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BOUNDING FUNCTION APPROACH FOR IMPULSIVE
DIRICHLET PROBLEMS WITH UPPER-CARATHÉODORY

RIGHT-HAND SIDE

MARTINA PAVLAČKOVÁ, VALENTINA TADDEI

Abstract. In this article, we prove the existence and localization of solutions

for a vector impulsive Dirichlet problem with multivalued upper-Carathéodory
right-hand side. The result is obtained by combining the continuation principle

with a bound sets technique. The main theorem is illustrated by an application

to the forced pendulum equation with viscous damping term and dry friction
coefficient.

1. Introduction

Given an upper-Carathéodory multivalued mapping F : [0, T ]×Rn×Rn( Rn,
we consider the multivalued vector Dirichlet problem

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ], (1.1)

x(T ) = x(0) = 0. (1.2)

Moreover, let a finite number of points 0 = t0 < t1 < · · · < tp < tp+1 = T , p ∈ N,
and real n× n matrices Ai, Bi, i = 1, . . . , p, be given.

In this article, we study the solvability of the boundary-value problem (1.1)-(1.2),
in the presence of the impulse conditions

x(t+i ) = Aix(ti), i = 1, . . . , p, (1.3)

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p, (1.4)

where limt→a+ x(t) = x(a+).
By a solution of (1.1)-(1.4) we mean a function x ∈ PAC1([0, T ],Rn) (see Section

2 for the definition) satisfying (1.1)–(1.4).
Boundary value problems with impulses have attracted lots of interest because

of their applications in many areas such as: aircraft control, drug administration,
biotechnology and population dynamics, where processes are characterized by the
fact that the model parameters are subject to short term perturbations in time. For
instance, in the treatment of some diseases, impulses may correspond to adminis-
tration of a drug treatment; in environmental sciences, impulses may correspond to
seasonal changes or harvesting; in economics, impulses may correspond to abrupt
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changes of prices. Impulsive differential equations and inclusions are adequate ap-
paratus for modeling such processes and phenomena. The theory of single valued
impulsive problems is widely developed and presents in many cases direct analo-
gies with the results for problems without impulses (see, e.g., [11, 12, 24, 30]).
The theory dealing with multivalued impulsive problems arises e.g. from single
valued problems with discontinuous right-hand sides, problems with inaccurately
known right-hand sides or from control theory. This field has not been so deeply
studied and the results have been obtained in particular for the first-order prob-
lems and using fixed point theorems or upper and lower-solutions methods; for the
overview of known results, we recommend the monographs [13, 21] and the refer-
ences therein. Few results were obtained for Dirichlet impulsive problems using
topological or variational approaches in cases when right-hand sides do not depen-
dent on the first derivative or when the impulses depend only on the first derivative
(see [1, 15, 16, 18, 25, 29]).

In this paper, not only the existence but also the localization of solutions for
the impulsive multivalued Dirichlet problem (1.1)-(1.4) are obtained by means of
bound sets technique. The bound sets approach was introduced in the single valued
case by Gaines and Mawhin [20] for obtaining the existence of solutions of first and
second order differential equations. This technique was applied for multivalued
Dirichlet, Floquet or two-point problems without impulses in [4]-[9], [28, 32]. The
existence and localization result presented in Theorem 4.1 below will be obtained
by combining the bound sets approach with the continuation principle developed
in Section 2.

This article is organized as follows. In the second section, we recall suitable
definitions and statements which will be used in the sequel. Section 3 is devoted to
the study of bound sets and Liapunov-like bounding functions for impulsive Dirich-
let problems. At first, we consider C1-bounding functions with locally Lipschitzian
gradients. Consequently, it is shown how conditions ensuring the existence of bound
set become in case of C2-bounding functions. In Section 4, the bound sets approach
is combined with the continuation principle and an existence and localization result
is obtained in this way for the impulsive Dirichlet problem (1.1)-(1.4). Section 5
deals with an application to the forced pendulum equation with viscous damping
term and dry friction coefficient.

2. Preliminaries

We start with the notation used in this article. Let (X, d) be a metric space
and A ⊂ X. By A, intA and ∂A, we mean the closure, interior and boundary of
A, respectively. For a subset A ⊂ X and ε > 0, we define the set Nε(A) := {x ∈
X : ∃a ∈ A : d(x, a) < ε}, hence Nε(A) is an open neighborhood of the set A in
X. A subset A ⊂ X is called a retract of X if there exists a continuous function
r : X → A satisfying r(x) = x for every x ∈ A; this function is called a retraction.

For a given compact real interval J , we denote by C(J,Rn) (by C1(J,Rn)) the set
of all functions x : J → Rn which are continuous (have continuous first derivatives)
on J . By AC1(J,Rn), we denote the set of functions x : J → Rn with absolutely
continuous first derivatives on J . In the sequel, the norm of a real n × n matrix
will be denoted by ‖ · ‖ and the norm in L1(J,R) by the symbol ‖ · ‖1.
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Let PAC1([0, T ],Rn) be the space of functions x : [0, T ]→ Rn such that

x(t) =


x[0](t), for t ∈ [0, t1],
x[1](t), for t ∈ (t1, t2],
. . .

x[p](t), for t ∈ (tp, T ],

where x[0] ∈ AC1([0, t1],Rn), x[i] ∈ AC1((ti, ti+1],Rn), x(t+i ) = limt→t+i
x(t) ∈

R and ẋ(t+i ) = limt→t+i
ẋ(t) ∈ R, for i = 1, . . . , p. The space PAC1([0, T ],Rn)

equipped with the norm

‖x‖E := sup
t∈[0,T ]

|x(t)|+ sup
t∈[0,T ]

|ẋ(t)|, (2.1)

is denoted by (E, ‖ · ‖E). In a similar way, we can define the spaces PC([0, T ],Rn)
and PC1([0, T ],Rn) as the spaces of functions x : [0, T ] → Rn satisfying the
previous definition with x[0] ∈ C([0, t1],Rn), x[i] ∈ C((ti, ti+1],Rn), and with
x[0] ∈ C1([0, t1],Rn), x[i] ∈ C1((ti, ti+1],Rn), for i = 1, . . . , p, respectively. The
space PC1([0, T ],Rn) with the norm defined in (2.1) is a Banach space (see [27,
page 128]). A compactness result for subsets of PC1([0, T ],Rn) will be needed. So
we recall that a family F ⊂ PC([0, T ],Rn) is left equicontinuous (see [27]) if for
every ε > 0 and x ∈ [0, T ] there exists δ > 0 such that, for every f ∈ F ,

|f(x)− f(y)| < ε, for all y ∈ (x− δ, x]

and
|f(x+)− f(y)| < ε, for all y ∈ (x, x+ δ).

In the sequel, we use a generalized Ascoli-Arzelà theorem whose prove is given
in [27, Theorem 2], in a slightly different case, i.e. when the real valued functions
are discontinuous from the left and are just continuous in each interval [ti, ti+1).

Proposition 2.1. A family F ⊂ PC1([0, T ],Rn) is compact if and only if it is
bounded, left equicontinuous and the set {f ′ : f ∈ F} is left equicontinuous.

We also need the following definitions and notion for multivalued mappings. We
say that F is a multivalued mapping from X to Y (written F : X ( Y ), if, for
every x ∈ X, a nonempty subset F (x) of Y is given. We associate to F its graph
ΓF , i.e. the subset of X × Y defined by

ΓF := {(x, y) ∈ X × Y | y ∈ F (x)}.
The single valued function f : X → Y is called a selection of F if Γf ⊂ ΓF , i.e. if
f(x) ∈ F (x), for every x ∈ X.

A multivalued mapping F : X ( Y is called upper semi-continuous (abbrevi-
ated, u.s.c.) if, for each open set U ⊂ Y , the set {x ∈ X : F (x) ⊂ U} is open in X.
A multivalued mapping F : X ( Y is called compact if the set F (X) = ∪x∈XF (x)
is contained in a compact subset of Y . Let us note that every u.s.c. mapping with
closed values has a closed graph and that every compact multivalued mapping with
closed graph is u.s.c.

Let Y be a metric space and (Ω,U , µ) be a measurable space, i.e. a nonempty
set Ω equipped with a suitable σ-algebra U of its subsets and a countably additive
measure µ on U . A multivalued mapping F : Ω ( Y is called measurable if
{ω ∈ Ω : F (ω) ⊂ V } ∈ U , for each open set V ⊂ Y .
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We say that the mapping F : J ×Rm( Rn, where J ⊂ R is a compact interval,
is an upper-Carathéodory mapping if the map F (·, x) : J ( Rn is measurable, for
all x ∈ Rm, the map F (t, ·) : Rm ( Rn is u.s.c., for a.a. t ∈ J , and the set F (t, x)
is compact and convex, for all (t, x) ∈ J × Rm.

We shall use the following selection result, which was proved in [14, Proposition
6] in a quite general setting for a continuous function q. Its proof can be easily
extended to piecewise continuous functions, so we omit it here.

Proposition 2.2. Let J ⊂ R be a compact interval and F : J × Rm ( Rn be an
upper-Carathéodory mapping such that for every r > 0 there exists an integrable
function µr : J → [0,∞) satisfying |y| ≤ µr(t), for every (t, x) ∈ J × Rm, with
|x| ≤ r, and every y ∈ F (t, x). Then the composition F (t, q(t)) admits, for every
q ∈ PC(J,Rm), a measurable selection.

Let X ∩ Y 6= ∅ and F : X ( Y . We say that a point x ∈ X ∩ Y is a fixed point
of F if x ∈ F (x). The set of all fixed points of F is denoted by Fix(F ), i.e.

Fix(F ) := {x ∈ X : x ∈ F (x)}.
The following proposition will be applied for obtaining the existence of solutions to
boundary value problems. It follows from a result in [2, 3].

Proposition 2.3. Let X be a retract of a Banach space Y , and let T : X× [0, 1](
Y be a compact u.s.c. mapping with convex values such that T(X, 0) ⊂ X and that
Fix(T(x, λ)) ∩ ∂X = ∅, for every λ ∈ [0, 1). Then T(·, 1) has a fixed point.

We also need the following modification of the continuation principle developed
in [10] for problems on arbitrary, possibly non-compact, intervals. The differences
between the presented result and the one in [10] consist in replacement of the non-
compact interval by the compact one which simplify the last, so called transversality
condition, and in replacement of the space AC1

loc([0, T ],Rn) by the space E defined
above. For the completeness, the proof of this modified result is given here.

Proposition 2.4. Let us consider the boundary-value problem
ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x ∈ S, (2.2)

where F : [0, T ] × Rn × Rn ( Rn is an upper-Carathéodory mapping and S is a
subset of E. Let H : [0, T ]×R4n × [0, 1]( Rn be an upper-Carathéodory mapping
such that

H(t, c, d, c, d, 1) ⊂ F (t, c, d), for all (t, c, d) ∈ [0, T ]× R2n. (2.3)

Assume that
(i) there exists a retract Q of PC1([0, T ],Rn), with Q \ ∂Q 6= ∅, and a closed

subset S1 of S such that the associated problem
ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ), for a.a. t ∈ [0, T ],

x ∈ S1
(2.4)

has, for each (q, λ) ∈ Q × [0, 1], a non-empty and convex set of solutions
T(q, λ);

(ii) there exists a nonnegative, integrable function α : [0, T ]→ R such that

|H(t, x(t), ẋ(t), q(t), q̇(t), λ)| ≤ α(t)(1 + |x(t)|+ |ẋ(t)|),
for a.a. t ∈ [0, T ], and for any (q, λ, x) ∈ ΓT;
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(iii) T(Q× {0}) ⊂ Q;
(iv) there exist constants M0 ≥ 0, M1 ≥ 0 such that |x(0)| ≤ M0 and |ẋ(0)| ≤

M1, for all x ∈ T(Q× [0, 1]);
(v) the solution map T(·, λ) has no fixed points on the boundary ∂Q of Q, for

every λ ∈ [0, 1).
Then (2.2) has a solution in S1 ∩Q.

Proof. Let us apply Proposition 2.3, where X = Q is a retract of the Banach
space Y = PC1([0, T ],Rn). First of all, notice that if there exists q ∈ ∂Q such that
T(q, 1) = q, then the result is proven. Otherwise, we get that T(Q× [0, 1])∩∂Q = ∅,
according to assumption (v). Moreover, it follows from conditions (i) and (iii), that
T has convex values and that T(Q, 0) ⊂ Q.

