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BIFURCATION DIAGRAM OF A CUBIC THREE-PARAMETER
AUTONOMOUS SYSTEM

LENKA BARÁKOVÁ, EVGENII P. VOLOKITIN

Abstract. In this paper, we study the cubic three-parameter autonomous

planar system

ẋ1 = k1 + k2x1 − x3
1 − x2,

ẋ2 = k3x1 − x2,

where k2, k3 > 0. Our goal is to obtain a bifurcation diagram; i.e., to divide

the parameter space into regions within which the system has topologically

equivalent phase portraits and to describe how these portraits are transformed
at the bifurcation boundaries. Results may be applied to the macroeconomical

model IS-LM with Kaldor’s assumptions. In this model existence of a stable
limit cycles has already been studied (Andronov-Hopf bifurcation). We present

the whole bifurcation diagram and among others, we prove existence of more

difficult bifurcations and existence of unstable cycles.

1. Introduction

In the present paper we shall consider the real dynamical autonomous system

ẋ1 = k1 + k2x1 − x3
1 − x2,

ẋ2 = k3x1 − x2,
(1.1)

where x1, x2 ∈ R and K = {(k1, k2, k3) ∈ R3 : k2 > 0, k3 > 0} is a parameter space.
Note that if x1(t), x2(t) are solutions of (1.1), x̃1(t) = −x1(t), x̃2(t) = −x2(t) are
solutions of the system

ẋ1 = −k1 + k2x1 − x3
1 − x2,

ẋ2 = k3x1 − x2.

This implies that the bifurcation sets of (1.1) are symmetric with respect to the
plane k1 = 0, because the phase portraits of (1.1) with the parameters (k1, k2, k3) =
(k̃1, k̃2, k̃3) and (k1, k2, k3) = (−k̃1, k̃2, k̃3) are symmetric about the origin. We
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denote

A =
(

k2 − 3x2
1 −1

k3 −1

)
,

trA = k2 − 3x2
1 − 1,

det A = 3x2
1 − k2 + k3,

pA(λ) = det(A− λI) = λ2 − λ trA + det A,

where A is Jacobi’s matrix of the system (1.1), its trace trA, determinant detA
and characteristic polynomial pA(λ) are functions of variable x1.

All equilibrium points (ξ1, ξ2) of the system (1.1) have to be solutions of the
equations

k1 + k2x1 − x3
1 − x2 = 0,

k3x1 − x2 = 0,

which gives that ξ1 has to satisfy the equality

k1 + (k2 − k3)ξ1 − ξ3
1 = 0 (1.2)

and ξ2 = k3ξ1. System (1.1) has from one to three equilibrium points.

Lemma 1.1. Let (ξ1, ξ2) be an equilibrium point of (1.1). Then the set

{(x1, x2) ∈ R2 : k3(x1 − ξ1)2 + (x2 − k3ξ1)2 ≤ R},

where
R = −k3 min

x1∈R
{x2

1(x
2
1 + 3ξ1x1 − k2 + 3ξ2

1 − 1)}

is globally attractive.

For the proof of the above lemma se [2, Theorems 5.1 and 5.2] .

Remark 1.2. A planar dynamical system

ẏ = α[i(y, r)− s(y, r)],

ṙ = β[l(y, r)−m],
(1.3)

where α, β > 0, may represent a macroeconomical model IS-LM (see [2]). The
variable y = lnY is the logarithm of the product (GNP), r is the interest rate.
Functions i and s are propensities to invest and save, l and the constant m -
demand and supply of money. Using basic economic properties of the functions i,
s and l (including Kaldor’s assumptions), we can concretize the system (1.3) to the
most simple one - a cubic system

ẏ = α(a0 + a1y + br + a2y
2 + a3y

3),

ṙ = β(c0 + cy + dr),
(1.4)

where α > 0, β > 0, b < 0, a3 < 0, c > 0, d < 0 and the quadratic equation
a1 + 2a2x + 3a3x

2 = 0 has two different real roots. System (1.4) can be replaced
by the system (1.1) using some efficient transformation (see [8]).

