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Abstract: Many developers of biometric systems start with modest samples before general deploy- 1

ment. But they are interested in how their systems will work with much larger samples. To assist 2

them, we evaluated the effect of gallery size on biometric performance. Identification rates describe 3

the performance of biometric identification, whereas ROC-based measures describe the performance 4

of biometric authentication (verification). Therefore, we examined how increases in gallery size 5

affected identification rates (i.e., Rank-1 Identification Rate, or Rank-1 IR) and ROC-based measures 6

such as equal error rate (EER). We studied these phenomena with synthetic data as well as real data 7

from a face recognition study. It is well known that the Rank-1 IR declines with increasing gallery size. 8

We have provided further insight into this decline. We have shown that this relationship is linear in 9

log(Gallery Size). We have also shown that this decline can be counteracted with the inclusion of 10

additional information (features) for larger gallery sizes. We have also described the curves which 11

can be used to predict how much additional information is required to stabilize the Rank-1 IR as 12

a function of gallery size. These equations are also linear in log(gallery size). We have also shown 13

that the entire ROC curve is not systematically affected by gallery size, and so ROC-based scalar 14

performance metrics such as EER are also stable across gallery size. Unsurpringingly, as additional 15

uncorrelated features are added to the model, EER decreases. We were interested in exploring what 16

changes in similarity score distributions might accompany these declines in EERs. For this, we 17

evaluated the effect of number of features and gallery size on key distribution characteristics (median 18

and IQR) of the genuine and impostor similarity score distributions. We present evidence that these 19

decreases in EER are driven primarily by decreases in the spread of the impostor similarity score 20

distribution. 21
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1. Introduction 30

Many developers of biometric systems start with modest samples before general 31

deployment. But they are interested in how their systems will work with much larger 32

samples. To assist them, we evaluated the effect of gallery size on biometric performance. 33

As a general matter, several authors consider that there is an influence of gallery size on 34

biometric performance. Jain [1] has stated: "... that the accuracy estimates of biometric 35

systems are dependent on a number of test conditions, including sensor characteristics, 36
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number of subjects in the database,...". No specific examples are cited in this reference 37

however. Similarly, Chan et al. [2] state "...as the number of subjects increases, it becomes 38

increasingly difficult for the system to accurately classify users." In this case as well, no 39

citations supporting this statement are provided. 40

We start with the hypothesis that as gallery size increases, more information is required 41

to achieve any particular level of performance. We will be addressing performance in terms 42

of identification rate, specifically Rank-1 Identification Rate (Rank-1 IR), and also in terms 43

of ROC-based measures such as EER. (All error rates rates are expressed as percent in the 44

present study.) It is known that the Rank-1 IR declines with increasing gallery size (see 45

Figure 1). We will attempt to further describe this relationship, and also show that the 46

decrease in Rank-1 IR can be reversed with the addition of new information. 47

Figure 1. Probability of detection at Rank 1 as a function of more than 600,000 plain index fingers [3].
Note the log scale for the x-axis. Probe set size was 1,000 subjects. Fingerprint source: Department of
Homeland Security, US Federal Government. Very similar results are available at [4]

There is little published research on the impact of increasing gallery size on ROC-based 48

measures such as EER. Although it is well established that increasing the number of subjects 49

will decrease the confidence limits on any ROC curves produced [5,6], this evidence does 50

not imply anything about the central tendency of any estimated error rate. 51

Two earlier papers from our laboratory have addressed the relationship between 52

number of subjects in a database and Rank-1 IR and EER [7,8]. In these studies, biometric 53

authentication was performed using various eye movement features. The goal was to 54

authenticate subjects tested on two occasions. The total sample was either 200 [8] or 335 55

subjects [7]. For the purpose of evaluating "Database Scaling Performance", the ROC 56

analysis was repeated for randomly drawn subsets of subjects (N=50 to 200 or 335). For 57

Rank-1 IR, the authors report a slight reduction in rank-1 identification rates as the subject 58

pool increases [7]. For EER, the authors report that "there was no discernible difference in 59

equal error rates produced for a subject pool of 50 or a subject pool of 323". 60