Let us now show that T has a closed graph. Let {(qk, λk, xk)} ⊂ ΓT such
that (qk, λk, xk) → (q, λ, x), (q, λ) ∈ Q × [0, 1] be arbitrary. Then, since xk ∈
S1, xk → x and S1 is closed, it holds that x ∈ S1. Moreover, xk is a solu-
tion of (2.4), and so, according to Proposition 2.2, we get the existence of hk ∈
H(·, xk(·), ẋk(·), qk(·), q̇k(·), λk) such that ẋk(ti+1) − ẋk(t) =

∫ ti+1

t
hk(s)ds, for ev-

ery t ∈ (ti, ti+1] and i = 0, . . . , p. The convergence of {xk} implies its boundedness
in PC1([0, T ],Rn), and therefore, we get from (ii) that |hk(t)| ≤ α(t)(1 + M), for
some M > 0, every k ∈ N and a.a. t ∈ [0, T ]. This implies that {hk} is bounded in
L1([0, T ],Rn), and so it has a weakly convergent subsequence, for the sake of sim-
plicity still denoted as the sequence, which converges to a function h. In particular,∫ ti+1

t
hk(s) ds→

∫ ti+1

t
h(s) ds, for every t ∈ (ti, ti+1] and i = 0, . . . , p. Hence,

ẋ(ti+1)− ẋ(t) = lim
k→∞

[ẋk(ti+1)− ẋk(t)] = lim
k→∞

∫ ti+1

t

hk(s) ds =
∫ ti+1

t

h(s) ds,

for t ∈ (ti, ti+1] and i = 0, . . . , p. Therefore, there exists ẍ(t) = h(t), for a.a.
t ∈ [0, T ]. It remains to prove that h ∈ H(·, x(·), ẋ(·), q(·), q̇(·), λ). Since H is
upper-Carathéodory, there exists, for every ε > 0 and a.a. t ∈ [0, T ], a positive
number δ such that, if |(c, d, e, f, g)− (q(t), q̇(t), x(t), ẋ(t), λ)| ≤ δ, then

H(t, c, d, e, f, g) ⊂ H(t, q(t), q̇(t), x(t), ẋ(t), λ) +Bε0.

Recalling that the convergence in PC1([0, T ],Rn) of qk to q and xk to x implies the
pointwise convergence of both sequences and of the sequences of their derivatives to
the same limits, we get that, for every t ∈ [0, T ] and δ > 0, there exists k such that,
for k ≥ k, |(qk(t), q̇k(t), xk(t), ẋk(t), λk) − (q(t), q̇(t), x(t), ẋ(t), λ)| ≤ δ. Therefore,
for every ε > 0 and a.a. t ∈ [0, T ], there exists k such that, if k ≥ k, then

hk(t) ∈ H(t, qk(t), q̇k(t), xk(t), ẋk(t), λk) ⊂ H(t, q(t), q̇(t), x(t), ẋ(t), λ) +Bε0.

Since ε > 0 is arbitrary, we get that h(t) ∈ H(t, q(t), q̇(t), x(t), ẋ(t), λ), for a.a.
t ∈ [0, T ], i.e. that T has a closed graph. Recalling that a compact mapping with
closed graph is u.s.c. and has compact values, it remains only to prove that T is
compact. According to Proposition 2.1, we need to prove that T(Q × [0, 1]) is
bounded, left equicontinuous, and has left equicontinuous set of derivatives.

Let x ∈ T(q, λ). Then there exists h ∈ H(·, x(·), ẋ(·), q(·), q̇(·), λ) such that, for
every t, t̃ ∈ (ti, ti+1], with t > t̃, and i = 0, . . . , p,

ẋ(t) = ẋ(t̃) +
∫ t

t̃

h(s) ds, (2.5)
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and consequently, according to Fubini’s theorem,

x(t) = x(t̃) + ẋ(t̃)(t− t̃) +
∫ t

t̃

∫ r

t̃

h(s) ds dr

= x(t̃) + ẋ(t̃)(t− t̃) +
∫ t

t̃

(t− s)h(s) ds.

(2.6)

According to (ii) and (iv), for every t ∈ [0, t1], it holds that

|x(t)|+ |ẋ(t)| ≤M0 +M1(t1 + 1) + (t1 + 1)
∫ t

0

α(s)(1 + |x(s)|+ |ẋ(s)|) ds.

Therefore, if we denote by β1 := M0 +M1(t1 + 1) + (t1 + 1)
∫ t1

0
α(s)ds, we obtain

by Gronwall’s lemma that

|x(t)|+ |ẋ(t)| ≤ β1 + β1(t1 + 1)
∫ t1

0

α(s)e(t1+1)
R t1

s
α(r) dr ds := C1.

Take now t ∈ (t1, t2]. Reasoning as above we obtain

|x(t)|+ |ẋ(t)|

≤ |x(t+1 )|+ |ẋ(t+1 )|(t2 + 1) + (t2 − t1 + 1)
∫ t

t1

α(s)(1 + |x(s)|+ |ẋ(s)|) ds

≤ ‖A1‖ · |x(t1)|+ ‖B1‖ · |ẋ(t1)|(t2 + 1)

+ (t2 − t1 + 1)
∫ t

t1

α(s)(1 + |x(s)|+ |ẋ(s)|) ds

≤ max{‖A1‖, ‖B1‖(t2 + 1)}C1 + (t2 − t1 + 1)
∫ t

t1

α(s)(1 + |x(s)|+ |ẋ(s)|) ds.

Hence, denoted by β2 := max{‖A1‖, ‖B1‖(t2 + 1)}C1 + (t2 − t1 + 1)
∫ t2
t1
α(s) ds, we

obtain that

|x(t)|+ |ẋ(t)| ≤ β2 + β2(t2 − t1 + 1)
∫ t2

t1

α(s)e(t2−t1+1)
R t2

s
α(r)dr ds := C2.

Iterating we obtain the existence of D > 0 such that |x(t)|+ |ẋ(t)| ≤ D, for every
t ∈ [0, T ], i.e. we obtain that T(Q× [0, 1]) is bounded in PC1([0, T ],Rn).

