
Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2007-7

Flexible Scientific Workflows Using Frames and Dynamic Embedding

Anne HH. Ngu
 Nicholas Haasch

 Timothy McPhilips
 Shawn Bowers

 Bertram Ludaescher
 Terence Critchlow

2007-04-01

Flexible Scientific Workflows using Frames and Dynamic Embedding

Anne H. Ngu, Nicholas Haasch
Department of Computer Science

Texas State University-San Marcos
{angu,nick}@txstate.edu

Timothy McPhilips, Shawn Bowers, Bertram Ludaescher
Department of Computer Science
University of California, Davis

{tmcphilips,sbowers,ludaesch}@ucdavis.edu

Terence Critchlow
Lawrence Livermore National Laboratory

Livermore
critchlow1@llnl.gov

Abstract

Current approach to scientific workflow design in the
popular open source Kepler system is based on the actor-
oriented framework where concrete actors can be hierar-
chically composed and orchestrated by different directors
(schedulers). A common assumption in this design frame-
work is that workflow is static and must be completely
specified before orchestration. Such a static and mono-
lithic workflow cannot response to changing runtime con-
ditions. We present flexible scientific workflow design that
allows some tasks to be partially specified via abstract ac-
tors called Frame. The behavior of a frame is determined
at runtime by the embedded concrete actor. We implemented
the process of dynamic embedding that can tailor to dif-
ferent selection policies and enable automatic construction
of subworkflow to execute the embedded component at run-
time. Frames and dynamic embedding provide high level
abstractions for specifying workflow that enables flexible
execution nested to any level. Finally, we illustrate with two
distinct scientific workflows from astrophysics and bioinfor-
matics domains the benefit of frames and dynamic embed-
ding.

1 Introduction

Scientific workflow aims to provide a scientist with in-
frastructure for automating sequence of related repetitive
tasks demanded by their research. SPA/KEPLERĩs an open
source scientific workflow system that has been used by
scientists to construct and execute many complex scien-
tific analyses [15, 1, 25]. Some of the main requirements
of SPA/KEPLER Scientific Workflow system are: 1) the
ability to compose complex workflows from existing work-

flows/components with minimal effort, 2) the ability to
monitor the workflow execution and to provide automated
data managements (e.g. data provenance), 3) the ability to
adapt or steer the workflow execution.

In SPA/KEPLER, users develop workflows by selecting
appropriate components called actors and placing them on
a design canvas, after which they can be “wired” together
to form the desired workflow graph (cf. Figure 1). Actors
have input and output ports which provide the communi-
cation interface to other actors. Workflows can be hierar-
chically structured, yielding composite actors that encap-
sulate subworkflows A novel feature of SPA/KEPLER in-
herited from PTOLEMY II is that the overall execution and
component interaction semantics of a workflow is not de-
fined by the components, but is factored out into a separate
component called a director. Taken together, workflows,
actors, ports, connections, and directors represent the basic
building blocks of actor-oriented modeling and design in
SPA/KEPLER Scientific Workflow system [13].

Although actor-oriented design principle lends itself to
reusable components, many existing scientific workflows
in SPA/KEPLER are ”designed to fit” a specific applica-
tion [25, 19]. A fundamental assumption in these design
frameworks is that workflow is static and must be com-
pletely specified before orchestration. Such a static and
monolithic workflow cannot response to changing runtime
conditions.

During the past year, we have investigated two
paradigms that allow flexible modeling and composition
of scientific workflow such that it enabled re-use and re-
purposing. The first approach, frame/template [5], empha-
sizes on decoupling of control flow from data-flow through
structured embedding of control flow actors in data-oriented
scientific workflow. We introduce abstract actors called
Frames and Templates that can be configured at design time.

