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FIRST CURVE OF FUCIK SPECTRUM FOR THE
p-FRACTIONAL LAPLACIAN OPERATOR WITH NONLOCAL
NORMAL BOUNDARY CONDITIONS
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ABSTRACT. In this article, we study the Fucik spectrum of the p-fractional
Laplace operator with nonlocal normal derivative conditions which is defined
as the set of all (a,b) € R? such that

Anp(l —a)(=A)gu+ [ulP~2u = Xﬁ(a(u*’)’”1 —bw™)P™Y inQ,
€

Napu=0 inR"\Q,

has a non-trivial solution u, where Q is a bounded domain in R™ with Lipschitz
boundary, p > 2, n > pa, €,a € (0,1) and Q¢ := {z € Q : d(z,00) < €}. We
show existence of the first non-trivial curve C of the Fuc¢ik spectrum which is
used to obtain the variational characterization of a second eigenvalue of the
problem defined above. We also discuss some properties of this curve C, e.g.
Lipschitz continuous, strictly decreasing and asymptotic behavior and non-
resonance with respect to the Fucik spectrum.

1. INTRODUCTION

The Fucik spectrum of p-fractional Laplacian with nonlocal normal derivative is
defined as the set X, of all (a,b) € R? such that

A pl(1 = @) (=A)gu+ [ul?u = 2= (a(u" )P~ —b(u™)"™!) i Q,
€
Nopu=0 inR"\Q,
has a non-trivial solution u, where ) is a bounded domain in R™ with Lipschitz
boundary, p > 2, a, e € (0,1) and Q. := {z € Q : d(z,0) < €}. The (—A)7 is the
p-fractional Laplacian operator defined as

u(z) — u(y) P2 (u(z) — u
(=A)pulzr) == 2p~V~/n (=) |(i/)_| y|n(+£a) (y))dy for all z € R",

(1.1)

and N, is the associated nonlocal derivative defined in [§] as

Napu(z) = 2/Q [ulz) - ufg)_'p;,ffﬁf) — u(y))dy for all x € R™ \ Q.
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Bourgain, Brezis and Mironescu [3] proved that for any smooth bounded domain
Q C R, u e WHP(Q), there exist a constant A, , such that

_ P
lim A, p(1-— a)/ dedy :/ |Vul|P de.
axQ Q

a—1- |x — y|ntre
The constant A, , can be explicitly computed and is given by

_ e
n,p — n—1

or"7 D(2HL)

For a = b = A, the Fucik spectrum in (|1.1)) becomes the usual spectrum that
satisfies

A
App(l—a)(=A)ju+ |ulP~2u = Sxq, [ulPu in Q,
€
Nopu=0 inR"\Q.

In [7], authors proved that there exists a sequence of eigenvalues g () of (L.2)
such that \g (Q) — 0o as k — oco. Moreover, 0 < A1 (Qe) < A2 (Qe) < -+ <
Ake(Q2e) < ..., and the first eigenvalue A; (€) of (1.2 is simple, isolated and can

(1.2)

be characterized as follows

)\I,E(QE)
: [u(z) — u(y)? / /
= f A, (1 — —— = dxd Pdr : Pdr =c¢€5p.
o { p(1—a) o Jo =g xdy + A |u|P dx e |u|? dx e}

The Fucik spectrum was introduced by Fuéik (1976) who studied the problem in one
dimension with periodic boundary conditions. In higher dimensions, the non-trivial
first curve in the Fucik spectrum of Laplacian with Dirichlet boundary for bounded
domain has been studied in [I0]. Later in [6] Cuesta, de Figueiredo and Gossez
studied this problem for p-Laplacian operator with Dirichlet boundary condition.

The Fucik spectrum in the case of Laplacian, p-Laplacian operator with Dirichlet,
Neumann and Robin boundary condition has been studied by many authors, for
instance [2, Bl [I8, 20} [7, 22]. Goyal and Sreenadh [I4] extended the results of
[6] to nonlocal linear operators which include fractional Laplacian. The existence
of Fucik eigenvalues for p-fractional Laplacian operator with Dirichlet boundary
conditions has been studied by many authors, for instance refer [23] 24]. Also, in
[15], Goyal discussed the Fucik spectrum of of p-fractional Hardy Sobolev-Operator
with weight function. A non-resonance problem with respect to Fucik spectrum
is also discussed in many papers [6, 21, [16]. We also refer to the related papers
[9, 12, 13, [17].

The inspiring point of our work is [14] [I5], where the existence of a nontrivial
curve is studied only for p = 2 but the nature of the curve is left open for p # 2.
In the present work, we extend the results obtained in [I4] to the nonlinear case
of p-fractional operator for any p > 2 and also show that this curve is the first
curve. We also showed the variational characterization of the second eigenvalue of
the operator associated with . There is a substantial difference while handling
the nonlinear nature of the operator. This difference is reflected while constructing
the paths below a mountain-pass level (see the proof of Theorem [L.1). To the
best of our knowledge, no work has been done on the Fucik spectrum for nonlocal
operators with nonlocal normal derivative. We would like to remark that the main
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result obtained in this paper is new even for the following p-fractional Laplacian
equation with Dirichlet boundary condition:

(—A)yu+ JulP~?u = a(u™)P™t —b(u")Pt inQ, wu=0onR"\Q.
With this introduction, we state our main result.

Theorem 1.1. Let s > 0 then the point (s + c(s), c(s)) is the first nontrivial point
of ¥, in the intersection between ¥, and the line (s,0) +t(1,1) of (1.1).

This article is organized as follows: In section 2 we give some preliminaries. In
section 3 we construct a first nontrivial curve in 3,, described as (s + ¢(s), c(s)).
In section 4 we prove that the lines A; (€2¢) X R and R x A1 (€2) are isolated in
Yp, the curve that we obtained in section 3 is the first nontrivial curve and give
the variational characterization of second eigenvalue of . In section 5 we prove
some properties of the first curve and non resonance problem.