We were interested in evaluating the influence of changes in gallery size on a much 61

larger scale (up to 100,000 subjects). For reasons of convenience, availability and control, we 62

employed synthetic data sets. However, at each step in the analysis, we provide comparison 63

analyses for a real face-recognition data set (MORPH-II) [9] with N = 13,930 subjects. The 64

real face recognition data allowed us to evaluate if the substantive findings with synthetic 65

data were replicated in real biometric data. 66

In the second section of the manuscript, we present a method for creating synthetic 67

data sets with a number of properties that are helpful for studying biometric performance. 68
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Because the data are synthetic, we are able to control the degree of temporal persistence of 69

the features while also ensuring that features are approximately independent of each other 70

and thus provide unique pieces of information for biometric verification. (The concept of 71

"temporal persistence" and the method for its measurement are covered in [10]). (In other 72

contexts, this measure is used to assess the inter-rater reliability of a feature.) We think that 73

having unique pieces of information will allow us to address several theoretical notions 74

relevant to biometric analysis in this and subsequent studies. Also in the second section, 75

we present our methods for biometric performance assessment of the synthetic data. In the 76

third section we describe the MORPH-II face recognition data set and our face recognition 77

analyses, including biometric performance assessment. In the fourth section, we discuss 78

our results for Rank-1 IR. In the fifth section we describe our results for ROC-based metrics. 79

We end with a discussion (section 6). 80

2. Creation and Analysis of Synthetic data sets 81

2.1. Creation of Synthetic Data 82

(Please note that these exact procedures for creating synthetic datasets is also described in an 83

manuscript available at (https://digital.library.txstate.edu/handle/) currently under review at ACM 84

TOPS.) 85

Recall that the intraclass correlation coefficient (ICC) is a measure of the correlation 86

expected for repeated measurements of the same feature on different occasions. Unlike 87

the Pearson r correlation coefficient, which is typically applied as an interclass measure 88

of relative agreement (i.e., two series can be correlated even if they differ substantially in 89

level and spread), the ICC is an intraclass measure of absolute agreement [11]. Measures 90

from the same set of subjects at two different times are intraclass measurements (same 91

metric and variance). ICC ranges from 0.0 to 1.0 with the latter corresponding to perfect 92

temporal persistence. Our goal is to create synthetic features with a specified target 93

ICC (denoted ICCTarget). Let Xijs denote the measurement of feature j (j = 1, . . . , K) on 94

session (occasion) s (s = 1, . . . , S) for individual i (i = 1, . . . , N). Although the ICC can be 95

calculated based on many sessions, in our experience, biometric assessment is typically 96

performed comparing only two points in time. Therefore, henceforth we will set S = 2. 97

We generate normally distributed features such that the theoretical intraclass correlation 98

of repeated measurements of the same feature on the same subject is ICCTarget while the 99

theoretical correlation of measurements of different features on the same individual and 100

the theoretical correlation of measurements from different individuals are zero. In practice 101

when data are simulated there are small variations in the empirical ICCs and there are 102

small intercorrelations between features (and individuals) due to chance. 103

The algorithm that we use is described briefly here and spelled out in Algorithm 1. 104

The starting point is to populate the full set of session one measurements Xij1 with random 105

draws from a standard normal distribution (mean zero and variance one). Then the 106

measurements for the second session are set equal to the value of the given feature from the 107

first session, Xij2 = Xij1 for (i = 1, . . . , N, j = 1, . . . , K ). At this point both sessions have 108

the same data and each feature has ICC equal to 1.0 (perfect persistence). We obtain the 109

desired ICC by adding a draw from a normal distribution with mean = 0 and variance = 110