Figure 1. Actor-Oriented Modeling of Work-
flow

The main contribution of this particular approach is the en-
capsulation of complex control-flow patterns in standard
templates that can be specialized by embedding different
frame implementations. Frame/template approach allows
workflow designers to change complex control-flow behav-
ior by simply using different templates. This enable com-
position of scientific workflows that are more robust (com-
mon fault-tolerance strategies can be pre-defined by vari-
ous templates) and at the same time more reusable since
the embedding of frames and templates yield more struc-
tured and modular workflow designs. The frame/template
approach introduces some degree of flexibility in the mod-
eling of workflow at design time, but it does not address the
adaptive execution of workflow at runtime. Once a particu-
lar template is configured at design time, it cannot be modi-
fied regardless of changing runtime conditions. The second
problem with template is that, the number of states can in-
crease quickly and become unmanageable when there is an
explosive number of control-flow options. Currently, there
is no working implementation of frame/template that can be
executed with PTOLEMY IIś data process networks director
which plays a critical role in executing scientific workflow
that requires data streaming and high parallelism.

The second approach that we have experimented is the
higher-order actors that allow functional approach to work-
flow design. These actors include collection-aware ac-
tors [18] and list comprehension actors [14]. The goal is
to hide the actors that are peripheral to the goal of the work-
flow. This includes control-flow actors introduced for the
sole purpose of routine manipulation of complex scientific
data (e.g. collection or list-based input) or for various ex-
ception handlings. The collection-aware actors have shown
to simplify workflow design (eliminate the use of artificial
control flow actors) and allow reuse of the same workflow
with varying nested complex data.

While both of the above approaches provide higher level
abstractions for encapsulating complex control flows in
data-oriented scientific workflow at design time, they do
not address the flexible execution and dynamic composition
of scientific workflow at runtime. This means it is impos-
sible to steer and adapt workflow execution at runtime in

response to availability of new resources. In the case of
collection-aware actors, at design time, the designer must
know how to model either the collection data or the rou-
tine control-flow information in the collection stream. It is
not possible to switch or change to a different collection
actor when a different type of data is received at runtime .
Overall, this implies that workflow must be statically and
completely defined prior to orchestration.

In our study of scientific workflows in various domains
ranging from astrophysics, environment monitoring, and
bioinformatics; there exists a common practice or process
in conducting a specific type of scientific investigation. In
the astrophysics domain, the process of running a simula-
tion includes the generic tasks such as submit a job, mon-
itor the job, transfer data, process data, and visualize the
data. The entire process could take a few days to com-
plete. There are alternative implementations for each of
the above tasks depending on the nature of the experiment
and the available resources for conducting the experiments.
It is extremely tedious to pre-define all the possible com-
bination of alternatives for all the tasks in this workflow.
For example, if there are five possible methods to submit a
job and five possible monitoring procedures available, it is
necessary to establish 25 different relationships statically in
order to cover all the possibilities. Moreover, the resulting
workflow with all these possible relationships among all the
alternative implementations will have very low re-use and
hard to maintain. For example, the incorporation of every
additional choice requires manual wiring of multiple ports
and parameters and development of ad-hoc control-flow ac-
tors. In the case of bioinformatics workflow, the choice of
which tool to use for processing the data or visualizing the
data is dependent on what type of data is received and what
tools are available at runtime. For example, BLAST is typ-
ically needed for processing the DNA sequence data. How-
ever, new BLAST computational tools are constantly being
developed. To pre-select the specific BLAST tool at design
time will not take advantage of better available tools.

Our ultimate vision for the specification and the execu-
tion of flexible workflows is a software infrastructure that
will allow domain scientists to discover existing workflow
that is close enough to his/her intended goal, configure it
with specific contextual information, run and visualize it.
Scientists do not have to be concerned with the concrete
specification of every aspects of the workflow. For exam-
ple, which tools to pick to accomplish a task. The con-
crete workflow is constructed transparently and dynami-
cally by querying the available actors/components. The my-
Grid/Taverna workbench [9] is one of the first attempt to
leverage semantic web for building a platform for scientific
workflow discovery with reuse as the main goal. Our goal
here is to provide a framework that facilitates both reuse and
flexible execution. For example, when there is a plethora of

tools available, a specific tool is selected during runtime to
achieve optimal (with respect to specific criteria defined by
the scientists) and flexible execution.

