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Global well-posedness for KdV in Sobolev spaces

of negative index ∗

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, & T. Tao

Abstract

The initial value problem for the Korteweg-deVries equation on the
line is shown to be globally well-posed for rough data. In particular, we
show global well-posedness for initial data in Hs(R) for −3/10 < s.

1 Introduction

Consider the initial value problem for the Korteweg-deVries (KdV) equation

∂tu+ ∂3
xu+

1
2
∂x(u2) = 0, x ∈ R,

u(0) = φ,
(1.1)

for rough initial data φ ∈ Hs(R), s < 0. The initial data φ and the solution u are
assumed to take values in R. This problem is known [9] to be locally well-posed
provided −3/4 < s. For s ≥ 0, the local result and L2 norm conservation imply
(1.1) is globally well-posed [1]. Recently, a direct adaptation [7] of Bourgain’s
high-low frequency technique [3], [2] showed (1.1) is globally well-posed for φ ∈
Hs∩Ḣa for certain s, a < 0. A modification of the high-low frequency technique,
first used in [8], is presented in this paper which establishes global well-posedness
of (1.1) in Hs(R), −3/10 < s.

A subsequent paper [6] will establish that (1.1) is globally well-posed in
Hs(R) for −3/4 < s. The simplicity of the argument presented here may extend
more easily to other situations, such as in our treatment [5] of cubic NLS on
R

2 and NLS with derivative in R [4].

The Multiplier operator I

Let s < 0 and N � 1 be fixed. Define the Fourier multiplier operator

Îu(ξ) = m(ξ)û(ξ), m(ξ) =

{
1, |ξ| < N,

N−s|ξ|s, |ξ| ≥ 10N
(1.2)
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with m smooth and monotone. The operator I (barely) maps Hs(R) 7−→ L2(R).
Observe that on low frequencies {ξ : |ξ| < N}, I is the identity operator. Note
also that I commutes with differential operators. The operator I−1 is the Fourier
multiplier operator with multiplier 1

m(ξ) .

An almost L2 conservation property of (1.1)

Let φ ∈ Hs(R), −3/4 < s < 0 in (1.1). There is a δ = δ(‖φ‖Hs) > 0 such that
(1.1) is well-posed for t ∈ [0, δ]. We observe using the Fundamental Theorem of
Calculus, the equation, and integration by parts that

‖Iu(δ)‖2L2 = ‖Iu(0)‖2L2 +
∫ δ

0

d

dτ
(Iu(τ), Iu(τ))dτ,

= ‖Iu(0)‖2L2 + 2
∫ δ

0

(Iu̇(τ), Iu(τ))dτ,

= ‖Iu(0)‖2L2 + 2
∫ δ

0

(I(−uxxx −
1
2
∂x[u2])(τ), Iu(τ))dτ

= ‖Iu(0)‖2L2 +
∫ δ

0

(I(−∂x[u2]), Iu)dτ.

Finally, we add 0 =
∫ δ

0

∫
∂x(I(u)2)I(u)dτ to observe

‖Iu(δ)‖2L2 = ‖Iu(0)‖2L2 +
∫ δ

0

∫
∂x

{
(I(u))2 − I(u2)

}
Iu dxdτ. (1.3)

This last step enables us to take advantage of some internal cancellation. We
apply Cauchy-Schwarz as in [10] and bound the integral above by∥∥∥∂x{(I(u))2 − I(u2)}

∥∥∥
Xδ

0,− 1
2−

‖Iu‖Xδ
0, 12 +

. (1.4)

The space Xδ
s,b of functions of space-time is defined via the Fourier restriction

norm ‖u‖Xδs,b = inf{‖w‖Xs,b := ‖(1 + |k|)s(1 + |τ − k3|)bŵ(k, τ)‖L2
k,τ

: w =
u for t ∈ [0, δ]}.

Remark 1 An effort to find a term providing more cancellation than∫ δ
0

∫
∂x(I(u)2)I(u)dτ used above led to the general procedure described in [6].

