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ABSTRACT 

 Small-mammals respond quickly to habitat changes and serve an important role 

in ecosystem function as prey and sources of seed dispersal. To assess the interaction 

structure, or metacommunity structure, of small-mammal assemblages, I collected 

presence-absence surveys of non-volant, terrestrial mammals weighing less than nine 

kilograms along elevational gradients from the literature at local and regional scales. In 

total, fifty-nine sources were used to delimit 337 species incidence matrices from 104 

study sites and six taxonomic groups. Small-mammal metacommunity structures were 

predominantly quasi-anti-nested and anti-nested, but could differ depending on 

taxonomic group. Elevational gradients were highly correlated with the latent 

environmental gradient, implying anti-nested small-mammal metacommunity structures 

were likely the result of species-specific responses to changes in the elevational gradient. 

Random metacommunity structures generally reflected disconnected metacommunity 

networks. Metacommunity networks treat species as nodes with connecting edges 

weighted by species co-occurrence at elevational bands. Metacommunity structure and 

additional nestedness metrics I calculated did not depend on maximum elevation, average 

annual mean temperature, average annual precipitation, or the number of species clusters 

in the network. Relativized nestedness was the only nestedness metric that increased as 

the species deletion ratio (a measure of network connectivity) increased, demonstrating 

highly nested metacommunities were also highly connected.   
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1. INTRODUCTION 

 The study of species distributions over environmental gradients has a long history 

in ecology and important insights have been derived from the examination of patterns 

with respect to biotic change (Clements 1904; Diamond 1975; Wiens and Donoghue 

2004). Nested patterns of species assemblages can be caused by wide variety of factors, 

including habitat heterogeneity (Wang et al. 2010), passive sampling (Cutler 1994), and 

selective species extinctions and colonizations (Herczeg and Horvath 2015). Elevational 

gradients occur globally, host a wide variety of species, and exhibit high habitat 

heterogeneity, thus are an ideal environmental gradient to detect nestedness patterns. An 

elevational gradient is also uniquely suited to understanding ecological mechanisms such 

as population processes and species interactions, because changes in elevation are 

correlated with abiotic and biotic changes (Willig et al. 2011). The intensity of habitat 

and community composition change will depend on the topographic gradient of the 

region as well as its geographic location (Whittaker 1967). Species within tropical 

climates or distributed across large distances may experience marked changes in habitat 

as elevation increases compared with those in temperate climates or assessed over shorter 

distances (Barone et al. 2008). In other words, relatively homogenous, low-energy 

systems likely exhibit nested patterns, while heterogeneous, high-energy systems likely 

exhibit anti-nested patterns (Henriques-Silva, Lindo, and Peres-Neto 2013).  

 The elements of metacommunity structure (EMS) framework provides an 

analytical approach to assess the metacommunity structure, i.e. nested and anti-nested 

patterns, of species assemblages along an underlying or latent environmental gradient 

(Leibold and Mikkelson 2002; Presley, Higgins, and Willig 2010). A metacommunity is a 



 

 2 

set of communities linked through the dispersal of their constituent species (Leibold et al. 

2004). The EMS framework is often applied to sets of islands (Presley and Willig 2010) 

and lakes (Henriques-Silva, Lindo, and Peres-Neto 2013), but can also be applied to 

elevational gradients (Lopez-Gonzalez and Lozano 2015). Small-mammals are an ideal 

taxonomy for investigating nestedness patterns along elevational gradients, because they 

respond quickly to habitat changes and play a significant role in ecosystem function by 

influencing forest succession through seed predation and dispersal, as well as by being 

prey (Pardini et al. 2005). 

 Three EMS (coherence, turnover, and boundary clumping) combine to create 

three broad classifications of metacommunity structure (random, nested, and anti-nested) 

(Leibold and Mikkelson 2002). A perfectly coherent metacommunity has no gaps or 

embedded absences in a species distribution along the latent gradient (Leibold and 

Mikkelson 2002). Turnover quantifies the number of times one species replaces another 

along the gradient. Boundary clumping occurs when only specific sets of species coincide 

with each other due to environmental filtering, such as changes in habitat, competitive 

exclusion, or predation. When metacommunity mechanisms are governed primarily by 

stochastic processes, a random metacommunity structure will arise in which species 

spatial distributions are no different than distributions produced by chance. Analytically, 

a random metacommunity structure lacks significant coherence. Nested metacommunity 

structure results when the distributions of some species along the environmental gradient 

wholly reside within the distribution of others. This is analytically indicated by positive 

coherence and negative species turnover (Leibold and Mikkelson 2002). Anti-nested 

metacommunity structures result from negative coherence alone (i.e. checkerboard 
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structure) or positive coherence and positive turnover (Leibold and Mikkelson 2002). 

 Another way to view a metacommunity is as a network of species co-occurrence. 

A metacommunity network is a representation of species (nodes) connected by their co-

occurrence (edges) along a gradient (Figure 1). The relationship between the 

connectedness of metacommunity networks and the nestedness of metacommunity 

assemblages has been explored (Fortuna et al. 2010), as well as the validity of turnover as 

a nestedness metric (Gotelli and Ulrich 2012; Schmera et al. 2018). Yet, direct analysis of 

the relationship between metacommunity structure as defined by the EMS framework and 

metacommunity networks is still lacking. A nestedness metric based on the connectivity 

of a network may be able to bridge the gap between turnover (species replacements) and 

metacommunity networks. 

 One goal of my research was to test the validity of a nestedness metric I defined, 

the species deletion ratio (SDR), in distinguishing between anti-nested and nested 

metacommunities based on network connectivity. To achieve this goal, I focused on 

assemblages of non-volant, terrestrial mammals weighing less than nine kilograms 

grouped by taxonomy along elevational gradients at local and regional scales. In addition 

to nestedness as defined by the EMS framework (turnover) and my nestedness metric 

(SDR), I assessed two gradient independent measures of nestedness, relativized 

nestedness (Nrel) and maximum nestedness metric based on overlap and 

decreasing/differing fill (NODFmax). I investigated other possible influences on 

metacommunity structures, such as matrix size, and three abiotic factors on all nestedness 

metrics (maximum elevation, temperature, and precipitation). Finally, two clustering 

algorithms, the Louvain method and Spinglass algorithm, were used to detect the number 
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of species clusters within a metacommunity network. 

Hypotheses 

1. Sites with a high maximum elevation likely have high species turnover, due to 

increased habitat heterogeneity, resulting in anti-nested metacommunity structures 

(high turnover) and low nestedness metrics (Nrel, NODFmax, and SDR).  

2. Small-mammals are sensitive to changes in evaporation and temperature, therefore 

precipitation and temperature may be limiting factors to small-mammal species 

distributions along elevational gradients. As a result, small-mammal metacommunities 

will increase in nestedness as temperature and precipitation increase.  

3. SDR will reflect the difference between nested and anti-nested metacommunities, 

therefore turnover will decrease with as SDR increases. Nestedness metrics 

independent of a latent environmental gradient (Nrel, and NODFmax) will increase as 

SDR increases.  

4. A greater number of species clusters will produce anti-nested metacommunities, 

consequently nestedness will decrease in magnitude as the number of identified 

species clusters increases.  
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2. METHODS 

Data Collection 

 Incidence matrices were obtained from peer-reviewed journal articles and books 

in which non-volant terrestrial mammals nine kilograms or under, referred to as small-

mammals, were reported along an elevational gradient. Keywords searched on the Texas 

State Library website and Google Scholar included “small mammal”, “elevational 

gradient”, “altitudinal gradient”, “mammal survey”, and the names of well-known 

mountains or mountain ranges. Each data set was organized into an elevation (row) by 

species (column) incidence matrix. If species j was found at elevation i, then it received a 

one in cell (i, j) and zero otherwise. All incidence matrices required a minimum of six 

elevational bands and eight species to be included in analyses. All species within an 

incidence matrix were assumed to have a continuous spatial distribution along the 

elevational gradient. The maximum number of elevational bands was determined by 

taking the difference between the highest and lowest elevation of all species in the 

assemblage, then dividing this range into 100 meter intervals, starting with the lower 

bound rounded to the tens place. Using 100 meters as the width of elevational bands was 

an arbitrary choice, but as a result the minimum elevational range that could be used was 

600 meters long. A continuous elevational distribution was assumed to wave restrictions 

on trapping effort between elevational bands. Incidence matrices were generated in R 

version 3.4.0 (R Core Team 2017) with a function that took in a list of species and their 

corresponding minimum and maximum elevational distribution then populated a matrix 

of zeros with ones to indicate a species’ presence. Any elevational bands that remained 

empty (row sum of zero) after the matrix was populated were removed. Therefore, the 
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number of elevational bands (incidence matrix rows) may be less than the maximum 

number of 100 meter elevational bands along the sampled gradient. 

 Each incidence matrix was classified by the scale, local or regional, at which 

species were sampled along the elevational gradient. Local-level incidence matrices 

consisted of species sampled along a single elevational transect during one or more 

seasons, but not exceeding a five-year survey period. Species were counted as present in 

an elevational band if they were caught, seen, or species-specific burrows were found at a 

location. Animal tracks, remains or droppings were not considered sufficient evidence of 

a species’ presence. Species’ elevational distributions contained in all local-level 

incidence matrices come from one source of information and represented individual 

transects without overlapping areas. Regional-level incidence matrices consisted of 

species elevational distributions reported for more than a five-year period, across multiple 

elevational transects or included information from trapping records, museum specimens, 

and field notes (McCain 2005). Regional-level matrices were created from one source or 

multiple local-level matrices combined. At both scales, study site refers to a surveyed 

region that does not share any overlapping area with other locations at that scale. 

Multiple regional-level incidence matrices were not combined to ensure there was no 

overlapping area between study sites at the regional-level. Local-level incidence matrices 

represented a snapshot in time, because they only depended on species elevational 

distributions from a short time-frame. Regional-level incidence matrices, on the other 

hand, may have relied on historical records of species elevational distributions to create a 

report of species known to exist in the region. As a result, local and regional matrices 

were analyzed separately.  
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 All species classifications were aligned to the same taxonomic reference (Wilson 

and Reeder 2005).  Species described after 2005 cannot be found in the taxonomic 

reference, but are acknowledged on the IUCN Red List (IUCN 2018). Superorders were 

based on the most recent published phylogeny for therian mammal orders that included 

only monophyletic orders (Foley, Springer, and Teeling 2016). Mammal assemblages 

were compiled for each study site by the taxonomic relatedness of species. The six 

possible taxonomic groupings were genus, family, suborder, order, superorder, and 

multiple superorders. An assemblage was created if at least eight species belonged to a 

taxonomic relatedness group. For example, if eight species in the genus Akodon were 

reported at a study site then an incidence matrix was created with only those species. If 

instead seven species were in the genus Akodon and one in the genus Peromyscus, then 

an incidence matrix was created but classified as having the same family, Cricetidae. 

Assemblages within a study site are not independent because they share overlapping 

sampled area, but assemblages are independent between study sites and within a 

taxonomic group.  

