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Abstract. In this article, we study the Fučik spectrum of the p-fractional

Laplace operator with nonlocal normal derivative conditions which is defined

as the set of all (a, b) ∈ R2 such that

Λn,p(1− α)(−∆)αpu+ |u|p−2u =
χΩε

ε
(a(u+)p−1 − b(u−)p−1) in Ω,

Nα,pu = 0 in Rn \ Ω,

has a non-trivial solution u, where Ω is a bounded domain in Rn with Lipschitz

boundary, p ≥ 2, n > pα, ε, α ∈ (0, 1) and Ωε := {x ∈ Ω : d(x, ∂Ω) ≤ ε}. We

show existence of the first non-trivial curve C of the Fučik spectrum which is
used to obtain the variational characterization of a second eigenvalue of the

problem defined above. We also discuss some properties of this curve C, e.g.
Lipschitz continuous, strictly decreasing and asymptotic behavior and non-

resonance with respect to the Fučik spectrum.

1. Introduction

The Fučik spectrum of p-fractional Laplacian with nonlocal normal derivative is
defined as the set Σp of all (a, b) ∈ R2 such that

Λn,p(1− α)(−∆)αpu+ |u|p−2u =
χΩε

ε
(a(u+)p−1 − b(u−)p−1) in Ω,

Nα,pu = 0 in Rn \ Ω,
(1.1)

has a non-trivial solution u, where Ω is a bounded domain in Rn with Lipschitz
boundary, p ≥ 2, α, ε ∈ (0, 1) and Ωε := {x ∈ Ω : d(x, ∂Ω) ≤ ε}. The (−∆)αp is the
p-fractional Laplacian operator defined as

(−∆)αpu(x) := 2 p. v.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+pα
dy for all x ∈ Rn,

and Nα,p is the associated nonlocal derivative defined in [8] as

Nα,pu(x) := 2

∫
Ω

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+pα
dy for all x ∈ Rn \ Ω.
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Bourgain, Brezis and Mironescu [3] proved that for any smooth bounded domain
Ω ⊂ Rn, u ∈W 1,p(Ω), there exist a constant Λn,p such that

lim
α→1−

Λn,p(1− α)

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+pα
dxdy =

∫
Ω

|∇u|p dx.

The constant Λn,p can be explicitly computed and is given by

Λn,p =
pΓ(n+p

2 )

2π
n−1

2 Γ(p+1
2 )

.

For a = b = λ, the Fučik spectrum in (1.1) becomes the usual spectrum that
satisfies

Λn,p(1− α)(−∆)αpu+ |u|p−2u =
λ

ε
χΩε |u|p−2u in Ω,

Nα,pu = 0 in Rn \ Ω.
(1.2)

In [7], authors proved that there exists a sequence of eigenvalues λk,ε(Ωε) of (1.2)
such that λk,ε(Ωε) → ∞ as k → ∞. Moreover, 0 < λ1,ε(Ωε) < λ2,ε(Ωε) ≤ · · · ≤
λk,ε(Ωε) ≤ . . . , and the first eigenvalue λ1,ε(Ωε) of (1.2) is simple, isolated and can
be characterized as follows

λ1,ε(Ωε)

= inf
u∈Wα,p

{
Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u|p dx :

∫
Ωε

|u|p dx = ε
}
.

The Fučik spectrum was introduced by Fučik (1976) who studied the problem in one
dimension with periodic boundary conditions. In higher dimensions, the non-trivial
first curve in the Fučik spectrum of Laplacian with Dirichlet boundary for bounded
domain has been studied in [10]. Later in [6] Cuesta, de Figueiredo and Gossez
studied this problem for p-Laplacian operator with Dirichlet boundary condition.

The Fučik spectrum in the case of Laplacian, p-Laplacian operator with Dirichlet,
Neumann and Robin boundary condition has been studied by many authors, for
instance [2, 5, 18, 20, 7, 22]. Goyal and Sreenadh [14] extended the results of
[6] to nonlocal linear operators which include fractional Laplacian. The existence
of Fučik eigenvalues for p-fractional Laplacian operator with Dirichlet boundary
conditions has been studied by many authors, for instance refer [23, 24]. Also, in
[15], Goyal discussed the Fučik spectrum of of p-fractional Hardy Sobolev-Operator
with weight function. A non-resonance problem with respect to Fučik spectrum
is also discussed in many papers [6, 21, 16]. We also refer to the related papers
[9, 12, 13, 17].

The inspiring point of our work is [14, 15], where the existence of a nontrivial
curve is studied only for p = 2 but the nature of the curve is left open for p 6= 2.
In the present work, we extend the results obtained in [14] to the nonlinear case
of p-fractional operator for any p ≥ 2 and also show that this curve is the first
curve. We also showed the variational characterization of the second eigenvalue of
the operator associated with (1.1). There is a substantial difference while handling
the nonlinear nature of the operator. This difference is reflected while constructing
the paths below a mountain-pass level (see the proof of Theorem 1.1). To the
best of our knowledge, no work has been done on the Fučik spectrum for nonlocal
operators with nonlocal normal derivative. We would like to remark that the main
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result obtained in this paper is new even for the following p-fractional Laplacian
equation with Dirichlet boundary condition:

(−∆)αpu+ |u|p−2u = a(u+)p−1 − b(u−)p−1 in Ω, u = 0 on Rn\Ω.

With this introduction, we state our main result.

Theorem 1.1. Let s ≥ 0 then the point (s+ c(s), c(s)) is the first nontrivial point
of Σp in the intersection between Σp and the line (s, 0) + t(1, 1) of (1.1).

This article is organized as follows: In section 2 we give some preliminaries. In
section 3 we construct a first nontrivial curve in Σp, described as (s + c(s), c(s)).
In section 4 we prove that the lines λ1,ε(Ωε) × R and R × λ1,ε(Ωε) are isolated in
Σp, the curve that we obtained in section 3 is the first nontrivial curve and give
the variational characterization of second eigenvalue of (1.1). In section 5 we prove
some properties of the first curve and non resonance problem.

2. Preliminaries

In this section we assemble some requisite material. By [8] we know the nonlocal
analogue of divergence theorem which states that for any bounded functions u and
v ∈ C2, it holds that ∫

Ω

(−∆)αpu(x) dx = −
∫

Ωc
Nα,pu(x) dx.

More generally, we have following integration by parts formula

Hα,p(u, v) =

∫
Ω

v(x)(−∆)αpu(x) dx+

∫
Ωc
v(x)Nα,pu(x) dx,

where Hα,p(u, v) is defined as

Hα,p(u, v) :=

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+pα
dy, Q := R2n\(Ωc)2.

Now, given a measurable function u : Rn → R, we set

‖u‖α,p := (‖u‖pLp(Ω) + [u]pα,p)
1/p, where [u]α,p := (Hα,p(u, u))1/p. (2.1)

Then ