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EXISTENCE RESULTS FOR A SECOND-ORDER ABSTRACT
CAUCHY PROBLEM WITH NONLOCAL CONDITIONS

EDUARDO HERNÁNDEZ M., MAURICIO L. PELICER

Abstract. In this paper we study the existence of mild and classical solutions

for a second-order abstract Cauchy problem with nonlocal conditions.

1. Introduction

In this paper we study the existence of mild and classical solutions for a class
of second-order abstract Cauchy problem with nonlocal conditions described in the
form

d

dt
[x′(t) + g(t, x(t), x′(t))] = Ax(t) + f(t, x(t), x′(t)), t ∈ I = [0, a], (1.1)

x(0) = y0 + p(x, x′), (1.2)

x′(0) = y1 + q(x, x′), (1.3)

where A is the infinitesimal generator of a strongly continuous cosine function of
bounded linear operators (C(t))t∈R on a Banach space X and g, f : I ×X2 → X,
p, q : C(I;X)× C(I;X) → X are appropriate functions.

The system (1.1)-(1.3) is a simultaneous generalization of the classical second
order abstract Cauchy problem studied by Travis and Weeb in [20, 21] and of some
recent developments for ordinary differential equations by Staněk in [16, 17, 18,
19]. This generalization and their applications to partial second order differential
equations are the main motivations of this paper.

Initial value problems with nonlocal conditions arises to deal specially with some
situations in physics. Motivated for numerous applications, Byszewski studied in
[5] the existence of mild, strong and classical solutions for the semilinear abstract
Cauchy problem with nonlocal conditions

x′(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, a],

x(0) = x0 + q(t1, t2, t3, . . . , tn, x(·)) ∈ X.

In this system, A denotes the infinitesimal generator of a strongly continuous semi-
group of linear operators on X; 0 < t1 < · · · < tn ≤ a are prefixed numbers;
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f : [0, a] × X → X, q(t1, t2, t3, . . . , tn, ·) : C(I;X) → X are appropriated func-
tions and the symbol q(t1, t2, t3, . . . , tn, u(·)) is used in the sense that u(·) can be
evaluated only in the points ti, for instance q(t1, t2, t3, . . . , tn, u(·)) =

∑n
i=1 αiu(ti).

The existence of mild solutions for second order abstract Cauchy problems
with nonlocal conditions is studied in Ntouyas & Tsamatos [14, 15], Benchohra
& Ntouyas [1, 2, 3, 4], Dauer & Mahmudov [8] and Hernndez [11]. The results
in the first two paper are only applicable to ordinary differential equations since
the compactness assumption assumed on the cosine function is valid if, only if, the
underlying space is finite dimensional, see Travis [20, p. 557] for details. On the
other hand, the results in [1, 2, 3, 4] are proved using that the cosine function is
continuous in the uniform operator topology which implies that their infinitesimal
generator is bounded, see [20, p. 565]. We also observe that, in general, the nonlocal
conditions considered in these works are described in the form

x(0) = h(x) + x0, x′(0) = p(x) + η,

where h, p : C(I : X) → X are appropriate functions and η ∈ X is prefixed. These
restrictions are an additional motivation for our paper.

Concluding this introduction, we remark that the results in this paper can be
applied in the study of second order partial differential equations, the operator A is
assumed unbounded and the system (1.1)-(1.3) can be considered a generalization
at those studied in [1, 2, 3, 4, 8, 11, 16, 17, 18, 19, 20, 21].

2. Preliminaries

Throughout this paper, A is the infinitesimal generator of a strongly continuous
cosine family, (C(t))t∈R, of bounded linear operators defined on a Banach space X.
We denote by (S(t))t∈R the sine function associated to (C(t))t∈R which is defined
by

S(t)x :=
∫ t

0

C(s)xds, x ∈ X, t ∈ R.

Moreover, N and Ñ are positive constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ
for every t ∈ I.

In this paper, [D(A)] is the space D(A) = {x ∈ X : C(·)x is of class C2 on R},
endowed with the norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). The notation E stands
for the space formed by the vectors x ∈ X for which C(·)x is of class C1 on R. We
know from Kisińsky [12], that E endowed with the norm

‖x‖E = ‖x‖ + sup
0≤t≤1

‖AS(t)x‖, x ∈ E, (2.1)

is a Banach space. The operator valued function g(t) =
[
lrC(t) S(t)
AS(t) C(t)

]
is a strongly

continuous group of linear operators on the space E×X generated by the operator

A =
[
0 I
A 0

]
defined on D(A) × E. From this, it follows that AS(t) : E → X

is a bounded linear operator and that AS(t)x → 0 as t → 0, for each x ∈ E.
Furthermore, if x : [0,∞) → X is locally integrable, then y(t) =

∫ t

0
S(t − s)x(s)ds

defines an E-valued continuous function which is a consequence of the fact that∫ t

0

g(t− s)
[

0
x(s)

]
ds =

[∫ t

0
S(t− s)x(s) ds∫ t

0
C(t− s)x(s) ds

]



EJDE-2005/73 EXISTENCE RESULTS FOR A SECOND-ORDER 3

defines an E ×X-valued continuous function.
The existence of solutions of the second-order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), t ∈ [0, a], (2.2)

x(0) = y0, (2.3)

x′(0) = y1, (2.4)

where h : [0, a] → X is an integrable function has been discussed in [20]. Similarly,
the existence of solutions of semilinear second order abstract Cauchy problem has
been treated in [21]. We only mention here that the function

x(t) = C(t)y0 + S(t)y1 +
∫ t

0

S(t− s)h(s) ds, t ∈ [0, a], (2.5)

is called mild solution of (2.2)-(2.4) and that when y0 ∈ E, x(·) is continuously
differentiable and

x′(t) = AS(t)y0 + C(t)y1 +
∫ t

0

C(t− s)h(s) ds. (2.6)

The regularity of mild solutions of (2.2)-(2.4) is studied in Travis & Weeb [21]. In
our work, we adopt the next concept of classical solution of (2.2)-(2.4).