Proposition 1 (A variant of local well-posedness) The initial value prob-
lem (1.1) is locally well-posed in the Banach space
I−1L2 = {φ ∈ Hs with norm ‖Iφ‖L2} with existence lifetime δ satisfying

δ & ‖Iφ‖−αL2 , for some α > 0, (1.5)

and moreover
‖Iu‖Xδ

0, 12 +
≤ C‖Iφ‖L2 . (1.6)
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This proposition is not difficult to prove using the argument in [9]. Using
Duhamel’s formula and Xs,b space properties reduces matters to proving the
bilinear estimate

‖∂xI(uv)‖X0,− 1
2 +
≤ C‖Iu‖X0, 12 +

‖Iv‖X0, 12 +
(1.7)

to obtain the contraction. The space-time norm bound is then implied by the
contraction estimate. The estimate (1.7) follows from the next proposition and
the bilinear estimate of Kenig, Ponce and Vega [9].

Proposition 2 (Extra smoothing) The bilinear estimate

‖∂x{I(u)I(v)− I(uv)}‖Xδ
0,− 1

2−
≤ CN− 3

4 +‖Iu‖Xδ
0, 12 +
‖Iv‖Xδ

0, 12 +
. (1.8)

holds.

Recall the bilinear estimate ‖∂x(uv)‖X0,− 1
2 +
≤ C‖u‖X0, 12 +

‖v‖X0, 12 +
from [9].

Proposition 2 reveals a smoothing beyond the recovery of the first derivative
for the particular quadratic expression encountered above in (1.3). We prove
Proposition 2 in the next section.

The required pieces are now in place for us to give the proof of global well-
posedness of (1.1) in Hs(R), −3/10 < s. Global well-posedness of (1.1) will
follow if we show well-posedness on [0, T ] for arbitrary T > 0. We re-normalize
things a bit via scaling. If u solves (1.1) then uλ(x, t) = ( 1

λ )2
u(xλ ,

t
λ3 ) solves

(1.1) with initial data φλ(x, t) = ( 1
λ )2

φ(xλ ). Note that u exists on [0, T ] if and
only if uλ exists on [0, λ3T ]. A calculation shows that

‖Iφλ‖L2 ≤ Cλ−
3
2−sN−s‖φ‖Hs . (1.9)

Here N = N(T ) will be selected later but we choose λ = λ(N) right now by
requiring

Cλ−
3
2−sN−s‖φ‖Hs ∼ 1 =⇒ λ ∼ N−

2s
3+2s . (1.10)

We now drop the λ subscript on φ by assuming that

‖Iφ‖L2 = ε0 � 1 (1.11)

and our goal is to construct the solution of (1.1) on the time interval [0, λ3T ].
The local well-posedness result of Proposition 1 shows we can construct the

solution for t ∈ [0, 1] if we choose ε0 small enough. The almost L2 conservation
property shows ‖Iu(1)‖22 ≤ ‖Iu(0)‖22 +N−

3
4 +‖Iu‖3X0, 12 +

. Using (1.6) and (1.11)

gives
‖Iu(1)‖22 ≤ ε

2
0 +N−

3
4 +.

We can iterate this process N
3
4− times before doubling ‖Iu(t)‖L2 . Therefore,

we advance the solution by taking N
3
4− time steps of size O(1). We now restrict

s by demanding that
N

3
4− & λ3T = N

−6s
3+2sT (1.12)

is ensured for large enough N , so s > −3/10.
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2 Proof of the bilinear smoothing estimate

This section establishes Proposition 2. We distinguish the very low frequen-
cies {ξ : |ξ| . 1}, the low frequencies {ξ : 1 . |ξ| . 1

2N} and the high
frequencies {ξ : 1

2N . |ξ|}. Decompose the factor u in the bilinear estimate
by writing u = uvl + ul + uh with ûl supported on the low frequencies and
similarly for the very low and high frequency pieces. We decompose v the same
way. Since I is the identity operator on the low and very low frequencies, we can
assume one of the factors u, v in the estimate to be shown has its Fourier trans-
form supported in the high frequencies. Symmetry allows us to assume u = uh
and we need to consider the three possible interactions of uh with vvl, vl and
vh. Finally, since we are considering (weighted) L2 norms, we can replace û and
v̂ by |û| and |v̂|. Assume therefore that û, v̂ ≥ 0.

