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ABSTRACT 

Worldwide, the rate of urbanization has increased over the last several decades and the 

need to adequately identify how urban areas are used increases importance with every year. This 

study applies dynamic time warping and hierarchical clustering methods to a Bluetooth data set to 

identify functional urban regions in Austin, Texas. Examining the distribution of the functional 

urban regions and their spatial configuration allows inferences to be made in relation to the way 

that people use the urban area of Austin. 
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Identifying Functional Urban Regions from Bluetooth Data: 

A Case Study of Austin 

1. Introduction 

From road closures to new construction and rapid population growth, the urban landscape is in 

near constant flux. The United Nations reports in 2014 an urbanization rate of 54% globally with 

North America and Europe much higher at 82% and 73% respectively and yet there are few 

techniques that are suitable to understand the functional configuration and capture the dynamic 

nature of urban land use which are necessary information to build the cities of tomorrow (Sagal, 

Loidl, and Beinat 2012). This research posits a new methodology that can extract and visualize the 

rapidly growing and changing urban environment by incorporating dynamic time warping and 

cluster analysis to identify and define functional urban regions (FUR).  

Though similar research has been conducted using big data to identify FUR’s (Yuan and 

Raubal 2012; Gao et al. 2017), this research seeks to use Bluetooth data at surface street 

intersections to identify clustered patterns instead of measuring speeds or road use patterns. 

Previous research using Bluetooth has focused on finding patterns in road network usage or 

average highway speeds at various hours of the day (Bachmann et al. 2013:34). Previous research 

to define FUR’s has been conducted using social media data (Liu et al. 2015; Zhi et al. 2016; Gao 

et al. 2017) or calls made through cell towers (Ahas et al. 2015; Yuan and Raubal 2012). This 

research seeks to bring together these two bodies of research, identifying FUR’s and Bluetooth 

data analysis, to develop a dynamic methodology to define FUR’s in Austin, Texas. We aim to 

identify clusters of similar time series in Austin, Texas. The clusters will then be used to identify 

into various functional regions such as: residential, work, and recreational (including but not 

limited to – bars, restaurants, movie theatres, etc.). The results will be based on the output of a 

clustering algorithm that takes the output from the distance time warping algorithm to build 

clusters of similar time series across the city. Our main goal is to prove the efficacy of this specific 

workflow and methodology to cluster city regions based on Bluetooth data as opposed to 

traditional remote sensing techniques. Classifying urban areas based on remotely sensed images is 

difficult due to the distribution of heterogeneous urban land-use types and the similarity of the 
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spectral response from different urban land-use types (Herold et al. 2002). While there are 

difficulties with image-based classification of urban areas, this research is more specifically 

concerned with developing a dynamic, data-based approach. This approach is more sensitive to 

the daily patterns of human interactions and movements on the individual level. Furthermore, this 

research program seeks to build upon existing social sensing paradigm by using Bluetooth traffic 

counts as the primary data source. We make use of hourly Bluetooth data collected in 2016 by 

Bluetooth sensors installed at major intersections across Austin. Using the principles of social 

sensing, and clustering and time series analysis, we intend to identify and describe functional urban 

regions across the city of Austin. The benefits of a study of this nature lie in the dynamic way that 

the data can reflect a road closure, or the opening of a new bar and restaurant section of the city. 

The final result of the data analysis will then be cross referenced using traditional remote sensing 

accuracy assessment techniques to determine the overall effectiveness of the data analysis results.  

2. Background 

Big data is normally characterized by the four V’s – velocity, variety, volume and veracity 

(Goodchild 2013). The term velocity is part of the definition of big data because of the tremendous 

amount of data that is constantly being created every day from many different sources from phone 

records to sales at a corporation like Target or even healthcare information. The proliferation of 

devices with internet connection and global positioning systems (GPS) sensors is yet another 

source that unlike the previously mentioned examples are a direct connection to individuals and 

their behavior in both virtual (online) and real (GPS) worlds (Gandomi and Haider 2014). Variety 

refers to the myriad sources of data and data types. Sources vary widely in their type and are not 

confined to technology such as warehouses full of reports that contain huge amounts of data on 

location and contents of archaeological sites (many states in the U.S. have digitized these records, 

see Texas Historical Commission Atlas Map). Another source of huge amounts of data are media 

such as the millions of photos that sites like Flickr and Facebook process every hour or the even 

larger catalogue of videos hosted on sites like YouTube. Volume refers to the sheer amount of data 

that is generated by these myriad sources. Finally, veracity refers to the reliability of the accuracy 

of the data which rely heavily on haw the data is collected, structured and disseminated.   
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The four V’s are what allow researchers from politics to marketing to machine learning to 

leverage the volume and near real-time flow of data into well-informed decisions about the way 

that people speak, choose, and move through the world. Specifically, in the field of geography, 

many big data sources are drawn from social media (Liu et al. 2015; Zhi et al. 2016) where 

geolocated posts and/or photos are used to examine the movement behavior of people and with 

them, their ideas and interests. The rise of large data sets that contain geographic information such 

as twitter, foursquare, and other social networking sites led researchers to examine how those big 

data sets could be leveraged to gain understanding of how individuals move through the world. In 

a social sensing framework, the individual is the analog of the spectral sensor (Liu et al. 2015) on 

remote sensing platforms. This research uses social sensing techniques as a basis for our 

methodology. Specifically, the use of data that is derived from actual human interaction with the 

physical world and use of geo-located technology and leveraging the geo-located data to make 

inferences about the nature of the world and the way that humans interface with it. The built-up 

urban environment is the manifestation of humans engineering the word around them to move the 

human-nature interface to from a wild space to something slightly more controlled.  

2. Literature Review  

2.1. The Nature of Bluetooth Data 

The use of data collected through Bluetooth specifically for geographical research is relatively 

new and therefore there is a paucity of scholarship on the subject. Scholarship in the domain of 

civil engineering has yielded several articles detailing the deployment of Bluetooth systems in 

several major US cities and Toronto since 2008 (Bachmann et al. 2013:34). Bachmann et al. 

describe Bluetooth systems to capture probe vehicles to model traffic flow and calculate velocity 

(2013:35). Probe vehicles were not used in the Austin Bluetooth (ATXBT) data collection. 

Nevertheless, the process and geometry associated with Bluetooth traffic monitoring serves to 

examine how the ATXBT system functions and guide the rest of the current research program.  

One prominent difference between the ATXBT data and the data and processes outlined in 

the literature is the geometry of the roads and BT sensors (Bachmann et al. 2013). In several 

articles the sensors were placed next to a road at a fixed distance to account for the specific 
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geometry of the BT sensor. The ATXBT sensors were placed in traffic control boxes which are 

highly variable in their orientation with respect to the roadway. Another difference is the placement 

of sensors next to highways which indeed experience variability in traffic flowrate, but much less 

so than the stop and go traffic on city surface streets as is the case with the traffic signal loaded 

ATXBT sensors. Bachmann et al concluded in their study that there is a statistically significant 

affect between different traffic states from free-flowing to congested where congested roadways 

made it difficult for accurate sensing (2013:46). Since the sensors geometry and adjacent road type 

are different in the ATXBT system stop and go traffic might not be subject to the same effect.  

Another consideration is Bluetooth penetration into the population. Recent studies have 

put the percentage of devices held by the total population at around 60% of phones in the U.S. and 

up to 80% in Canada (Friesen & McLeod 2015). Since the use of Bluetooth systems currently can 

only represent a percentage of the total number of cars there will always be significant unknown 

quantities of cars that are on the roads but are not counted. Furthermore, although there are 

predictions for Bluetooth penetration in the phone market, a Bluetooth system relies on a device’s 

Bluetooth mode to be turned on but also not be paired with any other device (Friesen & McLeod 

2015). Many people that have both a Bluetooth enabled phone and car pair them for music and 

phone calls and thus are not being counted by the system. This certainly has a significant effect on 

the percentage of total vehicles captured by the system. The total number of unique device 

addresses in the ATXBT dataset is 11,139,076 which leads to the conclusion that the under 

sampling of the population of Austin in this data set is not an issue. Oversampling does not seem 

to be an issue either since Austin is such a diverse city that attracts myriad groups of people from 

all over the country. The largest contributors to the device address total could be attendees of the 

Austin City Limits music festival and the South by Southwest festival.   