The aim of this paper is to continue in the study of the dynamical system (1.4)
from [2](the system (1.1) respectively) and to obtain deeper results concerning
its stability, topological properties and types of bifurcations, especially existence
and stability of limit cycles. From the economic point of view stable limit cycles
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correspond to business cycles. Economists are used to presume that economic equi-
librium is globally stable always, i.e. they assume there exists some mechanism of
adaptation in economy. This is true for a linear IS-LM model, with a2 = 0, a3 = 0.
If the economy satisfies the Kaldor’s assumptions, such mechanism need not exist.
This was pointed out already in the original Kaldor’s paper [5], but dealing with
this problem all authors provided just numerical results or made some other specific
assumptions to the model and to the best of my knowledge never found any unsta-
ble cycle. Although the system (1.4) is “only” cubic, we will show that even more
than one cycle can appear and surely it need not be stable. Moreover, the described
cycles are not evoked by external influences, but they are entirely determined by
internal structure of the system, which is a problem passed by so called “invisible
hand” that should lead the economy to the globally stable equilibrium.

2. Local bifurcations

Lemma 2.1. Let (ξ1, ξ2) be an equilibrium point of (1.1) and let

k2 = k3 + 3ξ2
1 , k3 6= 1.

Then the equilibrium point (ξ1, ξ2) is a saddle-node for ξ1 6= 0. The origin is
topologically equivalent to a node in the case ξ1 = 0.

Proof. After transformation of the equilibrium point (ξ1, ξ2) to the origin by the
change of variables u1 = x1 − ξ1, u2 = x2 − ξ2 we get the system

u̇1 = k3u1 − 3ξ1u
2
1 − u3

1 − u2,

u̇2 = k3u1 − u2.

For k3 6= 1, the following regular transformation

u1 = y1 + y2, u2 = k3y1 + y2

(the matrix of the trasformation is given by the eigenvectors corresponding with
one zero and one non-zero eigenvalues) and the time change τ = (k3 − 1)t give the
canonical form of system (1.1):

ẏ1 = F (y1, y2),

ẏ2 = y2 − k3F (y1, y2),

where

F (y1, y2) =
3ξ1

(k3 − 1)2
(y1 + y2)2 +

1
(k3 − 1)2

(y1 + y2)3.

Let y2 = ϕ(y1) be a solution of the equation

y2 − k3F (y1, y2) = 0

in the neighbourhood of the origin. We approximate this solution corresponding
with the central manifold of the system by a Taylor expansion

ϕ(y1) =
∞∑

i=0

aiy
i
1

in the neighbourhood of the origin and get
∞∑

i=0

aiy
i
1 =

3k3ξ1

(k3 − 1)2
(y1 +

∞∑
i=0

aiy
i
1)

2 +
k3

(k3 − 1)2
(y1 +

∞∑
i=0

aiy
i
1)

3.
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We equate coefficients of equal powers of x on the left and the righthand side and
find

a0 = 0, a1 = 0, a2 =
3k3ξ1

(k3 − 1)2
6= 0.

The equilibrium point (ξ1, ξ2) of the system (1.1) is a saddle-node according to [1,
Theorem 65 (par. 21)].

In the case that ξ1 = 0, the system (1.1) has a unique equilibrium point (0, 0).
We analogically aproximate the central manifold by the Taylor expansion with zero
coefficients up to the second order (including) and get

a3 =
k3

(k3 − 1)2
> 0.

Consequently, the origin is topologically equivalent to a node according to [1, The-
orem 65 (par. 21)]. �

Theorem 2.2. The subset MT of the parameter space K,

MT = {(k1, k2, k3) ∈ K : k1 = −2ξ3
1 , k2 = k3 + 3ξ2

1 , k3 6= 1, ξ1 ∈ R− {0}},

is a bifurcation set of codimension 1 - double equilibrium (also called “saddle-node
bifurcation”). The double equilibrium point (ξ1, k3ξ1) is a saddle-node.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). The bifurcation
“double equilibrium” occurres in the case that the parameters k1, k2, k3 satisfy the
following condition

3ξ2
1 − k2 + k3 = 0. (2.1)

In this case two equilibrium points coincide to one. So called non-degeneracy con-
dition is ξ1 6= 0, because the equilibrium point is triple for ξ1 = 0. Conditions
(1.2) and (5) together with the non-degeneracy condition define the subset of K,
where the system (1.1) has exactly two equilibrium points: the double equilibrium
point (ξ1, k3ξ1) and the single equilibrium point (−2ξ1,−2k3ξ1). In the case that
k3 = 1, the double equilibrium point has two zero eigenvalues and bifurcation of
codimension 2 takes place (this case is studied in Theorem 2.7).

The set MT consists of two components MTl and MTr. They correspond with the
case ξ1 < 0 (the double equilibrium point lies left of the single one) and ξ1 > 0 (the
double equilibrium point lies right of the single one). These sets are symmetrical
according to the axis k1 = 0.

The closure of the set MT divides the parameter space K into two sets M1, M3

M1 = {(k1, k2, k3) ∈ K : k1 = −2ξ3
1 , k2 < k3 + 3ξ2

1 , ξ1 ∈ R},
M3 = {(k1, k2, k3) ∈ K : k1 = −2ξ3

1 , k2 > k3 + 3ξ2
1 , ξ1 ∈ R}.

The set M1 contsists of all the parameters from K, for which the system (1.1)
has a unique equilibrium point (non-saddle), the set M3 consists of those, for which
the system (1.1) has 3 equilibrium points (non-saddle, saddle, non-saddle). While
crossing the boundary MT from the set M3 to M1, two equilibrium points coincide
and disappear then. According to Lemma 2.1, the double equilibrium point is a
saddle-node. A qualitative local change of the phase portraits occurres, a local
bifurcation of codimension 1 - “saddle-node”. �
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Figure 1. The set MT .

Figure 2. The section of MT and the parameter space in k3.

Theorem 2.3. The subset MH of the parameter space K,

MH = {(k1, k2, k3) ∈ K : k1 = ξ1(k3 − 1− 2ξ2
1), k2 = 1 + 3ξ2

1 , k3 > 1, ξ1 ∈ R},

is a bifurcation set corresponding with Andronov-Hopf bifurcation. The equilibrium
point (ξ1, k3ξ1) is a multiple focus.

Proof. Let (ξ1, ξ2) be an equilibrium point of (1.1). The trace trA = 0 and the
determinant detA > 0 if and only if the Jacobi’s matrix A has two purely imaginary
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eigenvalues. We get the following conditions

k1 + (k2 − k3)ξ1 − ξ3
1 = 0,

k2 − 3ξ2
1 − 1 = 0,

3ξ2
1 − k2 + k3 > 0.

These three conditions define the set MH (see fig. 3).

Figure 3. The set MH .

The eigenvalues are purely imaginary on MH ,

λ1,2 = ±iω, ω =
√

detA(ξ1) =
√

k3 − 1,

and the equilibrium point (ξ1, ξ2) is a multiple focus. While crossing the bound
MH , the equilibrium point may change its stability. We will compute the value of
d Re λ1,2

dk2
to describe the change of stability. Since

dpA

dλ
= 2λ− trA,

we have
dpA

dλ

∣∣∣
MH

= ±i2
√

k3 − 1 6= 0 (2.2)

on the set MH and we can apply the implicit function theorem and get

dλ

dk2

∣∣∣∣
MH

= −
dpA

dk2

dpA

dλ

∣∣∣∣
MH

. (2.3)

The coordinates of the equilibrium point depend on the parameters. Let us denote
ξ1 = ϕ(k1, k2, k3). Then we get

dpA

dk2
= −(λ + 1)

(
1− 6ϕ

∂ϕ

∂k2

)
. (2.4)
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Since the equality (1.2) gives

ϕ + (k2 − k3)
∂ϕ

∂k2
− 3ϕ2 ∂ϕ

∂k2
= 0,

we can express the partial derivative ∂ϕ
∂k2

on the set MH as

∂ϕ

∂k2
=

ξ1

k3 − 1
.