 Site-specific information included maximum elevation of the surveyed area, 

average annual mean temperature, and average annual precipitation. Maximum elevation 

is not the highest point surveyed, but the highest peak in the surveyed region. When this 

information was not cited in-text, it was assessed using Google Maps relief view (Google 

2018). Average annual mean temperature and average annual precipitation were 

determined for each study site based on 1960-1990 data provided in WorldClim version 1 

(Hijmans et al. 2005). The term average annual mean temperature may sound redundant, 

but I use it to emphasize the value is an average for each study site based on the annual 
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mean temperature from 1960-1990. Annual mean temperature represented an average of 

the daily high and low temperatures for each day. Data were accessed with version 2.5-8 

of the “raster” package in R using the function “getData” for the Worldclim biological 

variables at a finest available resolution of 30 arc-seconds (Hijmans 2016). All small-

mammal assemblages created for a single study site (i.e. incidence matrices of different 

taxonomic groups within that site) have identical values for maximum elevation, average 

annual mean temperature, and average annual precipitation. 

Metacommunity Structure 

 Each incidence matrix was ordinated along the first axis of correspondence via 

reciprocal averaging to minimize the number of embedded absences (Gauch, Whittaker, 

and Wentworth 1977). To determine if the underlying gradient (latent environmental 

gradient) was correlated with the elevational gradient, I computed the Spearman rank 

correlation (𝜌) between component scores of each elevational band and elevation in 

meters (Willig et al. 2011). The elevational and latent environmental gradient were 

considered highly correlated for the absolute value of 𝜌 ≥ 0.8, i.e. either a strong positive 

or negative correlation. Elevational band component scores were calculated in R with the 

function “OrderMatrix” in the package “metacom” version 1.5.0 (Dallas 2018), then 

correlation was determined with the function “cor” and method set to “spearman”.  

 All incidence matrices were analyzed in MATLAB version R2018a with the 

“EMS” library using the function “metacommunity” (“MATLAB and Statistics Toolbox” 

2018; Higgins 2005). I determined coherence and turnover for each incidence matrix by 

applying a Monte Carlo-like algorithm to generate a null distribution (Harrison 2010). To 

test if an incidence matrix had significant positive or negative coherence, the number of 
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embedded absences were counted for the input matrix after transformation via reciprocal 

averaging. Next, 1000 random matrices of the same rank were generated and ordinated 

by reciprocal averaging, then each of their respective embedded absences counted. 

Species richness (the row sum) was conserved per elevational band and species 

occurrence at an elevation was proportional to the input incidence matrix (variable 

column sums). The number of ones and zeros allowed in the random incidence matrices 

can differ based on the null model used to generate them. Ideally, a moderate null model 

balances type I and type II error, i.e. one not too conservative or too liberal (Gotelli 

2000). The most liberal null model choice does not restrict row or column sums as long 

as no row or column contains only zeros (Leibold and Mikkelson 2002). The most 

conservative null models require row and column sums of random matrices to be the 

same as those of the input incidence matrix. After determining the number of embedded 

absences across all random incidence matrices, each value was fit to a z-distribution, 

thereafter an empirical p-value was computed based on the z-score of the original 

incidence matrix. The same process was done to test the significance of turnover, except 

by calculating the number of species replacements along the gradient and then 

normalizing.  

 Random and non-random metacommunity structures were distinguished by 

whether the observed number of embedded absences (coherence) was significant (p < 

0.05). If the number of embedded absences was significantly greater than expected due to 

random chance (negative coherence), then the incidence matrix was classified as having 

checkerboard metacommunity structure (Diamond 1975). Metacommunity structures 

with significant positive coherence were divided into four categories, nested, quasi-
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nested, quasi-anti-nested, and anti-nested. Nested metacommunity structures had 

significantly (p < 0. 05) fewer species replacements (less turnover) than expected due to 

random chance, while anti-nested structures had significantly more. If turnover was not 

significant, then the resulting metacommunity structure was considered quasi-nested or 

quasi-anti-nested (Presley, Higgins, and Willig 2010). An incidence matrix had quasi-

nested structure if the observed number of species replacements was less than the mean, 

but quasi-anti-nested if it was greater than the mean. 

 The number of embedded absences may be impacted by the number of elevational 

bands (rows), while the number of species replacements may increase with the number of 

species (columns). P-values for coherence were predicted by the number of elevational 

bands and turnover p-values by the number of species within in an incidence matrix. A 

robust linear regression was modeled for each taxonomic group with at least ten 

incidence matrices. I used the function “robust_lm” with standard error type “HC3” in 

version 0.12 of the R package “estimatr” (Blair et al. 2018). I chose the option “HC3” 

because it is the optimal choice for linear regressions with small sample sizes 

(MacKinnon and White 1985; Long and Ervin 1998). Using a robust linear regression 

eliminated the violation of heteroscedasticity and reduced type I error by ensuring 

standard error estimates (95% confidence intervals) were not underestimated. The slope 

of each robust linear regression was considered significant for p < 0.05 and R2 ≥ 0.25. 

The restriction on R2 reduced the likelihood of artificially significant slopes caused by 

outliers in the dataset. In other words, the explanatory power of the regression would be 

too low if the regression failed to capture 25% or more of the variance in p-values. 
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Nestedness 

 Anti-nested metacommunity structure and high nestedness may not be mutually 

exclusive, because one value for turnover can have a wide range of nestedness values 

associated with it (Schmera et al. 2018). In addition to turnover z-scores, I calculated two 

other measures of species nestedness for each incidence matrix, relativized nestedness 

(Nrel) and maximum nestedness metric based on overlap and decreasing/differing fill 

(NODFmax) (Almeida-Neto et al. 2008; Podani and Schmera 2012). For two elevational 

bands (incidence matrix rows) x and z in a matrix with n bands, the number of species the 

two bands share is bothxz, the number of species found only in x is onlyx and the number 

of species found only in band z is onlyz. Nrel is defined as #$
%

𝑁𝑟𝑒𝑙*+	*-+ where 𝑁𝑟𝑒𝑙*+ 

equals ./01234	 /56728	/5673
./01234	/56724	/5673

 if bothxz is greater than zero and zero otherwise. NODFmax is 

defined as #$
%

𝑁𝑂𝐷𝐹*+	*-+ where 𝑁𝑂𝐷𝐹*+ equals ./0123
./01234	<=>(	/5672,			/5673)

 if onlyx does 

not equal onlyz and zero otherwise. The numerator of Nrel accounts for the difference in 

the number of species between elevational bands and how many species two bands have 

in common. The numerator of NODFmax, on the other hand, only reflects how many 

species are shared between elevational bands. Both metrics assessed the average 

nestedness of each incidence matrix independent of a latent environmental gradient. Nrel 

and NODFmax were both computed in R using the “designdist” function in version 2.4-6 

of the “vegan” package (Oksanen et al. 2018). Code for each function was provided in 

the supplementary material of Schmera et al. (2018). 
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Abiotic Factors 

 Four combinations of abiotic predictors were tested for multicollinearity, 1) 

number of elevational bands and maximum elevation, 2) number of species and number 

of elevational bands, 3) average annual mean temperature and maximum elevation, and 

4) average annual mean temperature and average annual precipitation. The correlation 

coefficient of each pair was assessed in R with the function “cor”. If two predictors had a 

correlation greater than 0.2 at either local or regional scales, then the two predictors were 

not used together as covariates in the same multiple linear regression. First, the maximum 

elevation of a study site may impact the number of 100 meter elevational bands in which 

at least one species was present. Second, an increase in the number of elevational bands 

may show a similar increase in the number of species. Third, as elevation increases 

atmospheric pressure decreases exponentially, resulting in a monotonic decrease in 

temperature (Jacob 1999). Therefore, the average annual mean temperature for each 

study site may also decrease across study sites with higher maximum elevation. Forth, 

average annual mean temperature may be correlated with average annual precipitation. 

 Assuming the variability in small-mammal habitats increases with an increase in 

maximum elevation, nestedness metrics will decrease as maximum elevation increases 

(Hypothesis 1). The distribution of small-mammals can be greatly limited by increased 

evaporation (Chenoweth 1917), temperature (Pruitt 1959), and even soil texture (Hardy 

1945). If temperature and precipitation are limiting factors of species dispersal along 

elevational gradients, then small-mammal metacommunities will decrease in nestedness 

(species overlap and species replacements) as temperature and precipitation decrease 

(Hypothesis 2). All nestedness metrics (dependent variables) were individually modeled 
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for each taxonomic group with the maximum elevation, average annual mean 

temperature, or average annual precipitation as predictors (independent variables). As 

before, I used the function “robust_lm” with standard error type “HC3”. 

Metacommunity Networks 

 A metacommunity network was created for each incidence matrix based on a 

species by species adjacency matrix (Harary 1962) using the function 

“graph_from_adjacency_matrix” in the R package “igraph” version 1.2.2 with the 

‘weighted’ option as true (Csardi and Nepusz 2006). The adjacency matrix was 

symmetric with zeros along the diagonal to indicate that species do not have edges 

connecting to themselves. The off-diagonal entries in the adjacency matrix represent the 

number of elevational bands species co-occur in. In each metacommunity network an 

edge connected two nodes every time the two species co-occurred at an elevational band, 

creating a weighted network of species co-occurrence (Figure 2). The more two species 

overlap in their elevational range the more edges are drawn between their respective 

nodes in the metacommunity network. An unweighted network is one in which any 

redundant edges between two nodes are not drawn. Two species co-occurring at one 

elevational band is the same as the species co-occurring at multiple elevational bands.  

 A network is connected when a path of edge traversals exists from a one node to 

any other node within the network. For metacommunity networks, connected means 

every species co-occurs with at least one other species at an elevational band. A 

disconnected network is then one in which there exists a node that cannot be reached by 

any series of edge transversals, i.e. at least one node is isolated from all others in the 

network. Connected subsets of nodes in a disconnected network are referred to as 
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connected components (Allesina et al. 2005; Hopcroft and Tarjan 1973). The nodes in 

each component are only connected to other nodes within that component, while the 

components are disconnected from other components in the network.  

 There are many ways to measure the level of connectivity in a network (Cioabǎ 

2010; Estrada and Benzi 2017; Fiedler 1973). One simple measure of connectivity is 

vertex connectivity, the minimum number of nodes that must be deleted to separate a 

connected network into two connected components (Harary and Palmer 1973; Harary 

1969). If a network is disconnected, then the vertex connectivity is zero (Figure 3). I 

defined the species deletion ratio (SDR) as the vertex connectivity divided by the total 

number of nodes, N, within the network. The maximum number of nodes that can be 

removed to disconnect a network is N-1, therefore SDR can be at most (N-1)/N. A high 

SDR implies many species must be removed from the network to disconnect at least one 

node in the network and the metacommunity network is more connected. SDR is likely to 

increase as nestedness increases and be associated with nested metacommunity structure. 

 The vertex connectivity of each network was calculated with the function 

“vertex_connectivity” also in the “igraph” package in R. The algorithm iterates through 

all possible node deletions and reports only the minimum number of nodes that must be 

deleted, but not the identity of these nodes. Deleting a node from the network removes all 

the edges connected to that node, thus the vertex connectivity is the same for both the 

weighted and unweighted network. To further understand the impact of species deletions 

on the metacommunity, the metacommunity structure of all connected components with 

eight or more species was assessed in MATLAB 2018a by analyzing the incidence 

matrices with all disconnected species removed. The taxonomic group for each connected 
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component was not assessed and they were not used in any of the statistical procedures 

described below. 