The organization and contributions of the paper are as
follows: We present an approach to building flexible data-
oriented scientific workflows with Frames whose complete
specification is determined at run-time by the embedded
concrete actor/component through a dynamic embedding
process. At the conceptual level, frame provides an ab-
straction for encapsulating different implementations of a
specific task/tool that can be reused across different sci-
entific workflows. This simplifies the specification of a
workflow that requires complex logic for handling differ-
ent choices and exceptions. Frame, being an actor, can be
used by a scientist just like the way a conventional actor
can be used. This means frame can be nested and com-
posed with other actors. We implemented the process of
dynamic embedding of concrete actor/components in KE-
PLER. This involves automatic construction of a model re-
quired to run the embedded component as a sub-workflow
at runtime without changing any core infrastructure in KE-
PLER. As compared to frame/template approach, dynamic
embedding has the added advantage of only instantiating
the needed component at runtime. A scientific workflow
composed with frame actors contain partial specifications
that act as placeholders for independently defined subcom-
ponents. The independent subcomponents can be selected
based on intelligent brokering, querying a particular repos-
itory, using a specific algorithm, or based on a known poli-
cies. Such a feature is particularly useful for scientific work-
flow that have explosive number of options, or scientific
workfow that must be altered on the fly to meet changes
in experimental conditions or available resources. Our dy-
namic embedding process is a prototype implementation of
our ultimate envisioned flexible scientific workflow.

In section 2, we present the overview of the flexible sci-
entific workflow framework, the concept of Frames, the dy-
namic embedding process and the implementation of the
frame actor. In section 3, we demonstrate the benefit of us-
ing frames and dynamic embedding for modeling and exe-
cution of two distinct type of scientific workflows. The first
one is the TSI (Terascale Supernova Initiative) workflow
from astrophysics. This workflow is developed at LLNL
under the Scientific Process Automation (SPA) project. The
goal of the workflow is to automate the repetitive tasks
involved in running a simulation at a supercomputer and
transferring the resulting files onto a mass-storage and then
to a local machine for data analysis and visualization. This
is a control-flow intensive workflow since many ad-hoc
control-flow actors with complex wiring of input and out-
put ports are required for handling various exceptions and
robust execution. We will show that Frames and dynamic
embedding provide high level abstractions for specifying

TSI workflow that enables flexible execution nested to any
level. We also show that frames allow controlled extension
of the workflow for adaptation and repurposing by changing
just the selection criteria.

The second type of workflow is the NDDP (National
Diversity Discovery Project) workflow from bioinformat-
ics domain. NDDP workflow is data-flow intensive in the
sense that the data set that passed through the workflow is
large, complex and nested in structure. We will show that
an NDDP workflow modeled with frames and dynamic em-
bedding can be reused for different phylogenetic data while
a customized NDDP workflow is required for each type of
phylogenetic data without the frames and dynamic embed-
ding.

Finally, we present our related work in section 4 and con-
clusion in section 5.

2 Flexible Scientific Workflow

In our current prototype implementation, a flexible sci-
entific workflow is defined as a workflow that allows some
tasks to be partially specified by Frames (abstract actors).
The behavior of a frame is determined at runtime by the
embedded concrete actor. Frames can be used by a scien-
tist just like the way conventional actors can be used. This
means frames can be reused and nested just like the conven-
tional actors and they can be executed using all the available
directors in PTOLEMY II including the process networks
(PN) which comes with the benefit of data streaming and
highly concurrent execution. Frame, being an actor, shares
the usual properties of an actor with additional capabilities
such as reasoning over selection policies, matching of ports
and parameters of embedded component. We provide the
formal definition of frames in the following section.