(1 − ICCTarget)/ICCTarget to each of the measurements. At the end we apply a z-score 111

transform to each feature (with all sessions concatenated together) so that they all have 112

mean 0 and standard deviation one. It can be shown that the resulting measurements have 113

the desired ICC (up to simulation noise). 114

Using this method, we can create features which are normally distributed, that have 115

specified ICCs, with as many subjects and sessions as we desire. These features all have 116

mean = 0 and SD = 1. These features are generally independent, but there are some small 117

intercorrelations between features due to chance. To illustrate the approach, we generated 118

data for 10000 subjects, 1000 features and 2 occasions with ICCTarget = 0.7. Figure 2(A) 119

shows a histogram of the resulting empirical ICCs. Figure 2(B) shows a histogram of the 120

resulting inter-feature correlations. 121



Version September 13, 2022 submitted to Journal Not Specified 4 of 19

Algorithm 1: Creating Synthetic Features
Input : N (subjects), K (features), ICCTarget
Output : 3-dimensional (N × K × 2) feature matrix Xijs with desired correlation

structure
for j = 1, . . . K

for i = 1, . . . N
Set Xij1 = Z where Z is a random standard normal deviate.
Set Xij2 = Xij1

for j = 1, . . . K
for i = 1, . . . N

for s = 1, 2
Set Xijs = Xijs + W; where W is a random normal deviate with mean = 0

and
standard deviation =

√
(1 − ICCTarget)/ICCTarget

For each feature j, treat Xijs as a single vector of length N · S and apply a z-score
transform

to ensure mean = 0 and standard deviation = 1

Figure 2. (A) Frequency histogram of ICCs for 1,000 features with an ICCTarget = 0.7. This is from a
synthetic data set with 10,000 subjects. (B) Frequency histogram of correlations between 1,000 features
for 10,000 subjects, two sessions, with an ICCTarget = 0.7. Note that the median and maximum are of
the absolute value of the correlations.
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2.2. Creation of Sets of Features with Varying Degrees of Persistence 122

To match what is found in our face recognition data set (see below), we generated a 123

synthetic data set with varying ICCs in the range of 0.8 to 0.9 (0.8 < ICC <= 0.9). We refer 124

to this data set as a Band 8 data set. Within the ICC band, the ICCs are evenly distributed 125

across the 0.8 to 0.9 range. 126

2.3. Biometric Performance Assessment for Synthetic Features 127

All of the synthetic analyses for this report are based on Band 8 ( 0.8 < ICCs <= 0.9). 128

This was chosen because in our face recognition data set described below, all of the features 129

had ICCs in this range as well. A synthetic dataset with 50 features, and 100,000 subjects 130

studied on 2 session with ICC in Band 8 was constructed. Distance scores were calculated 131

using a variable number of randomly chosen features (2, 5, 8, 10, 15 or 20) from the full 132

set of 50 features. We chose these numbers empirically, for illustrative purposes, based on 133

the range of biometric performance values produced. For one type of analysis, data set 134

sizes were 1,000, 2,000, 4,000, 8,000, 16000, 32000 or 64,000 subjects. For another type of 135

analysis, data set sizes were 1,000 (or 2,000), 10,000 or 100,000 subjects. We employed the 136

cosine distance metric, since we have shown in an earlier (unpublished) report that the 137

best biometric performance is produced with this choice1. The resulting distance measures 138

were scaled to go from 0 to 1 and then they were reflected (1 − distance) to compute 139

similarity scores. The Rank-1 IR for a data set represents how often (what percent of the 140

time) the greatest similarity score for a probe subject was for the same subject in the gallery. 141

A “genuine” distribution of similarity scores was constructed from the similarity scores 142

for each subject and his/her self. All other similarity scores were considered impostors. 143

Applying different decision thresholds to the genuine and imposter similarity scores yields 144

false acceptance and false rejection rates. These can be plotted as a receiver operating 145

characteristic (ROC) curve. The EER is the point on this curve at which the false acceptance 146

rate (FAR) and the false rejection rate (FRR) are equal. 147

Since the number of similarity scores is equal to (gallery size)2, we can only do exact 148

ROC analyses in computer memory for up to 20,000 subjects. Therefore we created software 149

which estimates ROC-based measures for much larger sample sizes, and which does not 150

hold all of the similarity scores in memory. We will call this the large scale procedure for 151

estimating ROC-based measures (LSP-ROC). 152

The core of this analysis is the computation of the genuine and impostor distribu- 153

tion frequency histograms. All the ROC-based statistics are computed from these two 154

histograms. First, both frequency histograms are initialized to zero. We use 1,000,000 bins 155

of equal size. Cosine similarity scores can assume values from 0 to 1, so each bin has a 156

width of 1/1,000,000. Then both histograms are computed from genuine and impostor 157

similarity scores of subjects from session 1 and session 2. The similarity scores are calculated 158

iteratively, in batches of 1,000 subjects from each session per batch (1,000,000 similarity 159

scores at a time). 160

False rejection rate (FRR) and false acceptance rate (FAR) values are computed based on 161

the genuine and impostor distributions frequency histograms: one FRR and FAR value per 162

histogram bin. Let FRR(Similarity score) and FAR(Similarity score) functions be piecewise 163

linear functions based on these FRR and FAR values. EER is computed as a value at the 164

intersection of FAR(Similarity score) and FRR(Similarity score) functions. 165

The statistics of genuine and impostor distributions are calculated based on a random 166

sample from the respective PDFs approximated by the relative frequency histograms 167

(calculated from the aforementioned frequency histograms)2. 168

1 Link to unpublished report: https://www.doi.org/10.13140/RG.2.2.17510.06727
2 Code is available at https://github.com/v-prokopenko/big_roc
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3. Face Recognition Data and Methods 169

3.1. Data Set and Image Preparation 170

We would have preferred to find a publicly available data set with 100,000 or more 171

subjects. We were not successful. However, we did find the MORPH Craniofacial Longitu- 172

dinal Morphological Face Database (MORPH-II) [9] (http://www.faceaginggroup.com/ 173

morph/). The MORPH-II data set contains mug shots for 13,930 subjects. Since biometric 174

performance assessment requires at least 2 images per subject, subjects with only one image 175

were excluded (N=857). The images are colored (RGB), have various dimensions, include 176

more than just the face, and are not spatially registered. We employed the Viola-Jones 177

algorithm for face detection. The Viola-Jones algorithm failed in 836 of 53,404 total images. 178

Viola-Jones algorithm failures accounted for 69 subjects being lost. This left 13,004 subjects 179

with 2 or more images for further analysis. Prior to processing these images for facial 180

recognition, the steps in algorithm 2 were applied. 181

Algorithm 2: Steps in the preparation of images for facial recognition

1. Detect faces in the images using the Viola-Jones algorithm and save the face-only
images.

2. Register the face-only images using an affine transformation (translation, rotation,
scale,
and shear).

3. Save registered images as 120 X 100 pixels.
4. For each subject, correlate each image (as gray scale) with each other image
5. For each subject, choose the 2 most highly correlated images, and discard all other

images.

Note that our goal is not to provide a fair assessment of our face recognition approach 182

to the MORPH-II data set. Rather, it was to perform a reasonable face recognition analysis 183

which could then be used to evaluate gallery size effects. For this purpose, we wanted a 184

full range of performance, and our choice to use only the most highly correlated pairs of 185

images was designed to obtain excellent performance under optimal conditions. 186

3.2. Face Recognition Approach - FaceNet 187

For face recognition, we employed the set of features supplied by the FaceNet algo- 188

rithm [12]. FaceNet is a deep convolutional network designed by Google, trained to solve 189

face verification, recognition and clustering problems with efficiency at scale. It is highly 190

accurate and robust to occlusion, blur, illumination, and steering. It directly maps face 191

images to a compact Euclidean space, where distances directly correspond to a measure 192

of face similarity. Once this space has been produced, tasks such as face recognition can 193

be easily implemented using standard techniques. It achieved accuracy of 99.63% on the 194

Labeled Faces in the Wild (LFW) data set, and 95.12% on the YouTube Faces Database. 195

To create the FaceNet features, we applied the python Keras implementation 3. We 196

employed the pretrained Keras model (trained using the Microsoft-Celeb-1M data set 197

(https://megapixels.cc/data sets/msceleb/ )). For this, the images needed to be resized to 198