Moreover, it follows from (2.5) and (2.6) that, that for every t, t̃ ∈ (ti, ti+1] with
t > t̃ and i = 0, . . . , p,

|ẋ(t)− ẋ(t̃)| =
∣∣∣ ∫ t

t̃

h(s)ds
∣∣∣ ≤ (1 +D)

∫ t

t̃

α(s)ds,

|x(t)− x(t̃)| ≤ D|t− t̃|+ (1 +D)
∫ t

t̃

(t− s)α(s)ds.

Thus, if t 6= t1, . . . , tp, one can take δ sufficiently small such that (t − δ, t + δ) ∩
{t1, . . . , tp} = ∅ and conclude (from the absolute continuity of the Lebesgue integral)
that the functions x and ẋ are equicontinuous at t. The left equicontinuity can be
deduced similarly for t ∈ {t1, . . . , tp}.

So, we have proved that T(Q × [0, 1)) is compact, and hence, it follows from
Proposition 2.3, that there exists a fixed point of T(·, 1) in S1 ∩Q. �
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The continuation principle described in Proposition 2.4 requires in particular
that any of corresponding problems does not have solutions tangent to the boundary
of a given set Q of candidate solutions. In Section 4, we will ensure that the
candidate solutions are not tangent to the boundary of Q by means of Hartman-
type conditions (see Section 3) and by means of the following result based on
Nagumo conditions (see [31, Lemma 2.1] and [23, Lemma 5.1]).

Proposition 2.5. Let ψ : [0,+∞)→ [0,+∞) be a continuous and non-decreasing
function, with

lim
s→∞

s2

ψ(s)
ds =∞, (2.7)

and let R be a positive constant. Then there exists a positive constant

B = ψ−1(ψ(2R) + 2R) (2.8)

such that if x ∈ PC1([0, T ],Rn) is such that |ẍ(t)| ≤ ψ(|ẋ(t)|), for a.a. t ∈ [0, T ],
and |x(t)| ≤ R, for every t ∈ [0, T ], then it holds that |ẋ(t)| ≤ B, for every t ∈ [0, T ].

Let us note that the previous result is classically given for C2-functions. How-
ever, it is easy to prove (see, e.g., [7]) that the statement holds also for piecewise
continuously differentiable functions.

3. Bound sets theory for impulsive Dirichlet problems

The direct verification of transversality condition (v) in Proposition 2.4 is quite
complicated. Therefore, we now introduce a Liapunov-like function V , usually
called bounding function, which can guarantee this condition.

Let K ⊂ Rn be a nonempty, open set with 0 ∈ K and let V : Rn → R be a
continuous function satisfying

(H1) V |∂K = 0,
(H2) V (x) ≤ 0, for all x ∈ K.

Definition 3.1. A set K is called a bound set for the impulsive Dirichlet problem
(1.1)-(1.4) if every solution x of (1.1)-(1.4) such that x(t) ∈ K, for each t ∈ [0, T ],
does not satisfy x(t∗) ∈ ∂K, for any t∗ ∈ [0, T ].

Remark 3.2. Note that the existence of a bound set K for problem (1.1)-(1.4)
does not guarantee the existence of a solution for (1.1) -(1.4). It only ensures that
if there would exist a solution laying in K, then this solution would not touch the
boundary of K at any point, i.e. it would lay in intK.

At first, the sufficient conditions for the existence of a bound set for the impulsive
Dirichlet problem (1.1)-(1.4) in the general case will be shown in Proposition 3.3
below. Afterwards, the regularity assumptions on the bounding function V will be
made more strict and the practically applicable version of Proposition 3.3 will be
obtained (see Corollary 3.5 below).

Proposition 3.3. Let K ⊂ Rn be a nonempty open set with 0 ∈ K and F :
[0, T ]×Rn×Rn( Rn be an upper-Carathéodory multivalued mapping. Let a finite
number of points 0 = t0 < t1 < · · · < tp < tp+1 = T , p ∈ N, be given and let Ai, Bi,
i = 1, . . . , p, be real n× n matrices such that Ai∂K = ∂K, for all i = 1, . . . , p.
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Assume that there exists a function V ∈ C1(Rn,R), with ∇V locally Lipschitzian,
satisfying conditions (H1) and (H2). Suppose, moreover, that there exists ε > 0 such
that, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ) and v ∈ Rn, the condition

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (3.1)

holds for all w ∈ F (t, x, v), and that

〈∇V (Aix), Biv〉 · 〈∇V (x), v〉 > 0, (3.2)

for all i = 1, . . . , p, x ∈ ∂K and v ∈ Rn with 〈∇V (x), v〉 6= 0.
Then K is a bound set for the impulsive Dirichlet problem (1.1)-(1.4).

Proof. We assume, by a contradiction, that K is not a bound set for the Dirichlet
problem (1.1)-(1.4), i.e. that there exist a solution x : [0, T ]→ K of (1.1)-(1.4) and
t∗ ∈ [0, T ] such that x(t∗) ∈ ∂K. The point t∗ must lay in (0, T ), according to the
boundary condition (1.2) and the fact that 0 ∈ K.

Let us define a function g : [0, T ]→ R by the formula g(t) := V (x(t)). According
to the properties of x and V , g ∈ PC1([0, T ],R) and g(t) ≤ 0 for all t. Since
g(t∗) = 0, the point t∗ is a local maximum point for g. Therefore, if t∗ /∈ {t1, . . . , tp},
ġ(t∗) = 0. Let us now prove that ġ(t∗) = 0 also when t∗ = ti+1, for some i =
0, . . . , p− 1. By a contradiction, suppose that

0 < ġ(ti+1) = 〈∇V (x(ti+1)), ẋ(ti+1)〉. (3.3)

Notice that also Ai+1x(ti+1) ∈ ∂K, and hence g(t+i+1) = g(Ai+1x(ti+1)) = 0.
According to condition (3.2), there exist two functions a(h) and b(h), with a(h)→
0, b(h)→ 0 when h→ 0, such that

ġ(t+i+1) = lim
h→0+

V (x(ti+1 + h))− V (x(t+i+1))
h

= lim
h→0+

V (x(t+i+1) + ẋ(t+i+1)h+ a(h)h)− V (x(t+i+1))
h

= lim
h→0+

〈∇V (x(t+i+1), ẋ(t+i+1) + a(h)〉h+ b(h)h
h

= 〈∇V (x(t+i+1)), ẋ(t+i+1)〉
= 〈∇V (Ai+1x(ti+1)), Bi+1ẋ(ti+1)〉 > 0.

Thus, for t > ti+1 sufficiently close to ti+1, we get that 0 ≥ g(t) > g(t+i+1) = 0, a
contradiction. Therefore, ġ(t∗) = 0 also in the case when t∗ = ti+1.

Since ∇V is locally Lipschitzian, there exist a bounded set U ⊂ Rn with x(t∗) ∈
U and a constant L > 0 such that ∇V |U is Lipschitzian with constant L. The
continuity of x in (ti, ti+1] then yields the existence of δ > 0, δ < t∗− ti, such that
x(t) ∈ U ∩ Nε(∂K), for each t ∈ [t∗ − δ, t∗]. Since ġ(t) = 〈∇V (x(t)), ẋ(t)〉, where
∇V (x(t)) is locally Lipschitzian and ẋ(t) is absolutely continuous on [t∗ − δ, t∗],
there exists g̈ ∈ L1([t∗ − δ, t∗],R). Moreover, there exists a point t∗∗ ∈ (t∗ − δ, t∗),
such that ġ(t∗∗) ≥ 0, because t∗ is a local maximum point. Consequently,

0 ≥ −ġ(t∗∗) = ġ(t∗)− ġ(t∗∗) =
∫ t∗

t∗∗
g̈(s) ds. (3.4)
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Let t ∈ (t∗∗, t∗) be such that g̈(t) and ẍ(t) exist. Then there exist two functions
a(h) and b(h), with a(h)→ 0, b(h)→ 0 when h→ 0, such that, for each h,

ẋ(t+ h) = ẋ(t) + h[ẍ(t) + a(h)], (3.5)

x(t+ h) = x(t) + h[ẋ(t) + b(h)]. (3.6)

Consequently,

g̈(t)

= lim
h→0

ġ(t+ h)− ġ(t)
h

= lim sup
h→0−

ġ(t+ h)− ġ(t)
h

= lim sup
h→0−

〈∇V (x(t+ h)), ẋ(t+ h)〉 − 〈∇V (x(t)), ẋ(t)〉
h

= lim sup
h→0−

〈∇V (x(t) + h[ẋ(t) + b(h)]), ẋ(t) + h[ẍ(t) + a(h)]〉 − 〈∇V (x(t)), ẋ(t)〉
h

≥ lim sup
h→0−

[ 〈∇V (x(t) + hẋ(t)), ẋ(t) + h[ẍ(t) + a(h)]〉 − 〈∇V (x(t)), ẋ(t)〉
h

− L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]|
]

= lim sup
h→0−

[ 〈∇V (x(t) + hẋ(t)), ẋ(t) + hẍ(t)〉 − 〈∇V (x(t)), ẋ(t)〉
h

− L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]|+ 〈∇V (x(t) + hẋ(t)), a(h)〉
]
.

Since 〈∇V (x(t) + hẋ(t)), a(h)〉−L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]| → 0 as h→ 0 and
since assumption (3.1) holds,

g̈(t) ≥ lim sup
h→0−

〈∇V (x(t) + hẋ(t)), ẋ(t) + hẍ(t)〉 − 〈∇V (x(t)), ẋ(t)〉
h

> 0,

which leads to a contradiction with inequality (3.4). �

Definition 3.4. A function V : Rn → R satisfying (H1), (H2), (3.1), and (3.2) is
called a bounding function for (1.1)-(1.4).

When the bounding function V is of class C2, condition (3.1) can be rewritten
in terms of gradients and Hessian matrices.

Corollary 3.5. Let K ⊂ Rn be a nonempty open set with 0 ∈ K and F : [0, T ] ×
Rn×Rn( Rn be an upper-Carathéodory multivalued mapping. Let a finite number
of points 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N, be given and let Ai, Bi,
i = 1, . . . , p, be real n× n matrices such that Ai∂K = ∂K, for all i = 1, . . . , p.

Assume that there exists a function V ∈ C2(Rn,R) satisfying conditions (H1),
(H2), and (3.2). Moreover, assume that there exists ε > 0 such that, for all x ∈
K ∩Nε(∂K), t ∈ (0, T ) and v ∈ Rn, the condition

〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0 (3.7)

holds for all w ∈ F (t, x, v). Then K is a bound set for problem (1.1)-(1.4).

Proof. The statement follows immediately from the fact that if V ∈ C2(Rn,R),
then, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ), v ∈ Rn and w ∈ F (t, x, v), there exists

lim
h→0

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

= 〈HV (x)v, v〉+ 〈∇V (x), w〉.
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�

Remark 3.6. In conditions (3.1), (3.2) and (3.7), the element v plays the role of
the first derivative of the solution x. If x(t) ∈ K, for every t ∈ J , then, according
to Proposition 2.5 and the fact that R = max{|c| : c ∈ K} ∈ R, it holds that
|ẋ(t)| ≤ B, for every t ∈ J , where B is defined by (2.8). Hence, it is sufficient to
require conditions (3.1), (3.2) and (3.7) in Proposition 3.3 and Corollary 3.5 only
for all v ∈ Rn with |v| ≤ B and not for all v ∈ Rn.

4. Existence and localization results for Dirichlet problems

In this section,we study (1.1)-(1.4) by combining the continuation principle in
Proposition 2.4 with bound sets results developed in the previous section. After
rewriting (1.1)-(1.4) in the abstract form (2.2), we will be able to verify all condi-
tions in Proposition 2.4.