Using this expression, equalities (2.2) and (2.4) in (2.3), we get

dλ

dk2

∣∣∣∣
MH

=

(
1− 6 ξ2

1
k3−1

)
(±i

√
k3 − 1 + 1)

±i 2
√

k3 − 1
.

That yields
d Re λ

dk2

∣∣∣∣
MH

=
k3 − 1− 6ξ2

1

2(k3 − 1)
=

k3 + 1− 2k2

2(k3 − 1)
. (2.5)

Taking MH as a parametric function of ξ1, we have

dk1

dξ1
= k3 − 1− 6ξ2

1 .

The derivative d Re λ
dk2

is zero if and only if dk1
dξ1

= 0, that is in the case that the
tangent to MH is parallel to the axis k2. In this situation, there is no crossing of
MH (just a contact) and there is also no change in stability of the focus. In the
case that k3 + 1 > 2k2, a stable focus changes to an unstable focus, while crossing
MH in the direction of the axis k2. In the opposite case, an unstable focus changes
to a stable focus. (These results correspond to Theorem 2.5 on subcritical and
supercritical bifurcation.)

While crossing the bifurcation bound MH , the focus changes its stability and a
limit cycle arises in its neighbourhood. There occurres a local qualitative change
of the phase portraits called Andronov-Hopf bifurcation.

The set MH is divided by the set MT into three parts MHr, MHl and MHu (see
fig. 4).

These sets correspond with Andronov-Hopf bifurcation of the right, left (in the
case of three equilibrium points) and unique equilibrium point. �

Remark 2.4. Stability of the limit cycle depends on stability of the multiple focus
and is determined by the sign of the first Lyapunov number of this multiple focus.
The cycle is stable for l1 < 0 and unstable for l1 > 0. Parameters corresponding
with zero values of the first Lyapunov number l1 determine a subset of codimension
2 of MH - degenerate Andronov-Hopf bifurcation.

Theorem 2.5. The subset MDH of the parameter space K

MDH = {(k1, k2, k3) ∈ K : k1 = 4ξ3
1 , k2 = 1 + 3ξ2

1 , k3 = 1 + 6ξ2
1 , ξ1 ∈ R− {0}}

is a bifurcation set of codimension 2 corresponding with degenerate Andronov-Hopf
bifurcation.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). We transform the
system (1.1) by a substitution u = x− ξ1, v = k1 + k2x− x3 − y to an equivalent



8 L. BARÁKOVÁ, E. P. VOLOKITIN EJDE-2005/83

Figure 4. The section of MT and MH in k3 > 1.

system of Lienard’s type

u̇ = v,

v̇ = p(u) + q(u)v ≡ p0 + p1u + p2u
2 + p3u

3 + (q0 + q1u + q2u
2)v,

(2.6)

where

p0 = k1 + (k2 − k3)ξ1 − ξ3
1 , p1 = k2 − k3 − 3ξ2

1 , p2 = −3ξ1, p3 = −1,

q0 = −1 + k2 − 3ξ2
1 , q1 = −6ξ1, q2 = −3.

(2.7)

Since (1.2) holds for the equilibrium point (ξ1, ξ2), we have p0 = 0, system (10)
has an equilibrium point at the origin. The origin is a multiple focus if and only if
p1 < 0 and q0 = 0. According to [8] or [3], we can express the first and the second
Lyapunov numbers as

l1 = p2q1 − p1q2, l2 = −p3q2.

Consequently from (2.7)

l1 = 3(k2 − k3 + 3ξ2
1), l2 = −3.

