s+ (p, \, E)) =
0, and so, from the definition of ry(p, A, E), one has EP = p' F(\,r1(p, A\, E)).
So, (31) may be written as

Ti(p\E) = ri(pAE)(p) /P x (32)

1
/0 (Furs(p ) E)) — FOure(p, A E)E)Y 7 de

After some substitutions one has

Ti(p XN E) = (r(p, A E)HP() 1P x (33)
1 1_€p+1 1-¢ }1/17
- A d¢, E€ D
[T ey FeDs
and
T_(pAE) = (—r-(p,\E) ()7 x (34)
1 -1/p
(—’I"_ (pv)‘7E))p 1 }
M1 —¢) — ——2 270 (1 —¢pt dé, Ee€ D_.
[ a-o- E=EAE G o)
Also, we define for any F € D = D, N D_ and n € N the time maps:
Ton(p, A, E) == n(T4(p, \, E) + T_(p, A\, E)), E € D, (35)
T5ns1(po A E) = Ton(p, X\ E) + Ta(p, A\, E),E€ D. (36)

The limits of these time maps are the aim of the following lemmas.

Lemma 9 For any p > 1 and A > 0, one has T+ (p, \, E«(p,\)) = AP
J+(p), where

1
T+ (p) = ()P (p + 1)MP0(p) /O {p— OWE" + o+ 1)op)e} " de

and 0(p) > (p + 1)Y/? is the unique positive zero of the equation

P —(p+1)0—p=0. (37)
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Lemma 10 For any p > 1 and X > 0, let

()0 (1)
F((;v—lz))gzﬁl))

p—1
2 .

J(p) = }9@')*/’7@ 1)

and
1
J—(p) = ()P0 + 1)1/,,/0 {p—(p+1)e+&+} P ae.

Then one has:
J_(p) < +oo < p > 2, (38)
i) lim Ty(p,\ E)=J@A P, (ii) lim T_(p,\,E)=0
(i) lim Ty (p, ) E) = J(p) , () lim T_(p,A E) ;
(iii) lim Ty (p,\,E)=0, (iv) lim T_(p,\,E) = J_(p)A~'/P".
E—+o00 E—E,

Lemma 11 For any p > 1 and X > 0, one has

i - -1/p?
(a) lim Tou(p, A E) = nJ (p)A
(b) Jlim T5,,1(p A E) = (n+ DI(pIA7,
(¢) Jim Tss (A ) = nd (A7,
(d) Jlim Ton(p, A E) = n(Js (p) + J(p)) x A"/7",
() Jim T i1(p, A E) = ((n+ 1) (p) + nJ-(p) x A~1/%",

(£) Jim Ty ity (0, A B) = (04 (p) + (n+1)J-(p)) x AP

Proof of Lemma 9. For any p > 1, let us consider the function © defined in
(0, +00) by ©(8) := 71 — (p + 1)§ — p. A study of its variations implies that
equation (37) admits a unique zero in (0, +0o0), denoted by 6(p), and this zero
belongs to ((p+1)/?, +00) (Note that ©((p+1)}/P) = —p). Furthermore, recall
(Lemma 8) that, for any A > 0 and E > 0, r4(p, \, E) is the unique positive
solution of equation (24). In particular, if E = E.(p, \) := ((1%)/\1—5-%)1/;; then
r4+(p, A, Ex(p, A)) is the unique positive solution of the following equation in the
variable s :

sPTE—Ap+1)s — pATE = 0. (39)

Some easy computations show that 8(p) A1/ is also a positive solution of (39),
and since (39) admits a unique positive solution (which is ri (p, A, E«(p, \))) it
follows that

7o (p, A\, Ex(p, A)) = 0(p)AYP, ¥p > 1, > 0.
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Now, from (33), some simple computations show that T4 (p, A, Ex(p,\)) =
)\_1/1"2J+(p) where

T (p) = ()P (p + 1)1/p9(P)/0 (p— (0@ + (p+ 1)0(p)€) " /Pde .