Definition 2.1. A function u ∈ C(I;X) is a classical solution of (2.2)-(2.4), if
u ∈ C2(I;X) and (2.2)-(2.4) are verified.

Remark 2.2. As usual, we say that u ∈ C1([σ, µ] : X) if u′(·) is continuous on
(σ, µ) and the right and left lateral derivatives of u(·) are continuous functions on
[σ, µ) and (σ, µ] respectively.

For additional details concern to cosine function theory, we refer the reader to
Fattorini [9] and Travis & Weeb [20, 21].

The terminology and notation are those generally used in functional analysis. In
particular, if (Z, ‖ · ‖Z) and (Y, ‖ · ‖Y ) are Banach spaces, we indicate by L(Z;Y )
the Banach space of bounded linear operators from Z into Y and we abbreviate
this notation to L(Z) whenever Z = Y . In this paper, Br(x;Z) denotes the closed
ball with center at x and radius r > 0 in Z. Additionally, for a bounded function
ξ : I → Z and t ∈ I, we will employ the notation ξZ, t for

ξZ,t = sup{‖ξ(s)‖Z : s ∈ [0, t]},
and we will write simply ξt in the place of ξZ, t when no confusion arises.

This paper has five sections. In section 3 we discuss the existence of mild solu-
tions for some abstract Cauchy problems similar to (1.1)-(1.3) and in section 4 we
study the existence of classical solutions for (1.1)-(1.3). In section 5 some examples
are considered.

3. Existence of mild solutions

To begin this section we study the abstract Cauchy problem with nonlocal con-
ditions

d

dt
[x′(t) + g(t, x(t))] = Ax(t) + f(t, x(t)), t ∈ I, (3.1)

x(0) = y0 + p(x), (3.2)

x′(0) = y1 + q(x), (3.3)
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where f, g : I ×X → X and p, q : C(I;X) → X are appropriate functions.
If u(·) is a solution of (3.1)-(3.3) and the mapping t → g(t, u(t)) is enough

smooth, from (2.5) and the relation A
∫ s

r
S(θ)x = C(s)x−C(r)x, x ∈ X, we obtain

u(t) = C(t)(y0 + p(u)) + S(t)[y1 + q(u) + g(0, u(0))]−
∫ t

0

C(t− s)g(s, u(s))ds

+
∫ t

0

S(t− s)f(s, u(s))ds, t ∈ I.

This expression is the motivation of the following definition.

Definition 3.1. A function u ∈ C(I;X) is a mild solution of (3.1)-(3.3), if u(0) =
y0 + p(u) and

u(t) = C(t)(y0 + p(u)) + S(t)(y1 + q(u) + g(0, u(0)))−
∫ t

0

C(t− s)g(s, u(s))ds

+
∫ t

0

S(t− s)f(s, u(s))ds, t ∈ I.

Before establishing our first result of existence, we consider the following general
lemma.

Lemma 3.2. Let (Zi, ‖ · ‖i), i = 1, 2, 3, be Banach spaces, L : I × Z1 → Z2 be a
function, {R(t) : t ∈ I} ⊂ L(Z2, Z3) and assume that the next conditions hold.

(a) The function L(·) satisfies the following conditions.
(i) For every r > 0, the set L(I ×Br(0;Z1)) is relatively compact in Z2.
(ii) The function L(t, ·) : Z1 → Z2 is continuous a.e. t ∈ I
(iii) For each z ∈ Z1, the function L(·, z) : I → Z2 is strongly measurable.
(iv) There exist an integrable function mL : I → [0,∞) and a continuous

function WL : [0,∞) → [0,∞) such that

‖L(t, z)‖2 ≤ mL(t)WL(‖z‖1) (t, z) ∈ I × Z1.

(b) The operator family (R(t))t∈I is strongly continuous, this means that t →
R(t)z is continuous on I for every z ∈ Z2.

Then mapping Γ : C(I;Z1) → C(I;Z3) defined by

Γu(t) =
∫ t

0

R(t− s)L(s, u(s)),

is completely continuous.

Proof. It is clear that Γ(·) is well defined and continuous. From conditions (a)
and (b), it follows that the set {R(s)L(θ, z) : s, θ ∈ I, z ∈ Br(0;Z1) } is relatively
compact in Z3. If u ∈ Br(0;C(I;Z1)), from the mean value Theorem for the
Bochner integral, see [13, Lemma 2.1.3], we get

Γu(t) ∈ t co({R(s)L(θ, z) : s, θ ∈ I, z ∈ Br(0;Z1)})
Z3 (3.4)

where co(·) denote the convex hull. Thus, {Γu(t) : u ∈ Br(0;C(I;Z1))} is relatively
compact in Z3 for every t ∈ I.

Next, we prove that Γ(Br(0;C(I;Z1)) = {Γu : u ∈ Br(0;C(I;Z1))} is equicon-
tinuous on I. Let ε > 0 and r > 0. From the strong continuity of (R(t))t∈I and
the compactness of L(I ×Br(0;Z1)), we can choose δ > 0 such that

‖R(t)L(s, z)−R(t′)L(s, z)‖3 ≤ ε, t′, t, s ∈ I, z ∈ Br(0;Z1),
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when |t − t′| ≤ δ. Consequently, for u ∈ Br(0;C(I;Z1)), t ∈ I and |h| ≤ δ such
that t + h ∈ I, we get

‖Γu(t + h)− Γu(t)‖3 ≤
∫ t

0

‖(R(t + h− s)−R(t− s))L(s, u(s))‖3ds

+ sup
θ∈I

‖R(θ)‖L(Z2;Z3)

∫ t+h

t

‖L(s, u(s))‖2ds

≤ εa + sup
θ∈I

‖R(θ)‖L(Z2;Z3)WL(r)
∫ t+h

t

mL(s)ds,

which shows the equicontinuity at t ∈ I and so that Γ(Br(0;C(I;Z1)) is equicon-
tinuous on I. The assertion is now consequence of the Azcoli-Arzela criterion. The
proof is complete. �

For the rest of this article we use the following hypotheses:
(H1) The functions f, g : I ×X → X satisfies the following conditions.