Species Clusters 

 A community or species cluster is a set of nodes that share more edges between 

nodes in the cluster than with nodes outside the cluster. To avoid confusion with the 

biological definition of “community” I will use the term “cluster” or “species cluster” 

exclusively. There are many algorithms for identifying clusters in a network, but two 

common methods are the Louvain method and the Spinglass algorithm (Fortunato and 

Hric 2016). All disconnected networks were excluded from the process of finding species 

clusters, because both clustering algorithms required all nodes to be reached from other 

nodes by edge traversal. Network connectivity was assessed with the function 

“is.connected” in version 2.4 of the “sna” package in R with the connection option as 

“strong” (Butts 2016). The term strongly connected is often reserved for networks in 

which edges have a direction (directed networks) (Khuller, Raghavachari, and Young 

1996). In R, however, a strongly connected directed network and a connected undirected 

network are treated the same.  

 The Louvain method only requires edge weights as an input parameter. Edge 

weights were given as the number of edges between two nodes in the weighted 

metacommunity network. The Louvain method is a hierarchal method based on 

maximizing the modularity of clusters (Blondel et al. 2008). Modularity is a measure of 

edges between nodes in a cluster and edges to nodes outside the cluster. The algorithm 

begins by placing every node in its own cluster then determining the gain in modularity 

by removing node i from its cluster and placing it in the cluster of a directly attached 
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node. All cluster combinations of neighboring nodes are iterated through and the 

combinations with the highest modularity are kept. The process of combining clusters 

continues until no mergers produce a gain in modularity. Species clusters in weighted 

metacommunity networks were detected with the function “cluster_louvain” in the 

“igraph” package in R. 

 The Spinglass algorithm has its roots in statistical physics and is based on the 

Potts model to identify the spin states of different particles (Potts 1951; Reichardt and 

Bornholdt 2006). The algorithm uses simulated annealing to minimize the energy 

function of the network to place nodes in the same spin states or clusters (Kirkpatrick 

1984; Traag and Bruggeman 2009; Yang, Algesheimer, and Tessone 2016). To use 

simulated annealing, the Spinglass algorithm requires a high start and low stop 

temperature and a small cooling factor. In addition, the parameter “gamma” is required to 

tell the algorithm how to treat the importance of existing and non-existing edges. When 

gamma is set to one there is a penalty for non-existing or missing edges between nodes in 

the same cluster that is equal to the reward for existing edges (Reichardt and Bornholdt 

2006). The algorithm further requires a maximum number of spin states or clusters 

possible. By choosing a reasonably large number of spin states the maximum number of 

species clusters in the metacommunity can be identified. Extra spin states or clusters will 

be empty when the algorithm terminates. The Spinglass algorithm is built into the 

“igraph” package in R with the function “cluster_spinglass”. The input parameters were a 

start temperature of 1, stop temperature of 0.01, cooling factor of 0.99, gamma of 1, 

maximum 25 clusters and used the “simple” update rule. 
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 SDR was used to predict the other three nestedness metrics (turnover z-scores, 

Nrel, and NODFmax) to determine if nestedness increases as more species removals were 

required to disconnect the network (Hypothesis 3). A linear mixed effects model was 

used with the function “lme” in the R package “nlme” version 3.1-131 by treating study 

site number as a random effect (Pinheiro et al. 2017). The study site number was an 

arbitrary label assigned to each study site to allow incidence matrices which share 

overlapping area to be grouped together. Study site number was treated as categorical in 

the linear mixed effects model. The number of species clusters was used as a categorical 

variable in conjunction with SDR if the linear mixed effects model had a significant slope 

and explained at least 25% of the variance in the nestedness metric (Hypothesis 4). 

Marginal R2 values were assessed separately with the function “sem.model.fits” in the R 

package “piecewiseSEM” (Lefcheck 2016; Nakagawa and Schielzeth 2013). A minimum 

of ten incidence matrices were required to calculate an intercept adjustment between the 

number of species clusters. Heteroscedasticity was not controlled for by the linear mixed 

effects model, but was checked visually by plotting fitted versus residual values. The 

number of species clusters identified for each network by the two clustering algorithms 

were compared with a paired Wilcoxon signed rank test in R with the function 

“wilcox.test”.  
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3. RESULTS 

Metacommunity Structures 

 Fifty-nine literature sources were used to delimit 104 study sites from which 337 

incidence matrices were generated. The latent environmental gradient was strongly 

correlated (𝜌 ≥0.8) with the elevational gradient in 269 of the 337 incidence matrices 

(Figure 3). Twenty-three of the 31 disconnected metacommunity networks, however, 

were not strongly correlated and over half had a correlation below 0.5. Of the 118 local-

level incidence matrices 1 was checkerboard, 31 random, 30 anti-nested, 48 quasi-anti-

nested, 5 quasi-nested, and 3 nested (Table A1). Of the 219 regional-level matrices, 1 was 

checkerboard, 19 random, 91 anti-nested, 74 quasi-anti-nested, 31 quasi-nested, and 3 

nested (Table A2). The number of species or elevational bands in an incidence matrix did 

not impact the identification of metacommunity structure (Table 1; Table 2).  

 Across all local and regional-level incidence matrices 50 (about 15%) were 

identified as having random metacommunity structure. Twenty-five (half) of the random 

metacommunity structures had disconnected networks in which one or more species did 

not overlap with any other species in the assemblage. In other words, the taxonomic 

group of species resulted in the inclusion of one or more species that shared no 

elevational band with any other species, thus SDR was zero for these metacommunity 

networks. Eighteen of the 25 disconnected metacommunity networks with random 

metacommunity structure had 8 or more species within a connected component. Two 

metacommunity networks reduced to identical connected components (same species 

composition) when disconnected species were removed, but all others remained unique. 

Only 2 connected components remained random, while the other 16 (or 15 excluding the 
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duplicate connected component) produced a non-random metacommunity structure 

(Table B1). 

Abiotic Factors 

 The number of elevational bands (rows) was correlated (r>0.2) with the 

maximum elevation of a study site for both local (r=0.769) and regional (r=0.554) 

incidence matrices. The number of species (columns) showed a positive correlation with 

the number of elevational bands (rows) for local-level matrices (r=0.233), but this was 

not observed at the regional-level (r=0.080). Average annual mean temperature showed a 

negative correlation with maximum elevation at both scales, local (r=-0.714) and 

regional (r=-0.276). Average annual mean temperature and average annual precipitation 

showed a positive correlation at both scales, local (r=0.548) and regional (r=0.655). 

Multiple predictors were not used at either scale to avoid issues with multicollinearity.  

 None of the four nestedness metrics consistently decreased across taxonomic 

groups as maximum elevation increased (Tables 3-6). Relativized nestedness and 

NODFmax decreased significantly with a linear increase in maximum elevation in only the 

local-level superorder taxonomic group. All four nestedness metrics were not 

significantly correlated with temperature or precipitation across local and regional scales 

(Tables 7-14). Only relativized nestedness for the local-level multiple superorders group 

increased significantly and explained more than twenty-five percent of the variance in 

relativized nestedness values. 
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Metacommunity Networks 

 Turnover z-scores decreased significantly as SDR increased at the local-level 

(t64=-5.203, p < 0.05), but the model fit was poor (R2=0.160). A significant decrease in 

turnover z-scores as SDR increased was not detected at the regional-level (R2=0.008, 

t167=1.289, p=0.1) (Figure 4). Nrel increased at local (R2=0.323, t64=7.466, p < 0.05) and 

regional (R2=0.342, t167 =9.370, p < 0.05) scales as SDR increased (Figure 5). NODFmax 

did not show a significant decrease at either local (R2=0.028, t64=1.714, p=0.09) or 

regional (R2=0.021, t167=1.892, p=0.06) scale as SDR increased (Figure 6).  

 Sixteen local and fifteen regional-level disconnected networks were excluded 

from species clustering analysis. The number of species clusters determined by the 

Louvain method was significantly less (W=37, p<0.05) than the number determined by 

the Spinglass algorithm (Figure 7). The number of species clusters detected by the 

Louvain method ranged from one to four at both scales. Local-level networks with two 

and three species clusters had sufficient sample sizes to fit linear mixed effects models to, 

while regional-level had sufficient sample size for one, two, and three species clusters. 

The number of clusters in the Spinglass algorithm ranged from one to five, but only 

networks with two and three species clusters had sufficient sample sizes at both scales. 

When the number of species clusters was included as a categorical predictor along with 

SDR, there was no difference in Nrel between metacommunity networks with one, two, or 

three clusters for either clustering algorithm (Table 15; Table 16). 
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4. DISCUSSION 

Metacommunity Structure 

 The majority of small-mammal metacommunities were quasi-anti-nested and anti-

nested. The elevational gradient was highly correlated (𝜌 ≥0.8) with the latent 

environmental gradient (determined via reciprocal averaging) in the majority of 

metacommunities. Metacommunity structure was not dependent on incidence matrix size, 

therefore in most cases I can conclude metacommunity structures were likely the result of 

species-specific responses to changes in the elevational gradient. Elevational gradients 

often result in different vegetation zones (Kelt 1999; Clausnitzer and Kityo 2001) and are 

known to cause a peak in species richness and diversity at mid-elevations (Brown 2001; 

Lomolino 2001; McCain 2004). The high frequency of quasi-anti-nested and anti-nested 

metacommunity structures was not unexpected as small-mammals are known to track 

changes in habitat type (Rowe and Terry 2014). A quasi-anti-nested metacommunity 

structure was also detected for rodents in western Mexico, but the latent environmental 

gradient was not correlated with the elevational gradient (Lopez-Gonzalez and Lozano 

2015). 

 Metacommunity structure, however, was also dependent on species inclusions and 

exclusions as the number of species per elevational band directly impacts the possible 

random matrices used in the null distribution (Gotelli and Graves 1996). More taxonomic 

groups in one study site may have increased the chance of observing a wider variety of 

metacommunity structures within that site. Of the 53 local study sites only 14 showed a 

change in metacommunity structure between different taxonomic groups, while at the 

regional-level 28 of 51 showed a change. Regional-level study sites typically had a wider 
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variety of species and allowed for the formation of more taxonomic groups. 

 The connectedness of the metacommunity network must also be considered when 

interpreting the results of the metacommunity structure. When one or more species in the 

metacommunity shares no elevational band with another species then the network is 

disconnected. Roughly 88% of the disconnected networks with random metacommunity 

structure changed to a non-random metacommunity structure when disconnected species 

were removed. The majority of disconnected networks as well showed a low correlation 

between the elevational gradient and the latent environmental gradient. The reciprocal 

averaging algorithm was likely unable to place a single disconnected elevational band 

along the latent gradient without generating too many embedded absences. My findings 

support previous warnings that species inclusions and exclusions in an assemblage should 

be based a biological reason (Gotelli and Graves 1996; Gotelli and Ulrich 2012), but this 

reason likely needs to extend beyond the taxonomy of species. Grouping species by 

taxonomy alone can generate too many disconnected metacommunity networks and 

prevent the detection of non-random metacommunity structures.  