Therefore, Lemma 9 is proved. <

Proof of Lemma 10. In order to prove the first assertion we first claim that
there exists €9 > 0 (sufficiently small) such that for any £ € (1 — ¢g, 1),

p(p+1)
4

(1=8?<p—(p+ 1)+ <plp+1)(1-&)>
To proof this claim, for any = > 0, let

hw(g) =Dp—- (p+ 1)£ + gp—i—l - Jf(l - 6)275 € (07 1] .
Simple computations lead to

dhy
dg

Using 'Hopital’s rule one gets

(6 =201 - )~ (23

1—¢r
?)756(0,1)'

m)l—é”): (x_p(p+1))’

lim (x — ( ¢ 5

E—1- 2

So, because of continuity properties, there exists €1 > 0 (resp. €3 > 0) suffi-
ciently small such that

dhp(p+1)

df (£)>0,\V’£€(1—51,1)

(resp. (ih”(;ig“/“({) <0,V€ € (1 —eq,1)).
Notice that h,(1) = 0,Vz > 0, so that

hpp+1)(§) < 0,V€ € (1 —o,1)

(resp. hppy1y/a(§) > 0,V€ € (1—¢0,1)) where ¢9 = min(e1,€2). Then the claim
is proved.

With this claim we are able to prove easily the first assertion of this lemma.
In fact, the integral which appears in the definition of J_(p) may be written as

1

l1—eo
/ (p— (p+ )&+ €7+~ Vrde + / (p— (p+ 1) +€771) " /rde .
0 1

—€0
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The first integral converges because the integrand function is continuous on the
compact interval [0,1 — gg]. For the second integral, one has from the claim

1 de 1 B 1/ 1 de
0 [ s [ omwenere e ne) [ S

where A(p) = (p(p + 1))~/ and B(p) = (p(p + 1)/4)~/?. So, from the well-

known fact
[
—— > < 4o p>2
e (1-€)F

the first assertion follows.
Proof of (i). One has from (31)
1
TJr(pa >‘7 E) = rJr(pa >‘7 E) / (Ep - p,F(A7 TJr(p? /\7 E)f))il/pdg
0
Using (26) one gets:
lim E? —p'F(\ry(p, M, E)E) = —p'F(\ ((p+1)N)"/7¢)
E—0t

P((p+1A)PAE(L - €P),

S0, some simple computations yield

1 5 1
lim Ty (p,\, E) = (p+1)#2 (p/)"/PA~1/P / ¢p(1 —gr)~Vrge .
E—0+ 0

To compute this integral, one can make use of the change of variables z = £P and
then make use of the relationship between the Euler beta and gamma functions,
see for instance [13, Chap. VII, no 90, example 2, pp. 595-596], to obtain:
1T

D F((P*lz))glﬂrl))

1
| ema-eiirag
0
This completes the proof of (i).

Proof of (ii). Consider the expression for T_ (p, A, E) given by (34). From
(26) one gets

1
. (_T*(p7A7E))p
e Jy WO T T

-/ AL - ) Mg Ay
0

So, from (26) and (34) one gets

(1—grh)~Hrdg

lim T_(p,\, E) = (p') /P x (0)1_% X A7VP x gl = 0.
E—0t+

This completes the proof of (ii).



EJDE-1999/09 Idris Addou & Abdelhamid Benmezai 23

Proof of (iii). Consider the expression for T’ (p, A\, E) given by (33). From
(26) one gets

11— eptl 1-¢ 1 1

1
li —A “rdf = ——— 1 _ ¢pthy=1/pg
B oo 0( p+1 rﬁ(p,A,E)) : (p+1)1/p/o( &) &

and this integral may be computed by making use of the change of variables
x = &P to get

1 L=t
/ (- grrymge - LT s
0 p+1 T(;E5)
So, from (26) and (33) one gets
(L=t
lim T+(p,)\,E) = (pl)_l/p x 0 x . —z = (p 11);—5 L ) =0.
E—+oco (p+ 1) P F(;D(p-‘rl))

This completes the proof of (iii).

Proof of (iv). Consider the expression for 7_(p, A, E) given by (32). One has

lim (F(/\,T’,(p, >‘7 E)) - F(>‘7 T*(pa >‘7 E)g)) = lim (F(A,LL‘) - F(A,LL‘{))
E—E, z——A1/P
A +1
= —(p+1)¢+¢P
P 10—+ 1)E+E7)
so that
lim T_(p,\, E) = A””X(p’)””M&>l/px/l(p—(p+1)§+£”“)I/Pds
ESE. 7 p+1 0

which is the same as

1
Jim T (p, X B) = AP (p) P (p )P / (p—(p+1)E+€7) 7 /7de.
— Ly 0

This completes the proof of (iv) and of Lemma 10. <

Proof of Lemma 11. This proof is an immediate consequence of the two
preceding lemmas and the definitions (35) and (36) of the time maps Ty, Ty, 41

Lemma 12 For any p > 1, > 0, one has:

0Ty
:l:a—E(p, )\,E) < 07 VE € Dj:.
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Proof. From (32) one has

o
35 (P, \, E)

— (o —l/p{ari ' ~1/p
= ) GEAE) [ (O ) - FOura(p A BYO) 7

19
#rs@AE) [ SO a0 B) ~ FOLrae, A BY) e}

— n—1/p (%‘_i ! (F()\,Ti(p,)\,E)) - F()‘vri(p7)‘7E)§))
oG | (FOr (0.0 B) — FOMre(p A E))H
_%T:I:(p7A7E)%r—§(pv>‘7E) X

/1 f(A,T’i(p,A,E)) _f()Hr:l:(pa)‘?E)g)g df}
0 (F(\r+(p, ), B)) = FO\ 7+ (p, A, B)§)'

so that

aT: B

1 1/p, EOT
S0 (G A B)) ¢ (40)

/1 E(HO, 20, A B) — H\ (0, M E)E))
o (F(\rs(p, A E)) — F(\,r<(p, A, E)§))' >

where H(\,z) = pF(\z) — zf(\x) = p_—+11|x|pac — (p — 1)Az. Because the
function x — H (A, x) is decreasing for each fixed A > 0 (in fact, %IZ (A z) <0),
it follows that

:l:(H()‘vr:t(p7/\aE)) - H(>H r:l:(pa )\7 E)g)) < 07V>‘ > O,Vf € (07 1)

Hence, the integral in (40) is negative. So, because of (29), the proof of
Lemma 12 is achieved. <

Completion of the proof of Theorem 3. The proof is carried out by mak-
ing use of the quadrature method (Theorem 4). We have to resolve equations
of the type T(E) = %, where T designates, in each case, the appropriate time
map.

Solution in B;. Recall that 7, (p,A,0) = ((p + 1)A)'/?. Furthermore

(pf)‘vo) 2
T: (p, A, 0) = / (P F(p,\€))"VPde = TP
0

where J(p) is defined in Lemma 10. Then problem (1) admits a solution in B;"
if and only if nJ(p))\_l/p2 = (1/2), that is, if and only if A = (ZnJ(p))p2
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Solution in B, . Since0 ¢ D_ = (0, E.(p, A)), problem (1) admits no solution
in J B,.

n>1

Solution in A]. Recall that for any p > 1 and A > 0 the function E
T.(p,\, E) is defined in [0,400), is strictly decreasing (Lemma 12), and by
Lemma 10,

lim T E) = VP lim T E)=0.

Jim Ty(p, A B) = J()A7, lim T (p, A E) =0
Then, the equation T4 (p, A\, E) = (1/2) in the variable E € (0,+00) admits
a solution in [0,4o00) if and only if J(p))\_l/”2 > 1/2, that is, if and only
it A < (2J (p))p2, and in this case, the solution is unique since the function
T4 (p, A, -) is strictly decreasing.

Solution in A7. Case 1 < p < 2. In this case, for each A > 0, the function
E— T _(p,\ E) is defined in D_ = (0, E.(p, \)), is strictly increasing (Lemma
12), and

Jm T-(p, 2, E) =0, lim T_(p, A E) = +o0

(Lemma 10, (ii) and assertion (38)). So, the equation T_(p, A, E) = (1/2) in
the variable F € D_ admits a unique solution in D_ for any A > 0.

Case p > 2. In this case, for each A > 0, the function E — T_(p, A\, E) is
defined in D_ = (0, Ex(p, \)), is strictly increasing (Lemma 12), and

lim T_(p,\,E) = lim T_(p,\, E) = J_(p)A~ /7"
Jim T-(p, A B) =0, lim T_(p, A E) = J-(p)A < +o0

(Lemma 10). So, the equation T_(p, A\, E) = (1/2) in the variable £ € D_
admits a solution in D_ if and only if (1/2) < J_(p)A~Y/?’, that is, if and only
if A < (2J- (p))pz, and in this case the solution is unique since T_(p, A, -) is
strictly increasing.

Solution in A;tn. Case 1 < p < 2. In this case, for each A > 0, the function
E — To,(p, A\, E) is defined in D = (0, E.(p, A)), and

' - -1/p? ' -
Eli)n(}Jr T2n(p7 /\7 E) nJ(p))‘ ’ Ell)nj};'* T2n(p7 /\7 E) +00

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T5,(p, A\, E) =
(1/2) in the variable E € D admits a solution in D provided that (1/2) >
nJ(p)A~Y/P* | that is, provided that A > (2nJ(p))?".