2.1 Frames

Actors in actor-oriented modeling and design framework
such as KEPLER are always concrete: they correspond to
particular implementations and can be directly executed in
a workflow. For example, gridftp and sftp are tied to two
different specific implementation of data transfer protocol.
We extend actor-oriented modeling with a new entity called
Frame, which is an abstraction that denotes a set of alter-
native actor implementations (or refinements) with similar,
but not necessarily identical functionality.1 For workflow
designers, frames are placeholders for components that will
be instantiated and specialized at runtime. Thus, a designer
can place a frame F on the design canvas, and connect
it with other workflow components, without prematurely

1Here the term frame symbolizes a notion akin to a picture frame—
allowing different “pictures” (i.e., components) so long as they conform to
the constraints imposed by the “frame.”

F

C

Embedding F[C]

F

C

Frame F

Actor C

Figure 2. Embedding of an actor C in frame F

specifying which component C is to be used. For compo-
nent developers, frames can be used as abstractions for a
family of components with similar function. For example,
we can have a DataTranfer Frame that provides abstraction
for transferring of data between computers without having
to worry about whether the actual implementation is pro-
vided by gripftp or sftp (secure ftp).

Formally, a frame is a named entity F that acts as a
placeholder for a component C to be “plugged into” F (see
Figure 2). When devising a frame F , a family of compo-
nents CF is envisioned, with each C ∈ CF being a possi-
ble alternative for embedding into F . Like an actor, a frame
has input, output, and parameter ports, structural types, and
semantic types; taken together they form the frame signa-
ture ΣF . This signature represents the common API of the
family CF of components that F abstracts.

An embedding F [C] of a component C into a frame F is
a set of pairs associating (or “wiring”) ports of C with ports
of F , i.e., F [C] ⊆ ports(F) × ports(C). We indicate the
wiring type of a pair (x, y) ∈ F [C] as follows:

• F.x � C.y; if x ∈ in(F), y ∈ in(C) (input)

• F.x � C.y; if x ∈ out(F), y ∈ out(C) (output)

• F.x � C.y; if x ∈ pars(F), y ∈ pars(C) (parameter)

The embedded component C which is also known as re-
finement may also introduce new ports not in ports(F). We
denote these ports as �C.y, �C.y, and �C.y for input, out-
put, and parameter ports y, respectively.

Similarly, an embedding F [C] may not use all the ports
of C. We denote these unused ports as F.x�, F.x�, and
F.x� for input, output, and parameter ports x, respectively.
We note that parameter ports F.x can also be connected to
input ports C.y and vice versa. However, other connection
types (x, y) ∈ F [C] are not allowed. Here we assume that
all the ports of F are used in the embedding.

An embedding F [C] is well-formed if the input and out-
put port directions are observed, i.e., F ’s inputs (outputs)
are wired only to inputs (outputs) of C (Figure 2). A well-
formed embedding F [C] is structurally well-typed if the
structural types align, and semantically well-typed if the se-
mantic types align.

2.2 Dynamic Embedding

Frames can be embedded statically or dynamically. In
static embedding, a refinement to a frame is embedded dur-
ing design time. A scientific workflow with static embed-
ding requires all paths to be completely bounded before ex-
ecution. At initialization time, the director is aware of the
complete workflow. The frames are concrete at all stages of
workflow execution.

The main problem with static embedding is that if there
is a change in runtime condition, the frame cannot be re-
configured at that time to select a different refinement. In
dynamic embedding, frames are embedded at runtime (dur-
ing the execution of the workflow). The refinement to a
frame is thus instantiated on demand. This means the sys-
tem does not have to instantiate anything that will not be
used at runtime. This resulted in better utilization of virtual
memory and is particularly advantages when there is a need
for recursive instantiation of frames.

2.2.1 Dynamic Embedding Process

The process of dynamic embedding of a frame consists of:

• Waiting for the tokens to arrive at the frame’s input
ports (a typical behavior of any actors).

• Choosing an embedded component using a set of se-
lection criteria.

• Transferring of input tokens from the frame actor to
the embedded component.

• Automatic construction of an internal workflow to run
the embedded component.

• Running the internal workflow in any PTOLEMY II di-
rectors.

RX Frame

user

host

identity

command

stdout

stderr

returncode

errors

Generated
Model

Remote Execution
Frame

Figure 3. Automatic generated model from
dynamic embedding process.

