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CONE-VALUED IMPULSIVE DIFFERENTIAL AND
INTEGRODIFFERENTIAL INEQUALITIES

SAM OLATUNJI ALE, BENJAMIN OYEDIRAN OYELAMI, MALIGIE S. SESAY

Abstract. In this paper, we present impulsive analogues of the Gronwall-

Bellman inequalities. Conditions for the existence of maximal solutions of some
integrodifferential equations are obtained by finding upper bounds for these

inequalities. Using monotone iterative techniques and a fixed point theorem,

we obtained a priori estimates for the inequalities.

1. introduction

Integral inequalities play crucial roles in the study of qualitative properties of
systems particularly in the process of obtaining results involving the existence,
uniqueness, boundedness and stability and comparison equations for the solution
of systems of differential and integral equations. The most widely encountered
inequalities are the Gronwall-Bellman and Pachpatte families and their varieties;
such inequalities have found applications in ordinary differential equations (ODEs)
(Akinyele [1], Akinyele and Akpan [2], Hale [11]).

In the study of impulsive differential equations inequalities play the same crucial
role just like the traditional ordinary differential equations (ODEs) ones. Hence, in
the last few years, series of impulsive analogues of the Gronwall-Bellman inequalities
have been evolved to study quantitative and qualitative properties of impulsive
differential equations (Oyelami [17, 18], Oyelami et al. [15, 16], Bainov and Svetla
[7], Bainov and Stamova [6])

In this paper, some new inequalities are proposed with potential applications in
impulsive ordinary differential equations (IODEs), impulsive control systems (ICS)
and impulsive partial differential equations (IPDEs) which are still in cradle of
development. The existing inequalities in (Bainov and Svetla [7]; Lakshimikantham
et.al. citel1) are special cases of these inequalities.

Furthermore, by means of monotone iterative technique couple with a fixed point
theorem of Guo and Lakshimikantham [9], we obtain results on existence of the
maxima solutions of the impulsive equation for the solution which gives the upper
bound for the inequality .Some special cases of the inequalities were used in Ale et
al. [4] to obtain some biological policies on normal-malignant cancer model using
the Gronwall-Bellman’s kind of impulsive inequality.
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2. Preliminaries, Notation and Definitions

Let C(R+,Rn) be the space of continuous functions in R+ = [0,+∞) and tak-
ing values in Rn. Let C1

0 (R+,Rn) be the space of continuously differentiable and
bounded functions on R+ taking values in the n-dimensional Euclidean space Rn.
Let

PC(R+,Rn) =
{
y(t) : y(t) ∈ C(R+ \ {tk},Rn), k = 1, 2 . . . ,

lim
t→tk+0

y(t)exists and equals y(tk)
}
.

Definition (cones). Let Rn be n-dimensional Euclidean space. A non-empty set
E ⊂ Rn is said to be a cone if and only if it satisfies the Following conditions:

(1) If there exist sequences (xn, yn) ⊂ E, n ∈ N = {1, 2, . . . } such that xn → x,
yn → y as n→∞. Then αx+ βy ∈ E, where α and β are constants;

(2) If x ∈ E then αx ∈ E for all α ≥ 0;
(3) If x,−x ∈ E then {x} ∩ {−x} = {φ}, where φ is the zero element of the

cone E.
Let the specializing ordering on E be x ≤E y if x− y is in E; which reads y weakly
specializes x. Also let x ≤0 y if y − x is in intE = E \ {φ}; which reads y strongly
specializes x.

Let Mn(E) be nxn symmetric matrices define on the cone and let M∗
n(E) denote

its transpose. We introduce the generalized inner product on E as follows:
Definition (inner products on cones). For X(t) ∈M ′

n(PC(R,E)) and B(t) ∈
M ′

n(E), let

〈B(t), X(t)〉E =
∫ t

t0

B∗(s)X(s)ds .

For the impulse set Qk = {tk ∈ R+ : t0 < tk < t, t ∈ R+, k = 1, 2, 3, . . . }, the
inner product is

〈B(t), X(tk)〉E =
∑

t0<tk<t

B∗(tk)X(tk)

where Mn(PC(R+, E)) is the set of nxn symmetric matrices whose elements are in
PC(R+, E) and * denotes the transpose of the matrix.

Clearly, 〈., .〉E satisfies the following properties:
(1) 〈x, y〉 = φ for any x, y in E. 〈x, y〉 = φ if x = y, where φ is zero element of

the cone E.
(2) 〈λx+ y, z〉E = λ∗〈x, y〉E + 〈y, z〉E
(3) 〈x, µy + z〉E = µ〈x, y〉E + 〈x, z〉E ,

where λ and µ are complex numbers and λ∗ is the complex conjugate of λ.
Remark. If x ∈ E then 〈x, x〉E = |x|E defines the generalized norm on the cone
E. Where

|x|E = (|x1|, |x2|, |x3|, . . . , |xn|), x = (x1, x2, x3,....,xn).

It must be emphasize that the classical norm is a real number, whereas, the gener-
alized norm is a vector.
Definition (adjoint cone). A cone E∗ = {y ∈ Rn : 〈y, x〉 ≥E φ, x ∈ E} ⊂ Rn is
defined to be adjoint cone relative to the cone E.

The set EA = {y ∈ E : 〈y, x〉 = φ, x ∈ E} is an annihilator of E. While 〈., .〉 is
the generalized inner product on E.
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Remark. A necessary and sufficient condition for a point to be an annihilator of
E is that x ∈ E for some y ∈ intEA, intE = E \ {φ}.
Definition (normal cone). A cone E is normal if there exists a constant m > 0
such that |f | ≤E m|g| for any f, g ∈ E with 0 ≤E f ≤E g.

Remark. It is not difficult to show that E is normal if and only if ll δ > 0 such
that |f + g| > δ for f, g ∈ E with |f | = |g| = 1 where |.| is the Euclidean norm
inherited by the cone E.

Examples of Cones. The set

Rn
+ = {u ∈ Rn : ui ≥ 0, i = 1, 2, . . . n, u = (u1,u2, . . . , un)}

is a cone. The set of non-negative functions in Lp(0, 1) with p ≥ 1 is a cone. The set
of non-negative definite matrices Mn(R+) is a cone. The set of monotone operators
on any arbitrary Banach space is a cone. For further exposition on concept of
abstract cones (see Huston and Pym [13], Guo and Lakshimikantham [9], Akinyele
and Akpan [2], Guo and Liu [10], Akpan [3]).

Definition (order intervals). The order interval in the cone E can be define as

[U0, V0] = {U(t) ∈ E : U0 ≤ U(t) ≤ V0(t), t ∈ R+} .

For the rest of this paper we use the following notation: M+
n (E) is the set of n× n

matrices defined on the cone E.
PC(R+, E) is the subclass of PC(R+,Rn) where the values of PC(R+,Rn) is in
the cone E ⊂ Rn

M(.) Denotes the measure of non-compactness of (.)
L1(R+XR+XE,E) is the space of absolutely integrable functions on R+XR+XE
and taking values in the cone E.

Definition. Let X be a Banach space. Denote by COΩ̄ the convex hull of the set
Ω ⊂ X, Ω̄ is the closure of Ω and ∂Ω is the boundary of Ω. To each bounded set
Y ⊂ E ⊆ Ω, and associate the nonnegative number Ψ(Y ). The function defined this
way is called a measure of non-compactness of the set Y if the following conditions
are satisfied:

(a) Ψ(COY ) = Ψ(Y )
(b) If Y1 ⊂ Y2 ∈ Ω then Ψ(Y ) ≤ Ψ(Y2)

Definition. The continuous and bounded operator A define on Ω is called Ψ-
condensing if for a noncompact set Y ⊂ Ω, Ψ(Y1) ≤ Ψ(Y ) for every Y1 ⊂ Ω.

Definition (set contractive). A map A : Dom(A) → R(A), from its domain
Dom(A) to its rangeR(A), is said to be strict set contractive, if it is bounded,
continuous and there exists a constant γ > 0 such that M(A(Q)) ≤ γM(Q), where
M(.) denotes the Kuratowski’s measure of non-compactness.

We introduce the concepts of measure of non-compactness and condensing maps
due to Krasnose’skii, Zabreiko and Sadovskii (see Bainov and Kazakova [5]). Many
types of measure of non-compactness have been defined by different academicians
and employed to study qualitative properties of solutions of varieties of dynami-
cal systems (see Hu et al[12]; Deimling [8], Rzezuchowski [21]; Guo and Liu [10]).
Concepts of measure compactness of operator has a fundamental advantage of es-
timating a priori bonds without undergoing laborious estimation.
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3. Statement of the problem

Consider the impulsive inequality

u(t) ≤ f(t, u(t)) +W (t,
∫ t

t0

G(t, s, u(s))ds), t 6= tk, k = 1, 2, 3, . . .

∆u(t = tk) ≤ I(u(tk))

u(φ) ≤ v0 .