Very low/high interaction

An explicit calculation shows that

F (∂x{I(uhvvl)− I(uh)vvl}) (ξ) =
∫
ξ=ξ1+ξ2

iξ[m(ξ)−m(ξ1)]ûh(ξ1)v̂vl(ξ2),

(2.1)
where F denotes the Fourier transform. The mean value theorem gives

|m(ξ)−m(ξ1)| ≤ |m′(ξ̃1)||ξ2|,

which may be interpolated with the trivial estimate to give

|m(ξ)−m(ξ1)| ≤ CN−s|ξ1|s|ξ1|−θ|ξ2|θ (2.2)

for 0 ≤ θ ≤ 1. Recall that m was defined to be smooth and monotone in (1.2).
Therefore, upon defining F(∇θf)(ξ) = |ξ|θf̂(ξ), we can write

|F(∂x{I(uhvvl)− I(uh)vvl})(ξ)| ≤ |F(∂x(∇−θI(uh)(∇θvvl))(ξ)|.

We now estimate the left side of the bilinear estimate in this interaction by∥∥∂x(∇−θI(uh))(∇θvvl)
∥∥
X0, 12 +

(2.3)

and by the bilinear estimate of Kenig, Ponce and Vega

≤ C
∥∥∇−θI(uh)

∥∥
X0, 12 +

∥∥∇θvvl∥∥X0, 12 +
. (2.4)

The frequency support of vvl shows that
∥∥∇θvvl∥∥X0, 12 +

. ‖vvl‖X0, 12 +
. A mo-

ments thought shows∥∥∇−θI(uh)
∥∥
X0, 12 +

≤ N−θ‖I(uh)‖X0, 12 +
(2.5)

and the claim of the Proposition follows for the (very low)(high) interaction by
choosing θ > 3/4.
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Low/high interaction

The preceding calculations reduce matters to controlling∥∥∂x∇−θI(uh)∇θvl
∥∥
X0, 12 +

(2.6)

and we know that ûh and v̂l are supported outside the very low frequencies.

Lemma 1 Assume û and v̂ are supported outside {|ξ| < 1}. Then

‖∂x(uv)‖X
α,− 1

2 +
≤ C‖u‖X−γ1,

1
2 +
‖v‖X−γ2,

1
2 +

(2.7)

provided

α− (γ1 + γ2) <
3
4
,

α− γi <
1
2
, i = 1, 2.

We will apply the lemma momentarily with α = 0, γ1 = γ2 = −3/8+.
The proof of the lemma is contained in the proof of Theorem 2 in [7]. In

particular, the support properties on û, v̂ reduce matters to considering Cases
A.3, A.4, A.6, B.3, B.4, B.5 and B.6 in [7]. The restriction α− (γ1 + γ2) < 3/4
arises in Case A.4.c.ii of [7] which is the region containing the counterexample
of [9]. Case B.4.b of [7] requires the other condition α− γi < 1

2 .
The lemma applied to (2.6) gives

≤ C
∥∥∇−θI(uh)

∥∥
X− 3

8 +, 12 +

∥∥∇θvl∥∥X− 3
8 +, 12 +

.

Setting θ = 3
8− leaves

C
∥∥∥∇− 3

4 +I(uh)
∥∥∥
X0, 12 +

‖vl‖X0, 12 +
≤ CN− 3

4 +‖I(uh)‖X0, 12 +
‖vl‖X0, 12 +

which was to be shown.

High/high interaction

In this region of the interaction, we do not take advantage of any cancellation
and estimate the difference with the triangle inequality

‖∂x{I(uh)I(vh)}‖X0,− 1
2 +

+ ‖∂x{I(uhvh)}‖X0,− 1
2 +
.

For the first contribution we use the lemma to get

‖I(uh)‖X− 3
8 +, 12 +

‖I(vh)‖X− 3
8 +, 12 +

≤ N− 3
4 +‖I(uh)‖X0, 12 +

‖I(vh)‖X0, 12 +
. (2.8)
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The second contribution is bounded by throwing away I and applying the
lemma,

‖∂x{uhvh}‖X0,− 1
2 +

≤ ‖uh‖X− 3
8 +, 12 +

‖uh‖X− 3
8 +, 12 +

≤ N−
3
8 +s+‖uh‖X

s, 12 +
N−

3
8 +s+‖vh‖X

s, 12 +

≤ N−
3
4 +‖uh‖X0, 12 +

‖vh‖X0, 12 +
.
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