160x160 pixels and globally rescaled (compute the mean and SD across all intensities from 199

each color channel and, for each channel, subtract the mean intensity and divide by the SD 200

intensity). The algorithm produced 128 numerical features per subject. 201

3.3. Checking Distributions for Normality of FaceNet features 202

To assess the normality of the FaceNet features, we computed the skewness and 203

kurtosis of each feature. The normal distribution has a skewness of 0 and a kurtosis of 204

3.0. The 128 FaceNet features had a skewness range of -0.23 to 0.34 and a kurtosis range 205

3 Available at: https://github.com/nyoki-mtl/keras-facenet

(http://www.faceaginggroup.com/morph/)
(http://www.faceaginggroup.com/morph/)
(http://www.faceaginggroup.com/morph/)
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of 2.76 to 3.33. On the basis of these ranges, we considered it reasonable to treat all of 206

the FaceNet features as normal. For comparison, the skewness of a random uniform 207

distribution (k=10,000) was -0.015 and the kurtosis was 1.82. A log-normal distribution 208

with mean(log(x)) = 0 and sd(log(x)) = 1 had a skewness of 5.35 and a kurtosis of 59.16. 209

3.4. Obtaining the ICC and the Feature Intercorrelation for the FaceNet Features 210

To further characterize the FaceNet features, we were interested in determining the 211

temporal persistence of the features. For this we computed the ICC of each feature and 212

present a frequency histogram of these ICCs in Figure 3, left. All of the features fall between 213

ICC = 0.8 and 0.9. This means that the features are all highly reliable and are very similar 214

to our synthetic features for Band 8. 215
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Figure 3. Characteristics of the FaceNet features. On the left, we have a frequency histogram of the
ICCs for the 128 FaceNet features. All of the features are between 0.8 and 0.9, which corresponds
exactly with our synthetic Band 8 features. This indicates that these features are very reliable over
time. On the right we have a frequency histogram of the intercorrelations of the 128 FaceNet features.

The FaceNet features were substanially intercorrelated (Figure 3, right). For this reason, 216

we decided to perform a PCA on these features. 217

3.5. PCA Analysis of FaceNet Features 218

In order to create a set of uncorrelated features and to reduce the dimensionality of the 219

data set, we performed a PCA analysis on the FaceNet features. This analysis included the 220

data for all subjects. However, during biometric assessment of subsets of the entire dataset 221

(see below), PCA was independently performed on each subset. As is clear from Figure 4, 222

only approximately 60 uncorrelated features were required to explain 100% of the variance 223

in the 128 FaceNet features. 224

3.6. Biometric Performance Assessment for PCA Components from FaceNet Features 225

For one type of analysis, biometric performance was evaluated for the first 2, 5, 12 or 226

30 FaceNet PCA components. For another type of analysis, biometric performance was 227

evaluated for the the first 5, 10, 15 or 20 PCA components. Gallery sizes ranged from 228

1,000 to 10,000 in steps of 1,000. After a subset of the 13,004 subjects was selected as a 229

data set, PCA was computed on all the first images of each pair. The PCA coefficients 230

computed from the first images were then used to calculate the PCA components for the 231

second images. Biometric performance was evaluated in memory (i.e., the LSP-ROC was 232

not needed). Cosine distances were computed, converted to similarity scores, and subjected 233

to a conventional ROC analysis. 234
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Figure 4. After PCA of the 128 FaceNet Features, we plot the variance explained by each PCA com-
ponent against component number. Essentially all of the variance is accounted for by approximately
60 completely uncorrelated PCA components.
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4. Results: Rank-1 Identification Rate 235

The Rank-1 IR performance for synthetic Band 8, for 10 features, evaluated at various 236

gallery sizes (1000, 2000, 4000, 8000, 16000, 32000, 64000) is presented in Figure 5 (Top). 237

Every dot in this figure represents the mean across 30 random repetitions (random subset 238

of features and subjects). The Rank-1 IR for 1,000 subjects was approximately 58%. This 239

rate declines steadily as the gallery size increases. The decrease is described by a linear 240

function of log(Gallery Size). At a gallery size of 64,000 the Rank-1 IR has dropped below 241