(3.1)

For an increasing sequence of times, 0 < t0 < t2 < t3 < · · · < tk, with limt→∞ tk =
+∞. Where f : R+XPC(R+, E) → E, W : R+XL1(R+XR+XE,E) → E and
I : E → E.

Before the stage is set up for carrying out our investigations, we will assume that
the following conditions:

(A1) f(t, u(t)) is continuous on E and Lipschitzian with respect to the second
variable.

(A2) W (t,
∫ t

t0
G(t, s, u(s))ds) is a nonnegative definite matrix on E and Lip-

schizian with respect to the second argument. The function G(t, s, u(t))
is in C0(R+XR+XE,E) and there exists a constant k > 0 such that

|G(t, s, u2(t))−G(t, s, u1(t)))| ≤E k|u2(t)− u1(t)|

for u2(t), u1(t) ∈ E.
(A3) I(.) is continuous on (.) and I(φ).

4. Main results

Consider the impulsive analogue of the Gronwall-Bellman inequalities defined on
the cone R+:.

Lemma 4.1. Let u(t) ∈ PC(R+,R+), βk(t) ∈ PC(R+,R+) and γ(t) ∈ C(R+,R+)
and C ≥ 0 be a nonnegative constant such that

u(t) ≤ C +
∫ t

t0

γ(s)u(s)ds+
∑

t0<tk<t

βk(tk)u(tk), k = 1, 2, . . . (4.1)

Then

u(t) ≤ C
k−1∏
j=i

(1 + βj(tj) exp
( ∫ tj

tj−1

γ(s)ds
)
exp

( ∫ t

tj

γ(s)ds
)

(4.2)

Proof. If t ∈ (tjtj+1), then the proof reduces to the classical continuous Gronwall-
Bellman inequality (Hale [11]). If t /∈ (tjtj+1), j = 1, 2, . . . i.e. t = tj , then

u(t1) = u(t1 + 0) ≤ C +
∫ t1

t0+0

γ(s)u(s)ds ≤ C exp(
∫ t

t0

γ(s)ds))

similarly,

u(t2) ≤ C +
∫ t2

t0+0

γ(s)u(s)ds+ β1u(t1)

≤ (1 + β1(t1))C exp
( ∫ t1

t0

γ(s)u(s)ds
)
exp

( ∫ t2

t1

γ(s)ds
)
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and

u(t3) ≤ C +
∫ t

t0

γ(s)u(s)ds+ β1(t1)u(t1) + β2(t2)u(t2)

≤ (1 + β1(t1))(1 + β2(t2))C exp
( ∫ t

t0

γ(s)ds)

× exp(
∫ t2

t1

γ(s)ds
)
exp

( ∫ t2

t1

γ(s)ds
)

Thus, by induction on k ≥ 4,

u(t) ≤
k−1∏
j=1

(1 + βk(tk)C) exp
( ∫ tj

tj−1

gamma(s)ds
)
exp

( ∫ t

tj

γ(s)ds
)
. (4.3)

�

Now we consider another version of the above inequality in a generalized form:

Lemma 4.2. Let the hypothesis in Lemma 4.1 be satisfied and let δ(t) ∈ C(R+,R+)
and τk(tk) ∈ PC(R+,R+) be such that

u(t) ≤ C(t)+
∫ t

t0

γ(s)u(s)ds+
∫ ∞

t

δ(s)u(s)ds+
∑

t0<tk<t

(βk(tk)+τk(tk))u(tk). (4.4)

Then

u(t) ≤
k−1∏
j=1

(1 + αj(tj))C(tj) exp
( ∫ tj

tj−1

γ(s)ds
)
exp

( ∫ tj

tj−1

γ(s)ds
)
exp

( ∫ ∞

t

δ(s)ds
)

(4.5)
where αk(t) := τk(t) + βk(t), k = 1, 2, . . .

Proof. By Lemma 4.1

u(t) ≤ C(t) +
∫ t

t0

γ(s)u(s)ds+
∫ ∞

t

δ(s)u(s)ds+
∑

t0<tk<t

(αk(tk))u(tk)

≤ A(t) +
∫ ∞

t

δ(s)u(s)ds,

where

A(t) =
k−1∏
j=1

(1 + αj(tj))C(tj) exp
( ∫ tj

tj−1

γ(s)ds) exp
( ∫ tj

tj−1

γ(s)ds
)
.