(i) The functions f(t, ·) : X → X, g(t, ·) : X → X are continuous a.e.
t ∈ I;

(ii) For each x ∈ X, the functions f(·, x) : I → X, g(·, x) : I → X are
strongly measurable.

(H2) The functions p, q : C(I;X) → X are continuous and there are positive
constants lp, lq such that

‖p(u)− p(v)‖ ≤ lp‖u− v‖a, u, v ∈ C(I;X),

‖q(u)− q(v)‖ ≤ lq‖u− v‖a, u, v ∈ C(I;X).

Now, we establish our first result of existence.

Theorem 3.3. Assume (H1), (H2), and the following conditions:
(a) For every r > 0, the set g(I×Br(0;X)) is relatively compact in X and there

exists a constant αg
r such that ‖g(t, x)‖ ≤ αg

r for every (t, x) ∈ I×Br(0;X).
(b) For every 0 < t′ < t ≤ a and every r > 0, the set

U(t, t′, r) = {S(t′)f(s, x) : s ∈ [0, t], x ∈ Br(0;X)}

is relatively compact in X and there exists a positive constant αf
r such that

‖f(t, x)‖ ≤ αf
r for every (t, x) ∈ I ×Br(0;X).

If

(Nlp + Ñ lq) + lim inf
r→+∞

Ñαg
r + (Nαg

r + Ñαf
r )a

r
< 1,

then there exists a mild solution of (3.1)-(3.3).

Proof. On the space Y = C(I;X) endowed with the norm of the uniform conver-
gence, we define the operator Γ : Y → Y by

Γu(t) = C(t)(y0 + p(u)) + S(t)(y1 + q(u) + g(0, u(0)))

−
∫ t

0

C(t− s)g(s, u(s))ds +
∫ t

0

S(t− s)f(s, u(s))ds.

We claim that there exists r∗ > 0 such that Γ(Br∗(0, Y )) ⊂ Br∗(0, Y ). Assuming
that the claim is false, then for every r > 0 there exists xr ∈ Br(0;Y ) and tr ∈ I
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such that ‖Γxr(tr)‖ > r. This yields

r < ‖xr(tr)‖ ≤ N(‖y0‖+ lpr + ‖p(0)‖) + Ñ(‖y1‖+ lqr + ‖q(0)‖+ αg
r)

+ N

∫ a

0

αg
rds + Ñ

∫ a

0

αf
r ds,

and then

1 ≤ (Nlp + Ñ lq) + lim inf
r→+∞

Ñαg
r + (Nαg

r + Ñαf
r )a

r
,

which contradicts our assumptions.
Now, we prove that Γ(·) is a condensing operator on Br∗(0, Y ). For this purpose,

we introduce the decomposition Γ =
∑3

i=1 Γi, where

Γ1u(t) = C(t)(y0 + p(u)) + S(t)(y1 + q(u)),

Γ2u(t) = S(t)g(0, u(0))−
∫ t

0

C(t− s)g(s, u(s))ds,

Γ3u(t) =
∫ t

0

S(t− s)f(s, u(s))ds.

From Lemma 3.2, condition (a) and the Lipschitz continuity of t → S(t) we infer
that Γ2(·) is completely continuous on Y and from the estimate

‖Γ1u− Γ1v‖a ≤
(
Nlp + Ñ lq

)
‖u− v‖a, u, v ∈ C(I;X),

that Γ1(·) is a contraction on Y .
Next, by using the Ascoli-Arzela criterion, we prove that Γ3(·) is completely

continuous on Y . In the next steps r is a positive number.
Step 1 The set Γ3(Br(0;Y ))(t) = {Γ3u(t) : u ∈ Br(0;Y )} is relatively compact
in X for every t ∈ I. Let t ∈ I, ε > 0 and 0 = s1 < s2 < · · · < sk = t be numbers
such that |si− si+1| ≤ ε for every i = 1, 2, . . . k− 1. If u ∈ Br(0;Y ), from the mean
value Theorem for Bochner integral, see [13, Lemma 2.1.3], we find that

Γ3u(t) =
k−1∑
i=1

∫ si+1

si

S(si)f(t− s, u(t− s))ds

+
k−1∑
i=1

∫ si+1

si

(S(s)− S(si))f(t− s, u(t− s))ds

∈
k−1∑
i=1

(si+1 − si)co(U(t, si, r)) + εNαf
r aB1(0, X),

where co(·) denote the convex hull. Thus, Γ3(Br(0;Y ))(t) is relatively compact in
X.
Step 2. The set Γ3(Br(0;Y )) is uniformly equicontinuous on I. For u ∈ Br(0;Y ),
t ∈ I and h ∈ R such that t + h ∈ I, we get

‖Γ3u(t + h)− Γ3u(t)‖

≤
∫ t

0

‖(S(t + h− s)− S(t− s))f(s, u(s))‖ds + Ñ

∫ t+h

t

‖f(s, u(s))‖ds

≤ Nαf
r ah + Ñαf

r h,

which implies that Γ3(Br(0;Y )) is uniformly equicontinuous on I.
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It follows from steps 1 and 2 that Γ3(·) is completely continuous on Y . The
previous remarks show that Γ(·) is condensing from Br∗(0, Y ) into Br∗(0, Y ). The
existence of a mild solution of system (3.1)-(3.3) is now a consequence of [13, Corol-
lary 4.3.2 ]. The proof is completed. �

Using arguments similar to the ones above, we can prove the next result.

Proposition 3.4. Let assumptions (H1), (H2) be satisfied. Suppose, furthermore,
that condition (a) of Theorem 3.3 holds and that there exists lg ≥ 0 such that

‖g(t, x)− g(t, y)‖ ≤ lg‖x− y‖, t ∈ I, x, y ∈ X.