 The definition of nestedness must be clearly understood to use the EMS 

framework and compare it with other nestedness metrics as well. The original definition 

asserts nestedness is the loss of species as the environmental gradient is traversed 

(Darlington 1957; Daubenmire 1975), but there is a wide variety of definitions and 

metrics for nestedness (Podani and Schmera 2011; Ulrich and Almeida-Neto 2012; 

Ulrich, Almeida-Neto, and Gotelli 2009; Ulrich and Gotelli 2007). Even though the EMS 

algorithm reorders elevational bands by reciprocal averaging, it still requires the 

existence of an environmental gradient. Nrel and NODFmax, on the other hand, reflect the 



 

 23 

average nestedness of an entire metacommunity and will not reflect an environmental 

gradient, latent or otherwise. Differences in the definition and calculation of nestedness 

are likely why turnover z-scores showed a wide range of Nrel and NODFmax values 

(Figure 8). The broad range of nestedness values for one value of turnover support the 

conclusions of Gotelli and Ulrich (2012) and Schmera et al. (2018) to use the EMS 

framework with caution and with other metrics of nestedness.  

Abiotic Factors 

 Maximum elevation was not a significant predictor of any of the four nestedness 

metrics and could not be associated with metacommunity structures or global patterns of 

nestedness in this study (Tables 3-6). Increases in maximum elevation may be an 

insufficient proxy for increases in the diversity of habitats or vegetative zones, resulting 

in an increase in species turnover and a decrease in nestedness. Using a more 

sophisticated geographic information system to capture heterogeneity of habitats along 

each elevational gradients would be a superior approach. The harsh conditions near 

mountain peaks also make it unlikely for small-mammal communities to occur at the 

highest elevations. In the central and southern Andes Mountains no species have been 

detected above 3,500 meters above sea level (masl) (Novillo and Ojeda 2014). Yet, on 

Mount Kilimanjaro Dendromus insignis was detected at the highest sampling point of 

4,000 masl and could possibly extend above this elevation (Stanley et al. 2014). Using 

the maximum sampled elevation instead of maximum elevation in the region would 

require the highest elevations to be sampled to ensure small-mammal species are absent 

at these elevations due to an inability to survive in these harsh environments, and not 

sampling bias.  
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 The impact of habitat change along the elevational gradient on nestedness metrics 

could be further explored by expanding the geographical scale beyond local and regional. 

A study of nematodes in European lakes found that increasing the geographical scale 

from local to supra-regional led to increases in positive turnover (Dümmer, Ristau, and 

Traunspurger 2016). In desert small-mammal communities, NODF and other metrics of 

nestedness showed an increase with increasing scale from patch to regional (Rodriguez 

and Ojeda 2013). Although this study did not allow for direct comparison between scales, 

only within, it is still an important consideration when interpreting metacommunity 

structure and nestedness results.  

 Average annual mean temperature and average annual precipitation did not show 

any relationship with the four nestedness metrics at either scale (Tables 7-14). Both 

predictors represent an average of averages, as data from WorldClim were averaged from 

1960-1990 then raster cell values were averaged for each study site. This approach may 

not provide a fine enough resolution to associate either temperature or precipitation with 

global differences in nestedness. Warm temperatures near the equator cause greater 

evaporation and more rainfall, but in temperate climates warm summers tend to be dry 

(Madden and Williams 1978; Rusticucci and Penalba 2000; Trenberth and Shea 2005). 

Averaging across a year prevents the detection of changes in temperature and 

precipitation with seasonality.  

 Exploring new abiotic predictors of nestedness is worthwhile, because global 

climate change will impact species distributions (Crozier and Dwyer 2006; Moritz et al. 

2008; Rowe, Finarelli, and Rickart 2010) and will likely impact the observed nestedness 

patterns of small-mammals metacommunities. Other abiotic predictors such as the 
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frequency of seasonal storms or anthropogenic promoters of habitat change may provide 

greater insights into the maintenance of nested and anti-nested patterns. For example, 

terrestrial gastropods in Puerto Rico displayed a temporal trend from anti-nested to nested 

structure following a hurricane (Bloch, Higgins, and Willig 2007). Small-mammals in 

marshlands disturbed by controlled burns and mowing also showed a loss of nestedness 

during periods of disturbance (Herczeg and Horvath 2015). Temporal change in 

nestedness patterns due to disturbance may, however, imply the use of discrete patterns 

from a limited time frame is inappropriate to assess the vast complexity of 

metacommunities across scales (Gotelli and Ulrich 2012). 

Metacommunity Networks 

 The nestedness metric I defined, SDR, was a significant predictor of Nrel (Figure 

5), but not turnover z-scores (Figure 4) or NODFmax (Figure 6). A significant increase in 

SDR with Nrel supports the use of SDR to assess nestedness based on species overlap, but 

could be associated with metacommunity structures. Nestedness was previously explored 

in relation to modularity for ecological networks and demonstrated a negative correlation 

between the two that became more pronounced as connectance increased (Fortuna et al. 

2010). Connectance was defined as the number of edges divided by the number of 

possible edges (Fortuna et al. 2010; Rodrigue, Comtois, and Slack 2017). SDR improves 

on the findings of Fortuna et al. (2010) in two ways. First, modularity is well suited to 

understanding the clustering of nodes in a network, but does not necessarily imply 

nestedness. The Louvain method, which relied solely on modularity to create species 

clusters, did not show a significant decrease in Nrel as the number of species clusters 

increased. Second, a node deletion removes all edges associated with that node, allowing 
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SDR to be independent of the number of edges between nodes and connectance as 

defined above. Connectance in a weighted network is unable to capture the differences in 

edge weights, because calculating the number of possible edges treats all edges as equally 

possible. SDR is a more appropriate measure of connectedness than connectance in 

weighted networks.  

 Small-mammal metacommunity networks with low SDR, however, showed a 

wide range of Nrel values (Figure 5). The wide range of Nrel values may argue against 

SDR as a measure of nestedness, but for its use as an improved measure of connectance. 

Metacommunities with high Nrel and low SDR may have only a few species in the 

metacommunity connecting nested subsets of species along the elevational gradient. In 

other words, highly connected subsets of species linked by the dispersal of a few species. 

Identifying these metacommunities are of great concern as they are likely susceptible to 

the loss of species interactions or potentially reflect the gain of species interaction 

through introduced species. Assume two nested communities are connected by only one 

species. If this species experiences a shift in elevational range not experienced by other 

species in the metacommunity, then the two nested communities may become 

disconnected. The loss of species interactions can have severe consequences on 

ecosystem health and precede species extinctions (Valiente-Banuet et al. 2015). If instead 

these two nested communities are connected by an introduced species, then previously 

isolated pathogens may become more common across the gradient (Slenning 2010; Suzan 

et al. 2015). For example, plague was re-introduced to Madagascar through Rattus rattus 

(Chanteu et al. 1998), a species that has a wide elevation range in d’Anjanaharibe-Sud 

when compared with endemic species (Goodman and Carleton 1998). Therefore, in 
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addition to exploring abiotic factors influencing species dispersal, it will be necessary to 

assess life-history traits of small-mammals and patterns of species introductions to the 

region. Activity patterns and dietary preference, for example, would distinguish between 

species that co-occur at an elevation but do not interact and those that are likely in direct 

competition with one another (Castro-Arellano and Lacher 2009; Pinotti, Naxara, and 

Pardini 2011). It is also necessary to understand how the individual qualities of species 

within an assemblage impact their response to habitat changes to further assess the 

impacts global climate change may have on the nestedness of each system (Moritz et al. 

2008).  

Conclusion 

 The majority of small-mammal metacommunities had quasi-anti-nested and anti-

nested metacommunity structure as defined by the EMS framework and showed a strong 

response to the elevational gradient. Anti-nested metacommunity structures, however, 

had a wide range of Nrel and NODFmax values, highlighting the differences in nestedness 

as defined by species replacements along an environmental gradient and species co-

occurrence independent of a gradient. There are many factors that may promote nested 

metacommunities, but before those mechanisms can be fully assessed it is vital to define 

what nestedness means and to what extent dynamic processes can be inferred from static 

patterns. The EMS framework and other nestedness metrics I investigated only depended 

on species distributions from a short time frame or accumulated records of species 

presence and absence. Despite these limitations, the nestedness of species clusters should 

be further explored with metacommunity networks to understand how network 

connectivity impacts the average nestedness of a metacommunity.  
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TABLES 

Table 1. Coherence P-values were not Predicted by the Number of Elevational Bands. The slope of 

each robust linear regression demonstrates that the number of elevational bands in an incidence matrix does 

not influence p-values for coherence across local or regional scales. Local-level multiple suborders did 

have a significant p-value but R2 was not sufficient.  

Scale Relatedness T DF P-value R2 

Local Family -0.664 31 0.51 0.019 
 Suborder -0.978 13 0.35 0.041 
 Order -0.926 17 0.37 0.029 

 Superorder -0.750 8 0.47 0.145 
 Mult. Superorders -2.346 37 0.02 0.076 

Regional Genus  0.336 8 0.75 0.006 
 Family -1.799 57 0.08 0.032 

 Suborder -1.237 25 0.23 0.081 
 Order -1.307 40 0.20 0.013 
 Superorder -1.408 33 0.17 0.028 
 Mult. Superorders -1.518 41 0.14 0.009 

 
 
Table 2. Turnover P-values were not Predicted by the Number of Species. The slope of each robust 

linear regression was not significant (p > 0.05) demonstrating the number of species in an incidence matrix 

does not influence turnover p-values.  

Scale Relatedness T DF P-value R2 

Local Family -1.307 31 0.20 0.043 
 Suborder 0.180 13 0.86 0.005 
 Order 0.499 17 0.62 0.039 

 Superorder -0.817 8 0.44 0.081 
 Mult. Superorders -1.112 37 0.27 0.019 

Regional Genus 0.628 8 0.55 0.159 
 Family -0.560 57 0.58 0.006 
 Suborder -0.445 25 0.66 0.009 
 Order 1.116 40 0.27 0.041 
 Superorder -0.857 33 0.40 0.014 
 Mult. Superorders -0.650 41 0.52 0.004 
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Table 3. Maximum Elevation was not a significant predictor of Turnover Z-scores. Turnover z-scores 

for each incidence matrix were not predicted by the maximum elevation in the region across local and 

regional scales. No slope values were significant (p < 0.05) with sufficient R2 values (R2 > 0.25).  

Scale Relatedness T DF P-value R2 

Local Family 0.834 31 0.41 0.016 
 Suborder 2.588 13 0.02 0.202 
 Order 0.459 17 0.65 0.014 
 Superorder 1.76 8 0.12 0.228 

 Mult. Superorders 1.577 37 0.12 0.072 
Regional Genus 0.272 8 0.79 0.008 

 Family 0.696 58 0.49 0.012 

 Suborder 1.901 25 0.07 0.057 
 Order -0.306 41 0.76 0.002 
 Superorder 0.054 33 0.96 0 

 Mult. Superorders 1.278 42 0.21 0.053 
 
 
 

Table 4. Maximum Elevation did not Predict Nrel. The maximum elevation in the region was not a 

significant predictor of Nrel for most incidence matrices. Only local-level incidence matrices grouped by a 

single superorder had a significant slope for the robust linear regression and sufficient R2 (value in bold). 

Scale Relatedness Slope T DF P-value R2 

Local Family -2.8E-05 -1.081 31 0.29 0.056 
 Suborder -1.4E-05 -0.478 13 0.64 0.017 
 Order -1.4E-05 -0.337 17 0.74 0.012 
 Superorder -6.7E-05 -3.426 8 0.01 0.613 
 Mult. Superorders -3.2E-05 -1.553 37 0.13 0.071 

Regional Genus -9.0E-05 -2.367 8 0.05 0.496 
 Family -1.4E-05 -0.768 58 0.45 0.012 

 Suborder -3.3E-06 -0.105 25 0.92 0.001 
 Order -4.6E-05 -2.444 41 0.02 0.122 
 Superorder -3.7E-05 -1.469 33 0.15 0.057 
 Mult. Superorders -4.6E-05 -2.456 42 0.02 0.112 

 
 
  



 

 30 

Table 5. Maximum Elevation did not Predict NODFmax. The maximum elevation in the region was not a 

significant predictor of NODFmax for most incidence matrices. Only local-level incidence matrices grouped 

by a single superorder showed significant slope of the linear regression and sufficient R2 (value in bold).  

Scale Relatedness Slope T DF P-value R2 

Local Family -3.7E-05 -1.260 31 0.22 0.079 
 Suborder -6.9E-06 -0.231 13 0.82 0.003 
 Order -4.7E-06 -0.099 17 0.92 0.001 
 Superorder -6.6E-05 -4.697 8 < 0.05 0.518 
 Mult. Superorders -9.8E-06 -0.319 37 0.75 0.004 

Regional Genus -6.0E-05 -1.341 8 0.22 0.261 
 Family 3.8E-05 1.909 58 0.06 0.073 
 Suborder 5.9E-05 1.606 25 0.12 0.124 
 Order 1.6E-05 0.374 41 0.71 0.010 
 Superorder 1.8E-05 0.961 33 0.34 0.020 
 Mult. Superorders 3.3E-05 1.151 42 0.26 0.067 

 
 

Table 6. Maximum Elevation did not Predict SDR. Maximum elevation in the region was not a 

significant predictor of SDR at both local and regional scales.  

Scale Relatedness T DF P-value R2 

Local Family -0.202 31 0.84 0.002 

 Suborder 0.993 13 0.34 0.110 
 Order 0.702 17 0.49 0.061 
 Superorder 0.216 8 0.83 0.006 
 Mult. Superorders -0.405 37 0.69 0.005 

Regional Genus -1.958 8 0.09 0.455 
 Family -0.522 58 0.60 0.006 
 Suborder 0.916 25 0.37 0.040 
 Order -1.791 41 0.08 0.082 
 Superorder -0.661 33 0.51 0.019 
 Mult. Superorders -1.851 42 0.07 0.086 

 
 
  



 

 31 

Table 7. Temperature did not Predict Turnover Z-scores. Average annual mean temperature was not a 

significant predictor of turnover z-scores at either local or regional scales. The slope of the robust linear 

regression fit to each relatedness grouping was not significantly different from zero. 

Scale Relatedness T DF P-value R2 

Local Family 0.124 31 0.90 ~ 0 
 Suborder -0.076 13 0.94 0.001 
 Order -0.405 17 0.69 0.011 
 Superorder -1.065 8 0.32 0.152 
 Mult. Superorders -1.228 37 0.23 0.041 

Regional Genus 1.160 8 0.28 0.125 
 Family -1.147 58 0.26 0.025 
 Suborder -1.654 25 0.11 0.175 
 Order -1.768 41 0.08 0.060 
 Superorder -1.059 33 0.30 0.030 
 Mult. Superorders -1.985 42 0.05 0.094 

 
 

Table 8. Temperature did not Predict Nrel. Average annual mean temperature was not a significant 

predictor of Nrel at either local or regional scales. The slope of the robust linear regression fit to each 

relatedness grouping was not significantly different from zero.  

Scale Relatedness T DF P-value R2 

Local Family -0.307 31 0.76 0.005 
 Suborder -0.036 13 0.97 0.000 
 Order -0.381 17 0.71 0.010 
 Superorder 2.180 8 0.06 0.445 
 Mult. Superorders 0.091 37 0.93 ~ 0 

Regional Genus -1.533 8 0.16 0.363 
 Family -1.318 58 0.19 0.031 
 Suborder 0.268 25 0.79 0.005 
 Order 0.545 41 0.59 0.011 
 Superorder 1.436 33 0.16 0.103 
 Mult. Superorders 1.651 42 0.11 0.083 
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Table 9. Temperature did not Predict NODFmax. Average annual mean temperature was not a significant 

predictor of NODFmax at either local or regional scales. The slope of the robust linear regression fit to each 

relatedness grouping was not significantly different from zero or the amount of variation explained by the 

regression was not sufficient. Only the regional suborder grouping was close to explaining at least 25% of 

the variance in the data.   

Scale Relatedness T DF P-value R2 

Local Family -0.034 31 0.97 ~ 0 
 Suborder -0.151 13 0.88 0.001 
 Order -0.875 17 0.39 0.062 
 Superorder 0.986 8 0.35 0.109 
 Mult. Superorders -1.265 37 0.21 0.045 

Regional Genus -0.611 8 0.56 0.083 

 Family -2.354 58 0.02 0.088 
 Suborder -2.588 25 0.02 0.242 
 Order -0.815 41 0.42 0.022 
 Superorder -0.984 33 0.33 0.053 
 Mult. Superorders -2.221 42 0.03 0.131 

 
 
Table 10. Temperature did not Predict SDR. Average annual mean temperature was not a significant 

predictor of SDR at either local or regional scales. The slope of the robust linear regression fit to each 

relatedness grouping was not significantly different from zero.  

Scale Relatedness T DF P-value R2 

Local Family -0.799 31 0.43 0.033 
 Suborder -0.860 13 0.41 0.140 
 Order -0.459 17 0.65 0.010 
 Superorder -0.816 8 0.44 0.079 
 Mult. Superorders 0.590 37 0.56 0.010 

Regional Genus -1.159 8 0.28 0.122 
 Family -1.188 58 0.24 0.022 
 Suborder -0.247 25 0.81 0.004 
 Order 1.146 41 0.26 0.027 
 Superorder 1.307 33 0.20 0.040 
 Mult. Superorders 1.540 42 0.13 0.058 
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Table 11. Precipitation did not Predict Turnover Z-scores. Average annual precipitation was not a 

significant predictor of turnover z-scores at either local or regional scales. The slope of the robust linear 

regression fit to each relatedness grouping was not significantly different from zero. 

Scale Relatedness T DF P-value R2 

Local Family 0.550 31 0.59 0.012 
 Suborder 0.806 13 0.43 0.070 
 Order 0.703 17 0.49 0.024 
 Superorder -0.546 8 0.60 0.071 
 Mult. Superorders -0.795 37 0.43 0.013 

Regional Genus 0.299 8 0.77 0.006 

 Family -0.661 58 0.51 0.012 
 Suborder -1.296 25 0.21 0.155 
 Order -1.038 41 0.31 0.021 
 Superorder -0.768 33 0.45 0.012 
 Mult. Superorders -0.733 42 0.47 0.020 

 
 
Table 12. Precipitation did not Predict Nrel. Average annual precipitation was only a significant predictor 

of Nrel for the local-level relatedness grouping of multiple superorders (t-score in bold). The trend more 

frequently observed was no relationship between average annual precipitation and Nrel. 

Scale Relatedness T DF P-value R2 

Local Family 1.228 31 0.23 0.061 
 Suborder -0.171 13 0.87 0.005 
 Order 0.438 17 0.67 0.010 
 Superorder 1.344 8 0.22 0.307 
 Mult. Superorders 4.255 37 < 0.05 0.290 

Regional Genus -0.846 8 0.42 0.099 
 Family -1.318 58 0.19 0.025 
 Suborder -0.350 25 0.73 0.006 
 Order 0.249 41 0.80 0.002 
 Superorder 0.821 33 0.42 0.040 

 Mult. Superorders 1.471 42 0.15 0.068 
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Table 13. Precipitation did not Predict NODFmax. Average annual precipitation was not a significant 

predictor of NODFmax at either local or regional scales. The slope of the robust linear regression fit to each 

relatedness grouping was not significantly different from zero. 

Scale Relatedness T DF P-value R2 

Local Family 1.006 31 0.32 0.054 
 Suborder 0.606 13 0.56 0.025 
 Order 1.013 17 0.33 0.051 
 Superorder 0.503 8 0.63 0.054 
 Mult. Superorders 1.250 37 0.22 0.048 

Regional Genus 0.140 8 0.89 0.001 
 Family -0.393 58 0.70 0.003 
 Suborder -1.367 25 0.18 0.091 
 Order -0.201 41 0.84 0.001 
 Superorder -0.303 33 0.76 0.008 
 Mult. Superorders -1.235 42 0.22 0.043 

 
 
Table 14. Precipitation did not Predict SDR. Average annual precipitation was not a significant predictor 

of SDR at either local or regional scales. The slope of the robust linear regression fit to each relatedness 

grouping was not significantly different from zero or the amount of variance explained by the regression 

was not sufficient. Only the grouping of multiple superorders at the local and regional scales had a 

significant slope, but the regressions failed to explain a sufficient amount of variance in the data.  

Scale Relatedness T DF P-value R2 

Local Family 0.542 31 0.59 0.010 
 Suborder -0.313 13 0.76 0.013 
 Order 0.726 17 0.48 0.023 
 Superorder -0.955 8 0.37 0.105 
 Mult. Superorders 2.202 37 0.03 0.110 

Regional Genus -0.579 8 0.58 0.035 
 Family -0.153 58 0.88 ~ 0 
 Suborder 0.651 25 0.52 0.041 
 Order 1.737 41 0.09 0.086 
 Superorder 1.662 33 0.11 0.121 
 Mult. Superorders 2.601 42 0.01 0.154 
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Table 15. The Number of LV Clusters Showed No Difference in Nrel. At the local-level, SDR was a 

significant predictor of Nrel, but intercept adjustments were not significant. There was no difference in the 

nestedness of metacommunity networks with one (Intercept 1), two (Intercept 2), or three (Intercept 3) 

species clusters as determined by the Louvain method. Intercept 2 was treated as the reference category in 

at both scales.  

Scale Fixed Effect Estimate T DF P-value 

Local Slope 0.341 6.387 49 < 0.05 
 Intercept 2 0.613 23.094 49 < 0.05 
 Intercept 3 -0.023 -0.796 49 0.43 

Regional Slope 0.290 7.709 149 < 0.05 
 Intercept 1 0.050 1.766 149 0.08 
 Intercept 2 0.621 33.514 149 < 0.05 
 Intercept 3 -0.006 -0.306 149 0.76 

 
 
Table 16. The Number of SG Clusters Showed No Difference in Nrel. At the local-level, SDR was a 

significant predictor of Nrel, but intercept adjustment was not significant. There was no difference in the 

nestedness of metacommunity networks with two (Intercept 2) or three (Intercept 3) species clusters as 

determined by the Spinglass algorithm.  