Case p > 2. In this case, for each A > 0, the function E — Ts,(p, A, E) is
defined in D = (0, E.(p, A)), and

; = -1/p*
EILI%+ TQ'/L (p7 )‘7 E) ’I’LJ(p))\ )

lim Ta,(p, A, B) = nA~Y/7" (J_(p) + J4(p)) < +00
E—E,
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(Lemma 11 and Lemma 10, assertion (38)). So, the equation T5,(p, A\, E) =
(1/2) in the variable E' € D admits a solution in D provided that

2. 1 _L
nAT T ind (J(p), J-(p) + J1(p)) < 5 < nA” 7 sup(J(p), J- (p) + T4 (),
that is, provided that

{2ninf(J(p), J-(p) + T+ (1)} < A < {2nsup(J(p), J—(p) + T4 ()} .

Solution in A3, ,,. Case 1 < p < 2.In this case, for each A > 0, the function
E — T3 1(p, A\, E) is defined in D = (0, E,(p, A)), and

; + _ -1/p* ; + —
EIL)II(}+ T2n+1(p7A7E) - (n+ l)J(p))‘ 9 Eli{%,‘ T2n+1(p7A7E) = 400

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T4, (p, A, E) =
(1/2) in the variable E' € D admits a solution in D provided that
(n+1)J(p)A~Y/P" < (1/2), that is, provided that A > (2(n + 1)J(p))?".

Case p > 2. In this case, for each A > 0, the function F T;;H_l(p, M\ E) s
defined in D = (0, E(p, \)), and

1 + = 71/])2
EILII(}Jr T2n+1(p7A7E) (n+ l)J(p))‘ )

Jim T (0 A B) = AV (04 1)J4(p) + nJ(p)) < +00

(Lemma 11 and Lemma 10, assertion (38)). So, the equation T3, . | (p, A, E) =
(1/2) in the variable E € D admits a solution in D provided that

A 1/p? inf((n +1)J(p), (n+1)J(p) + nJ_(p))

< 3 <A #sup((n+1)J(p), (n+1)J4(p) +nJ-(p)),

that is, provided that

{2inf((n+1)T(p), (n + 1)J4(p) + nJ_(p))}"
< A < {2swp((n+ 1)J(p), (n + 1) T4 (p) + nJ_(p)}

Solution in A, ;. Case 1 < p < 2.In this case, for each A > 0, the function
E = Ty, 1(p, A\, E) is defined in D = (0, Ex(p, A)), and

: - — -1/p? : - _
Ell)n(}-%— T2n+1(p7 /\7 E) - nJ(p))‘ ) EIL>HI}]* T2n+1(p7 /\7 E) = 400

(Lemma 11 and Lemma 10, assertion (38)). So, the equation Ty, (p,\, E) =
(1/2) in the variable E € D admits a solution in D provided that nJ(p)/\’l/”2 <
(1/2), that is, provided that A > (2nJ (p))P’.
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Case p > 2. In this case, for each A > 0, the function E — T3, ,(p, A, E) is
defined in D = (0, E.(p, A)), and

lim T \, E) = nJ(p)A~—1/»*
EL)H(}JF 2n+1(p7 ) ) n (p) 9

Jim Ty (b B) = A7V (04 (p) + (4 1) (p)) < +o0

(Lemma 11 and Lemma 10, assertion (38)). So, the equation Ty, (p,\, E) =
(1/2) in the variable E € D admits a solution in D provided that

AV inf (nJ (p), n 4 (p) + (n + 1)J_(p))
< 3 <X VP sup(nd(p),ndy(p) + (n+1)J-(p)),

that is, provided that

{2inf((nT(p), nJ4 (p) + (n + 1)J-(p)}*"
< A < {2sup((nJ(p),nJi(p) + (n+1)J_(p))} -

Then the proof of Theorem 3 is complete.

Remark. Theorem 3 shows that for 1 < p < 2 (resp. p > 2) solutions to (
1) with k& > 1 interior nodes exist for all A belonging to an interval unbounded
from above (resp. a bounded interval). Hence, for 1 < p < 2, if problem (1)
admits a solution with a prescribed number ky > 1 of nodes for a certain value
Ao of A, it still admits solutions with kg nodes for all A greater than A\g. In
[5] it was shown that this is not the case for p > 2, and these changes in the
behavior of the solution set as p varies depend strongly on the nonlinearity of
the problem.
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