15%. 242
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Figure 5. Top: Rank 1 identification rate as a function of gallery size for synthetic Band 8 features.
Each dot represents the mean of 30 repetitions. The black dots are the Rank 1 rates for 10 features
for the following gallery sizes: 1000, 2000, 4000, 8000, 16000, 32000, 64000 subjects. Note the fit
of the decline to a linear function of log(Gallery Size). The red dots represent the Rank 1 rate for
feature numbers greater than 10 which are chosen to produce a Rank-1 rate most similar to that for
10 features. Bottom: Plot of the number of features required for gallery sizes greater than 1000 to
match the Rank 1 identification rate for 10 features, 1000 subjects. In this case a linear equation in
log(Gallery Size) is able to match the results perfectly (r-squared = 1.0).
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This drop can be prevented if additional information is added in the form of additional 243

features. We understand that, in any real world application, investigators would likely use 244

all of the information available in the first instance. Nonetheless, we believe this additional 245

analysis provides some insight and guidance for improving Rank-1 IR performance. The 246

red dots represent the Rank-1 IR that can be achieved by adding additional features. The 247

number of features needed to achieve this performance is also indicated. Note that this 248

analysis is limited in accuracy by the discrete nature of each feature. 249

In Figure 5 (Bottom), we plot the number of features required to stabilize the Rank-1 250

IR as gallery size increases. In this case, the best fitting function for these feature numbers 251

is also a linear function in terms of log(Gallery Size). 252
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In figure 6 (Top) we present a comparable analysis for our face recognition data set. 253

In this case the Rank-1 IR is calculated for the first 10 PCA components, as a function of 254

gallery size from 1,000 to 10,000 in steps of 1,000. Once again, we see a decrease in Rank-1 255

IR as gallery size increases. The decrease is linear in log(gallery size). The number of 256

PCA components required to stabilize the Rank-1 IR performance is also a linear function 257

of log(gallery size)(Figure 6, Bottom). Unlike the case with synthetic features, each PCA 258

component accounts for distinct amounts of variance in the data. This analysis treats the 259

components as if they were interchangeable which, formally, they are not. We think this 260

analysis is nonetheless reasonable on the basis of the fact that the amount of variance 261

accounted for by added components 11 to 14 are not so distinct (2.92, 2.78, 2.61, 2.53). 262
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Figure 6. TOP: Rank 1 identification rate as a function of gallery size for FaceNet PCA components.
Each dot represents the mean of 30 repetitions. The black dots are the Rank 1 rates for 10 PCA
components for gallery sizes from 1000 to 10000 in N=1000 size steps. The red dots represent the Rank
1 rate for feature numbers greater than 10 which are chosen to produce a Rank-1 rate most similar to
that for 10 PCA components (1000 subjects). Bottom: Plot of the number of PCA components required
for gallery sizes greater than 1000 to match the Rank 1 identification rate for 10 PCA components,
1000 subjects. A linear function of log(Gallery Size) matches the results quite well (r-squared = 0.96).
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5. Results: ROC-Based Measures 263

5.1. Equal Error Rater (EER) 264

Figure 7 (Top) illustrates the EER across gallery size for synthetic data evaluated at 5, 265

10 15 and 20 features. Each point is the mean of 30 repetitions (random subset of features 266

and subjects). Mean EER is apparently very stable across gallery size. 267

N Features = 20

N Features = 15

N Features = 10

N Features = 5

Figure 7. TOP: Relationship between mean EER (30 repetitions) and gallery size for synthetic data
(Band 8). Data shown for 5, 10, 15 and 20 features. The average EERs (shown to the right of the last
dot) across gallery size are illustrated with dotted lines. Mean EER is highly stable with increases in
gallery size. BOTTOM: Relationship between mean EER (30 repetitions) and gallery size (1000 to
10000 subjects in 1000 subject steps) for FaceNet PCA components. Data shown for the first 5, 10 15
and 20 PCA components. The average EERs (shown to the right of the last dot) across gallery size are
illustrated with dotted lines. Mean EER does not change as a function of gallery size.