2.2 Social Sensing and its Applications in the Big Data Era 

Social sensing combines the techniques used in data science with techniques used in remote 

sensing to identify and define functional urban regions (FUR) in cities (Yuan and Raubal 2012; 

Ahas et al. 2015; Zhang et al. 2017, Gao et al. 2017). There are many articles that apply the concept 

of social sensing to identify space-time patterns (Yuan and Raubal 2012; Liu et al. 2015; Gao et 

al. 2017). The most important aspect of these studies is the time component. By using algorithms 
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to measure the similarity of time trajectories researchers can show how people move through urban 

landscapes and thus can define FURs based on the temporal patterns and spatial clustering (Yuan 

and Raubal 2012; Ahas et al. 2015; Zhang et al. 2017, Gao et al. 2017). This type of analysis 

provides beneficial information to city planners and business owners that is dynamic in nature and 

demonstrates the persistence of human mobility patterns over time. Typically, in social sensing 

points of interest (POI) are used as the basic geographic unit to which geolocated social media 

posts and check ins define. The spatial patterning between POI’s is then used to define the 

functional urban regions such as shopping areas, business districts, education districts and tourist 

attractions (Zhi et al. 2016; Gao et al. 2017).  

 This research contrasts much of social sensing research since it uses the absolute location 

of Bluetooth sensors at intersections instead of mobile phones which have an average of ±5 meters 

accuracy or use cellular towers to triangulate the position of phones. However, the process and 

underpinning theory of this research is very similar to that of other social sensing research projects 

and reports. 

2.3 Dynamic Time Warping - Its Theory and Uses 

Time is the most important part of this research because variations in temporal signature help to 

decipher discrete FUR’s. Time forms the basis for how most people schedule their day and thus 

time dictates when and where people begin and end their movements. For this research, the time 

component is comprised of time-stamped Bluetooth pings at surface street intersections across 

Austin.  This research will use the distance time warping (DTW) algorithm to compare the time 

series between each intersection in the data. The DTW algorithm was chosen because it allows for 

comparison between two different times and can also compensate for time lags and distorted time 

series or time series of different lengths. Studies have used the DTW algorithm to analyze time 

series patterns (Yuan and Raubal 2012; Ying et al. 2016, Chen et al. 2017) concluding that it is a 

robust technique to deploy to analyze temporal patterns.  

For example – if the time curves at 8:00 AM for two intersections do not match perfectly 

the algorithm can compare 8:00 AM from one intersection to 7:00 AM or 9:00 AM at another 

intersection so that the overall pattern of the series can be assessed. The algorithm works by 
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creating a matrix and then finding the shortest possible distance across the matrix providing both 

a vector of the path the algorithm took across the matrix and a number that gives the distance 

across the matrix (Ying et al. 2016). See Figure 1 below for a graphical representation. This 

number is used to determine the similarity or the dissimilarity between two time series. The closer 

to zero the more related and the further from zero the less related. The threshold at which two 

intersections will be deemed related or unrelated remains to be determined. That decision will be 

based on a cursory running of the algorithm comparing at least 20 intersections. 

 

Figure 1. Example of DTW algorithm 

The temporal flexibility of DTW makes it the ideal choice for this research since the overall 

patterns between time series are of most importance, rather than the strict hour by hour relationship 

between two given time series. This leads to a malleable threshold for clustering and therefore 

heightens the probability of larger and more robust clusters and FURs. Another reason DTW is a 

fitting choice for analyzing the intersection time series is its tolerance for outliers (Yuan and 

Raubal 2012). There is a large amount of variability in the total counts between different 

intersections in the ATXBT data set. The IH 35 service road and Riverside intersection is an 

example of an outlier on the upper end of the data as it has a consistent three-figure count for each 

hour of the day and the total number of unique record id counts is almost twice that of any other 

intersection. The DTW algorithm allows for the difference in magnitude to be secondary to the 

overall shape of a time curve instead of the actual counts.  
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2.4 Big (Geo) Data Quality Considerations 

Devillers and Jeansoulin outline several types of error the can be present in any data including 

measurement, assignment, class and spatial generalization, data entry errors, temporal, and 

processing (2006:49). These errors can arise out of necessity (generalization) or user error 

(measurement, assignment and data entry). Another error quality is how vague a definition of an 

object is and how that can affect the quality of a geographic object. Vagueness errors are more 

difficult to control for in data since they are not empirical errors and cannot be examined using 

probability theory or other mathematical solutions (Devillers & Jeansoulin, 2006). Another quality 

issue in geographic data is precision (Devillers & Jeansoulin, 2006). This can refer to spatial 

precision (±10 meters for a DEM), temporal or numeric precision as in the difference in 

programming or database design between float and double precision.  