Scale Fixed Effect Estimate T DF P-value 

Local Slope 0.322 5.790 49 < 0.05 
 Intercept 2 0.631 22.748 49 < 0.05 
 Intercept 3 0.007 0.277 49 0.78 

Regional Slope 0.333 8.633 143 < 0.05 
 Intercept 2 0.600 31.154 143 < 0.05 
 Intercept 3 0.026 1.770 143 0.0788 
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FIGURES  

 
Figure 1. Metacommunity Network Example. The metacommunity network consists of species (s1 to 

s10) linked through co-occurrence in at the same elevational band on a given gradient. Edge width is 

weighted by the number of times two species coincide at an elevational band. Node size is scaled by the 

total number of edges connecting to the node. Species s1 is connected to five other species at only one site, 

whereas species s5 and s6 connect with every other species at multiple sites. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Vertex Connectivity. Vertex connectivity represents the number of nodes (species) that must be 

removed from the network to disconnect it. In the figure a) the vertex connectivity is one because only 

Dipodomys merriami needs to be deleted to disconnect the network into two connected components. In 

figure b) the network is already disconnected so the vertex connectivity is zero. Even though removing 

Cryptotis goodwini would divide the network into four connected components, the algorithm only looks to 

break the network into at least two connected components. 
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Figure 3. Elevation is Highly Correlated with the Latent Environmental Gradient. The majority of 

incidence matrices (80%) showed a strong correlation (𝜌 ≥ 0.8) between elevation in meters and the 

component score of each elevational band as determined by reciprocal averaging. Yet, only 8 of the 31 

disconnected networks (26%) showed a high correlation. Every elevational band represents 100 meters of 

elevation along the gradient, e.g. 40 elevational bands reflect 4,000 meters of elevation.  
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Figure 4. Turnover Z-Scores Are Not Significantly Related to SDR. Turnover z-scores decreased 

significantly as the species deletion ratio (SDR) increased at a) the local-level (R2=0.160, t64=-5.203, 

p<0.05) in the linear mixed effects model with study site treated as a random effect. A significant decline 

in nestedness as SDR increased was not observed at b) the regional-level (R2=0.008, t167=1.289, p=0.1).  
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Figure 5. Nrel Increases as SDR Increases. Species deletion ratio (SDR) was a significant predictor of Nrel 

at both scales, a) local (R2=0.323, t64=7.466, p<0.05) and b) regional (R2=0.342, t167=9.370, p<0.05) in the 

linear mixed effects model with study site treated as a random effect.  
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Figure 6. NODFmax and SDR Show No Relationship. The species deletion ratio was not a significant 

predictor of NODFmax at either a) local (R2=0.028, t64=1.714, p=0.09) or b) regional (R2=0.021, t167=1.892, 

p=0.06) scales in the linear mixed effects model with study site treated as a random effect.  
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a) LOUVAIN                                                        b) SPINGLASS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) LOUVAIN                                                        d) SPINGLASS 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Louvain Found Less Clusters than Spinglass. An example of the output for Louvain (left) and 

Spinglass (right) clustering algorithms on weighted metacommunity networks. Edge weights are not 

displayed to improve the ease of viewing. The metacommunity networks in a) and b) represent the same 

local-level incidence matrix with family relatedness grouping and Clementsian metacommunity structure. 

The vertex connectivity is three and SDR is about 19%. The regional-level incidence matrix in c) and d) 

show how close the two algorithms often came to the same solution. The species assemblage was grouped 

by superorder and had Clementsian metacommunity structure, with a vertex connectivity of nine and SDR 

of 27%. 
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        r = -0.18             r = -0.16 
 
 
   c)          d) 
 
 
 
 
 
 
 
 
 
 
 
          r = -0.03                          r = 0.13 
 

 

Figure 8. Anti-nested Metacommunities Have a Wide Range of Nestedness Values. Turnover z-scores 

at both local (left) and regional (right) scales had a wide range of values for Nrel and NODFmax. Turnover z-

scores as well did not show a strong negative correlation with either nestedness metric (r in left-hand 

corner). The results demonstrate that anti-nested metacommunity structures (significant positive turnover z-

scores) can be highly nested under different definitions of nestedness. The EMS framework requires an 

environmental gradient, while Nrel and NODFmax do not.  
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APPENDIX SECTION 

Appendix A 

Table A1. List of All Local-level Incidence Matrices. The study site location, relatedness assemblage 

(multiple meaning multiple superorders), metacommunity structure (MCS), number of species in the 

assemblage (NS), the connectedness of the metacommunity network (NET; connected or disconnected), 

and the reference where source data can be found are listed below. Full reference in Appendix C. Study 

sites in bold showed a change in identified metacommunity structure due to taxonomic relatedness.  

Study Site Assemblage MCS NS NET Reference 
Cumbres 

Calchaquíes, 
Argentina 

Cricetidae Quasi-anti-nested 15 Con Ferro and Barquez 
2009 
Ferro and Barquez 
2014 

 Multiple Quasi-anti-nested 16 Con  

Diamante, Central 
Andes, Mendoza 

Province, Argentina 

Cricetidae Quasi-anti-nested 10 Con Novillo and Ojeda 
2014 

Las Lenas, Central 
Andes, Mendoza 

Province, Argentina 

Cricetidae Random 9 Con Novillo and Ojeda 
2014 

Nevados del 
Aconquija, 
Argentina 

Cricetidae Quasi-anti-nested 12 Con Ferro and Barquez 
2009 
Ferro and Barquez 
2014 

 Multiple Quasi-anti-nested 13 Con  

Sierras de Tilcara, 
Provincia de Jujuy, 

Argentina 

Cricetidae Random 16 Dis Ferro and Barquez 
2014 

 Rodentia Random 17 Dis  
 Multiple Quasi-anti-nested 19 Con  

Sierras de Zenta, 
Provincia de Salta, 

Argentina 

Cricetidae Quasi-anti-nested 17 Con Ferro and Barquez 
2014 

 Rodentia Quasi-anti-nested 18 Con  
 Multiple Quasi-anti-nested 19 Con  

Tunuyan, Central 
Andes, Mendoza 

Province, Argentina 

Cricetidae Random 9 Con Novillo and Ojeda 
2014 

Uspallata, Central 
Andes, Mendoza 

Province, Argentina 

Cricetidae Quasi-anti-nested 8 Con Novillo and Ojeda 
2014 
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Table A1. Continued 
Study Site Assemblage MCS NS NET Reference 

Mt Lewis, 
Queensland, 

Australia 

Muridae Quasi-anti-nested 10 Con Bateman et al. 2010 

 Multiple Quasi-anti-nested 15 Con  
Itatiaia National 

Park, Brazil 
Cricetidae Quasi-anti-nested 17 Con Geise et al. 2014 

 Rodentia Quasi-anti-nested 25 Con  

 Euarchontoglires Quasi-anti-nested 31 Con  

 Didelphidae Nested 10 Con  

 Multiple Quasi-anti-nested 53 Con  
Mineracao Rio 

Tinto Reunidas, 
Brazil 

Cricetidae Anti-nested 10 Con Caceres et al. 2011 

 Rodentia Anti-nested 11 Con  
 Multiple Anti-nested 17 Con  

MMX Corumba 
Mineracao, Brazil 

Rodentia Anti-nested 8 Dis Caceres et al. 2011 

 Multiple Anti-nested 12 Con  
La Picada, Osorno, 

Chile 
Multiple Quasi-anti-nested 9 Con Patterson, Meserve, 

and Lang 1989 
Gucheng, China Rodentia Quasi-anti-nested 9 Con Li, Song, and Zeng 

2003 
 Euarchontoglires Quasi-anti-nested 12 Con  

Jingteshang, China Euarchontoglires Anti-nested 9 Con Li, Song, and Zeng 
2003 

Qomolangma 
National Nature 
Reserve, China 

Muridae Quasi-anti-nested 9 Con Hu et al. 2017 

 Myomorpha Anti-nested 12 Con  
 Euarchontoglires Anti-nested 15 Con  
 Multiple Anti-nested 18 Con  

Xishui, China Myomorpha Anti-nested 8 Con Li, Song, and Zeng 
2003 

 Euarchontoglires Quasi-anti-nested 10 Con  

Tilaran Mtns, Costa 
Rica 

Cricetidae Random 11 Con McCain 2004 

 Myomorpha Random 12 Con  
 Rodentia Quasi-anti-nested 14 Con  
 Multiple Quasi-anti-nested 16 Con  

Chilalo–Galama, 
Arsi, Ethiopia  

Muridae Anti-nested 12 Con Kasso, Bekele, and 
Hemson 2010 

 Multiple Anti-nested 15 Con  
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Table A1. Continued 
Study Site Assemblage MCS NS NET Reference 

d’Ambre, 
Madagascar 

Multiple Nested 8 Con Goodman et al. 1996 

d’Andohahela, 
Madagascar 

Tenrecidae Random 15 Dis Goodman, Jenkins, 
and Pidgeon 1999 

 Multiple Random 16 Dis  

d’Andohahela, 
Madagascar 

Nesomyidae Random 8 Dis Goodman, Carleton, 
and Pidgeon 1999 

 Myomorpha Random 9 Con  

 Multiple Random 9 Dis  

d’Andringitra, 
Madagascar 

Multiple Random 8 Dis Goodman, Raxworthy, 
and Jenkins 1996 

d’Andringitra, 
Madagascar 

Myomorpha Quasi-anti-nested 8 Con Goodman and 
Carleton 1996 

d’Anjanaharibe-
Sud, Madagascar 

Tenrecidae Random 8 Dis Goodman and Jenkins 
1998 (R-transect) 

d’Anjanaharibe-
Sud, Madagascar 

Microgale Random 8 Con Goodman and Jenkins 
1998 (V-transect) 

 Multiple Random 9 Con  

d’Anjanaharibe-
Sud, Madagascar 

Afrotheria Random 8 Dis Goodman and Jenkins 
1998 (S-transect) 

 Multiple Random 9 Dis  
d’Anjanaharibe-

Sud, Madagascar 
Nesomyidae Quasi-anti-nested 8 Con Goodman and 

Carleton 1998 
 Myomorpha Random 9 Con  
 Euarchontoglires Random 10 Con  
 Multiple Random 17 Con  

 Marojejy, 
Madagascar 

Microgale Quasi-nested 12 Con Goodman and Jenkins 
2000 

 Tenrecidae Quasi-anti-nested 15 Con  
 Marojejy, 

Madagascar 
Myomorpha Quasi-anti-nested 8 Con Carleton and 

Goodman 2000 
 Multiple Quasi-anti-nested 12 Con  

Kedah, Malaysia Rodentia Quasi-anti-nested 9 Con Langham 1983 

 Euarchontoglires Quasi-anti-nested 10 Con  
 Multiple Quasi-anti-nested 11 Con  

Mt Kinabalu, 
Sabah, Malaysia 

Rodentia Random 9 Con Nor 2001 

 Euarchontoglires Random 11 Con  
 Multiple Anti-nested 12 Con  

Sierra Mazateca, 
Oaxaca, Mexico 

Cricetidae Anti-nested 16 Con Sánchez-Cordero 2001 

 Rodentia Anti-nested 17 Con  
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Table A1. Continued 
Study Site Assemblage MCS NS NET Reference 