Theorem 4.1. Let K ⊂ Rn be a nonempty, open, bounded and convex set with
0 ∈ K and let us consider (1.1)-(1.4), where F : [0, T ] × Rn × Rn ( Rn is an
upper-Carathéodory multivalued mapping, 0 = t0 < t1 < · · · < tp < tp+1 = T ,
p ∈ N, and Ai, Bi, i = 1, . . . , p, are real n × n matrices with Ai∂K = ∂K, for all
i = 1, . . . , p. Moreover, assume that

(i) there exists a function β : [0,∞) → [0,∞) continuous and non-decreasing
satisfying

lim
s→∞

s2

β(s)
ds =∞ (4.1)

such that
|F (t, c, d)| ≤ β(|d|), (4.2)

for a.a. t ∈ [0, T ] and every c, d ∈ Rn with |c| ≤ R := max{|x| : x ∈ K};
(ii) the problem

ẍ(t) = 0, for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p,

(4.3)

has only the trivial solution;
(iii) there exists a function V ∈ C1(Rn,R), with ∇V locally Lipschitzian, satis-

fying conditions (H1) and (H2);
(iv) there exists ε > 0 such that, for all λ ∈ (0, 1), x ∈ K ∩Nε(∂K), t ∈ (0, T ),

and v ∈ Rn, with |v| ≤ φ−1(φ(2R) + 2R), the condition

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (4.4)

holds for all w ∈ λF (t, x, v);
(v) for all i = 1, . . . , p, x ∈ ∂K and v ∈ Rn, with |v| ≤ φ−1(φ(2R) + 2R) and
〈∇V (x), v〉 6= 0, it holds

〈∇V (Aix), Biv〉 · 〈∇V (x), v〉 > 0.

Then (1.1)-(1.4) has a solution x(·) such that x(t) ∈ K, for all t ∈ [0, T ].
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Proof. For every c ∈ K, it holds that |c| ≤ R. According to Proposition 2.5, for
every x ∈ PC1([0, T ],Rn) with |ẍ(t)| ≤ β(|ẋ(t)|), for a.a. t ∈ [0, T ], and x(t) ∈ K,
for every t ∈ [0, T ], it holds |ẋ(t)| ≤ B, for every t ∈ [0, T ], with B defined by

B = β−1(β(2R) + 2R).

Define

Q := {q ∈ PC1([0, T ],Rn) : q(t) ∈ K, |q̇(t)| ≤ 2B, for all t ∈ [0, T ]}, (4.5)

S = S1 = Q and H(t, c, d, e, f, λ) = λF (t, e, f). Thus the associated problem (2.4)
is the fully linearized problem

ẍ(t) ∈ λF (t, q(t), q̇(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p.

(4.6)

For each (q, λ) ∈ Q × [0, 1], let T(q, λ) be the solution set of (4.6). Now we check
that all the assumptions of Proposition 2.4 are satisfied.

Since the closure of a convex set is still a convex set, it follows that Q is convex,
and hence a retract of PC1([0, T ],Rn).

Condition (ii) follows from assumption (i) and the fact that

|H(t, x(t), ẋ(t), q(t), q̇(t), λ| = λ|F (t, q(t), q̇(t))| ≤ β(|q̇(t)|) ≤ β(2B)

≤ β(2B)(1 + |x(t)|+ |ẋ(t)|),

for every λ ∈ [0, 1], q ∈ Q, x ∈ T(q, λ). In particular |F (t, e, f)| ≤ β(r) for every
(t, e, f) ∈ J × R2n with |f | ≤ r.

Let q ∈ Q and let fq be a measurable selection of F (·, q(·), q̇(·)), whose exis-
tence is guaranteed applying Proposition 2.2 with µr(t) ≡ β(r). Then, for any
λ ∈ [0, 1], λfq is a measurable selection of λF (·, q(·), q̇(·)). Let us consider the
corresponding single valued linear problem with linear impulses

ẍ(t) = λfq(t), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p.

(4.7)

First of all, let us prove that problem (4.7) has a unique solution xλfq
. If we denote

C :=


B1(T − t1) if p = 1∏p
l=1Bl(T − tp) +

∏p
k=1Akt1

+
∑p
j=2

∏p
k=j Ak

∏j−1
l=1 Bl(tj − tj−1) if p ≥ 2,

(4.8)

it is easy to prove that the initial problem

ẍ(t) = 0, for a.a. t ∈ [0, T ],

x(0) = 0,

x(t+i ) = Aix(ti), i = 1, . . . , p,

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p
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has infinitely many solutions,

x0(t) =



ẋ0(0)t if t ∈ [0, t1],

B1ẋ0(0)(t− t1) if t ∈ (t1, t2][∏i
l=1Bl(t− ti) +

∏i
k=1Akt1

+
∑i
j=2

∏i
k=j Ak

∏j−1
l=1 Bl(tj − tj−1)

]
ẋ0(0)

if t ∈ (ti, ti+1], 2 ≤ i ≤ p+ 1

with ẋ0(0) ∈ Rn. Since x0(T ) = 0 if and only if Cẋ0(0) = 0, condition (ii) holds
if and only if C is regular. Then, for every λ ∈ [0, 1], q ∈ Q and every measurable
selection fq of F (·, q(·)q̇(·)), (4.7) has a unique solution,

xλfq
(t) =



ẋλfq
(0)t+

∫ t
0
(t− τ)fq(τ)dτ if t ∈ [0, t1],

B1ẋλfq
(0)(t− t1) +

∫ t
t1

(t− τ)fq(τ)dτ
+B1(t− t1)

∫ t1
0
fq(τ)dτ if t ∈ (t1, t2]∏i

l=1Blẋλfq (0)(t− ti) +
∫ t
ti

(t− τ)fq(τ)dτ
+
∑i
r=1

∏i
l=r Bl(t− ti)

∫ tr
tr−1

fq(τ)dτ +
∏i
k=1Akẋλfq (0)t1

+
∏i
k=1Ak

∫ t1
0

(t1 − τ)fq(τ)dτ

+
∑i
j=2

∏i
k=j Ak

[∏j−1
l=1 Blẋλfq (0)(tj − tj−1)

+
∫ tj
tj−1

(tj − τ)fq(τ)dτ

+
∑k−1
r=1

∏k−1
l=r Bl(tj − tj−1)

∫ tr
tr−1

fq(τ)dτ
]

if t ∈ (ti, ti+1], 2 ≤ i ≤ p+ 1

with

ẋλfq
(0) = −C−1

(∫ T

t1

(T − τ)fq(τ)dτ +B1(T − t1)
∫ t1

0

fq(τ)dτ
)

(4.9)

if p = 1, and

ẋλfq
(0) = −C−1

(∫ T

tp

(T − τ)fq(τ)dτ +
p∑
r=1

p∏
l=r

Bl(T − tp)
∫ tr

tr−1

fq(τ)dτ

+
p∏
k=1

Ak

∫ t1

0

(t1 − τ)fq(τ)dτ +
p∑
j=2

p∏
k=j

Ak

[∫ tj

tj−1

(tj − τ)fq(τ)dτ

+
k−1∑
r=1

k−1∏
l=r

Bl(tj − tj−1)
∫ tr

tr−1

fq(τ)dτ
])

(4.10)

if p ≥ 2. Therefore

T(q, λ) = {xλfq
: fq is a selection of F (·, q(·), q̇(·))} 6= ∅.