 The assurance of high-quality data is a necessary condition for any research program on or 

data-based decision process. In the past, data quality from sources like the United States Census 

Bureau were made available “scrubbed” and ready for scientific use (Goodchild 2013:281). To the 

contrary, Big Data cannot be produced or scrubbed in any way like the Census data is since two 

of the key components of Big Data are velocity and volume; too much too fast or said differently, 

too much data to reliably and quickly scrub and shape into useable form. Therein lies the catch-22 

of Big Data. Its volumes of potentially insight-filled data points make it attractive to myriad 

business, intellectuals and governments, but effective process for handling the quality of such large 

datasets have not yet been fully developed (Cai & Zhu 2015:3).  

The ATXBT data set used in this research is subject to quality considerations as well. This 

includes the potential for multiple counts of one vehicle as in the case of a Bluetooth enabled car 

and Bluetooth enabled hand-held device registering in the system as separate pings or pedestrians 

being captured by the system. There are also quality considerations about the percentage of Austin 

drivers that are captured by the system as not every car has Bluetooth and not every individual has 
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a Bluetooth enabled device. Furthermore, a ping can only occur and be registered in the system if 

the device or vehicle has the Bluetooth sensor turned on and discoverable, that is, not paired with 

another Bluetooth device. Though these are serious quality considerations, the methodology of 

this research is more interested in the time series of the number of pings and although some counts 

might not be accurate or capture too many or too few drives, it is not anticipated that that will have 

a negative effect on the results. This is because this research is specifically designed to test a 

specific methodology and not as a basis from which to advise city planning or engineering 

decisions. This methodology could certainly benefit those in civil engineering and city planning 

but the data set itself would need to be more fully examined to address the concerns stated above 

for the results to be used in that capacity. 

3. Methodology 

3.1 Data Pre-processing and Cleaning  

The data used in this project was collected by the City of Austin, Texas over the course of 2016. 

The data collected totals just over 81.6 million records with each record consisting of two time 

stamps – field read and host read, a unique id alpha numeric code, an intersection (i.e. 

ih_35_riverside), and a unique MAC address tied to a Bluetooth. The MAC addresses are 

generated and are not tied to any identifiable information but they can be used to track a single 

device through the sensor locations through time. This research will use a dynamic time warping 

algorithm to compare the temporal sequences between two or more Bluetooth sensors located 

across Austin, Texas. To achieve this, we will return the cumulative counts of Bluetooth pings for 

each hour (8:00 AM – 8:59 AM etc.) of a 24-hour period and then create a matrix with counts at a 

sensor comprising the rows and time comprising the columns. 

From the nine months contained in the original data set, one week (July 3 – 9, 2016) was 

selected as a sample for this analysis. This week was selected because there were no major events 

in the city (normal traffic patterns could be assumed) and this date range captured the highest 

number of intersections than any other week (125). Once the sample week was selected, Server 

Query Language (SQL) was used to calculate the total number of pings that occurred at each 

intersection by hour of the day – for example, the total number of pings during the 08:00 hour at 
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5th and Trinity was 588. The counts were then normalized by dividing each hour total count by the 

largest total count for that intersection. The choice as made to normalize the data because it negates 

the magnitude of the counts so that the temporal curve can be accurately analyzed.  

 The 125 sensor locations will serve as the geographical unit to which each time series will 

be assigned. This will allow for analysis of the patterns of similarity and dissimilarity across space-

time. Further reading will help to decide how to properly divide the areas around each sensor into 

polygons. This might prove difficult as often in urban areas residential areas and commercial areas 

are right next to each other. We used Voronoi polygons derived from the sensor locations to 

spatially visualize the FURs. This polygon layer was clipped using the Austin city limits shapefile. 

3.2 Temporal Signature Similarity and Clustering Calculations 

After the matrices were calculated, the results were analyzed to find meaningful patterns. The 

analysis aimed to identify clustering of similar temporal patterns which, in turn, were used to 

define functional regions such as: work, personal spaces (i.e. bars, restaurants, music venues etc.), 

and residential areas. The analysis also examined outlier patterns that display counter-intuitive 

temporal patterns or do not fit well with the majority of other sensor temporal patterning.  