Sierra Mixteca, 
Oaxaca, Mexico 

Cricetidae Anti-nested 21 Con Sánchez-Cordero 2001 

 Rodentia Anti-nested 23 Con  

Camiguin Island, 
Philippines 

Multiple Nested 8 Con Heaney et al. 2006 

Mt Isarog, 
Calabanga, 
Philippines 

Multiple Quasi-nested 8 Con Rickart, Heaney and 
Utzurrum 1991 

Mt Kitanglad, 
Mindanao, 
Philippines 

Muridae Quasi-anti-nested 8 Con Heaney 2001 

 Multiple Quasi-anti-nested 10 Con  

Zambales Mtns, 
Luzon, Phillipines 

Muridae Anti-nested 9 Con Balete et al. 2009 

 Multiple Anti-nested 11 Con  

Volcanoes National 
Park, Rwanda  

Multiple Quasi-anti-nested 11 Con Tuyisingize et al. 2013 

Drakensberg Mtns, 
South Africa 

Myomorpha Quasi-anti-nested 9 Con Armstrong and van 
Hensbergen 1996 

 Rodentia Quasi-anti-nested 10 Con  
 Multiple Quasi-anti-nested 13 Con  

Giant's Castle  
Game Reserve,  

South Africa 

Multiple Quasi-nested 9 Con Rowe-Rowe and 
Meester 1982 

Guanshan, Taiwan Multiple Random 8 Con Yu 1994 

Yushan, Taiwan Multiple Quasi-anti-nested 8 Con Yu 1994 

Mt Maru, Tanzania Rodentia Anti-nested 8 Con Stanley and Kihaule 
2016 

 Multiple Anti-nested 10 Con  

Mt Kilimanjaro, 
Tanzania 

Myomorpha Quasi-anti-nested 9 Con Stanley et al. 2014 

 Rodentia Quasi-anti-nested 10 Con  
 Multiple Quasi-anti-nested 16 Con  

Ruaha National 
Park, Tanzania 

Muridae Random 11 Dis Stanley, Rogers, and 
Kihaule 2015 

 Myomorpha Quasi-nested 15 Dis  
 Rodentia Random 17 Dis  
 Multiple Random 20 Dis  
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Table A1. Continued 
Study Site Assemblage MCS NS NET Reference 

Udzungwa Mtns, 
Tanzania 

Muridae Quasi-anti-nested 10 Con Stanley et al. 2005 

 Myomorpha Quasi-anti-nested 11 Con  

 Multiple Anti-nested 18 Con  
Udzungwa Mtns, 

Tanzania 
Muridae Quasi-anti-nested 14 Con Stanley and Hutterer 

2007 
 Soricidae Quasi-anti-nested 9 Con  

 Multiple Quasi-anti-nested 23 Con  

Mt Elgon, Uganda  Muridae Anti-nested 9 Con Clausnitzer and Kityo 
2001 

 Myomorpha Anti-nested 12 Con  
Rwenzori, Uganda Soricidae Checkerboard 8 Dis Kerbis Peterhans et al. 

1998 

 Laurasiatheria Random 10 Con  
 Muridae Quasi-anti-nested 10 Con  
 Myomorpha Anti-nested 13 Con  

 Rodentia Anti-nested 14 Con  
 Multiple Anti-nested 25 Con  

Deep Canyon 
Transect, Colorado 
Desert, California, 

USA 

Rodentia Quasi-anti-nested 11 Con Kelt 1999 

Ruby, Nevada, USA Myomorpha Quasi-nested 8 Con Rowe, Finarelli and 
Rickart 2010 

 Rodentia Random 16 Con  
 Multiple Random 23 Con  

Ruby, Nevada, USA Cricetidae Random 9 Con Borell and Ellis 1934 
Rowe, Finarelli, and 
Rickart 2010 

 Myomorpha Random 10 Con  
 Rodentia Anti-nested 21 Con  
 Euarchontoglires Anti-nested 22 Con  
 Multiple Anti-nested 25 Con  
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Table A2. List of All Regional-level Incidence Matrices. The study site location, relatedness assemblage 

(multiple meaning multiple superorders), metacommunity structure (MCS), number of species in the 

assemblage (NS), the connectedness of the metacommunity network (NET; connected or disconnected), 

and the reference where source data can be found are listed below. Full reference in Appendix C. Study 

sites in bold showed a change in identified metacommunity structure due to taxonomic relatedness. 

Study Site  Assemblage MCS NS NET Reference 

Central Andes, 
Mendoza Province, 

Argentina 

Cricetidae Anti-nested 14 Con Novillo and 
Ojeda 2014 

Northwest Argentina Akodon Quasi-anti-nested 8 Con Ferro and 
Barquez 2009 
Ferro and 
Barquez 2014 

 Cricetidae Quasi-anti-nested 29 Con  
 Rodentia Quasi-anti-nested 31 Con  
 Multiple Quasi-anti-nested 34 Con  

Urucum Mtns, Brazil Cricetidae Anti-nested 10 Con Caceres et al. 
2011 

 Rodentia Anti-nested 12 Con  
 Multiple Anti-nested 19 Con  

Mt Cameroon, 
Cameroon & Nigeria + 

Bioko Island, Equatorial 
Guinea 

Muridae Quasi-anti-nested 13 Con Cronin et al. 2014 

 Rodentia Quasi-anti-nested 14 Con  
 Multiple Quasi-anti-nested 21 Con  

Costa Rica Reithrodontomys Quasi-anti-nested 8 Con McCain 2006 
 Cricetidae Anti-nested 29 Con  
 Rodentia Anti-nested 35 Con  

Bale Mtns, Ethiopia  Muridae Anti-nested 10 Con Clausnitzer and 
Kityo 2001 
Yalden 1988 

 Myomorpha Anti-nested 14 Con  
 Multiple Anti-nested 19 Con  

Chebera Churchura 
National Park, Ethiopia 

Muridae Quasi-nested 12 Con Datiko and 
Bekele 2014 

 Multiple Quasi-nested 14 Con  
Menagesh State Forest, 

Ethiopia 
Muridae Quasi-anti-nested 8 Con Bekele 1996 

 Myomorpha Anti-nested 10 Con  
 Rodentia Quasi-anti-nested 11 Con  
 Multiple Quasi-anti-nested 12 Con  
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Table A2. Continued 

Study Site  Assemblage MCS NS NET Reference 

Mt Qilian, China Myomorpha Anti-nested 13 Con Li, Song, and 
Zeng 2003 

 Rodentia Quasi-anti-nested 15 Con  
 Euarchontoglires Anti-nested 18 Con  

Nothern Central 
America, Guatemala & 

Honduras 

Cryptotis Random 8 Dis Woodman et al. 
2012 

 Soricidae Random 12 Disc  
Sulawesi, Indonesia Sciuridae Anti-nested 9 Con Musser et al. 

2010 
Musser 2014 

 Bunomys Anti-nested 8 Con  
 Rodentia Anti-nested 17 Con  

d'Ambre, Madagascar Tenrecidae Quasi-anti-nested 8 Con Goodman et al. 
1996 

 Multiple Quasi-nested 13 Con  
d'Andohahela, 

Madagascar 
Microgale Anti-nested 10 Con Goodman, 

Carleton, and 
Pidgeon 1999 
Goodman, 
Jenkins, and 
Pidgeon 1999 

 Tenrecidae Random 15 Disc  
 Nesomyidae Random 8 Disc  
 Myomorpha Random 9 Con  
 Multiple Random 26 Con  

d'Andringitra, 
Madagascar 

Microgale Quasi-nested 11 Con Goodman and 
Carleton 1996 
Goodman and 
Rasolonandrasana 
2001 
Goodman, 
Raxworthy, and 
Jenkins 1996 

 Tenrecidae Quasi-anti-nested 16 Con  
 Nesomyidae Quasi-anti-nested 9 Con  
 Myomorpha Anti-nested 11 Con  
 Strepsirrhini Random 12 Dis  
 Euarchontoglires Quasi-anti-nested 23 Con  
 Multiple Quasi-anti-nested 39 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

d'Anjanaharibe-Sud, 
Madagascar 

Microgale Quasi-nested 9 Con Goodman and 
Carleton 1998 
Goodman and 
Jenkins 1998 

 Tenrecidae Quasi-nested 11 Con  
 Nesomyidae Quasi-anti-nested 8 Con  
 Myomorpha Random 9 Con  
 Euarchontoglires Random 10 Con  
 Multiple Quasi-nested 21 Con  

Marojejy, Madagascar Microgale Quasi-nested 12 Con Goodman and 
Jenkins 2000 
Carleton and 
Goodman 2000 

 Tenrecidae Quasi-anti-nested 15 Con  
 Myomorpha Quasi-anti-nested 8 Con  
 Euarchontoglires Quasi-anti-nested 23 Con  

Mt Kinabalu, Sabah, 
Malaysia 

Sciuridae Quasi-nested 21 Con Nor, 2001 

 Muridae Quasi-anti-nested 21 Con  
 Rodentia Quasi-anti-nested 43 Con  
 Euarchontoglires Quasi-anti-nested 47 Con  
 Multiple Quasi-anti-nested 53 Con  

El Cielo Biosphere 
Reserve, Tamaulipas, 

Mexico 

Cricetidae Anti-nested 16 Con Sabate and 
Paniagua 2002 

 Rodentia Anti-nested 26 Con  
 Euarchontoglires Anti-nested 28 Con  
 Caniformia Anti-nested 9 Con  
 Laurasiatheria Anti-nested 12 Con  
 Multiple Anti-nested 40 Con  

La Sepultura Biosphere 
Reserve, Chiapas, 

Mexico 

Cricetidae Quasi-anti-nested 10 Con Sabate and 
Paniagua 2002 

 Rodentia Quasi-anti-nested 19 Con  
 Euarchontoglires Quasi-anti-nested 20 Con  
 Caniformia Quasi-nested 9 Con  
 Euarchontoglires Quasi-nested 29 Con  

North-West Oaxaca, 
Mexico 

Peromyscus Anti-nested 9 Con Sanchez-Cordero 
2001 

 Cricetidae Anti-nested 24 Con  
 Rodentia Anti-nested 26 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

Sierra de Atoyac de 
Alvarez, Guerrero, 

Mexico 

Cricetidae Quasi-anti-nested 12 Con Sabate and 
Paniagua 2002 

 Rodentia Quasi-nested 15 Con  
 Euarchontoglires Quasi-nested 16 Con  
 Multiple Quasi-nested 22 Con  

Sierra Gorda, 
Queretaro, Mexico 

Cricetidae Quasi-anti-nested 19 Con Sabate and 
Paniagua 2002 

 Rodentia Quasi-nested 30 Con  
 Euarchontoglires Quasi-nested 31 Con  
 Laurasiatheria Quasi-nested 9 Con  
 Multiple Quasi-nested 42 Con  