• Transfer of output tokens from the embedded compo-
nent to the frame actor (another typical behavior of an
actor).

Figure 3 shows a remote execution frame (RX Frame), a
frame designed by a workflow developer to encapsulate dif-
ferent implementations of running a job in a remote com-
puter. At runtime, RX Frame is embedded with a con-
crete actor. The lower pane of Figure 3 shows the auto-
matic generated internal workfkow for that actor. The gen-
erated workflow consists of a director (PN), the selected ac-
tor (Ssh2Exec, an actor that submits a job via remote login
mechanism), the source actor (FrameSource), the sink ac-
tors (xxxFrameSink) and the parameters. We discuss in the
following section how the internal workflow is generated.

2.2.2 Implementation of Dynamic Frame

In this section, we use the term Dynamic Frame to indicate a
frame actor that is embedded using the dynamic embedding
process. This is to distinguish it from a frame that is being
embedded statically.

The existing ModelReference actor in PTOLEMY II
is a higher-order actor that can execute a given (pre-
constructed) model/workflow provided through its input
port [6]. The way it achieves that is by constructing an in-
ternal workflow to run the given model during the pre-fire
phase. This is done by first transferring the input tokens
of the ModelReference actor to the parameters of the same
name in the given model (internal workflow). The internal
workflow is then executed and the output tokens from the
internal workflow is transferred from the parameters of the

internal workflow to the the matching output ports of Mod-
elReference actor. The ModelReference actor fits most of
the requirement for dynamic embedding process except:

• User must pre-construct the given model (internal
workflow is passed as an input parameter)

• The output tokens are transferred only after completion
of execution of the internal workflow (i.e. outputs are
transferred synchronously).

The implementation of our dynamic frames leverage the
capability of ModelReference actor with two main improve-
ments. Frame actor constructs the internal workflow auto-
matically and the output tokens are transferred as soon as
they arrive. This asynchronous transfer of output tokens
is critical when large amount of scientific data needs to
be streamed. Frame actor is implemented as a subclass of
ModelReference actor. The additional components needed
to support the Frame actor are:

• SelectActor, which implements the selection policies
and returns a refinement. The refinement that is re-
turned gets automatically embedded. Figure 4 shows a
simple implementation of the SelectActor for choosing
between Web service verses Ssh2Exec(Secure Shell)
for the implementation of remote job execution.

String selectedActor;
selectActor()

if (testWebService())
selectedActor = ”WebServiceExec”;
return getWebServiceActor()

else
selectedActor= ”ssh2Exec”;
return getSSH2ExecActor()

Figure 4. RX Frame:selectActor()

We expect the selection policies will be provided by
the domain scientists. In this prototype implementa-
tion, the selectActor is a set of simple if-else state-
ments. However, in our ultimate vision of flexible
scientific workflow, selectActor can be an intelligent
agent that possess reasoning capabilities that will ac-
cept a query with scientists’ preferences and quality
constraints and return the highest ranked component
that can be embedded.

• FrameSourceActor transfers the input tokens from the
frame actor to the selected actor.

• FrameSinkActor transfers the output tokens from the
selected actor to the frame actor,

• PortWiring maps the ports and parameters of the se-
lected actor to the ports and parameters of the frame

actor. Figure 5 shows the port wiring for remote ex-
ecution frame that can be embedded with either Web
service or Ssh2Exec.

getInputPortMapping()
if (selectedActor == ”ssh2Exec”)

return {{”hostname”, ”hostname”}
{”command”, ”cmd”}}

else if (selectedActor == ”WebserviceExec”
return {{”hostname”, ”url”}
{”command”, ”method”}}

Figure 5. RX Frame:portWiring()

The current prototype implementation of dynamic em-
bedding process only performs syntactic mapping of
ports which is expressed as a list containing pairs of
strings. We anticipate to use KEPLER’s semantic type
annotation to automatically map the ports and param-
eters in the future.