Since trA = 0 on MH , we get

l1 = 3(1− k3 + 6ξ2
1) = 3(2k2 − k3 − 1), l2 = −3 6= 0.

The condition l1 = 0 determines the subset MDH on MH (see fig. 5) that cor-
responds with the degenerate Andronov-Hopf bifurcation of codimension 2 (since
l2 6= 0). The curve MDH divides the surface MH into parts MDH− correspond-
ing with the supercritical bifurcation (l1 < 0, a stable limit cycle occurres) and
MDH+ corresponding with the subcritical bifurcation (l1 > 0, an unstable limit
cycle occurres). �



EJDE-2005/83 [BIFURCATION DIAGRAM OF A CUBIC SYSTEM 9

Figure 5. The set MDH .

Remark 2.6. The set MDH− is entirely contained in the set MHu, which imply
that the stable limit cycle (caused by Andronov-Hopf bifurcation) may occur only
in the case of the unique equilibrium point.

Theorem 2.7. The subset MBT of the parameter space K,

MBT = {(k1, k2, k3) ∈ K : k1 = −2ξ3
1 , k2 = 1 + 3ξ2

1 , k3 = 1, ξ1 ∈ R− {0}},

is a bifurcation set of codimension 2 corresponding with Bogdanov-Takens bifurca-
tion.

Proof. Let (ξ1, ξ2) be an equilibrium point of the system (1.1). The bifurcation set
of codimension 2 corresponding with Bogdanov-Takens bifurcation includes such
parameters from K that both eigenvalues of Jacobi’s matrix A are zero. The set
MBT is determined by two conditions detA = 0 and tr A = 0. The set MBT lies in
the intersection of the closure of MH and the set MT . In the case ξ1 = 0, that is for
k1 = 0, k2 = k3 = 1, bifurcation of higher codimension occurres. Further analysis
of this bifurcation is presented in Theorem 3.2. �

Theorem 2.8. The subset MC of the parameter space K,

MC = {(k1, k2, k3) ∈ K : k1 = 0, k2 = k3, k3 6= 1},

is a bifurcation set of codimension 2 - triple equilibrium point. The unique equilib-
rium point (0, 0) of (1.1) is topologically equivalent to a stable node for k3 < 1, or
an unstable node surrounded by a stable limit cycle for k3 > 1.

Proof. The Jacobi’s matrix on MC is

A =
(

k2 −1
k2 −1

)
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and its eigenvalues are λ1 = 0 and λ2 = k2−1. The origin is the unique equilibrium
point of (1.1) and it is stable for k3 < 1, unstable for k3 > 1. The unstable
unique equilibrium is surrounded by a stable limit cycle according to Lemma 1.1
on existence of a globally attractive set and the Poincaré’s theorem. The origin is
topologically equivalent to a node according to Lemma 2.1. �

3. Non-local bifurcations

In contradiction to local bifurcations, where the bifurcation sets could be ex-
pressed explicitly, bifurcation sets corresponding with non-local bifurcations can
only be studied numerically or can be approximated with accuracy to a particular
order in the neighbourhood of some important bifurcation points.

Non-local bifurcation of codimension 1 - multiple cycle. The curve MDH

is a boundary of a surface MD corresponding with non-local bifurcation of codi-
mension 1 - multiple cycle. While crossing the set MD, two limit cycles (stable
and unstable) merge into one semi-stable cycle that disappears then. Closures of
sets MD and MH are tangent to each other in each point of the curve MDH . The
following schematic figure 6 shows the lay-out of the sets MH , MT and MD only.
They are figured by their intersections with the plane k3 = const. > 1. The nu-
merical computations shows, that these sets lie closely to each other and there are
technical problems with their rendering on the same scale.

Figure 6. The section of MDH in k3 > 1 .