If

(Nlp + Ñ lq) + (Ñ + Na)lg + Ña lim inf
r→+∞

αf
r

r
< 1,

then there exists a mild solution of (3.1)-(3.3).

Using the classical principle of contraction, we can prove the following result.

Theorem 3.5. Let (H1), (H2) be satisfied and assume that there exist constants
lf , lg such that

‖g(t, x)− g(t, y)‖ ≤ lg‖x− y‖, t ∈ I, x, y ∈ X,

‖f(t, x)− f(t, y)‖ ≤ lf‖x− y‖, t ∈ I, x, y ∈ X.

If [N(lp + alg) + Ñ(lq + lg + alf )] < 1, then there exists a unique mild solution of
(3.1)-(3.3).

Next, we study the abstract Cauchy problem (1.1)-(1.3).

Definition 3.6. A function u ∈ C(I;X) is called a mild solution of (1.1)-(1.3) if
u ∈ C1(I;X), conditions (1.2) and (1.3) are satisfied and

u(t) = C(t)(y0 + p(u, u′)) + S(t)(y1 + q(u, u′) + g(0, u(0), u′(0)))

−
∫ t

0

C(t− s)g(s, u(s), u′(s))ds +
∫ t

0

S(t− s)f(s, u(s), u′(s))ds, t ∈ I.

To study the system (1.1)-(1.3) we introduce the following conditions.
(H3) The function f, g : I ×X ×X → X satisfies the following conditions;

(i) The function f(t, ·) : X ×X → X is continuous a.e. t ∈ I;
(ii) The function f(·, x, y) : I → X is strongly measurable for each (x, y) ∈

X ×X.
(iii) The function g(·) is E-valued and g : I ×X ×X → E is continuous.

(H4) The function p, q : C(I;X)×C(I;X) → X are continuous, p(·) is E-valued
and there exist positive constants lp, lq such that

‖p(u1, v1)− p(u2, v2)‖E ≤ lp(‖u1 − u2‖a + ‖v1 − v2‖a),

‖q(u1, v1)− q(u2, v2)‖ ≤ lq(‖u1 − u2‖a + ‖v1 − v2‖a).

for every ui, vi ∈ C(I;X).

Remark 3.7. In the rest of this paper, ρ = supθ∈I ‖AS(θ)‖L(E;X).

Theorem 3.8. Let (y0, y1) ∈ E ×X and assume (H3), (H4) be satisfied. Suppose
in addition that the following conditions hold:
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(a) For every r > 0, the set f(I × Br(0;X) × Br(0;X)) is relatively compact
in X and there exists a constant αf

r such that ‖f(t, x, y)‖ ≤ αf
r for every

(t, x, y) ∈ I ×Br(0;X)×Br(0;X).
(b) The function g(·) : I ×X ×X → E is completely continuous and for every

r > 0 there exists a constant αg
r such that ‖g(t, x, y)‖E ≤ αg

r for every
(t, x, y) ∈ I ×Br(0;X)×Br(0;X).

(c) For every r > 0, the set {t → g(t, u(t), v(t)) : u, v ∈ Br(0;C(I;X))} is a
equicontinuous subset of C(I;X).

If

(N + ρ)lp + (N + Ñ)lq + lim inf
r→∞

(N + Ñ)(αg
r + aαf

r ) + αg
r(1 + a(N + ρ))

r
< 1,

then there exists a mild solution of (1.1)-(1.3).

Proof. On the space Y = C(I;X)×C(I;X) endowed with the norm of the uniform
convergence, ‖(u, v)‖a = ‖u‖a + ‖v‖a, we define the operator Γ : Y → Y by
Γ(u, v) = (Γ1(u, v),Γ2(u, v)) where

Γ1(u, v)(t) = C(t)(y0 + p(u, v)) + S(t)(y1 + q(u, v) + g(0, u(0), v(0)))

−
∫ t

0

C(t− s)g(s, u(s), v(s))ds +
∫ t

0

S(t− s)f(s, u(s), v(s))ds,

Γ2(u, v)(t) = AS(t)(y0 + p(u, v)) + C(t)(y1 + q(u, v) + g(0, u(0), v(0)))

− g(t, u(t), v(t))−
∫ t

0

AS(t− s)g(s, u(s), v(s))ds

+
∫ t

0

C(t− s)f(s, u(s), v(s))ds.

Using that g(·) and p(·) are E-valued continuous, it’s easy to prove that Γ(·) is well
defined and continuous.

Now, we show that there exists r∗ > 0 such that Γ(Br∗(0, Y )) ⊂ Br∗(0, Y ).
Assume that this property is false. Then for every r > 0 there exists (ur, vr) ∈
Br(0;Y ) such that r < ‖Γ(ur, vr)‖a. This yields

r < ‖Γ1(u, v)‖a + ‖Γ2(u, v)‖a

≤ N (‖y0‖+ lpr + ‖p(0, 0)‖) + Ñ(‖y1‖+ lqr + ‖q(0, 0)‖+ αg
r)

+ a(Nαg
r + Ñαf

r ) + sup
θ∈I

‖AS(θ)‖L(E;X) (‖y0‖E + lpr + ‖p(0, 0)‖E)

+ N(‖y1‖+ lqr + ‖q(0, 0)‖+ αg
r) + αg

r

+
∫ a

0

sup
θ∈I

‖AS(θ)‖L(E;X)‖g(s, u(s), v(s))‖Eds + Nαf
r a

≤ (N + ρ) (‖y0‖E + lpr + ‖p(0, 0)‖E) + αg
r

+ (N + Ñ) (‖y1‖+ lqr + ‖q(0, 0)‖+ αg
r) + a

(
αg

r(N + ρ) + αf
r (N + Ñ)

)
and hence

1 ≤ (N + ρ)lp + (N + Ñ)lq + lim inf
r→∞

(N + Ñ)(αg
r + aαf

r ) + αg
r(1 + a(N + ρ))

r
,

which is contrary to the hypotheses.
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Next, we prove that Γ(·) is condensing from Br∗(0, Y ) into Br∗(0, Y ). Consider
the decomposition Γ = Γ̄1 + Γ̄2 where Γ̄2(u, v) = (Γ̄1

2(u, v), Γ̄2
2(u, v)) and

Γ̄1
2(u, v)(t) = S(t)g(0, u(0), v(0))−

∫ t

0

C(t− s)g(s, u(s), v(s))ds

+
∫ t

0

S(t− s)f(s, u(s), v(s))ds,

Γ̄2
2(u, v)(t) = C(t)g(0, u(0), v(0))− g(t, u(t), v(t))

−
∫ t

0

AS(t− s)g(s, u(s), v(s))ds +
∫ t

0

C(t− s)f(s, u(s), v(s))ds.