Sierra de Juarez, 
Oaxaca, Mexico 

Cricetidae Quasi-anti-nested 18 Con Sabate and 
Paniagua 2002 

 Rodentia Quasi-anti-nested 22 Con  
 Multiple Quasi-anti-nested 32 Con  

New Guinea Dasyuridae Anti-nested 13 Con Rickart 2001 
 Peramelidae Anti-nested 9 Con  
 Phalangeridae Anti-nested 9 Con  
 Pseudocheiridae Quasi-anti-nested 9 Con  
 Phalangeriformes Quasi-anti-nested 25 Con  
 Diprotodontia Quasi-anti-nested 27 Con  
 Marsupialia Anti-nested 49 Con  
 Rattus Quasi-anti-nested 14 Con  
 Muridae Quasi-nested 70 Con  
 Multiple Nested 121 Con  

New Guinea Highlands, 
Egna Province, Papua 

New Guinea 

Muridae Quasi-nested 11 Con Helgen 2007 

 Phalangeriformes Quasi-anti-nested 9 Con  
 Diprotodontia Quasi-anti-nested 12 Con  
 Marsupialia Quasi-anti-nested 19 Con  
 Multiple Quasi-anti-nested 31 Con  

Manu Biosphere 
Reserve, Manu, Peru 

Didelphidae Quasi-nested 17 Con Solari et al. 2006 
Pacheco et al. 
1993 

 Muridae Anti-nested 25 Con  
 Hystricomorpha Random 13 Dis  
 Rodentia Quasi-anti-nested 43 Con  
 Euarchontoglires Quasi-anti-nested 44 Con  
 Multiple Quasi-nested 78 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

Mt Isarog, Luzon, 
Philippines 

Multiple Nested 8 Con Rickart, Heaney, 
and Utzurrum 
1991 

Mt Kitanglad, Sumilao, 
Bukidnon, Philippines 

Muridae Anti-nested 10 Con Musser and 
Heaney 1992 

 Myomorpha Anti-nested 13 Con  
 Euarchontoglires Anti-nested 14 Con  
 Multiple Anti-nested 17 Con  

Mt Kitanglad, 
Mindanao, Philippines 

Multiple Anti-nested 18 Con Heaney 2001 
Musser and 
Heaney 1992 

Yushan, Taiwan Multiple Anti-nested 9 Con Yu 1994 
Yushan National Park, 

Taiwan 
Multiple Anti-nested 9 Con Yu 1994 

Rwenzori, Uganda Soricidae Quasi-anti-nested 8 Con Kerbis Peterhans 
et al. 1998 

 
 

Laurasiatheria Quasi-anti-nested 13 Con  

 Muridae Quasi-anti-nested 18 Con  
 Myomorpha Quasi-anti-nested 21 Con  
 Rodentia Quasi-anti-nested 25 Con  
 Multiple Anti-nested 40 Con  

Aquarius Mtns, Arizona, 
USA 

Cricetidae Anti-nested 13 Con Rickart 2001 

 Myomorpha Anti-nested 14 Con  
 Sciuridae Anti-nested 9 Con  
 Rodentia Anti-nested 23 Con  
 Euarchontoglires Anti-nested 27 Con  
 Multiple Anti-nested 30 Con  

Deep Canyon, 
California USA 

Heteromyidae Random 8 Con Shepherd and 
Kelt 1999 

 Castorimorpha Quasi-nested 9 Con  
 Cricetidae Quasi-anti-nested 10 Con  

 Rodentia Anti-nested 24 Con  
 Euarchontoglires Anti-nested 27 Con  
 Multiple Anti-nested 29 Con  

Ruby Mtns, Nevada, 
USA 

Cricetidae Quasi-nested 10 Con Rickart 2001 

 Myomorpha Quasi-nested 11 Con  
 Rodentia Quasi-anti-nested 20 Con  
 Euarchontoglires Quasi-anti-nested 25 Con  
 Multiple Quasi-anti-nested 27 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

Snake Mtns, Nevada, 
USA 

Cricetidae Quasi-anti-nested 10 Con Rickart 2001 

 Rodentia Quasi-anti-nested 23 Con  
 Euarchontoglires Quasi-nested 27 Con  
 Multiple Quasi-anti-nested 29 Con  

Deep Creek Range, 
Nevada & Utah, 

USA 

Cricetidae Anti-nested 11 Con Rickart 2001 

 Rodentia Anti-nested 24 Con  

 Euarchontoglires Anti-nested 29 Con  
Abajo Mtns, Utah, 

USA 
Rodentia Anti-nested 15 Con Rickart 2001 

 
 

Euarchontoglires Anti-nested 17 Con  

 Multiple Anti-nested 21 Con  
Fishlake, Utah, 

USA 
Cricetidae Anti-nested 12 Con Rickart 2001 

 Myomorpha Anti-nested 13 Con  
 Sciuridae Quasi-anti-nested 10 Con  
 Rodentia Anti-nested 26 Con  
 Euarchontoglires Anti-nested 33 Con  
 Multiple Anti-nested 36 Con  

Henry, Utah, USA Cricetidae Quasi-anti-nested 9 Con Rickart 2001 
 Rodentia Quasi-anti-nested 16 Con  
 Euarchontoglires Quasi-anti-nested 18 Con  

La Sal, Utah, 
USA 

Cricetidae Quasi-anti-nested 8 Con Rickart 2001 

 
 

Myomorpha Anti-nested 9 Con  

 Rodentia Anti-nested 18 Con  
 Euarchontoglires Quasi-anti-nested 22 Con  
 Multiple Quasi-anti-nested 26 Con  
 Cricetidae Anti-nested 10 Con  

Markagunt, Utah, 
USA 

Lagomorpha Anti-nested 19 Con Rickart 2001 

 Rodentia Random 8 Dis  
 Euarchontoglires Anti-nested 27 Con  
 Multiple Anti-nested 29 Con  
 Multiple Anti-nested 30 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

Oquirrh Mtns, Utah, 
USA 

Cricetidae Random 10 Con Rickart 2001 

 Myomorpha Quasi-anti-nested 11 Con  

 Rodentia Anti-nested 19 Con  
 Euarchontoglires Quasi-anti-nested 21 Con  

Pavant, Utah, USA Cricetidae Random 9 Con Rickart 2001 

 
 

Myomorpha Quasi-anti-nested 10 Con  

 Rodentia Quasi-anti-nested 19 Con  
 Euarchontoglires Quasi-anti-nested 24 Con  
 Multiple Quasi-anti-nested 26 Con  
 Multiple Anti-nested 24 Con  

Raft River Mtns, Utah, 
USA 

Cricetidae Random 11 Dis Rickart 2001 

 Myomorpha Checkerboard 12 Dis  
 Rodentia Random 24 Dis  
 Euarchontoglires Quasi-nested 28 Dis  
 Multiple Random 30 Dis  

Stansbury Mtns, Utah, 
USA 

Cricetidae Quasi-anti-nested 11 Con Rickart 2001 

 Rodentia Nested 20 Dis  
 Euarchontoglires Random 23 Dis  
 Multiple Random 26 Dis  

Tushar, Utah, USA Cricetidae Quasi-anti-nested 9 Con Rickart 2001 
 Myomorpha Anti-nested 10 Con  
 Rodentia Anti-nested 19 Con  
 Euarchontoglires Anti-nested 26 Con  
 Multiple Anti-nested 29 Con  

Uinta, Utah, USA Cricetidae Anti-nested 15 Con Rickart 2001 
 Myomorpha Anti-nested 16 Con  
 Sciuridae Anti-nested 10 Con  
 Rodentia Anti-nested 32 Con  
 Lagomorpha Anti-nested 9 Con  
 Euarchontoglires Anti-nested 41 Con  
 Multiple Anti-nested 46 Con  
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Table A2. Continued 
Study Site  Assemblage MCS NS NET Reference 

Wasatch Plateau, 
Utah, USA 

Cricetidae Anti-nested 12 Con Rickart 2001 

 Myomorpha Anti-nested 13 Con  
 Rodentia Anti-nested 23 Con  
 Lagomorpha Anti-nested 8 Con  
 Euarchontoglires Anti-nested 31 Con  
 Multiple Anti-nested 34 Con  

Wasatch Range, Utah, 
USA 

Cricetidae Quasi-anti-nested 12 Con Rickart 2001 

 Myomorpha Quasi-anti-nested 13 Con  
 Rodentia Quasi-anti-nested 22 Con  
 Lagomorpha Anti-nested 8 Con  
 Euarchontoglires Anti-nested 30 Con  
 Multiple Anti-nested 34 Con  

Great Smoky Mountains 
National Park, USA 

Cricetidae Quasi-anti-nested 14 Con Linzey 2016 

 Myomorpha Quasi-anti-nested 19 Con  
 Rodentia Quasi-nested 26 Con  
 Euarchontoglires Quasi-nested 28 Con  
 Soricidae Anti-nested 8 Con  
 Soricomorpha Anti-nested 11 Con  
 Laurasiatheria Anti-nested 16 Con  
 Multiple Quasi-nested 45 Con  
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Appendix B 

Table B1. Connected Components of Disconnected Networks with Random MCS. All the study sites 

listed were disconnected networks identified as having random metacommunity structure, but one of their 

connected components had at least eight species to re-evaluate the metacommunity structure. CCMCS – 

Connected Component Metacommunity Structure; ONS – Original Number of Species; CCNS – Connected 

Component Number of Species. Full reference in Appendix C. The metacommunity network that reduced 

to identical connected components is in bold.  

Study Site Scale CCMCS ONS CCNS Reference 
Sierras de Tilcara, 

Provincia de Jujuy, 
Argentina 

Local Clementsian 16 15 Ferro and Barquez 2014 

  Clementsian 17 16  
 Guatemala & 

Honduras 
Regional Quasi-anti-nested 12 11 Woodman et al. 2012 

d'Andohahela, 
Madagascar 

Local Clementsian 15 13 Goodman, Jenkins, and 
Pidgeon 1999 

  Clementsian 16 13  
d'Andohahela, 

Madagascar 
Local Random 9 8 Goodman, Carleton, and 

Pidgeon 1999 
d'Andohahela, 

Madagascar 
Regional Clementsian 15 13 Goodman, Jenkins, and 

Pidgeon 1999 
Goodman, Carleton, and 
Pidgeon 1999 

d'Andringitra, 
Madagascar 

Regional Quasi-nested 12 11 Goodman and 
Rasolonandrasana 2001 
Goodman, Raxworthy, 
and Jenkins 1996 
Goodman and Carleton 
1996 

d'Anjanaharibe-Sud, 
Madagascar 

Local Random 9 8 Goodman and Jenkins 
1998 (S-transect) 

Manu Biosphere 
Reserve, Manu, Peru 

Regional Nested 13 11 Solari et al. 2006 
Patterson, Meserve and 
Lang 1989 

Ruaha National Park, 
Tanzania 

Local Quasi-anti-nested 11 10 Stanley, Rogers, and 
Kihaule 2015 

  Quasi-anti-nested 17 16  
  Quasi-nested 20 19  

Raft River Mtns, Utah, 
USA 

Regional Nested 11 10 Rickart 2001 

  Quasi-anti-nested 24 22  
  Quasi-anti-nested 30 28  

Stansbury Mtns, Utah, 
USA 

Regional Quasi-nested 23 22 Rickart 2001 

  Quasi-anti-nested 26 25  
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