Given x1, x2 ∈ T(q, λ), there exist measurable selections f1
q , f

2
q of F (·, q(·), q̇(·))

such that x1 = xλf1
q

and x2 = xλf2
q
. Since the right-hand side F has convex

values, it holds that, for any c ∈ [0, 1], cf1
q + (1 − c)f2

q is a measurable selection
of F (·, q(·), q̇(·)) as well. The linearity of both the equation and of the impulses
yields that cx1 + (1− c)x2 = xcf1

q +(1−c)f2
q
, i.e. that the set of solutions of problem
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(4.6) is convex, for each (q, λ) ∈ Q × [0, 1]. Therefore, assumptions (i) and (ii) in
Proposition 2.4 are satisfied.

Condition (iii) follows immediately from the fact that 0 ∈ K and that, for λ = 0,
the associated problem has only the trivial solution, see assumption (ii).

Let xλfq
be the solution of (4.7). Then |xλfq

(0)| = 0. Moreover, according to
assumption (i) and formulas (4.9) and (4.10),

|ẋλfq (0)| ≤ ‖C−1‖
[
β(2B)

1
2
T 2 + T 2‖B1‖β(2B)

]
= T 2‖C−1‖ · β(2B)

[1
2

+ ‖B1‖
]

if p = 1 and

|ẋλfq
(0)| ≤ ‖C−1‖

[1
2
T 2β(2B) + T 2

p∏
l=1

‖Bl‖ · β(2B)

+
1
2
T 2

p∏
k=1

‖Ak‖β(2B) + T 2

p∏
l=1

‖Bl‖
p∏
k=1

‖Ak‖ · β(2B)
]

= T 2‖C−1‖ · β(2B)
[1

2
+

p∏
l=1

‖Bl‖

+
p∏
k=1

‖Ak‖+
p∏
l=1

‖Bl‖
p∏
k=1

‖Ak‖
]

if p ≥ 2. Therefore there exists a constant M1 such that |ẋ(0)| ≤ M1, for all
solutions x of (4.6). Hence, condition (iv) in Proposition 2.4 is satisfied.

Let us assume that q∗ ∈ Q is, for some λ ∈ [0, 1), a fixed point of the solution
mapping T(·, λ). We will show now that q∗ can not lay in ∂Q.

At first, let us investigate the case when λ = 0. Then (4.6) transforms into (4.3)
which has only the trivial solution. Therefore, for λ = 0, it holds that q∗ ≡ 0 which
lays in Int Q. Hence, if λ = 0, condition (v) in Proposition 2.4 is satisfied.

Secondly, let us assume that λ ∈ (0, 1). If q∗ belongs to ∂Q, then there exists
t0 ∈ [0, T ] such that q∗(t0) ∈ ∂K or |q̇∗(t0)| = 2B. Since, for a.a. t ∈ [0, T ], we have

|q̈∗(t)| = λ|F (t, q∗(t), q̇∗(t))| ≤ β(|q̇∗(t)|)

and |q∗(t)| ≤ R, for every t ∈ [0, T ], Proposition 2.5 implies that |q̇∗(t)| ≤ B < 2B,
for every t ∈ [0, T ]. Hence, q(t0) ∈ ∂K, which is impossible, since, according to
Remark 3.6, hypotheses (iii), (iv) and (v) guarantee that K is a bound set for (4.6),
i.e. that q∗(t) ∈ K, for all t ∈ [0, T ]. Thus q∗ ∈ Int Q.

Therefore, condition (v) from Proposition 2.4 is satisfied, for all λ ∈ [0, 1], which
completes the proof. �

Remark 4.2. An easy example of impulses conditions guaranteeing assumption
(ii) in Theorem 4.1 are the antiperiodic impulses, i.e. Ai = Bi = −I, for every
i = 1, . . . , p. It follows from the proof of Theorem 4.1 that for the fulfilment of
assumption (ii), it is sufficient to prove the regularity of the matrix C defined in
(4.8). For p = 1, C = (t1 − T )I which is obviously regular. Let us show that C is
regular also when p ≥ 2. If p is even, then

∏p
k=j(−I)

∏j−1
l=1 (−I) =

∏p
l=1(−I) = I.

Hence

C = [T − tp + t1 +
p∑
j=2

(tj − tj−1)]I = TI
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which is regular. It can be shown that a similar reasoning holds also in the case
when p is odd.

Remark 4.3. When V is of class C2, then, according to Corollary 3.5, condition
(iv) in Theorem 4.1 is equivalent to requiring that, for all x ∈ K ∩ Nε(∂K), t ∈
(0, T ), and v ∈ Rn, with |v| ≤ φ−1(φ(2R) + 2R),

〈HV (x)v, v〉+ λ〈∇V (x), w〉 > 0, for every λ ∈ (0, 1) and w ∈ F (t, x, v). (4.11)

Since the function g(λ) = λ〈∇V (x), w〉 is monotone, (4.11) is then equivalent to
the following two conditions

〈HV (x)v, v〉 ≥ 0 and 〈HV (x)v, v〉+ 〈∇V (x), w〉 ≥ 0 (4.12)

that do not depend on λ.

5. Application to the forced pendulum equation

Let us consider the forced (mathematical) pendulum equation with viscous damp-
ing and dry friction terms

ẍ+ eẋ+ b sinx+ f sgn ẋ = h(t), for a.a. t ∈ [0, π], (5.1)

with antiperiodic impulses and Dirichlet boundary conditions

x(t+i ) = −x(ti), i = 1, . . . , p, (5.2)

ẋ(t+i ) = −ẋ(ti), i = 1, . . . , p, (5.3)

x(0) = x(π) = 0, (5.4)

where e, b and f are real constants and 0 = t0 < t1 < · · · < tp < tp+1 = π, p ∈ N.
The function h : [0, π] → R plays the role of the forcing term and we assume that
h ∈ L∞([0, π],R).