The above components/classes (Frame, SelectAc-
tor, FrameSourceActor, FrameSinkActor, PortWiring),
form the foundation classes for dynamic frame. The
development of a new frame actor is a matter of cre-
ating a subclass of Frame actor and implement the Se-
lectActor and PortWiring classes respectively.

3 Case Studies

3.1 TSI Workflow

The goal of TSI workflow is to automate the repeti-
tive tasks involved in running a simulation at a remote su-
percomputing computer, and transferring the resulting data
files onto a mass-storage and to a local machine for analysis
and visualization. The process consists of first logging into
the supercomputer, submitting the job, monitoring the status
of the submitted job. As soon as the simulation starts run-
ning and generates output files, those files must be moved to
the mass-storage at regular interval to prevent overflowing
of the temporary scratch space at the supercomputer. Fi-
nally, all the output files are transferred from mass-storage
onto a local machine for analysis and post-processing. Cur-
rently, there are three different variations of TSI workflow
as shown in Figure 6.

Each TSI workflow has an actor for submit job, transfer
files and post processing. The submit job actor in work-
flow A is invoking a Web service to accomplish the remote
job submission, the submit job actor in workflow B is us-
ing secure shell actor which requires remote login to the
supercomputer and submit the job using a local command.
The submit job actor in workflow C uses a wrapper around
secure shell actor to pre-process the job submission com-
mand. Each of the submit job actor is coded specifically

TSI-A Workflow

SubmitJobFrame

TSI-B Workflow

Figure 7. TSI-A and TSI-B workflows with
frame actors

for its specific workflow. They cannot be reused across the
three TSI workflows.

With frame and dynamic embedding, scientist only
needs to know how to use and maintain one version of sub-
mit job frame/actor which can switch among different im-
plementations of remote job execution.

Figure 7 shows the TSI-A workflow 2 with such a sub-
mit job frame. The same submit job frame is used in TSI-B
as shown in the lower pane of the same figure. The submit
job frame in turns can invoke RemoteExecution frame (cf.
Figure 8) to switch among different methods for submitting
a job depends on runtime conditions or established policies.
For example, if at runtime, it detects that the workflow and
the simulation experiment are being run on the same com-
puter, it is possible to switch to run the job locally without
having to do a remote login. Moreover, no changes need to
be make to either of the two TSI workflows to enable this
option. This example also demonstrates the nested invoca-
tion of RemoteExecutionFrame from SubmitJobFrame.

3.2 NDDP Workflow

The goal of NDDP workflow is to Need to discuss
the benefit of NDDP workflow with frames

4 Related Work

The need for adaptive and reusable workflows has been
an active research issue in business workflow systems since
the late 90’s [10, 24, 16]. To achieve adaptability, [12]

2Note that the new TSI-A workflow is implemented using the
collection-oriented framework in KEPLER, thus it has simpler structure
and used different icon shape to respresent the actor.

Each containing a
Submit Job Actor

A

B C

Figure 6. Different versions of TSI workflows.

proposed decoupling of conceptual workflow specifications
(orchestration) in WSFL from the individual tasks (TSL)
that make up a workflow. A task can thus be reused in dif-
ferent workflows. An activity in WSFL specification can
choose to use a specific task implementation.

CMI [23, 21], which is an advanced business workflow
prototype, introduced the concept of place holder activity.
CMI’s placeholder activity allows complex runtime deci-
sion to be modeled without having to exhaustively list all
the potential activities within a process. The use of place-
holder activities has enabled the construction of a complex
and adaptive workflow at a much faster pace as demon-
strated in [21]. Our Frames is analogous to the place-
holder activities albeit with significant differences in the
embedding process due to the use of actor-oriented mod-
eling framework.