Hence

u(t) ≤ A(t) exp
( ∫ ∞

t

δ(s)ds
)
. (4.6)

�

Remark. Lemma 4.2 is a particular case of the inequality in (Lashimikamtham, et.
al.,citel1) where δ1 = C(t) = P (t) = 1, γ(t) = P (t)V (t), δ(t) = 0, α(t) = β, in which
the inequality was stated without proof, whereas, Lemma 4.2 is a generalization
of the same inequality when δ1,= C(t) = P (t) = 1, γ(t) = P (t)V (t), δ(t) = 0,
α(t) = β = constant.
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Remark. If i(t0, t) is the number of points of tk present in the interval (t0, tk+1),
k = 0, 1, 2, . . . . Then Lemma 4.1 is the generalization a of the Bainov-Svetla’s
inequality [7, Lemma 2] whenever γ = γ(t)is a constant, β = β(t) is also a constant.

For the next theorem, we set the following:
(H1) (αL1 + L2)

∑n
i=1[diam(β(ti)ai) < 1, α := max |t− t0|, t ∈ R+, t ≥ t0

(H2) There exist constants 0 < Lsuch that 〈B(tk), η(ti) >≥E −Lη(ti) for some
η(t) ∈ E.

(H3) G(t, s, .) is a nonnegative definite and monotonic nondecreasing function
with respect to second variable such that exists a constant p > 0 such that

W (t,
∫ t

t0

G(s, t, η1(s))ds)−W (t,
∫ t

t0

G(s, t, η2(s))ds) ≥ −p(η1(t)− η2(t))

(H4)

u(t) ≤ H(t) +W (t,
∫ t

t0

G(s, t, u(s))ds)+ < B(t), X(t) >t=tk

Theorem 4.3. Assume u(t) ∈ PC(R+, E), H(t) ∈ M ′
n(E), β(t) ∈ M ′

n(E) and
W ∈ C1(R+XE,E) and that (H1)–(H4) are satisfied. Then

u(t) ≤ H(t) +W (t, u∗(t)) (4.7)

where u∗(t) is the maximal solution of the impulsive integral equation

u(t) =
∫ t

t0

G(t, s, u(s))ds+ 〈B(t), u(t)〉t=tk
, k = 1, 2, . . . (4.8)

Proof. The strategy is to show that the solution of the integral equation in (4.8)
exists in a normal cone in an order interval containing the cone E. Moreover, u∗(t)
is the maximal solution of (4.8) and satisfies the inequality (4.7). Now define

A1u(t) =
∫ t

t0

G(t, s, u(s))ds

A2u(t) = 〈β(ti), u(ti)〉i=1,2,3,... .

Let A = A1 +A2 be such that

A : Dom(A1) ∪Dom(A2) ⊃ [U0, V0] → PC(R+, E)

and M(A1(Q)) = supt∈R+ M(A1(Q(t)), where

Q(t) ∈ Dom(A1) = {u(t) ∈ PC(R+, E) :
∣∣ ∫ t

t0

G(t, s, u(s))ds
∣∣ <∞}

similarly

Q(ti) ∈ Dom(A) = {u(ti) : |〈B(ti), u(ti)〉| < +∞, i = 1, 2, . . . } .

By [10, Lemma 1] it follows easily that there exist constants L1 and L2 such that

M(A1(Q(ti))) ≤ αL1M(Q(t)),

M(A2(Q(ti))) ≤ L2M(Q(t)) + ε

For some arbitrary small positive number ε and since t0 < ti < t for i = 1, 2, . . . , it
implies that

M(A1(Q(ti)) ≤ (αL1 + L2)M(Q(t)) + L2ε
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But

M(Q(ti)) ≤M(B(ti))M(u(ti)) ≤
n∑

i=1

diamB(ti)M(u(ti))ai

For some constants ai, i = 1, 2, . . . . Hence M(A(u(ti)) ≤ γM(u(ti)). Since ε is
arbitrarily small, A is strictly set contractive on [U0, V0].

Step II Next it will be shown that A has a fixed point in [U0, V0] which is in fact
the maximal solution of equation (4.9) below. Let un(t) → u+(t) as n→∞. Now
define

Aun−1 =
∫ t

t0

G(t, s, un(s))ds+ 〈B(ti), u(ti)〉 . (4.9)

Suppose that η is the solution of equation (4.9). Then Aη = η which is a fixed
point of A. For u0 ≤ η1 ≤ η2 ≤ V0, we have

η = η2(t)− η1(t)

≥W (t,
∫ t

t0

G(t, s, η2(s)ds)−W (t,
∫ t

t0

G(t, s, η1(s)ds) + 〈B(ti), η2(ti)− η2(ti)〉

≥ Lη − Lη = φ.