The study of the pendulum equation (i.e. the case b > 0, e = f = 0) dates
back to a century ago (see [22]), when it was shown that it is worth to consider
Dirichlet boundary conditions since the symmetry of the equation implies that such
solutions are related to periodic solutions. The mathematical pendulum equation
(i.e. the case b < 0, e = f = 0) was considered for the first time in [19]. More
recently, the pendulum equation was generalized introducing a non-zero viscous
damping coefficient e or a non-zero friction coefficient f (see [5, 26] for more details
about this topic). Let us mention also the paper [17], where an impulse problem is
considered in the case e = f = 0.

Because the function sgn y is discontinuous at y = 0, we should consider Filippov
solutions of (5.1) which can be identified as Carathéodory solutions of the inclusion

ẍ+ eẋ+ b sinx ∈ h(t)− f Sgn ẋ, (5.5)

where

Sgn y :=


−1, for y < 0,
[−1, 1], for y = 0,
1, for y > 0.

Let us now consider the Dirichlet multivalued problem (5.5), (5.4) with impulse
conditions (5.2), (5.3) and let us check that all the assumptions of Theorem 4.1 are
satisfied.

To verify condition (i), let us define the continuous and non-decreasing function

β(d) = ‖h‖∞ + |e‖d|+ |b|+ |f |, for all d ∈ R.
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The function β obviously satisfies (4.1) and F (t, c, d) = h(t)− ed− b sin c− f Sgn d
satisfies (4.2), for all t ∈ [0, π] and all c, d ∈ R.

Assumption (ii) holds as well since, according to Remark 4.2, the associated
homogeneous problem has only the trivial solution.

For verifying condition (iii), consider the nonempty, open, bounded, convex and
symmetric neighbourhood of the origin K = (−k, k) with k ∈ (0, π2 ] which will
be specified later and the C2−function V (x) = 1

2 (x2 − k2) that trivially satisfies
conditions (H1) and (H2).

To check condition (4.4) (which takes in our case the form (4.12), according to
Corollary 3.5 and Remark 4.3), since 〈HV (x)v, v〉 = v2 is obviously non-negative,
it is sufficient to verify that

v2 + x
(
h(t)− ev − b sinx− f Sgn v

)
= v2 − exv + xh(t)− bx sinx− fxSgn v ⊂ (0,∞),

(5.6)

for every t ∈ (0, π), v ∈ R and x ∈ R with k − ε ≤ |x| ≤ k.
(1) If x = k, then (5.6) becomes

v2 − ekv + kh(t)− bk sin k − fk Sgn v ⊂ (0,∞), (5.7)

for every t ∈ (0, π) and v ∈ R. Since k > 0,

kh(t) ≥ k inf
t∈(0,π)

h(t), for all t ∈ (0, π),

and so condition (5.7) holds if

v2 − ekv + k inf
t∈(0,π)

h(t)− bk sin k − fk Sgn v ⊂ (0,∞),∀v ∈ R. (5.8)

(a) If v = 0, then (5.8) takes the form

k inf
t∈(0,π)

h(t)− bk sin k − fks > 0

for every s ∈ [−1, 1]. This is equivalent to

inf
t∈(0,π)

h(t) > b sin k + |f |, (5.9)

since maxs∈[−1,1] fs = |f |.
(b) If v > 0, then (5.8) takes the form

v2 − ekv + k inf
t∈(0,π)

h(t)− bk sin k − fk > 0. (5.10)

If we define the function g : [0,∞)→ R by g(v) = v2−ekv+k inft∈(0,π) h(t)−
bk sin k − fk, then g(0) > 0, according to (5.9), and the minimum of g is
achieved at the point v̄ = ek

2 . Therefore, the inequality (5.10) holds if (5.9)
is satisfied in case of e ≤ 0 and if

inf
t∈(0,π)

h(t) >
e2k

4
+ b sin k + f, for e > 0.

Summing up, inequality (5.10) holds if

inf
t∈(0,π)

h(t) >
e2k

4
+ b sin k + f.
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(c) If v < 0, then (5.8) takes the form

v2 − ekv + k inf
t∈(0,π)

h(t)− bk sin k + fk > 0. (5.11)

In the same way as before, it is possible to obtain that (5.11) holds if

inf
t∈(0,π)

h(t) >
e2k

4
+ b sin k − f, for e < 0,

inf
t∈(0,π)

h(t) > b sin k − f, for e ≥ 0.

Summing up, (5.6) holds, for x = k, if

inf
t∈(0,π)

h(t) >
e2k

4
+ b sin k + |f |. (5.12)

(2) If x = −k, then (5.6) becomes

v2 + ekv − kh(t)− bk sin k + fk Sgn v ⊂ (0,∞), for every t ∈ (0, π) and v ∈ R

and analogously as in the case x = k, we obtain that (5.6) holds for x = −k if

sup
t∈(0,π)

h(t) < −e
2k

4
− b sin k − |f |. (5.13)

Therefore, (5.6) holds, for all t ∈ (0, π), v ∈ R and x ∈ R with k − ε ≤ |x| ≤ k, for
some ε > 0 sufficiently small, (due to the continuity and the inequalities (5.12) and
(5.13)) if

e2k

4
+ b sin k + |f | < inf

t∈(0,π)
h(t) ≤ sup

t∈(0,π)

h(t) < −e
2k

4
− b sin k − |f |,

which, in particular, implies that e2k
4 + b sin k + |f | < 0.

Since ∇V (x) = V̇ (x) = x and HV (x) = V̈ (x) = 1, for all x ∈ R, condition (v)
trivially holds.

In conclusion, assuming that k ∈ (0, π/2] is such that

e2k

4
+ b sin k + |f | < 0 (5.14)

and that

|h(t)| < −e
2k

4
− b sin k − |f |, for all t ∈ (0, π),

then all the assumptions of Theorem 4.1 are satisfied, and problem (5.1) admits a
solution laying in [−k, k]. We stress that such solution is not trivial, according to the
presence of the forcing term. Notice moreover that condition (5.14) is consistent,
since it never holds for small k, and therefore (5.6) is not satisfied in the whole
corresponding set K but only in some neighborhood of its boundary, as required.
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