Process-based web service composition [8, 3, 11, 17]
also support the flow specifications separately from the un-
derling component services in an attempt to generate dy-
namic processes to support agile business collaboration.
The main challenge is to be able to perform dynamic ser-
vice aggregation at runtime to achieve a particular goal.
The problem of dynamic web service composition is ad-
dressed generally using semantic web [4, 20, 2, 22] and the
related inference engines. However, such an approach is yet
to automatically generate a workflow that has complex con-
trol structures involving loops, nondeterminism and choices
which are fundamental to control-flow intensive scientific

workflow.
In PTOLEMY II there is the concept of mutation de-

scribed in Chapter 8 of PTOLEMY II’s volume III design
document [7] that enables changes in workflow’s structure
at runtime. However, mutation causes the workflow to stop
for an indeterminate amount of time. This introduces side
effects. For example if we had an actor downloading a huge
file and another actor requests a mutation, all actors in the
workflow will be blocked until the mutation has completed.
In PTOLEMY II’s PN domain, there is no determinate point
where mutations can occur other than a real deadlock. The
concept of mutation is also too low level for the purpose of
modeling and design of actors that is reusable across differ-
ent workflows.

5 Conclusion

Most scientists are not expert programmers. Without the
support of flexible scientific workflow specification, when-
ever an existing workflow needs to be used for a different
data set or run in a different environmental setup, a new
version of the same workflow must be created [9]. This re-
sulted in an explosive number of similar workflows which
is hard to manage and maintain. We aim at providing a
high-level abstraction for flexible scientific workflow speci-
fication and yet still operate within a rich process model that
allows hierarchical composition of actors with complex se-
lection criteria.

SubmitJobFrame RemoteExecutionFrame

Figure 8. Nested RemoteExecutionFrame actor

We have provided an implementation of frames and dy-
namic embedding and used them in the modeling and design
of scientific workflows from two different domains. In the
case of TSI workflows, the use of frame and dynamic em-
bedding resulted in the creation of a submit job frame and
a remote execution frame that can be used in the two vari-
ant of TSI workflows without having to hard code a specific
method of submitting a job in each of the workflow. In the
case of NDDP workflow, only one version of NDDP work-
flow is needed for handling the parsing of three different
kinds of data verses having to have to design three different
workflows without using frames and dynamic embedding.

The current limitations of frames and dynamic embed-
ding are 1) the inability to type check the automatic gener-
ated internal workflow before execution, 2) the additional
overhead of creating a new internal workflow to execute the
embedded component, 3) the need to recode and recompile
the frame when there is a change in the selection process.

Our future work include coupling the dynamic embed-
ding process with intelligent brokering. This will leverage
the semantic annotation of ports and actors available in Ke-
pler. In order to increase the usability of frames and dy-
namic embedding for workflow designer, there is a need to

provide means for the scientists to specify configurable se-
lection criteria.

References

[1] I. Altinas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher,
M. Schildhauer, and S. Mock. Kepler: An extensible system
for design and execution of scientific workflows. In Proc. of
the Intl. Conf. on Scientific and Statistical Database Man-
agement (SSDBM), 2004.

[2] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila,
D. McDermott, D. Martin, S. A. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web Ser-
vice Description for the Semantic Web. In Proc. 1st Int’l
Semantic Web Conf. (ISWC 02), 2002.

[3] B. Benatallah, M. Dumas, M. Sheng, and A. H. H. Ngu.
Declarative composition and peer-to-peer provisioning of
web services. In Proceeding of 18th International Confer-
ence on Data Engineering, 2002.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

[5] S. Bowers, B. Ludaescher, A. Ngu, and T. Critchlow. ”En-
abling Scientific Workflow Reuse through Structured Com-
position of Dataflow and Control-Flow. In IEEE Workshop

Figure 9. Three Different versions of NDDP workflows required for parsing three different types of
phylogenic data.

on Workflow and Data Flow for Scientific Applications (Sci-
Flow 2006), 2005.

[6] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. Heterogeneous concurrent modeling and
design in Java. Technical Report Technical Memorandum
UCB/ERL M05/21, Univ. of California, Berkeley, 2005.

[7] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous concurrent modeling and design
in Java, volume 3:ptolemy ii domains. Technical Report
Technical Memorandum UCB/ERL M05/23, Univ. of Cal-
ifornia, Berkeley, 2005.