Therefore, Aη2 − Aη1 ≥E φ i.e. Aη2 ≥E Aη1 for η2(ti) ≥E η1(ti) Hence A is
nondecreasing and strictly set contractive from [U0, V0] → PC(R+, E). Since u0 ≤
u0(t) and

Au0 ≤ Au0(t) =
∫ t

t0

G(t, s, u0(s))ds+ 〈B(ti), u0(ti)〉 = u0(t).

By [10, Theorem 1.2.1] there exists, a maximal fixed point u(t) of A in [U0, V0] such
that un(t) = Aun−1(t) and satisfies the condition u0 ≤ u1 ≤ · · · ≤ un ≤ u∗, where

Aun−1(t) =
∫ t

t0

G(t, s, un(t)ds+ 〈B(tk), un(tk)〉, (4.10)

u∗(t) is the maximal solution of the integral equation

u(t) =
∫ t

t0

G(t, s, u(t)ds+ 〈B(tk)u(tk)〉

existing in [U0, V0]. Hence u(t) ≤ H(t) +W (t, u∗(t)). �

Corollary 4.4. Under the conditions of Theorem 4.3, replace (4.7) by

u(t) ≤ H(t) +W (t,
∫ t

t0

G(t, s, u(s))ds) + 〈B(tk), u(tk)〉 .

Then
u(t) ≤ H(t) +W (t, u∗(t)) + 〈B(tk), u∗(tk)〉, (4.11)

where u∗(t) is the maximal solution of the impulsive integral equation

u(t) =
∫ t

t0

G(t, s, u(s)ds) + 〈B(tk), u(tk)〉 (4.12)

existing in [U0, V0].
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For the proof of this corollary, just set γ = α 1 < 1 and P1 = 0, as in Theorem
4.3.
Remark. If W =

∫ t

t0
γ(s)u(s)ds, H is constant, B(t) = Bk(t) and n = 1, then

Corollary 4 is a generalization of our Lemma 4.1 and Corollary 4.4 is a generalization
of Lemma 4.2. On the other hand, if 〈B(tk), u(tk)〉 = φ. Then theorem 4.3 and
Corollary 4.4 are generalizations of [1, Theorem 1].

Theorem 4.5. Under the conditions of Theorem 4.3 assume that

du(t)
dt

≤ u(t)H(t) +W (t,
∫ t

t0

G(t, s, u(s)ds)) + 〈B(tk), u(tk)〉 . (4.13)

Then u(t) ≤ A−1
∗ (t)[u0 + u∗(t)], where

A(t) = exp
( ∫ t

t0

H(s)ds
)
, t ≥ t0, H(t) ∈ E

and u∗(t) is the maximal solution of the integral equation in equation (4.13),

u(t) =
∫ t

t0

A−1
∗ (τ)[W (τ,

∫ t

t0

G(τ, s, u(s))ds) + Y (τ, tk)]dt

The constant γ is replace by

γ := A0u0′ +A0αL2 +
n∑

i−1

ki diamB(ti) < 1

where ki are arbitrary constants which are assumed to exist, and u0′ = max |u0|E.

of Theorem 4.5, assume that F (t, u(t)) ∈ PC(R+XE,E) and is measurable,
begincorollary Under the condition monotonically nondecreasing and Lipschitz with
respect to the second variable.

Also assume that W2 : R+XC(R+, E)XL1(R+XR+XE,E) → E is measurable,
monotonically nondecreasing and Lipshitz with respect to the third variable such
that

du(t)
dt

≤ A(t)H(t)u(t) + F (t, u(t))

+
∫ t

t0

dτH(τ)A(τ)W (t, F (τ, u(τ)),
∫ t

t0

G(t, s,H(s)A(s)u(s))ds)

+
∫ t

t0

dτH(τ)A(τ)W2(t, F (τ, u(τ)),
∫ t

t0

G(t, s,H(s)A(s)u(s))ds),

u(t = tk) ≤ 〈B(tk), u(tk)〉k=1,2,3.... Then

u(t) ≤ D(t)[u0 + u∗(t) + F (t, u∗(t)] + 〈D(tk)B(tk), u∗(tk)〉k=1,2,3...,

where

u(t) =
∫ t

t0

dτZ(t, τ)W (t,
∫ t

t0

G(t, s,H(s)A(s)u(s))ds)

+
∫ t

t0

dτZ(τ)W2(t, F (τ, u(τ)),
∫ t

t0

G(t, s,H(s)A(s)u(s))ds) .
(4.14)
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The function Z(t, τ) is define as

Z(t, τ) =

{
D(t)H(t)A(τ) t ≥ τ ≥ 0
φ τ < t < 0, t, τ ∈ R+

and has the properties that Z(0, τ) = H(τ)A(τ), Z(0, 0) = I,

D(t) = exp
( ∫ t

t0

H(τ)A(τ)dτ
)
, D(t) ∈Mn′(E),

and I is identity matrix.