Figure 7 (Bottom) illustrates the EER across gallery size for our face recognition data 268

evaluated at the first 5, 10, 15, and 20 PCA components. Each point is the mean of 30 269

repetitions (over randomly chosen subjects). Note the stability across gallery size here. 270
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5.2. Other Points on the ROC Curve 271

Since the EER was so stable across gallery size, we thought it important to check other 272

points on the ROC curve. In Figure 8 (Top), for synthetic data, we present the false rejection 273

rater (FRR) when the false acceptance rate (FAR) = 0.1% for 5, 10, 15 and 20 features. Note 274

the stability across gallery size. 275

N Features = 20

N Features = 15

N Features = 10

N Features = 5

Figure 8. Top: In addition to mean EER, we also evaluated the mean false rejection rate (FRR) at a
false positive rate of 0.1%. Here we plot these error rates (mean of 30 repetitions) versus gallery size
(1000, 2000, 4000, 8000, 16000, 32000, 64000 subjects) for synthetic data (Band 8). Data shown for 5, 10,
15 and 20 features. The average error rates (shown to the right of the last dot) across gallery size are
illustrated with dotted lines. There is some instability at small gallery sizes, but otherwise, the mean
error rate does not change as a function of gallery size. Bottom: FRR at FAR = 0.001%. Here we plot
these error rates (mean of 30 repetitions) versus gallery size (1000 and 10000 subjects) for FaceNet
PCA components. Data shown for 5, 10, 15 and 20 PCA components. The average error rates (shown
to the right of the last dot) across gallery size are illustrated with dotted lines. The mean error rate
does not change as a function of gallery size.

In Figure 8 (Bottom), for face recognition data, we present similar results for FRR@FAR=0.001%276

for our face recognition data set. We analyzed 5, 10, 15, and 20 PCA components. This error 277

rate is quite stable across levels of gallery size. 278

Neither EER or FRR@FAR=x% metrics appear to change systematically with gallery 279

size. Therefore, we hypothesized that the entire ROC curve was also not changing with 280

gallery size. This is tested below. 281
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5.3. ROC Curves 282

Here we calculate and plot entire ROC-curves for several numbers of features and 283

gallery sizes. We plot the entire ROC curves (Figures 9) to facilitate the comparison between 284

entire curves as a function of gallery size. 285

As a general matter, entire ROC curves do not appear to change as a function of gallery 286

size. Since the ROC-curves are based on the characteristics of the genuine and similarity 287

score distributions, it makes sense that the ROC-curves don’t change. With increases in 288

gallery size, the distributions will become more well defined, and the median and IQR 289

should become increasingly stable. But there is no basis for predicting a change in the 290

central tendency or spread these distributions as gallery size increases. 291
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Figure 9. Top: ROC curves for synthetic data (Band 8). Curves for 3, 8, 15 and 20 features. Each
curve is evaluated at gallery sizes of 2,000, 10,000 and 100,000 subjects. Each curve is the average
over 30 repetitions. The top row shows the entire ROC curve (A,C,E,G). The bottom row is a zoomed
in version of the top row, to show the curve at very low error rates (B, D, F, H). Note that the entire
ROC curves are essentially overlapping across gallery size. Bottom: ROC curves for FaceNet PCA
components. Plots for 2, 5, 12 and 30 PCA components are displayed. Each curve is evaluated at
1,000 and 10,000 subjects. Each curve is the average over 30 repetitions. The top row shows the entire
ROC curve. The bottom row is a zoomed in version of the top row, to show the curve at low error
rates. Note that the entire ROC curves are essentially overlapping across gallery size.
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5.4. Similarity Score Distribution Metrics 292

ROC curves are based on genuine and impostor similarity score distributions. We 293

were interested in evaluating changes in similarity score distributions as a function of 294

gallery size. To this end, we evaluated the median and IQR of both genuine and impostor 295

distributions as a function of number of features and gallery size. The results are presented 296

in Figure 10. 297

For both Figure 10 (Top and Bottom), for any particular number of features (or PCA 298

components), the metrics appear reasonably stable across gallery size. If one takes into 299

account the ranges of the plots, the biggest systematic change as a function of number of 300

features is in the impostor IQR. As new features are added, the impostor distributions are 301

decreasing in spread. It appears that this effect is driving performance as assessed with 302