[8] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-
C. Shan. Adaptive and Dynamic Service Composition in
eFlow. In CAiSE Conf., June 2000.

[9] A. Goderis, P. Li, and C. Goble. Workflow discovery: the
problem, a case study from e-science and a graph-based so-
lution. In Proc. of the Intl. Conference on Web Services
(ICWS2006), 2006.

[10] Y. Han, A. Sheth, and C. Bussler. A taxonomy of adaptive
workflow management. In Proc. of the Workshop Towards
Adaptive Workflow Systems, 1998.

[11] R. Hull and J. Su. Tools for composite web services: A short
overview. SIGMOD Record, 34(2), 2005.

[12] N. Krishnakumar and A. Sheth. Managing heterogeneous
multi-system tasks to support enterprise-wide operations.
Journal of Distributed and Parallel Databases, 3(2), 1995.

[13] E. A. Lee and S. Neuendorffer. Actor-oriented models for
codesign: Balancing re-use and performance. In Formal
Methods and Models for System Design. Kluwer, 2004.

[14] B. Ludäscher and I. Altintas. On simplifying collection
handling and control-flow issues in SPA/Ptolemy-II. Tech-
nical Report SciDAC-SPA-TN-2003-01, San Diego Super-
computer Center, 2003.

[15] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific work-
flow management and the Kepler system. Concurrency and
Computation: Practice & Experience, 2006. to appear.

[16] Z. Luo, A. Sheth, J. Miller, and K. Kochut. Defeasible work-
flow, its computation and exception handling. In Y. Han,
A. Sheth, and C. Bussler, editors, CSCW-98 Workshop To-
wards Adaptive Workflow Systems, 1998.

Figure 10. A single NDDP workflow with a frame actor (ParsFrame) that can parse three different
types of phylogenic data.

[17] Z. LZ., B. B., L. H., N. AHH., F. D., and C. H. ”flexible com-
position of enterprise web services”. International Journal
of Electronic Commerce and Business Media, 13(2), 2003.

[18] T. M. McPhilips and S. Bowers. An approach for pipelining
nested collections in scientific workflows. SIGMOD Record,
34(2), 2005.

[19] T. McPhillips, S. Bowers, and B. Ludaescher. Collection-
oriented scientific workflows for integrating and analyzing
biological data. In International Workshop in Data Integra-
tion in Life Sciences, DILS 2006, LNCS,4075, pages 248–
263, 2006.

[20] S. Narayanan and S. A. Mcllraith. Simulation, Verification
and Austomated Composition f Web Services. In Proceed-
ings of the eleventh International Conference on World Wide
Web, WWW2002, Hawaii, USA, 2002.

[21] A. H. H. Ngu, D. Georgakopoulos, D. Baker, A. Cichocki,
J. Desmarais, and P. Bates. Advanced process-based com-
ponent integration in Telcordia’s cable OSS. In Proc. of the
Intl. Conf. on Data Engineering (ICDE), 2002.

[22] M. Paolucci and K. Sycara. Autonomous Semantic Web Ser-
vices. IEEE Internet Computing, pages 34–41, September-
October 2003.

[23] M. Rusinkiewicz and D. Georgakopoulos. From coordina-
tion of workflow and group activities to composition and
management of virtual enterprises. In Proc. of the Intl. Sym-
posium on Database Applications in Non-Traditional Envi-
ronments, 1999.

[24] A. Sheth. From contemporary workflow process automation
to adaptive and dynamic work activity coordination and col-
laboration. In Proceedings of the Workshop on Workflows in
Scientific and Engineering Applications, 1997.

[25] X. Xin. Case study: Terascale supernova initiative workflow
(TSI-Swesty). LLNL Technical Note, 2004. http://www-
casc.llnl.gov/sdm/documentation/casestudy-tsi -s.doc.

	Introduction
	Flexible Scientific Workflow
	Frames
	Dynamic Embedding
	Dynamic Embedding Process
	Implementation of Dynamic Frame

	Case Studies
	TSI Workflow
	NDDP Workflow

	Related Work
	Conclusion