Proof. By contradiction, let (un)n∈N be a monotonically nondecreasing sequence
in E such that un → u∗ as n → ∞. Let u∗(t) be the maximal solution of (4.14)
such that

u(t) > D(t)[u0 + u∗(t) + F (t, u∗(t))] + 〈D(tk)B(tk), u∗(tk)〉] . (4.15)

We show that there does not exist a function u(t) in [U0, V0] such that u(t) >
u∗(t) ≥ u∗(t), otherwise u∗(t) would cease to be maximal. Let

Aun(t) =
∫ t

t0

dτZ(t, τ)W (t,
∫ t

t0

G(t, s,H(s)A∗(s)un(s))ds)

+
∫ t

t0

dτZ(t, τ)W2(t, F (t, un(t),
∫ t

t0

G(t, s,H(s)A∗(s)un(s))ds).
(4.16)

Then Au0 ≥ u0 ≥ u0, Av0 ≤ v0 and the operator A is a set contraction if

γ = αZ0(h0A0L1 + αA0h0L2) < 1, Z0 = max
τ,t

∈ R+|Z(t, τ)|,

A0 = max
τ

|A∗(t)|, h0 = max
τ

|H(τ)|,

and L1, L2 are constants.
Hence by Theorem 4.3, there exists a maximal solution u∗(t) of (4.16) in [U0, V0]

which is in fact the fixed point of A.
Now let

δ∗ = u0 + F (t, u∗(t)) + 〈D(tk)B(tk)u∗(tk)〉

then δ∗(t) ∈ E such that

u(t) > D(t)[u∗(t) + δ∗(t)],

ψ(u(t)∗δ∗(t)) > u∗(t),

where ψ(u(t)∗δ∗(t)) − (D−1(t)u(t) − δ∗(t)) ∈ [u0 − δ(∗, v0 − δ∗] ⊆ [U0, V0]. But
u∗(t) is maximal. Hence there does not exist an element ψ(u(t)∗δ∗(t)) in the other
interval[U0, V0] such that equation (4.15) is satisfied which is a contradiction. Hence,

u(t) ≤ D(t)[u0 + F (t, u∗(t)) + u∗(t)]

�
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Theorem 4.6. Under the conditions of Theorem 4.5, assume following conditions:
du(t)
dt

≤ A∗(t)H(t)u(t) + F (t, u(t))

+
∫ t

t0

A∗(τ)H(τ)W (t,
∫ t

t0

G(t, s, A(s)H(s)u(s)ds)dτ)

+
∫ t

t0

A∗(τ)H(τ)W2(t, F (τ, u(t))
∫ t

t0

G(t, s, u(s)ds)dτ)

4u(t = tk) ≤ 〈B(tk), u(tk)〉k=1,2,3...; and the commutant satisfies

[A(t),H(t)] = A∗∗(t)H.(t)−H∗(t)A ∗ (t) = φ,

det(H(t)A∗∗(t)A∗(t)H(t) > 0 .

Also assume that

F (t, u(t)) = O(|u(t)|E), (4.17)

lim
|x(t)|E→φ

|W2(., ., x(t))|E
|x(t)|E

= φ, (4.18)

lim
|y(t)|E→φ

|W(., Y (t))|E
|Y (t)|E

= φ (4.19)

For y(t) ∈ L′
(E). Then

u(t) < D(t)[u0 + F (t, u∗(t) + u∗(t)] + 〈D(tk)B(tk), u∗(tk)〉, (4.20)

where u∗(t) is the maximal solution of the integral solution

u(t) =
∫ t

t0

D(τ)A∗(τ)W (t,
∫ t

t0

G(t, s, A∗(s))H(s)u(s)ds)dτ

+
∫ t

t0

D(τ)A∗(τ)W (t, F (τ, u(τ)),
∫ t

t0

G(t, s, u(s))ds)
(4.21)

and

D(τ) = exp
( ∫ t

t0

A∗(s)H(s)ds
)
, A∗(t) = exp

( ∫ t

t0

H(s)ds
)

The proof of the above theorem follows from Corollary 4 and Theorem 4.5. We
will like to emphasize that the conditions (4.17)–(4.19) do not allow the quantity to
be unbounded below and as a consequence of Theorem 4.5; we have the existence
of a maximal solution to (4.21) in a normal cone K ⊆ [U0, V0].