Simple calculus using the properties of p(·) and q(·) proves that

‖Γ̄1(u, v)− Γ̄1(w, z)‖a ≤
(
(N + ρ)lp + (N + Ñ)lq

)
‖(u, v)− (w, z)‖a, (3.5)

and so that Γ̄1(·) is a contraction on Y.
On the other hand, from Lemma 3.2 and the properties of f(·) and g(·), it’s

easy to infer that Γ̄2(·) is completely continuous on Y . From the previous remark,
it follows that Γ(·) is a condensing operator from Br∗(0, Y ) into Br∗(0, Y ). The
assertion is now a consequence of [13, Corollary 4.3.2 ]. �

Proceeding as in the proof of Theorem 3.8 we can prove the next existence result.

Proposition 3.9. Let (y0, y1) ∈ E × X and conditions (H3), (H4) be satisfied.
Suppose that f(·) satisfies condition (a) of Theorem 3.8 and that there exists a
constant lg ≥ 0 such that

‖g(t, x1, z1)− g(t, x2, z2)‖E ≤ lg(‖x1 − x2‖+ ‖z1 − z2‖), (3.6)

for every t ∈ I and every xi, zi ∈ X. If

(N + ρ)lp + (N + Ñ)lq + lg((N + ρ)a + Ñ + N + 1) + (N + Ñ) lim inf
r→∞

αf
r

r
) < 1,

then there exists a mild solution of (1.1)-(1.3).

Theorem 3.10. Assume (H3), (H4), (y0, y1) ∈ E×X and that there exist constants
lf , lg such that

‖f(t, x1, z1)− f(t, x2, z2)‖ ≤ lf (‖x1 − x2‖+ ‖z1 − z2‖),
‖g(t, x1, z1)− g(t, x2, z2)‖E ≤ lg(‖x1 − x2‖+ ‖z1 − z2‖),

for every xi, zi ∈ X.
If max{N(lp + alg) + Ñ(lq + lg + alf ), N(lq + lg + alf ) + ρ(lp + alg) + lg} < 1,

then there exists a unique mild solution of (1.1)-(1.3).

Proof. Let Γ(·) be the map defined in the proof of Theorem 3.8. It’s clear that Γ(·)
is well defined and continuous. Moreover, for ui, vi ∈ C(I;X)

‖Γ1(u1, v1)− Γ1(u2, v2)‖a ≤ [N(lp + alg) + Ñ(lq + lg + alf )]‖(u1, v1)− (u2, v2)‖a
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and

‖Γ2(u1, v1)− Γ2(u2, v2)‖a

≤ ‖AS(t)‖L(E;X)‖p(u1, v1)− p(u2, v2)‖E

+ (N(lq + lg) + lg + aNlf )‖(u1, v1)− (u2, v2)‖a

+
∫ t

0

‖AS(t− s)‖L(E;X)‖g(s, u1(s), v1(s))− g(s, u2(s), v2(s)))‖Eds

≤ (ρlp + N(lq + lg) + lg + aNlf + aρlg) ‖(u1, v1)− (u2, v2)‖a

≤ (N(lq + lg + alf ) + ρ(lp + alg) + lg)‖(u1, v1)− (u2, v2)‖a,

which implies that Γ is a contraction. The statement of the theorem is now a
consequence of the contraction mapping principle. �

4. Classical Solutions

In this section we establish the existence of classical solutions for (1.1)-(1.3).
First, we introduce some definitions, notation and preliminary results.

Definition 4.1. A function u ∈ C2(I;X) is a classical solution of (1.1)-(1.3), if
the mapping t → u(t) +

∫ t

0
g(s, u(s), u′(s))ds is in C2(I : X), u(t) ∈ D(A) for every

t ∈ I, and (1.1)-(1.3) are satisfied.

In the next pages, we use the assumption

(H5) The function g(·) is [D(A)]-valued and g : I×X×X → [D(A)] is continuous.

The remark below is a consequence of our preliminary results.

Remark 4.2. If u(·) is a mild solution of (1.1)-(1.3), ϕ(0) ∈ E and the function
s → g(s, u(s), u′(s)) is continuous from I into E, then u ∈ C1 and

u′(t) = AS(t)(y0 + p(u, u′)) + C(t)(y1 + q(u, u′) + g(0, u(0), u′(0)))

− g(t, u(t), u′(t))−
∫ t

0

AS(t− s)g(s, u(s), u′(s))ds

+
∫ t

0

C(t− s)f(s, u(s), u′(s))ds.

Lemma 4.3. Let u(·) be a mild solution of (1.1)-(1.3) and assume that (H5) holds.
If y0 + p(u, u′) ∈ D(A), y1 + q(u, u′) ∈ E, f(·) is Lipschitz continuous on bounded
subsets of I ×X ×X and there exist constants l1g > 0, 0 < l2g < 1 such that

‖g(t, x1, y1)− g(s, x2, y2)‖E ≤ l1g(|t− s|+ ‖x1 − x2‖) + l2g‖y1 − y2‖ ,

for every xi, yi ∈ X and every t, s ∈ I, then u′(·) is Lipschitz continuous on I.
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Proof. Let t ∈ I and h ∈ R be such that t + h ∈ I. Using Remark 4.2 and the
Lipschitz continuity of u(·) on I, we obtain

‖u′(t + h)− u′(t)‖

≤ C1h + l2g‖u′(t + h)− u′(t)‖+
∫ t+h

t

‖S(t + h− s)Ag(s, u(s), u′(s))‖ds

+
∫ t

0

‖(S(t + h− s)− S(t− s))Ag(s, u(s), u′(s))‖ds

+
∫ h

0

‖C(t + h− s)f(s, u(s), u′(s))‖ds

+ N

∫ t

0

C2[h + ‖u(s + h)− u(s)‖+ ‖u′(s + h)− u′(s)‖ ]ds

≤ C3h + l2g‖u′(t + h)− u′(t)‖+ NC2

∫ t

0

∫ t

0

‖u′(s + h)− u′(s)‖ds,

where the constants Ci are independent of t and h. Since l2g < 1, we can rewrite
the last inequality in the form

‖u′(t + h)− u′(t)‖ ≤ C4h + C5

∫ t

0

‖u′(s + h)− u′(s)‖ds,

where C4, C5 are independent of t and h. This proves that u′(·) is Lipschitz on I.
The proof is complete �

Let (Zi, ‖ · ‖i), i = 1, 2, 3, be Banach spaces and j(·) : I × Z1 × Z2 → Z3 be a
differentiable function. We will use the decomposition

j(s, z̄1, z̄2)− j(t, z1, z2)

= (D1j(t, z1, z2), D2j(t, z1, z2), D3j(t, z1, z2))(s− t, z̄1 − z1, z̄2 − z2)

+ ‖(s− t, z̄1 − z1, z̄2 − z2)‖Z1,Z2R
Z3
Z1,Z2

(j(t, z1, z2), s− t, z̄1 − z1, z̄2 − z2),

where
‖RZ3

Z1,Z2
(j(t, z1, z2), h, w1, w2)‖Z3 → 0,

when ‖(h, w1, w2)‖Z1,Z2 = |h| + ‖w1‖Z1 + ‖w2‖Z2 → 0. Moreover, we will write
simply RZ3

Z1
and ‖(s, y, w)‖Z1 when Z1 = Z2.

The proof of the next Lemma will be omitted.

Lemma 4.4. Let (Zi, ‖·‖Zi
), i = 1, 2, 3, be Banach spaces, Ω1×Ω2 ⊂ Z1×Z2 open,

K ⊂ Ω1 × Ω2 compact and j : I × Ω1 × Ω2 → Z3 be a continuously differentiable
function. Then, for every ε > 0, there exists δ > 0 such that

‖RZ3
Z1,Z2

(j(t, z1, z2), s− t, z̄1 − z1, z̄2 − z2)‖Z3 < ε, t, s ∈ I, (z1, z2), (z̄1, z̄2) ∈ K

when ‖(s− t, z̄1 − z1, z̄2 − z2)‖Z1,Z2 ≤ δ.

Theorem 4.5. Let condition (H5) be satisfied and u(·) be a mild solution of (1.1)-
(1.3). Assume that the functions f : I×X2 → X, g : I×X2 → E are continuously
differentiable, (y0 +p(u, u′), y1 +q(u, u′)) ∈ D(A)×E and that there exist constants
l1g > 0, 0 < l2g < 1 such that

‖g(t, x1, y1)− g(s, x2, y2)‖E ≤ l1g(|t− s|+ ‖x1 − x2‖) + l2g‖y1 − y2‖ ,
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for every xi, yi ∈ X and every t, s ∈ I. If

‖D3g(w)‖L(X), a +
∫ a

0

[ρ‖D3g(w(s))‖L(X;E) + ‖D3f(w(s))‖L(X)]ds < 1, (4.1)

where w(t) = (t, u(t), u′(t)), then u(·) is a classical solution.

Proof. First, we prove that u(·) is of class C2 on I and for this purpose we introduce
the integral equation

v(t) = P (t)−D3g(w(t))(v(t))−
∫ t

0

AS(t− s)D3g(w(s))(v(s))ds

+
∫ t

0

C(t− s)D3f(w(s))(v(s))ds, t ∈ I,

(4.2)

where

P (t) = C(t)Au(0) + AS(t)u′(0)−D1g(w(t))−D2g(w(t))(u′(t))

−
∫ t

0

AS(t− s)[D1g(w(s)) + D2g(w(s))(u′(s))]ds + C(t)f̃(0)

+
∫ t

0

C(t− s) (D1f(w(s)) + D2f(w(s))(u′(s))) ds.

The existence and uniqueness of solutions of the integral equation (4.2) is conse-
quence of the contraction mapping principle and (4.1), we omit additional details.
Let v(·) be the solution (4.2) and let t ∈ I, h ∈ R be such that t + h ∈ I. By
using the relation A

∫ s

r
S(θ)x = C(s)x−C(r)x, the notation ζh(t) = ∂hu′(t)− v(t),

f̃ = f(w(t)), g̃ = g(w(t)) and

Λg(t) = D1g(w(t)) + D2g(w(t))(u′(t)) + D3g(w(t))(v(t)),

Λf(t) = D1f(w(t)) + D2f(w(t))(u′(t)) + D3f(w(t))(v(t)),

we find that

‖ζh(t)‖

≤ ξ1(h, t) + ‖[∂hC(t)]g̃(0)− 1
h

∫ h

0

AS(t + h− s)g̃(s)ds‖+ ‖Λg(t)− ∂hg̃(t)‖

+ ρ

∫ t

0

‖Λg(s)− ∂hg̃(s)‖Eds + ‖ 1
h

∫ h

0

C(t + h− s)f̃(s)ds− C(t)f̃(0)‖

+ N

∫ t

0

‖∂hf̃(s)− Λf(s)‖ds

≤ ξ2(h, t) +
1
h

∫ h

0

‖S(t + h− s)(Ag̃(0)−Ag̃(s)‖ds + ‖D3g(w(t))‖L(X)‖ζh(t)‖

+ ‖(1, ∂hu(t), ∂hu′(t))‖X‖RX
X(g̃(t), h, h∂hu(t), h∂hu′(t))‖

+
∫ t

0

[
ρ‖D3g(w(s))‖L(X;E) + N‖D3f(w(s))‖L(X)