2. PRELIMINARIES

In this section we assemble some requisite material. By [8] we know the nonlocal
analogue of divergence theorem which states that for any bounded functions v and
v € C?, it holds that

[-agu@de=- [ Nugute) s
Q Qc

More generally, we have following integration by parts formula

Hayp(u,v):Av(x)(—A)gu(x) dx—i—/ v(2) Ny pu(z) de,

c

where Ho p(u, v) is defined as

Ha’p(’uq/u) = A "LL(.’E) _ u(y)|p_2(u(m) — u(y))(v(m) — U(y>)dy7 Q = RQn\(Qc)?

|z — y[rtPe
Now, given a measurable function v : R® — R, we set
lallap = (lull 7o) + b )P, where [ulap = (Hap(u,u)) /P (2.1)
Then || - ||a,p defines a norm on the space
WP = {u: R" — R measurable : ||u|q, < co}.

Clearly W*P C W*P(Q)), where W*P(Q)) denotes the usual fractional Sobolev
space endowed with the norm

e =l + ([ G gray) ™"

oy
To study the fractional Sobolev space in detail see [19].

Definition 2.1. A function u € W*P is a weak solution of (L.1), if for every
v € WPy satisfies

App(1— ) Ho p(u,v) +/ u|P~2uv — g/ (ut)P~lo + Q/ (u™ )P~ tw = 0.
Q € Ja. Qe

€
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Now, we define the functional J associated to problem (1.1f) as J : W*»P — R
such that

ey [ @)~ u) e
I = Ayt =) [ T eyt [

—%/Q (u+)pd:r+§/g (u™)P d.

e €

Then J is Fréchet differentiable in WP and for all v € W*P.
b
(J'(w),v) = Ap (1 — @) Hap(u,v) —|—/ |ulP~2uv — E/ (uT)Ptu+ 7/ (u™)P~ 1o,
Q € €Ja.

Q.
For the sake of completeness, we describe the Steklov problem
(=A)pu+ [uff"2u=0 inQ,
ou (2.2)
|VulP™ 2 = Au[P"?u  on 99,
where 2 is a bounded domain and p > 1. By [7, (1.1)) is related to (2.2) in the

sense that if Q2 be a bounded smooth domain in R™ With Lipschitz boundary and
€ (1,00). For a fixed u € W'2(Q) \ W, ?(Q), we have

e—0t €

lim ~ / |u\pd:c—/ |u[PdS and  lim A, ,(1—a)[Eulf , = HVuH’zp(Q),
90 a—1— i

where E is a bounded linear extension operator from W1?(Q) to Wy"*(Bg) such
that Fu = u in © and Q is relatively compact in Bg, the ball of radius R in R™.
This leads to the following Lemma in [20].

Lemma 2.2. Let Q be a smooth domain in R™ with Lipschitz boundary and p €
(1,00). For a fized u € W'2(Q)\ Wi *(Q), it holds

A1 — @)[BulE, + | Bullyqy 19l + 1l ey

a1 ﬁHEu”LP(Ql_(y) Hu”Lp(aQ)

Taking € = 1 — a, by Lemmathe eigenvalue A 1-4(Q1_o) > A1 asa — 17,
where \; is the first eigenvalue of the operator associated with (2.2). Similarly, we
obtain that as & — 17 the Fuc¢ik Spectrum of the operator associated with
tends to Fucik Spectrum of the Steklov problem.

We shall throughout use the function space W*? with the norm || - || and we use
the standard LP(€2) space whose norms are denoted by ||ul|z»q). Also, we denote
Ane(Qe) by Ay . Here ¢ . is the eigenfunction corresponding to Aq .

3. THE FUCIK SPECTRUM ¥,

In this section, we study existence of the first nontrivial curve in the Fuéik
spectrum X, of . We find that the points in X, are associated with the critical
value of some restricted functional. For this, for fixed s € R and s > 0, we consider
the functional J,; : WP — R defined by

|u(z) — u(y)|” 3/
To(w) = Ayl —a) [ =T gy [ de — 2 | ()P da.
() = Ayt =) [ ) a2 [ )
Then Js; € C'(W*P R) and for any ¢ € W*P

(5000 0) = D1 = oy 0,0) 5 [ [l Pusde =22 [ (o e
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Also J, := J|s is CY(W*P R), where S is defined as
1
S:={ueW*  : I(u):= E/ lulP =1}.
Qe

We first note that u € S is a critical point of .J; if and only if there exists t € R
such that

A p(1— ) Ha p(u,v) — z/ﬂ (uh)P v dr = E/ |u|P~2uv de, (3.1)

€

for all v € W*P. Hence u € § is a nontrivial weak solution of the problem
Anp(1 = @) (=A)% + |ufP~2u = XTQ ((s +t)(u*)P~t —t(w™)?"Y)  inQ,
Nopu=0 inR"\Q,

which exactly means (s+t,t) € ¥,. Substituting v = u in (3-1]), we obtain t = J,(u).
Thus we obtain the following Lemma which links the critical point of Js; and the
spectrum X,,.

Lemma 3.1. For s > 0, (s +t,t) € R? belongs to the spectrum %, if and only if
there exists a critical point uw € S of Js such that t = Js(u), a critical value.

Proposition 3.2. The first eigenfunction ¢1. is a global minimum for J, with
Js(@1.6) = Ae —s. The corresponding point in ¥, is (A, A\1,e — ) which lies on
the vertical line through (A e, Ae).

Proof. We have
7 u(z) — u(y)[ / s /
Jo(u) =A,, 1—a/ dx dy + u|Pdz — — ut)Pdx
() =yt o) [ P dway+ [ e =2 [ )

At
Zi/ |ul? dz — f/ (uT)Pdr > A\ e — s
€ Q. € Jo

€

Thus js is bounded below by A; . — s. Moreover,

~ S
To(1.0) = Are — E/ (6t )P dr =Ny —s.

€

Thus ¢; . is a global minimum of J, with J,(¢1.¢) = A\ic — s. O

Proposition 3.3. The negative eigenfunction —¢1 ¢ is a strict local minimum for
Js with Jo(—¢1,e) = M,e. The corresponding point in ¥, is (A1,e + 8, A1,c), which
lies on the horizontal line through (A1, A1e)-

Proof. Suppose by contradiction that there exists a sequence uy € S, up # —¢1.c
with js(uk) < AMyey, Uy = —¢1,¢ in WP, We claim that uy changes sign for
sufficiently large k. Since up — —¢1,, ur must be < 0 for sufficiently large k. If
up < 0 for a.e x € Q, then

~ up(r) —u p
Joug) = Auy(1— @) deﬂcdw / gl d > A,

since uy, # £¢1,. and we obtain contradiction as js(uk) < Aie. Therefore the claim
is proved.
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/Py, +
Now, define wy := ———=*— and
Huk ”LP(Q )
lw (z) — wi(y) [P
rpi=App(l — / dx dy + wy|P dz.
P( ) Q |Q'ny|n+pa Q| I

We claim that r, — oo as k — oco. Assume by contradiction that r; is bounded.
Then there exists a subsequence (still denoted by {wg}) of {wy} and w € WP
such that wyp — w weakly in W*P and wy — w strongly in LP(£2). It implies
wy, — w strongly in LP(Q¢). Therefore %fﬂe wPdr =1, w >0 a.e. in Q, and so for
some n >0, 6 = {z € Q¢ : w(x) > n}| > 0. Since, up — —¢1, in W*P and hence
in LP(Q2). Therefore, for each n > 0, [{x € Q¢ : up(x) > n}| — 0 as k — oo and
Hz € Q¢ : wi(x) > n}| — 0 as k — oo, which is a contradiction to 1 > 0. Hence,
rr — oo. Clearly, one can have

|ur () — ur(y)[”

= (luk (@) —ux ()2 = [((uf (2) = wf (1)) = (ug; (@) = w; )7

[(uff () = uf ()% + (uy (@) = w (1)) = 2(uf (2) = uf () (ug; (2) = ug; ()]
[ k (

> Jug

k ) k
(uy (2) = wf (1)) + (uy, (2) = uy; (1)) + 20 (2)uy, () + 20y, (2)uf ()]
k(@) =l )7+ |uy (2) — uy (9]

Using the above inequality, we have

o) = Ay (1 — ) [ 1@ =@ o dy+/ |uk|p—7/9 (uf )P d

o lo— gyl 6
|uy () = u (y) P /
> Ay 1*a/ dedy+ [ |uf|P
A=) [ ]
|u];( — Uy, y p
_ .2
+[An,p(1 a)/Q g " dwdy+ | (3.2)
_f/ (u‘,j)pdx}
€ Q.
_ M.
> B2 e+ 2 [ e
€ Q. € Ja.
On the other hand, since u; € S, we obtain
~ Ale Ale _
Jo(ug) < Aje= i/ (u )P dx + L/ (uy, )P de. (3.3)
€ Qe € Qe
From and . we have
— 5= M.
{re=o = M) 1’)/ (uf )P da <0,
€ Q.

and this implies r; — s < Ay ¢, which contradicts that r;, — +o00. Therefore, —¢; .
is the strict local minimum.

Proposition 3.4 ([1]). Let Y be a Banach space, g, f € CY(Y,R), M = {u €Y :
g(u) =1} and ug, uy € M. Let € > 0 such that ||uy — ug|| > € and

inf{f(u) : v e M and ||lu — uolly = €} > max{f(uo), f(u1)}.
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Assume that f satisfies the (PS) condition on M and that
I'={yeC(-1,1,M):v(=1) =uo and y(1) = w1}
is non empty. Then c = inf,cr max,cy—1,1) f(u) is a critical value of f|n.

We now find the third critical point via mountain pass Theorem as stated above.
A norm of derivative of the restriction J, of J; at © € S is defined as

175 (u)]« = min{ || J{(u) = ¢I'(w)]| : t € R}.
Lemma 3.5. J; satisfies the (PS) condition on S.
Proof. Let Js(ug) and tx € R be a sequences such that for some K > 0,
|Js(ug)| < K, (3.4)

A (L —a)Ha p(ug, v /|uk|p ukv—f/ (u;:)pvda:
t

——k/ |uk|p72ukvda:‘ (3.5)
€ Ja.

< o]l
for all v € W*P, n,. — 0. From (3.4), using fractional Sobolev embedding, we
obtain {u} is bounded in W*? which implies there is a subsequence denoted by
up and ug € WP such that up — ug weakly in WP and up — ug strongly in
Lr(Q) for all 1 < p < p¥. Substituting v = uy in (3.5), we obtain

lug (z) — ug(y)[? / 8/
tr| < Ap (1 — 198AT) = W) g d Py - Pd
tel < Anp(1— ) o lo—grre y+ | Junl” £ Qe(uk) x + | [ug|

<C.

Hence, t; is a bounded sequence so has a convergent subsequence say t; that con-
verges to t. Next, we claim that uy — ug strongly in W®P. Since uy — ug weakly
in WP we obtain

| 0 () = w0 ()P~ o) = w0 () (s ) = a9))

o — yee 50
%/MO W) dedy ask — oo.
T — y|n+pa
Also (J!(ug), (ux — uo)) = o(nx). This implies
1
_ - - _ p—2
Aol =0) | o (fee) — wet)
x (un(a) - uk<y>><<w — uo) () — (ux - uo>< ) ) da dy|
< o(n)
+ \tleu:eHme )||Uk —Uollzr(y — 0
as k — oo. Thus,
o) ~ )l
o T .

,/ |k () — (W) [P~ (ur(x) — un(y)) (uo (@) — uo(y))
Q

o =y
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as k — 0o. As we know that |a — b|P < 2P(|a|P~2a — |b|P~2b)(a — b) for all a,b € R.
Therefore, from (3.6) and (3.7) we obtain
/ |(ur — uo)(@) — (ur — uo)(y)|
Q |z =

P
y[iee drdy —0 ask— oo

Hence, uj, converges strongly to ug in W*P. (]
Lemma 3.6. Let 19 > 0 be such that
Jo(u) > Jo(—¢1,) (3.8)
for all u € B(—¢1,6,m0) NS with uw Z —¢1 ., where the ball is taken in W*P. Then
for any 0 < n < no,
inf{J,(v):ueS and |u— (o)l =n} > js(—¢17e). (3.9)

Proof. If possible, let infimum in is equal to js(f(,bl’e) = A1, for some 7 with
0 < 1 < mo. It implies there exists a sequence uy € S with ||ur — (—¢1,¢)|| = 1 such
that

SATSIED VRS,
Consider the set V={ue S:n—39 < |u—(—¢1,.)|| <n+ 3}, where d is chosen
such that n —§ > 0 and n 4+ 6 < ny. From and given hypotheses, it follows
that inf{J,(u) : w € V} = A1.. Now for each k, we apply Ekeland’s variational
principle to the functional J, on V to get the existence of v, € V such that

(3.10)

- - 1

Js(vg) < Js(uk), flve —ukl| < E (3.11)
~ - 1
Js(vg) < Js(u)#—%ﬂu—vk”, for allu € V. (3.12)

We claim that vy, is a Palais-Smale sequence for JsonS. That is, there exists M > 0
such that |J,(vg)| < M and ||J.(v)||l« — 0 as k — oo. Once this is proved then
by Lemma there exists a subsequence denoted by vy of v, such that vy — v
strongly in W*P. Clearly, v € S and satisfies ||[v — (—¢1.c)|| < n+J < no and
js(v) = A1, which contradicts .

Now, the boundedness of J,(vy) follows from and . So, we only need
to prove that ||J/(v)|« — 0. Let k& > 1+ and take w € W*? tangent to S at vg.

/ v

That is, L [, |vk[P"2vgwdz = 0. Then by taking u; := ”;1:75(71]7"“"5:‘:3) for t € R, we
obtain

tim s = (<1.0ll = ok = (=61,0)ll < [ = il + g = (=1.0)]

1
< E +n<d+n,

and

lim fJup = (=)l = llow = (=dr)ll = llux = (=1l = [[o — ull

1
ZU—E>7I—5-

Hence, for ¢ small enough u; € V and replacing u by u; in (3.12), we obtain

- - 1
JS(Uk) S Jg(ut) + %”Ut — ’UkH.
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Let 7(t) := €'/P|jvy, + tw|| pr(q.), then
Js(vg) — Js(vg + tw)

t
< Js(ue) + %Hut — vg|| — Js (v + tw)
o t
= (1= () + ) 4 (1) T+ )
- kt?”(t) Vg r w 1 ']"(t)p Vi w).
Now since p
%T(t)ph:o = f/g v [P 20pw = 0,
we obtain % — 0 as t = 0, and then 717:(75) — 0 as t — 0. Therefore, we
obtain
1
(s (o), w)| < ]l (3.13)

Since w is arbitrary in W*? we choose ay, such that % fQ log [P~ 2o (w —apvg) doe =
0. Replacing w by w — axvy in (3.13)), we obtain

lw — agvgl|.

| =

|<J;(Uk)7w> - ak(lﬁ(vk),vkﬂ <
Since [laxvi|| < Cllwl|, we obtain |[(J(vk), w) =tk [q, [vklP~2vpw da| < € |wl|, where
te = (J'(vg), vx). Hence, ||J!(vg)]« = 0 as k — 0o, as we required. O

Proposition 3.7. Let W*P be a Banach Space. Let n > 0 such that
1,6 = (=¢1,0)ll > n and
inf{J,(u) :u € S and ||u — (=¢1.0)|| = n} > max{Jy(=¢1.c), Jo(¢1.)}.
Then T = {v € C([-1,1],8) : v(=1) = —¢1,. and ¥(1) = ¢1.} is non empty and
c(s) = inf max Js(u) (3.14)

el uey[-1,1]
is a critical value of Js. Moreover c(s) > Aqe.

Proof. We prove that I' is non-empty. To end this, we take ¢ € W*P such that
¢ & R, and consider the path t¢q . + (1 — [¢])¢ then

L Ml (1= l)e)
[t1,e + (L= [t)) el e (o)
Moreover the (PS) condition and the geometric assumption are satisfied by the
Lemmas and Then by Proposition c(s) is a critical value of J;. Using
the definition of ¢(s) we have ¢(s) > max{Js(—¢1,¢), Js(d1,6)} = A1e. O

Thus we have proved the following result.

Theorem 3.8. For each s > 0, the point (s + c(s),c(s)), where c(s) > A is
defined by the minimaz formula (3.14), then the point (s+c(s),c(s)) belongs to 3y.

It is a trivial fact that X, is symmetric with respect to diagonal. The whole
curve, that we obtain using Theorem [3.8] is denoted by

C:={(s+c(s),e(s)),(c(s),s +ec(s)): s >0}
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4. FIRST NONTRIVIAL CURVE

We start this section by establishing that the lines R x {A; ¢} and {A} xR
are isolated in ¥,. Then we state some topological properties of the functional Js
and some Lemmas. Finally, we prove that the curve C constructed in the previous
section is the first non trivial curve in the spectrum X,. As a consequence of this,
we also obtain a variational characterization of the second eigenvalue A .

Proposition 4.1. The lines R x {A1 .} and {1} X R are isolated in ¥,,. In other
words, there exists no sequence (ax,by) € X, with ag, > M and by, > A1 such that
(ak,br) = (a,b) witha = A orb= A ..

Proof. Suppose by contradiction that there exists a sequence (ag, by) € X, with ag,
by > A1, and (ag, bx) — (a,b) with a or b = A1 .. Let up € WP be a solution of

App(1 = @) (= A)guy, + up [P~ *uy, = %(ak(ug)w — b (u)P7Y) i Q,
Nopur =0 inR™\ Q,
with %‘/\Qs |ug[Pdz = 1. Multiplying by ug in (4.1)) and integrate, we have

(4.1)

lug () — ur(y)|

P
A p(l—a) P dx dy + /Q |ug|Pdx

Q
b
_ % (u )P dz — —k/ (uy, )P dx < ag.
€ Q. € Q.
Thus {ug} is a bounded sequence in W*P. Therefore up to a subsequence u; — u
weakly in W*P and uj — w strongly in LP(§2.). Then taking limit £ — oo in the
weak formulation of (4.1)), we obtain

Ap(1 = @) (=A)%u + [ufP2u = X2 (0 (uF)P~ —b(u™)P™) inQ,
€

B (4.2)
Nopu=0 inR"\Q.
Taking u™ as test function in (4.2)) we obtain
Ale
App(1— @) Ho p(u,u™) +/(u+)pd:c =Zb / (u™)? du. (4.3)
Q € Ja.

Observe that
((u(@) = u(y))(u(z) = u*(y)) = 20~ (@)u* (y) + (ut (2) — u*(y))?, (4.4)

and
Ju(x) — u(y)lP~? = (Ju(z) - u(y)?) =
= (Jut(z) — ut () + Ju™ () —u” )] + 2u* (@)u ()
+2ut (y)u (2))"T
> [ut (x) — ut (y) 2.

Using (4.4) and (4.5) in (4.3) and the definition of A ¢, we obtain
Ale + —ut p
L/ (uh)Pdr < App(1 — ) [ () = u” ()] d:cdy+/(u+)pdac
QE Q Q

e o — g

A

< 1’6/ (u™)? du.
€ Q.
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[ut (@) —ut () / + Ale/
dedy + [ (u")Pde = —= ut)P de,
/ |~T— |”+pa Q( ) € szg( )

so either um™ =0 or u = ¢1 . If ut =0 then v < 0 and (4.2) implies that u is an
eigenfunction with v < 0 so that u = —¢; .. So, in any case u; converges to either
®1,e or —¢1,c in LP(£2). Thus

either [{z € Q. : ux(z) <0} > 0or {z € Q1 u ()>0}|%0 (4.6)
as k — 0o. On the other hand, taking uk as test function in , we obtain

A1 = W aplin )+ [ Junl gt = 2 / (4.7)
Q

Using Holders inequality, fractional Sobolev embeddings and (4.7)), we obtain
|uf () — uf (y)? /
1—a) / dedy + [ (ul)Pdx
o lr—yri AL

< dopl1 - [ P 2 ui() o (2) = uf (1)

e
+ / [ug P2y do
Q

=Anp(1— O‘),Ha,p(ukauz) + / |Uk\p72ukuzd:c
Q

Thus

dx dy

= % (u )P dx
€ Q.

< %0l € 0, s ugla) > 0}

with a constant C' > 0, p < ¢ < p* = nf’;a. Then we have

r€Q:ug(z) >0 -4 > ea; 'C ' min{A, ,(1 — a),1}.
I{ k P
Similarly, one can show that

Hz € Q:up(z) <0} > eb 'C ™ min{A,, ,(1 — a),1}.

Since (ag,br) does not belong to the trivial lines A; c x R and R x Ay ¢ of ¥, by
(4.1) we conclude that w changes sign. Hence, from the above inequalities, we
obtain a contradiction with . Therefore, the trivial lines A\; . x R and R x Ay ¢
are isolated in X,,. O

Lemma 4.2 ([6]). Let S ={ueW*?: 1 [  |ulPde=1} then
(1) S is locally arcwise connected.
(2) Any open connected subset O of S is arcwise connected.
(3) If O is any connected component of an open set O C S, then dO'NO = 0.

Lemma 4.3. Let O = {u € S : J,(u) < r}, then any connected component of O
contains a critical point of J.

Proof. Let Oy be any connected component of O, let d = inf{J,(u) : u € O},
where 01 denotes the closure of O1 in W*?. We show that there exists ug € W*?
such that Js(up) = d. For this let up € O; be a minimizing sequence such that
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Js(uk) < d + 555. For each k, by applying Ekeland’s Variational principle, we
obtain a sequence v, € O; such that

- ~ ~ ~ 1 __
Js(vg) < Js(ug), vk — ug| < Js(vg) < Js(v) + EHU — || Voe 0.

1
%
For k large enough, we have

To(on) < Jolun) < d b g <
then vy, € O. By Lemma@ we obtain v & 001 so v € O1. On the other hand,
for ¢ small enough and w such that %fQ |vk|P2vpw dx = 0, we have

VP (v, + tw) —

Ut 1= S 01.

v + twl| e (a,)
Then Jy(vg) < Jo(ug) + #|lug — vi||. Following the same calculation as in Lemma
we have that v, is a Palais-Smale sequence for Js on S ie Jg (vk) is bounded
and ||J(v)|ls — 0. Again by Lemma up to a subsequence vy — g strongly
in W*? and hence J,(ug) = d < r and moreover uy € @. By part 3 of Lemma
ug € 001 so ug € O1. Hence ug is a critical point of Js, which completes the
proof. [l

Before proving the main Theorem we state some Lemmas and the details of
the proof can be found in [4] and [I1].

Lemma 4.4 ([4, Lemma B.1]). Let 1 < p < oo and U,V € R such that U.V < 0.
Define the following function

gt) = U —tVP+|U - VIP2(U - V)V|tPP, t e R.

Then we have
g(t) < g(1)=|U-VIP2(U-V)U, teR.

Lemma 4.5 ([I1, Lemma 4.1]). Let « € (0,1) and p > 1. For any non-negative
functions u, v € WP consider the function oy := [(1 —t)vP(x) +tup(x)}1/p for
allt €10,1]. Then
[Otlap < (1 =) [V]ap + tlula,p, forallte|0,1],

where [u]q.p is defined in (2.1)).
Proof of Theorem[I1]. Assume by contradiction that there exists p such that Ay . <
< c(s) and (s + p, p) € L,. Using the fact that {\ ¢} x R and R x {\; ¢} are
isolated in ¥, and ¥, is closed we can choose such a point with x minimum. In other
words, J, has a critical value p with A; . < p < ¢(s), but there is no critical value
in (A1, p). If we construct a path connecting from ¢ ¢ to —¢1 . such that Jy < p,
then we obtain a contradiction with the definition of ¢(s), which wiil complete the
proof. 3

Let u € § be a critical point of Js at level u. Then u satisfies

[ ) — wy)P A () - u) (@) o) St
An,p(l )~/Q |$—y|n+pa d dy+/Q| | d

(S‘FM)/Q (u+)p7lvdac—ﬁ/Q (u™ )P v da (4.8)

€ €
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for all v € W>P. Substituting v=u" in ([4.8), we have
— p—2 + o+
oy [ )= u+< D) =) gy [ i
|z — y| e Q

_ M / (ut)? de. (4.9)
Qe

€

Since, [u*(z) —u* (y)P < IU( )— u(y)[P~?(u(z) — u(y))(u" (z) — u*(y), we obtain

/ [ ( ()" da:dy—i—/(qu)pd:c—i/ (utPdx < p
|33 - |"+pa Q € Ja. -
Again substltutmg v=u" in , we have

/ lu(z) — u(y)|P~ (|g§_) |n+p3)(u_(x) —um ) 4. dy — /Q(u_)pdw
S u )P dx. i
=L L ya (4.10)
Therefore,

+/ﬂ(u‘)pda:

_ K u P dx
-4 /Q oy
Since [u=(z) — = @) < Ju(z) — u(y) P~ (@) — v~ (1))* + 2t (@)u (W), b

follows that
™ (2) — ()P .
/ \:z: T dx dy + A |u™|Pdx < p.

Therefore, from all above relations, one can easily verify that

) P P S

R0 = () A (Y < s (Y <
lut]Le . lu= e ) lu=lze )

Since, u changes sign (see Proposition , the following paths are well-defined on

S:

—(1=t)u"
Ul(t) D s
€7 Jut — (1= t)u[lLeo,)
oty 1A= 06 il
e (1= t)(ut)? + t(u)?| Lo ()
us(t) = (1—tut —u~

— .
er [|(T=t)ut —u|lLr(a,)

Then, using the above calculations and Lemma for U = ut(z) — ut(y) and
V =u"(z) —u (y), one can easily obtain that for all ¢t € [0, 1],

_VIP2(U— s
= Anp(l—a) fQ = \‘;I_mn(fpavw + fQ(u+)p e er(qu)p
Js(ur(t)) < 1 —5
Tt — (= O
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U-VP2(U-V)V -
N 1= tP[ = Anp(l =) [ W + Jo(u™)?]
e Hut —(1— t)u_Hi:D(QE)
by using ([£.9) and (4.10). Now using Lemma [4.5] we have
(1= D) [Anp (1~ ) o "EETEE + Jout)? — & fo (u?)7]

€

=t

Js(uz(t)) < e (1 —t)(ut)? +t(u™)P ||Lp(Q )

Ay (L= @) fo M2 + Jolu )" = & Jo, ()]
TN = ) ()P + )7 Hmm
st fo, (u™)P

eI = O)wh)P + tw )Pl g,
Again, by Lemma for U=u"(y) —u (z) and V = ut(y) — ut (), we obtain

js(u?)(t))

Anp(1 = 0) fo TR0 + f (o
- e (1 —t)ut —

<p— < p

u- Hip(ge)

_VvVIP2(— s
L[ Ayt —a) Jo Tmm T 4 foutyr = 2 [, (ut)7]
=t — o e
= pu, by using ) and (| -
Let O = {v e §: Js(v) < gt — s}. Then clearly ¢1 . € O, while —¢1 € O if

i — 58> A . Moreover ¢; . and —¢, . are the only possible critical points of J~5 in
O because of the choice of u. We note that

- el/py—
5 (_7) <p-—s,

lu=llze 0
e'/Pu~ /||u™ || 1o (.) does not change sign and vanishes on a set of positive measure,
it is not a critical point of J,. Therefore, there exists a C path 7 : [=6,6] — S
with 7(0) = e/Pu~/||[u™||Lr(o.) and %js(n(t))h:o # 0. Using this path we can
move from €'/Pu~ /||[u”||1r(q.) to a point v with Js(v) < p—s. Taking a connected
component of O containing v and applying Lemma we have that either ¢; . or
—¢1,¢ is in this component. Let us assume that it is ¢1 . So we continue by a path
uq(t) from El/pu7/||u7HLp(QE) to ¢1 . which is at level less than p. Then the path
—uy(t) connects —€'/Pu~ /||u”||Lr(q,) to —¢1,.. We observe that

[Js(u) = Js(~u)| < s.
Then it follows that
Jo(—ug(t) < Jo(ua(t)) +s <p—s+s=p forallt.
(

Connecting w1 (t), us(t) and u4(t), we obtain a path from u to ¢1 . and joining w3 (t)
and —u4(t) we obtain a path from u to —¢; .. These yields a path (¢) on S joining
from ¢ . to —¢1 . such that Js(v(t)) < p for all ¢, which concludes the proof. [

As a consequence of Theorem [I.1] we give a variational characterization of the
second value of (1.2).
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Corollary 4.6. The second eigenvalue Ao of (1.2)) has the variational characteri-
zation given by

Ao := inf sup (An’p(l —a) Ju(@) = uly) " dx dy + /Q |ul? dac),

vl uey Q |$ - y|n+pa
where T' is as in Proposition[3.7}
Proof. Taking s = 0 in Theorem [1.1] and using (3.14]) we have ¢(0) = As. O

5. PROPERTIES OF THE CURVE C

In this section, we prove that the curve C is Lipschitz continuous, has a certain
asymptotic behavior and is strictly decreasing. For A C €., define the eigenvalue
problem

Ap(1 = @) (=A)%u + |ufP~2u = XA (AufP~2u) in Q,
€
Nopu=0 inR"\Q,
Let A1,c(A) denotes the first eigenvalue of (5.1)), then

(5.1)

. u u(y
M) = it fA,,0 - /'Md dy

/\u|pdz /|u|pdx—e

Lemma 5.1. Let A, B be two bounded open sets in Q., with A C B and B is
connected then A1 (A) > A\ (B).

Proof. Clearly from the definition of A\ ., we have A ((A) > A1 (B). Let if possible
equality holds and let ¢1 . be a non-negative normalized eigenfunction associated
to A1,c(A) such that ¢ . is equal to zero outside A. Therefore, from the definition
of A\1,c(A), we have

91,e(2) — P W)
Ay p(1— a) = e dmdy—l—/ﬂ|¢17€|pdx

_ 2uld /¢ R

It implies ¢ ¢ is an elgenfunctlon associated to A1 ¢(B). But this is impossible since
B is connected and ¢ . vanishes on B\ A # (. (I

Proposition 5.2. The curve s — (s + c(s),c(s)), s € RY is Lipschitz continuous
and strictly decreasing (in the sense that s1 < so implies s1 + ¢(s1) < s2 + ¢(s2)
and c(s1) > c(s2)).

Proof. Let s1 < s then J,, (u) > Jo,(u) for all u € S. So we have c(s1) > c(s2).
Now for every n > 0 there exists v € I" such that max, ;1,1 Js, (u) < c(s2) + 17,
and so

0 <c(s1) —c(s2) < max jsl(u) —  max JSQ( )+ .
u€y[—1,1] u€y[—1,1]

Let ug € y[—1,1] such that max,c[_1 1] Jo, (u) = J, (ug). Then
0 < e(s1) — e(s2) < Ji, (uo) = Joy (u) + 1 < 52— 5147,

as 1 > 0 is arbitrary so the curve C is Lipschitz continuous with constant < 1.
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Next, to prove that the curve is decreasing, it suffices to argue for s > 0. Let
0 < s1 < sg then it implies ¢(s1) > ¢(s2). On the other hand, since (s1+c¢(s1), ¢(s1)),
(s2 + c(s2),c(s2)) € ¥p, Theorem implies that s1 + ¢(s1) < s2 + ¢(s2), which
completes the proof. O

As ¢(s) is decreasing and positive so the limit of ¢(s) exists as s — oo.
Theorem 5.3. If n > pa, then the limit of c(s) as s — 00 is Ai .

Proof. Forn > pa, we can choose a function ¢ € WP such that there does not exist
r € Rsuch that ¢(z) < r¢y (z) a.e. in Q. (it suffices to take ¢ € W™P such that it is
unbounded from above in a neighborhood of some point 0 # = € €2.). Suppose that
the result is not true then there exists ¢ > 0 such that max,e~[—1,1 Js (u) > A e+96
for all v € T" and all s > 0. Consider a path v € " by

/ —
~(t) = (o + (1 [t)¢) for all t € [-1,1].

[tpre + (1 =[]l Lr ()

Now, for every s > 0, let ¢, € [—1,1] satisfy max;e[_1 1) Jo(y(t)) = Js(v(ts)). Let
vy, =tsp1,e + (1 — |ts])¢. Then we have

imJ>Q“+®l¥wf~ (5.2)

- €

Letting s — 0o, we can assume a subsequence t, — t € [—1,1]. Then Vg, IS
bounded in W*P. So, from last inequality we obtain fQ (v;r)p dxr — 0 as s — oo,
which forces ’

/ (tp1.c + (1 — [t))p)T)P dx = 0.

Qe
Hence, t¢; . + (1 — |t])¢ < 0. By the choice of ¢, t must be equal to —1. Passing to
the limit in (5.2)), we obtain

Al
- / ¢€,edx =App(l — )
Qe

€

[01.(x) — d1.c(y)]

oyl

p
dx dy + / |1,¢|P dx
Q Q

ZM/ log, |P.

€

We arrive at a contradiction that ¢ < 0. Hence ¢(s) = A1, as s — oo. ([l
6. NON RESONANCE BETWEEN (A1, A1) AND C

In this section, we study the non-resonance problem with respect to the Fucik
spectrum for p = 2 case.

Lemma 6.1. Let (a,b) € C, and let m(x), b(x) € L™(Q) satisfying
Me<m(z) <a, A,<bx)<b (6.1)
Assume that
Are <m(z) and Ay ¢ < b(z) on subsets of positive measure of Q.. (6.2)
Then any non-trivial solution u of
Ana(l — a)(—A)%u + u = %(m(x)w —b(z)uT) in 9,
No2u=0 inR"\Q,
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changes sign in Q. and
m(z) =a a.e. on{x €N :u(x) >0} blx)=">ace on{zreQ:u(z) <0}

Proof. Let u be a nontrivial solution of . Replacing u by —u if necessary, we
can assume that the point (a,bd) in C is such that a > b. We first claim that u
changes sign in .. Suppose by contradiction that this is not true, first consider
the case u > 0, (case u < 0 can be proved similarly). Then u solves

Ap2(l1—a)(=A)*u+u= &m(x)zfr inQ, Nyou=0 inR"\Q.
€

This means that u is an eigenfunction of the problem with weight m(z) correspond-
ing to the eigenvalue equal to one. From the definition of the first eigenvalue of the
problem with weight m(z) > A1 ., we have

Are(m(z))

—u 2
= inf {A”’2(1 — ) Jo T dedy + fo lul(2) da } - (6.4)
e o, muf? s gt

From , and , we have

Ay o(l—a) fQ b1.e(2) — P (W) Plz — y|~ "2 da dy + Jo [#1.e|*(2) dz
)\1 €

)

JAnal-a) Jo 1b1.e(x) = dre(y)Ple —y[~ "2 dedy + [ |¢1,e[*(z) da
¢ Jo, m(@)|¢n,e? da

>1

)

which is a contradiction. Hence, v changes sign on €)..
Let suppose by contradiction that either

Hz € Qc:m(z) < a and u(xz) > 0} >0 (6.5)
or
{z € Q¢ : b(x) < b and u(z) < 0}] > 0. (6.6)

Suppose that (6.5]) holds (a similar argument will hold for ) Puta—b=s>0.
Then b = ¢(s), where c(s) is given by (3.14). We show that there exists a path
~v € I' such that

max J,(u) < b, (6.7)

u€y[—1,1]

which gives a contradiction with the definition of ¢(s), prove the last part of the
Lemma.

To construct v we show that there exists of a function v € W2 such that it
changes sign and satisfies

Anp(1=a) [, ot (@) — vt (y)Plz — y|~ "2 dedy + [, (v7)? do
%fﬂf (vt)2dx

App(l=a) [, v (z) = v (y)]*z - y|~ (2 dady + [, (v7)* da
¢ Jo, ()2 da

<a,
(6.8)

<b.
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Let O; be a component of {x € Q : u(z) > 0} such that |[{z € Oy : m(z) <a}| >0
and Oy be a component of {z € Q : u(z) < 0} such that [{z € Oz : b(z) < b}| > 0.
Define the eigenvalue problem

Aol —a)(—A) *u+u=

XO: () in Q,
€

- (6.9)
Nyou=0 ImR"\Q, i=1,2.
Let A1 (O;) denote the first eigenvalue of . Next, we claim that
)\1’6(01) <a and )\175(02) < b, (610)
where )\175(0) denotes the first eigenvalue of Apo(1—a)(—A)*u+u on W*? and
a) fo lu(@) —u(y)P|lz —y|~ "2 de dy + [, [ul* dz
)‘1,6(01) 1 ) d
fol |ul? dx
a) [q lu(z) —u(y)? Iw y|~ 2 dady + [ |ul? de
< a 1 3 =a,
fO x)|ul? dx

since |z € 07 : m(z) < a] > 0. This implies )\1,6((91) < a. The other inequality
can be proved similarly. Now with some modification on the sets O; and Oq,
we construct the sets O; and O such that O; N Oy = () and \; 6((’)1) < a and
M.c(Og) < b. For v >0, Oy(v) = {x € O : dist(z, (Q)°) > v}. By Lemma
we have A (O1(v)) > A1,(01)) and moreover A; (O1(v)) = A1,(01)) as v — 0.
Then there exists 1y > 0 such that

Me(01(v)) <a forall 0 <v <. (6.11)
Let 29 € 002N (not empty as O1NO2 = ), choose 0 < v < min{vy, dist(zo, 2¢) }
and O; = Oy(v) and Oy = Oz U B(zg,5). Then O1 N Oy = () and by (6.11] -
)\176((’)1) < a. Since O, is connected, by (6.10) and Lemma we obtain /\1((92) <

b. Now, we define v = v; —vq, where v; are the eigenfunctions associated to A; (O;).

Then v satisfies .

Thus there exist v € W*? which changes sign, satisfies condition (6.8). Moreover
we have

v T v 2
. ( 3 ) _ Apo(l—a fQWdIderfQ(vﬂ2 - er(v"’)2 dz
[[v] )

Js

2@ Hpol2»q,) 1011220,

Apa(l—a) fQ%dmdy—kf )2 dx

||U||L2(Q)
o) [, ) 4y gy
1 ||v||L2 Q0)

(vh)?dx )2 dx
<(a_8)f96 ) yJo v _,

||U||L2(Q ) HU||L2(Q )

M) cams—b A2 )<
o —————— a—s=2»b, o — — 5

vt llzz(o.) [v=llz2 (0.

Using Lemma [4.3] we have that there exists a critical point in the connected com-
ponent of the set O = {u € § : Jy(u) < b — s}. As the point (a,b) € C, the
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only possible critical point is ¢; ¢, then we can construct a path from ¢ . to —¢1 ¢
exactly in the same manner as in Theorem only by taking v in place of u. Thus
we have construct a path satisfying (6.7)), and hence the result follows. O

Corollary 6.2. Let (a,b) € C and let m(x), b(z) € L*>®(Q) satisfying A1, < m(z) <
a a.e., M. <b(x) <bae Assume that A1 < m(z) and A1 < b(z) on subsets of
positive measure on Q. If either m(x) < a a.e. in Qe orb(z) < b a.e. in Q.. Then
has only the trivial solution.

Proof. By Lemma any non-trival solution of (6.3]) changes sign and m(z) = a
a.e. on {zr € Q. : u(x) > 0} or b(x) = b a.e. on {x € Q, : u(z) < 0}. So, by our

hypotheses, (6.3) has only trivial solution. O
Now, we study the non-resonance between (A1, A1) and C,
xo f(z,u) .
Apo(l—a)(—A)” = e 2 Q,
21— a)(-a)u 4 = 22T, 612)

Na)g’u, =0 inR" \ﬁ,

where f(z,u)/u lies asymptotically between (A1, A1) and (a,b) € C.
Let f: QxR — R be a function satisfying L>°(Q2) Caratheodory conditions.
Given a point (a,b) € C, we assume that

Y+ (2) < hmmfM < limsupm

s—too S s—+oo S

<T.(z) (6.13)

holds uniformly with respect to x, where vy (z) and T'y(z) are L>°(f2) functions
which satisfy
Me <vy(z) < F+( )<a a.e. in €,

6.14
Me<7-(z)<T_(x) <b ae. in Q.. (6.14)
The function F(z,s) fo x,t)dt, we also satisfies
.. L 2F(x,8) . 2F(z, s)
) <1 f—— 2 <1 <A 6.15
+(2) < lim inf s = msup e < +(z) (6.15)

uniformly with respect to z, where 1 (z) and A4 (z) are L>(Q) functions which
satisfy
Me<di(x)<Ay(z)<aae inQ, A< (r)<A_(x)<bae. inQ,,
0+ (z) > A1,e and d_(z) > A1 . on subsets of positive measure,
either Ay (z) < a a.e. in Q. or A_(x) < b a.e. in Q..
(6.16)

Theorem 6.3. Let (6.13), (6.14), (6.15) and (6.16) hold and (a,b) € C. Then
(6.12) admits at least one solution u in W*?2.

Define the energy functional ¥ : W*? — R as
Apa(l—a) [ [u(@) —u(y)? 2
U(y) = 5 ) Je—gre dx dy + = /|u| dx—f/ F(z,u)d
Then ¥ is a C' functional on W2 and for all v € W2,

(W' (), 0) = Ana(1 - a) /Q ) =R =D dady -+ [ woda
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- 1/5; flz,u)vde

and critical points of ¥ are exactly the weak solutions of (6.12)).

Next, we state some Lemmas, whose proofs can be found in [I4], Lemma 5.2 and

5.3).

Le
Le

mma 6.4. ¥ satisfies the (PS) condition on W*?2.

mma 6.5. There exists R > 0 such that

max{¥(R¢1.), U(—Rp1,)} < max T(u),
u€y[—1,1]

for any vy € Ty :={y € C([-1,1],S) : v(£1) = £R¢1 ¢}
Proof of Theorem[6.3 Lemmas [6.4] and [6.5] complete the proof. O
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