 The results of the DTW algorithm were then used as the input to the hierarchical cluster 

algorithm, part of the SciPy python package to find and define clusters of similar time series in the 

data set. The method used to build the clusters was Ward’s method, which calculates clusters based 

on the minimum variance in each cluster. This process yielded 8 primary clusters. The intersections 

belonging to each cluster were then averaged to create an average temporal curve that was then 

run through the DTW and clustering algorithms to see if any of the 8 primary clusters could be 

grouped together. This process further narrowed the cluster count from 8 to 4 as seen in Figure 2 

below. Cluster 1 is an outlier and consists of only one intersection and cluster 4 is another outlier 

that consists of only two intersections. Final cluster 2 is formed by primary clusters 2, 3, and 4 and 

cluster 3 is formed by clusters 6, 7, and 8. The dendrogram was cut based on an examination of 

the final cluster temporal signatures as seen in Figure 4. By cutting the dendrogram in this location 

allowed for less ambiguity in the two clusters that exhibit a typical diurnal pattern while allowing 

for the outliers to stand alone for analysis and not skew the other two clusters.  
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Figure 2. Hierarchical Clusters of 8 Original Clusters 
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Figure 3. Methodology Flow Chart 
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3.3 Results 

The results of the analysis show four clusters; two clusters (final clusters 2 and 3) that demonstrate 

a general curve that follows the diurnal cycle where activity rapidly increases beginning around 

06:00, with a morning peak occurring near 08:00. The other two clusters are outliers that do not 

fit within an expected temporal pattern. The curve holds relatively constant through the day with 

a small peak at mid-day around lunch, and then a final and highest daily peak between 16:00 and 

18:00. This overall temporal curve is not surprising for a large urban area like Austin. However, 

there are slight variations in curve shape that represent different FUR’s across the city. Figure 4 

below shows the average curve for the final clusters. The results have forced a reconsideration of 

the hypothesis that there will be three identifiable FUR’s. The home and work FUR’s have been 

collapsed into one because a significant difference between the two was not supported by the data 

for this research. Furthermore, two interesting outlier patterns were observed and are discussed 

below. 

 

Figure 4. The temporal signatures of the four final clusters 
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Figure 5. Primary Cluster Assignments 

The primary clusters were assigned using the equation 𝑥𝑥 = �𝑛𝑛
2
 where n = the number of 

intersections (Jung et al. 2003, Fouedjio 2016) in the sample dataset (125). In this case x = 7.9. 

The dendrogram was cut where 8 clusters could be achieved as seen in in Figure 5. The average 

temporal signature for each cluster were compared using the same DTW and clustering algorithms, 

which resulted in four final clusters (Figure 2). The temporal curve of the final four clusters were 

analyzed to discern which curve could represent each FUR – home, work, and recreation/other. 

The final results of the research show four final clusters. Two of the clusters represent two distinct 

patterns that suggest a day use /night use dichotomy.  The two other clusters are outliers that exhibit 

unusual patterns that do not fit with expected results. The FUR’s were determined by examining 

the patterning of each cluster time curve before 08:00 and after 15:00. The average curve for all 

clusters is similar between these two times, which represent the beginning and end of the typical 

workday.  

Final cluster 2 (orange line in Figure 6 below) was assigned to the home/work FUR for 

several reasons. First, the low frequency of pings in the early morning and late evening, the steep 
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curve between 05:00 and 08:00 and after 18:00, and the peaks at 12:00 and 17:00. The steep curve 

between 06:00 and 08:00 is indicative of many people leaving home to go to work in the morning 

and the opposite is true for the precipitous drop in pings after 18:00. The peak at 17:00 indicates 

people heading home after work.  

 

Figure 6. Final Cluster 2 and the average for clusters 2, 3, and 4. 

 Final cluster 3 (Figure 8) was demonstrated a pattern that allowed it to be identified as 

distinct from final cluster 2. It was assigned to the recreation/other FUR. There is a distinct peak 

between 01:00 and 02:00, which suggests activity around the time when bars close in Austin or 

concerts conclude and patrons head home. The final cluster 3 temporal signature differs from the 

other cluster in the lack of a precipitous drop in ping frequency after the peak at 17:00. This pattern 

reflects that the intersections in final cluster three represent places where traffic is heavier in the 

traditional after work hours where people would go to dinner, movies, concerts, bars, etc. 
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Figure 7. Final Cluster 3 and the average curve for primary clusters 6, 7, and 8. 

Though all three clusters exhibit similar overall curves, specific intersections in the data 

set are outliers based on their shape. These intersections are Riverside and Congress, Circuit of the 

Americas Southgate, and Elroy and McAngus. These intersections form final cluster 4 and 

Riverside and Congress is the sole member of final cluster 1. Its pattern is so distinct from all other 

intersections that it was never put into a cluster with any other intersection. Likewise, the 

intersections of final cluster 4 persisted as a distinct cluster together through to clustering and 

DTW iterations.  These intersections are all members of primary cluster 7 (below), which is part 

of final cluster 2 – the work FUR. In Figure 4, these intersections clearly show how dissimilar they 

are from the curve of all the other clusters. Most notable is how they do not follow the distinct 

diurnal pattern exhibited by final clusters 2 and 3. The final cluster 4 intersections are both located 

in far east Austin, where traffic patterns are more variable than the rest of the city. Riverside and 

Congress is an interesting and unexpected result. It is located near the center of Austin and it is 

difficult to hypothesize why such a result occurred. Given the location of this intersection in 

Austin, this intersection could represent a mixed-use area that does not exhibit patterns that can be 

readily identified by the broadly defined temporal signatures in this study. Further research could 

examine this type of outlier but cross referencing the area with a land use map or census data to 
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get a clearer picture of how this area is used. More research should be conducted to examine how 

the final cluster 4 outlier intersections might change in cluster membership and average temporal 

curve over time since they are on the periphery of the Austin city limits.  

 The final map shows the location of each of the two FUR and two outlier patterns in Austin. 

The polygons representing each region were built using Delaunay triangulation. This process was 

used because it is the best way to represent area coverage based on points but it does introduce so 

uncertainty since home areas, work areas and recreation areas can and often are closely spaced 

meaning that the polygons in the final map might not accurately represent the on-the-ground use 

spaces. Expanding the research to include all intersections in the data and using different 

techniques to spatially visualize the data might produce more accurate results. However, the main 

purpose of this research was to ascertain the efficacy of this methodology instead of striving for 

the most accurate representation of FUR. If a follow up study is possible, making a more accurate 

map of FUR will be a higher priority.  
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Figure 8. Final Classified map of FURs in Austin. 

4. Conclusions 

This research used Bluetooth data acquired from the City of Austin to identify FUR across the city. 

This dynamic method can demonstrate different patterns and show changes in the location of FURs 

over time with higher accuracy and at a shorter turn around than traditional remote sensing 

techniques. The results of this research should be of interest to city planners, marketing strategists 

and entrepreneurs to guide where city infrastructure, advertisement and new business should be 

located respectively. This research should also interest other researchers in myriad fields who are 

interested in spatio-temporal modelling and big data analysis. The use of Bluetooth data shows the 

efficacy of another big data source that can be leveraged to achieve similar results to location-

based social media sources.  
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Using Bluetooth data instead of location-based social media makes use of the exact location 

of every sensor instead of triangulated cell tower locations or GPS error in mobile phones. The 

exact locations allow for more precise measurement at exact locations. However, there exists the 

potential for errors in the Bluetooth data as well, including multiple counts for what should be a 

single ping (a Bluetooth enabled phone in a Bluetooth enabled car counting as two instead of one) 

or odd patterns such as one device only going back and forth between two proximate intersections 

multiple times a day. The latter error type does exist in the dataset but represents less than 

0.00003% of the total number of records and therefore does not pose a significant obstacle to the 

accuracy of the results. Further research into the sources for error in Bluetooth data collection 

should be addressed in another study to refine a technique that has enormous potential for 

providing insights into the mobility patterns of individuals and the way that individuals and the 

population use the road network. 

Only one week was used as a sample from this large data set and further research should 

be conducted to examine if the patterns present in the sample are indicative of the entire data. 

Austin hosts several large festivals throughout the year and it would be interesting to examine how 

these festivals affect the traffic patterns of the city. Studying the temporal curve for intersections 

in this way is sensitive to changes in traffic patterns so it would make sense that some intersections 

would change from one cluster to another as traffic patterns change over time. Further research 

using this same data set would most likely produce interesting results about how the temporal 

signatures change over time. This could allow for a comparison between low traffic and high traffic 

events (e.g. a normal traffic week and a week where the pattern is augmented by an event like 

South by Southwest). Further research could also examine potential errors in the data and attempt 

to calculate the percent of the Austin population captured by the Bluetooth system. This would 

allow researchers to explore how representative this data is of Austin traffic trends.  
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