]
‖ζh(s)‖ds

+ ρ

∫ t

0

‖(1, ∂hu(s), ∂hu′(s))‖X‖RE
X(g̃(s), h, h∂hu(s), h∂hu′(s))‖Eds

+ N

∫ t

0

‖(1, ∂hu(s), ∂hu′(s))‖X‖RX
X(f̃(s), h, h∂hu(s), h∂hu′(s))‖ds,
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where ξi(h, t) → 0, i = 1, 2, as h → 0. Since µ = 1 − ‖D3g(w(·))‖L(X),a > 0, we
obtain

‖ζh(t)‖ ≤ ξ3(h, t) +
1
µ
‖(1, ∂hu(t), ∂hu′(t))‖X‖RX

X(g̃(t), h, h∂hu(t), h∂hu′(t))‖

+
1
µ

∫ t

0

[
ρ‖D3g(w(s))‖L(X;E) + N‖D3f(w(s))‖L(X)

]
‖ζh(s)‖ds

+
ρ

µ

∫ t

0

‖(1, ∂hu(s), ∂hu′(s))‖X‖RE
X(g̃(s), h, h∂hu(s), h∂hu′(s))‖Eds

+
N

µ

∫ t

0

‖(1, ∂hu(s), ∂hu′(s))‖X‖RX
X(f̃(s), h, h∂hu(s), h∂hu′(s))‖ds

where ξ3(h, t) → 0 as h → 0. This inequality, jointly with the Lipschitz continuity
of u(·) and u′(·), see Lemma 4.3, the Gronwall Bellman inequality and Lemma 4.4,
permit to conclude that u′′(·) exists and that u′′(·) = v(·) on I.

From [21, Proposition 2.4], we know that the mild solution, y(·), of the abstract
Cauchy problem

x′′(t) = Ax(t) + f(t, u(t), u′(t))−A

∫ t

0

g(s, u(s), u′(s))ds, t ∈ I,

x(0) = y0 + p(u, u′) x′(0) = y1 + q(u, u′) + g(0, u(0), u′(0)),
(4.3)

is a classical solution (see Definition 2.1). The uniqueness of solution of (4.3) and
Remark 4.2, permit to conclude that y(t) = u(t)+

∫ t

0
g(s, u(s), u′(s))ds is a function

of class C2 on I and that u(t) ∈ D(A) for every t ∈ I since g(·) is [D(A)]-valued
continuous. This completes the proof that u(·) is a classical solution. �

5. Applications

In this section we apply some of the results established in this paper. First, we
introduce the required technical framework. On the space X = L2([0, π]) we con-
sider the operator Af(ξ) = f ′′(ξ) with domain D(A) = {f(·) ∈ H2(0, π) : f(0) =
f(π) = 0}. It is well known that A is the infinitesimal generator of a strongly
continuous cosine function, (C(t))t∈R, on X. Furthermore, A has discrete spec-
trum, the eigenvalues are −n2, n ∈ N, with corresponding normalized eigenvectors
zn(ξ) := ( 2

π )1/2 sin(nξ) and

(a) {zn : n ∈ N} is an orthonormal basis of X.
(b) If ϕ ∈ D(A) then Aϕ = −

∑∞
n=1 n2〈ϕ, zn〉zn.

(c) For ϕ ∈ X, C(t)ϕ =
∑∞

n=1 cos(nt)〈ϕ, zn〉zn. It follows from this expression
that S(t)ϕ =

∑∞
n=1

sin(nt)
n 〈ϕ, zn〉zn for every ϕ ∈ B. Moreover, S(t) is a

compact operator and ‖C(t)‖ = ‖S(t)‖ = 1 for every t ∈ R.
(d) If Φ is the group of translations on X defined by Φ(t)x(ξ) = x̃(ξ + t), where

x̃(·) is the extension of x(·) with period 2π, then C(t) = 1
2 (Φ(t) + Φ(−t))

and A = B2, where B is the infinitesimal generator of Φ and E = {x ∈
H1(0, π) : x(0) = x(π) = 0}, see [9] for details.
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First, we consider the partial second-order differential equation with nonlocal
conditions

∂

∂t
[
∂u(t, ξ)

∂t
+ G(t, ξ, u(t, ξ))] =

∂2u(t, ξ)
∂ξ2

+ F (t, ξ, u(t, ξ)),

ξ ∈ J = [0, π], t ∈ I = [0, a],
(5.1)

u(t, 0) = u(t, π) = 0, t ∈ I, (5.2)

u(0, ξ) = y0(ξ) +
n∑

i=1

αiu(ti, ξ), ξ ∈ J, (5.3)

∂u(0, ξ)
∂t

= y1(ξ) +
k∑

i=1

βiu(si, ξ), ξ ∈ J, (5.4)

where 0 < ti, sj < a, αi, βj ∈ R are fixed numbers, y0, y1 ∈ X and the functions
G, F : I × J × R → R satisfy the following conditions:

(i) F (·) is continuous and there exist functions ηF
1 , ηF

2 ∈ C(I × J : R+) such
that

|F (t, ξ, w)| ≤ ηF
1 (t, ξ) + ηF

2 (t, ξ)|w|, t ∈ I, ξ ∈ J,w ∈ R.

(ii) G(·) is continuous and there exists ηG ∈ C(I × J ; R+) such that

| G(t, ξ, x1)−G(t, ξ, x2) |≤ηG(t, ξ) | x1 − x2 |,

for every (t, ξ) ∈ I × J and every x1, x2 ∈ R.
By defining the functions f, g : I×X → X and p, q : C(I;X) → X by g(t, x)(ξ) =

G(t, ξ, x(ξ)), f(t, x)(ξ) = F (t, ξ, x(ξ)), p(u)(ξ) =
∑n

i=1 αiu(ti, ξ) and q(u)(ξ) =∑k
i=1 βiu(si, ξ), the system (5.1)-(5.4) can be described as the abstract Cauchy

problem with nonlocal conditions (3.1)-(3.3). It is easy to see that f(·), g(·), p(·),
q(·) satisfies the assumption of Proposition 3.4 and that lg = sup(s,ξ)∈I×J ηG(s, ξ),
lp =

∑n
i=1 |αi|, lq =

∑k
i=1 |βi| and

αf
r = sup

{(∫ π

0

ηF
1 (t, ξ)2dξ

)1/2

+ rηF
2 (t, ·)π : t ∈ I

}
.

The next result is a consequence of Proposition 3.4.

Theorem 5.1. Assume that (i) and (ii) are satisfied. If
n∑

i=1

|αi|+
k∑

i=1

|βi|+ (1 + a) sup
(s,ξ)∈I×J

ηG(s, ξ) + a sup
s∈I

ηF
2 (s, ·)πds < 1,

then there exists a mild solution of (3.1)-(3.3).

Now, we consider briefly the partial differential equation

∂

∂t
[
∂u(t, ξ)

∂t
+

∫ π

0

b(t, η, ξ)u(t, η)dη] =
∂2u(t, ξ)

∂ξ2
+ F (t, ξ, u(t, ξ)), (5.5)

for ξ ∈ J, t ∈ I, submitted to the conditions (5.2)-(5.4). To study this system we
introduce the next condition.

(iii) The functions b(s, η, ξ),
∂ib(s, η, ξ)

∂ξi
, i = 1, 2, are continuous on R3 and

b(·, π) = b(·, 0) = 0 on I × J .
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Let f(·), p(·), q(·) defined as before and g(·) : I × X → X be the function defined
by g(t, x)(ξ) =

∫ π

0
b(t, η, ξ)x(η)dη. From the properties of b(·), we infer that g(t, ·)

is a D(A)-valued linear operator and that

sup{‖g(t, ·)‖, ‖g(t, ·)‖E , ‖Ag(t, ·)‖L(X) : t ∈ I} ≤ α1/2,

where

α := sup
t∈[0,a]

{ ∫ π

0

∫ π

0

b(t, η, ξ)2dηdξ,

∫ π

0

∫ π

0

(∂jb(t, η, ξ)
∂ξj

)2
dηdξ : j = 1, 2

}
.

Moreover, g(·) is completely continuous since the inclusion ic : [D(A)] → X is
compact.

In the next result, the existence of a mild solution can be deduced from Theorem
3.3 or from Proposition 3.4.

Theorem 5.2. Assume (i) and (iii) be satisfied and that

n∑
i=1

|αi|+
k∑

i=1

|βi|+ (1 + a)α
1
2 + a sup

s∈I
ηF
2 (s, ·)πds < 1.

Then the partial differential equation (5.5) submitted to the conditions (5.2)-(5.4)
has a mild solution.

To finish this section, we consider the differential system

∂

∂t

[∂u(t, ξ)
∂t

+
∫ π

0

b(t, η, ξ)
∂u(t, η)

∂t
dη

]
=

∂2u(t, ξ)
∂ξ2

+ F (t, u(t, ξ),
∂u

∂t
(t, ξ)), (5.6)

for ξ ∈ J , t ∈ I, subject to the conditions:

u(t, 0) = u(t, π) = 0, t ∈ I, (5.7)

u(0, ξ) = y0(ξ) +
∫ a

0

P (u(s),
∂u

∂t
(s))(ξ)dµ(s), (5.8)

∂u

∂t
(0, ξ) = y1(ξ) +

n∑
i=1

αiu(ti, ξ) +
k∑

i=1

βi
∂u

∂t
(si, ξ), (5.9)

where αi, βi ∈ R, 0 < ti, sj < a are prefixed numbers, µ(·) is a real function of
bounded variation on I and F : I × J ×R2 → R, P : X ×X → X satisfies the next
conditions.

(iv) F (·) is continuous and there exists a constant LF such that

|F (t, x1, w1)− F (s, x2, w2)| ≤ LF (|t− s|+ |x1 − x2|+ |w1 − w2|) ,

for every t, s ∈ I and every xi, wi ∈ R;
(v) P is E-valued and there exist lP such that

‖P (x1, w1)− P (x2, w2)‖E ≤ lP (‖x1 − x2‖+ ‖w1 − w2‖), xi, wi ∈ X.

(for examples of operators satisfying (v), see [13]).
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By defining the operators f, g : I×X×X → X and p, q : C(I;X)×C(I;X) → X
by

f(t, x, y)(ξ) = F (t, x(ξ), y(ξ)),

g(t, x, y)(ξ) =
∫ π

0

b(t, η, ξ)y(η)dη, x, y ∈ X,

p(u, v)(ξ) =
∫ π

0

P (u(s), v(s))(ξ)dµ(s), u, v ∈ C(I;X),

q(u, v)(ξ) =
n∑

i=1

αiu(ti, ξ) +
k∑

i=1

βiv(si, ξ), u, v ∈ C(I;X),

we can model (5.6)-(5.9) as the abstract Cauchy problem (1.1)-(1.3). As in the
previous example, g(·) is [D(A)]-valued continuous and ‖Ag(t, ·)‖L(X) ≤ α

1
2 for

every t ∈ I. Moreover, the assumptions of Theorem 3.10 are satisfied with, lp =
lP V (µ), where V (µ) is the variation of µ, lq =

∑n
i=1 |αi| +

∑k
i=1 |βi|, lf = LF ,

lg = α
1
2 and ρ = 1. The next result is a consequence of Theorems 3.10.

Theorem 5.3. Assume conditions (iii)-(v) are satisfied and

lP V (µ) +
n∑

i=1

|αi|+
k∑

i=1

|βi|+ 3α
1
2 + LF < 1.

Then there exists a unique mild solution, u(·), of (5.6)-(5.9).
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