5. Applications

Example 5.1. Consider a nonlinear impulsive control system (NLICS)

dx(t)
dt

= −xe−xy + f(t, x(t), y(t), u1(t)), t 6= tk, k = 0, 1, 2, . . . ,

dy(t)
dt

= y sin(xy) + g(t, x(t), y(t), u2(t)), t 6= tk, k = 0, 1, 2, . . . ,

∆x =
β1

kx
2(tk)

1 + x(tk)
, t = tk, k = 01, 2, . . . ,

∆y =
β1

ky
2
k(tk)

1 + y(tk)
, t = tk, k = 01, 2, . . . ,
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where 0 < t0 < t2 < · · · < tk, limuk→∞tk = +∞, x(0) = x0, y(0) = y0, 0 ≤ x ≤ π
2

and 0 ≤ y ≤ π
2 . Also f : R+XR+XC → R+, g : R+XR+XR+XC → R+,

u : R+ → C, u(t) is the control variable belonging to the control space

C = {u(t) = (u1(t), u2(t) : 0 ≤ 1, t ∈ R+} ⊂ mathbbR+.

To investigate the boundedness or stability property of the above nonlinear con-
trol inequality, we often use the comparison equation. In this particular problem,
e−xy ≤ 1 for all x, y ∈ R+ and sin(xy) ≤ 1 for the given of x and y z

1+z ≤ 1 for
every z ≥ 0. Then the nonlinear control inequality

dx

dt
≤ −x+ f(t, x(t), y(t), u1(t)), t 6= tk, k = 0, 1, 2, . . .

dx

dt
≤ −y + g(t, x(t), y(t), u2(t)), t 6= tk, k = 0, 1, 2, . . .

∆x ≤ β1
kx(tk)

∆x ≤ β2
ky(tk)

0 < t0 < t1 < t2 < · · · < tk, lim
k→∞

tk = +∞

serves as a basic comparison inequality for investigating (NLICE). The maxima
solution (upper bound for the inequality) to NLICE can be found using standard
results, see Lakshimikantham et al [14]. Thus

x(t) ≤
∏

t0<tk<t

(1 + β1
k)e−(t−tk)x0

+
∫ t

t0

∏
t0<tk<t

(1 + β1
k)e−(t−s)f(s, x(s), y(s), u1(s))ds,

y(t) ≤
∏

t0<tk<t

(1 + β2
k)e−(t−tk)y0

+
∫ t

t0

∏
t0<tk<t

(1 + β2
k)e−(t−s)g(s, x(s), y(s), u2(s))ds

If

f(t, x(t), y(t), u1(t)) ≤ k1(t)u1(t)x(t) +
∑

t0<tk<t

h(1)(tk)u1(tk + 0)x(tk)

g(t, x(t), y(t), u2(t)) ≤ k2(t)u2(t)y(t) +
∑

t0<tk<t

h(2)(tk)u2(tk + 0)y(tk),

where k1(t), h(i)(tk) ∈ R+, i = 1, 2, k = 0, 1, 2, . . . ,

x(t) ≤
∏

t0<tk<t

(1 + β1
k)e−(t−tk)x0

+
∫ t

t0

∏
t0<tk<t

(1 + β1
k)e−(t−s)k1(s)u1(s)x(s))ds+

∑
t0<tk<t

φ1(tk, t)x(tk)

y(t) ≤
∏

t0<tk<t

(1 + β2
k)e−(t−tk)y0

+
∫ t

t0

∏
t0<tk<t

(1 + β2
k)e−(t−s)k2(s)u1(s)y(s))ds+

∑
t0<tk<t

φ2(tk, t)y(tk)
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where

φ1(tk, t) = h(1)(tk)u1(tk)
∏

t0<tk<t

(1 + β1
k)e(t−tk)

∫ t

t0

e−(t−s)ds,

φ2(tk, t) = h(1)(tk)u2(tk)
∏

t0<tk<t

(1 + β2
k)e(t−tk)

∫ t

t0

e−(t−s)ds

Now let z(t) = x(t)et. Then

z(t) ≤
∏

t0<tk<t

(1 + β1
k)e−(t−tk)z0

+
∫ t

t0

∏
t0<tk<t

(1 + β1
k)e−(t−s)k1(s)u1(s)z(s))ds+

∑
t0<tk<t

φ1(tk, t)z(tk).