Non-local bifurcation of codimension 1 - separatrix loop. The curve MBT

is a boundary of the surface ML corresponding with non-local bifurcation of codi-
mension 1 - separatrix loop. The surface ML is tangent to MT and MH at each
point of MBT . The set ML is contained in the half-space k3 > 1 and consists of
two components MLr and MLl corresponding with existence of the separatrix loop
surrounding the right or the left equilibrium point respectively. While crossing the
bound ML, the unstable limit cycle (originated near MH in consequence of the
subcritical Andronov-Hopf bifurcation) merge into the separatrix loop and splits.
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Let (ξ1, ξ2) be the right double equilibrium point of the system (1.1). Then the
parameters of the system (1.1) lie in the set MBT (Bogdanov-Takens bifurcation)
and the coordinates of the double equilibrium point satisfy

ξ1 =

√
k2 − 1

3
, ξ2 = k3

√
k2 − 1

3
according to Theorem 2.7. Using the following substitution

x = x1 −
√

k2 − 1
3

, y = x2 − k3

√
k2 − 1

3
,

we transform the system (1.1) into a system

ẋ = k1 +

√
k2 − 1

3

(
k2 − k3 −

k2 − 1
3

)
+ x−

√
3(k2 − 1)x2 − x3 − y,

ẏ = k3x− y.

(3.1)

The origin is a double equilibrium point of the system (12) with two zero eigenvalues
for parameters from MBT .

System (3.1) can be transformed by the linear transformation x1 = y, x2 =
k3x− y into the system

ẋ1 = x2,

ẋ2 = h00 + h10x1 +
1
2
h20x

2
1 + h11x1x2 +

1
2
h02x

2
2 + R(x1, x2, k1, k2, k3),

(3.2)

where

h00 = k3

(
k1 +

√
k2 − 1

3
(
k2 − k3 −

k2 − 1
3

))
, h10 = 1− k3,

h20 = − 2
k3

√
3(k2 − 1), h11 = − 2

k3

√
3(k2 − 1),

h02 = − 2
k3

√
3(k2 − 1), R(x1, x2, k1, k2, k3) = − (x1 + x2)3

k2
3

.

This transformation keeps the equilibrium point at the origin as well as its zero
eigenvalues. In the further analysis, we will study system (3.2) instead of the
equivalent system (1.1).

Remark 3.1. For (k1, k2, k3) ∈ MBT , the following statements hold

h00 = 0, h10 = 0, h11 = h20 = h02 6= 0.

Theorem 3.2. The system (3.2) can be transformed by a smooth non-degenerate
change of parameters to the Bogdanov-Takens normal canonical form

ẋ1 = x2,

ẋ2 = β1 + β2x1 + x2
1 + x1x2 + O(‖x‖3),

(3.3)

where

β1 =
h11

(−h10 + 1
4h02h00 + 1

2 )3
h00,

β2 =
1

(−h10 + 1
4h02h00 + 1

2 )2
(h10 − h00h02).

(3.4)
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In the neighbourhood of the Bogdanov-Takens curve MBT corresponding with the
right double equilibrium point, the set MLr can be expressed at the form

MLr =
{
(k1, k2, k3) ∈ R3 : β2 < 0, β1 = − 6

25
β2

2 + o(β2
2)

}
. (3.5)

The set MLl is symmetrical to MLr according to the plane k1 = 0.

Proof. The change of time dt = (1− h02
2 x1)dτ and the substitution

u1 = x1, u2 = x2 −
h02

2
x1x2

eliminates the term with x2
2. We get a system of the form

u̇1 = u2,

u̇2 = ν1 + ν2u1 + C1u
2
1 + C2u1u2 + O(‖u‖3),

where

ν1 = h00, ν2 = h10 − h00h02, C1 = −h02h10 +
1
4
h2

02h00 +
1
2
h20, C2 = h11.