EER. To compare the contribution of each distribution metric (median and IQR) to EER, 303

we performed a stepwise linear regression. The dependent variable was the mean EER for 304

all twelve levels represented in each plot. The independent variables were the means of 305

the distribution metrics. We did this analysis for both synthetic and face recognition data 306

sets. For both data sets, the first independent variable entered into the model was for the 307

impostor IQR (synthetic: p = 2.e-15, r2 = 0.998; real: p = 1.8e-6, r2 = 0.979). This is consistent 308

with the idea that the decrease in impostor IQR with increasing features is the driving force 309

behind the lower EERs obtained. 310

The medians for the genuine distributions are steadily decreasing which, all other 311

things held constant, should result in worsening performance. However the magnitude of 312

these changes is very small. The IQR of the genuine distributions are decreasing, which 313

should lead to improved performance, but the range of these changes is also small. For 314

synthetic data, the median of the impostor distributions are all exactly 0.5. For our face 315

recognition data, for higher numbers of features, there is some evidence of a decrease in 316

the impostor distribution median. Note that this particular pattern may be related to the 317

distance metric (cosine) that we have employed, and other aspects of the analysis. In the 318

future, we hope to evaluate the role of distance metric and other design elements on the 319

pattern of these similarity score medians and IQRs as performance improves. 320
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Figure 10. Top: Similarity score distributions characteristics for synthetic data. Data for the Band 8
data set with 3, 8, 15 and 20 features. Each dot is based on 30 repetitions. The error bars are at +/-
1 SD. The top row represents the metrics (median, IQR) for genuine distributions. The bottom row
represents the same metrics for impostor distributions. The numbers in each plot are the average
EER across the gallery sizes represented. Bottom: Similarity score distribution characteristics for
FaceNet PCA components. Data for 2, 5, 12 and 30 PCA components. Each boxplot is based on 30
repetitions. The top row represents the metrics (median, IQR) for genuine distributions. The bottom
row represents the same metrics for impostor distributions. The numbers in each plot are the average
EER across the gallery sizes represented.
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6. Discussion 321

In this report, we have replicated and extended findings regarding the effects of gallery 322

size on biometric performance. We have confirmed the finding that Rank-1 IR declines as a 323

function of gallery size. We have shown that this relationship is linear in log(Gallery Size). 324

We have also shown that this decline can be counteracted with the inclusion of additional 325

information (features) for larger gallery sizes. We have also described the curves which can 326

be used to predict how much additional information is required to stabilize the Rank-1 IR 327

as a function of gallery size. These equations are also linear in log(gallery size). 328

It is important to note that our findings are based on datasets with certain character- 329

istics. In particular we are using either features or PCA components that are reasonably 330

normally distributed. Also, we are using features or PCA components that are either com- 331

pletely uncorrelated or nearly completely uncorrelated. Any data set with approximately 332

normal features that are more strongly intercorrelated can be transformed into a completely 333

uncorrelated data set using the inverse Cholesky transformation [13]4. 334

We have also shown that ROC curves are not systematically affected by gallery size, 335

and so ROC-based scalar performance metrics such as EER are also stable across gallery size. 336

We have illustrated how changes in similarity score distribution characteristics (median 337

and IQR) change as additional features are added to the analysis. The most important 338

predictor of change in EER as additional features are added is in the spread of the impostor 339

similarity score distribution, which becomes narrower as additional features are added. 340

This particular pattern of changes may be related to the distance metric chosen (cosine) 341

or other aspects of the design. The topic of changes in similarity score distributions that 342

accompany changes in biometric performance will be addressed in future work. These 343

findings should be of interest in the abstract theoretical sense, and should be of real practical 344

value to the biometric community, when planning biometric modalities of various gallery 345

sizes. 346

The ROC-based measures are based on the central tendency and spread of the genuine 347

and similarity score distributions. Although measures of central tendency and spread will 348

become more stable with increasing gallery size, there is no basis for predicting a systematic 349

change in the central tendency or spread of these distributions with increasing gallery size. 350
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