Applying the lemma and substituting the value of x(t), we get

x(t) ≤
( ∏

t0<tk<t

(1 + β1
k)
)( ∏

t0<tk<t

(1 + φ1(tk, t)
)

× exp
( ∫

tk=t

(1 + βk)k1(s)u1(s)ds
)
exp

(
− (t− tk)x0

)
.

By a similar manipulation we obtain

y(t) ≤
( ∏

t0<tk<t

(1 + β2
k)
)( ∏

t0<tk<t

(1 + φ2(tk, t)
)

× exp
( ∫

tk=t

(1 + β2
k)k2(s)u1(s)ds

)
exp

(
− (t− tk)y0

)
.

We have obtained the bounds for x(t) and y(t) under the conditions imposed on
ki(t), h(i)(tk) ∈ R+, i = 1, 2, k = 0, 1, 2, . . . , when ui(t), i = 1, 2 are bounded;
that is, using control language, bounded input will give rise to bounded output.
Many biological and physical control systems are of bounded input-bounded output
types. Bounds on x(t) and y(t) can be used to make qualitative deductions about
the control system.

Example 5.2. Consider the impulsive integrodifferential system (IIS)

du(t)
dt

≤ diag[aeαt beβt]u(t) + F (t, u(t))

+
∫ t

0

dτz(t, τ)w(t,
∫ t

0

G(t, s,H(s)A(s)u(s)ds), t 6= tk, k = 0, 1, 2, . . .

u(t = tk)
∑

t0<tk<t

β(tk)u(tk)

0 < t0 < t1 < · · · < tk, lim
k→∞

tk = ∞ ,

where H(t) = diag[a b], A(t) = diag[eαteβt], α > 0, β > 0, u(t) = (u1(t), u2(t)),

G(t, s,H(s)A(s)u(s)) =

{
t−s
h diag[aeαt beβt]u(t) t ≥ s,

0 t < s ,

z(t, τ) = D(t)H(t)A(t), and w(φ, φ) = φ.
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Assuming lim|v|→0 w(t, v)/|v| = φ, φ = (0, 0) ∈ R+, let v =
∫ t

0
G(t, s, . . . )ds and

t− s = θ. Therefore, (
−aeαt

h

∫ θ+s

θ
e−αtu1(−τ)dτ

−beαt

h

∫ θ+s

θ
e−βtu2(−τ)dτ

)
.

Also z(t, τ) = diag[exp a
α (eαt − 1) exp b

β (eβt − 1)] diag[aeαtbeβt]. Hence

w(t, v) =
(
w1(t, v1)
w2(t, v2)

)
=

(
w1(t, −aeαt

h

∫ θ+s

θ
e−αtu1(−τ)dτ

w2(t, −beαt

h

∫ θ+s

θ
e−βtu2(−τ)dτ

)
It can be shown easily that the commutant of A(t) and H satisfy [A(t),H(t))] = φ,
φ = (0, 0) ∈ R+ and

det(Hast(t)Aast(t)A(t)H(t)) = a2b2e2(α+β)t > 0, α+ β > 0 .

Therefore, vi(t) are estimated as

v1(t) ≤
a2

h

∫ t

0

∫ θ

θ+s

u1(−τ)dτds,

v2(t) ≤
b2

h

∫ t

0

∫ θ

θ+s

u2(−τ)dτds,

v∗1(t) ≤
a2

h

∫ t

0

∫ θ

θ+s

max
τ∈[0,θ+s]

u1(−τ)dτds =
a2

h
t∗|u1(−τ)|R0

v∗2(t) ≤
b2

h

∫ t

0

∫ θ

θ+s

max
τ∈[0,θ+s]

u2(−τ)dτds =
b2

h
t∗|u1(−τ)|R0

Here t∗ is the threshold value of t taken across the interval [0, θ + s]. Therefore,
applying theorem 4.6 to (llS) yields. where

u∗(t) =
∫ t

t0

D(τ)A∗(τ)w(tau,
∫ t

t0

G(t, s, A1(s)H(s)u∗(s)ds)dτ

+
∫ t

t0

dτD(τ)A∗(τ)

(
w1(t, a2t∗

h |u1(−τ)|R0)
w2(t, b2t∗

h |u2(−τ)|R0

)
Therefore, the right-hand side provides the upper bound for u(t).
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