Note that C1 = 1
2h20 6= 0 on MBT according to Remark 3.1. Introducing a new

time (denoted again with t)

t =
∣∣C2

C1

∣∣τ
and new variables (denoted again with x1 and x2)

x1 =
C2

2

C1
u1, x2 = sgn

(C2

C1

)C3
2

C2
1

u2,

we get the Bogdanov-Takens normal canonical form (3.3), where

β1 =
h4

11

(−h02h10 + 1
4h2

02h00 + 1
2h20)3

h00,

β2 =
h2

11

(−h02h10 + 1
4h2

02h00 + 1
2h20)2

(h10 − h00h02).

With respect to the fact that h20 = h11 = h02, we get the expressions (3.4).
The coefficient of the term with x1x2 corresponds to

s = sgn
(C2

C1

)∣∣
MBT

= sgn
( h11

−h02h10 + 1
4h2

02h00 + 1
2h20

)∣∣
MBT

.

According to Remark 3.1, we have s = sgn 2 = 1. The Bogdanov-Takens bifurcation
is non-degenerate, since

h11 = −2
√

3(k2 − 1) = −6ξ1 6= 0

and h20 6= 0 on MBT . The change of parameters is invertible in the neighbour-
hood of the origin. It can be verified by a direct computation of the following
determinants and finding∣∣∣∣∣∂β1

∂k1

∂β1
∂k2

∂β2
∂k1

∂β2
∂k2

∣∣∣∣∣ 6= 0,

∣∣∣∣∣∂β1
∂k2

∂β1
∂k3

∂β2
∂k2

∂β2
∂k3

∣∣∣∣∣ 6= 0,

∣∣∣∣∣∂β1
∂k3

∂β1
∂k1

∂β2
∂k3

∂β2
∂k1

∣∣∣∣∣ 6= 0.

This fact implies that the change of parameters cause no degeneration of the bifur-
cation manifold according to the parameter space. (In the bifurcation theory this
regularity of the parameter transformation is called the transversality condition.)
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The expression for the set ML can be found in [6, Theorem 8.5, Appendix] or in
[4]. The set MLl has to be symmetric to MLr about to the plane k1 = 0. �

Non-local bifurcation of codimension 2 - two separatrix loops. The curve
MLL, which is an intersection of the sets MLr and MLl and lies in the plane k1 = 0
(because of the symmetry of the parameter portrait) corresponds with the non-local
bifurcation of codimension 2 - two separatrix loops. Two separatrix loops surround
both the right and the left equilibrium points (see fig. 7).

Figure 7. Structurally unstable two separatrix loops.

Non-local bifurcation of codimension 1 - “big separatrix loop“. According
to [7], the curve MLL is a boundary of a bifurcation set MBL corresponding with
non-local bifurcation of codimension 1 - ,,big separatrix loop“. While crossing
the set MBL, separatrix loop surrounding both equilibrium points appears and
consequently gives to arise to an unstable limit cycle containing the saddle and
both remaining equilibrium points in its interior (see fig. 8).

Figure 8. A structurally unstable big separatrix loop.
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Figure 9 presents the lay-out of the sets MT , MH , ML and MBL, showing the
section of the parameter space K by the plane k3 = const. > 1, near 1.

Figure 9. The section of ML and MBL in k3 > 1.

4. Global bifurcation diagram

The bifurcation sets described above divide the parameter space K into parts,
where the phase portraits of system (1.1) are topologically equivalent and struc-
turally stable. The bifurcation sets contain those parameters, for which the phase
portraits are structurally unstable.

Figure 10 shows a section of the global bifurcation diagram by the plane k3 =const.
for k3 ∈ (0, 1], and figure 11 this section for k3 > 1. Figure 12 shows the struc-
turally stable phase portraits corresponding to the marked regions for k1 < 0. The
half-space k1 > 0 is symmetrical to the opposite one and the phase portraits are
symmetrical according to the origin.

Figure 10. The section of the bifurcation diagram in k3 ∈ (0, 1].
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Figure 11. The section of the bifurcation diagram in k3 > 1.

Figure 12. Phase portraits corresponding to the marked regions.
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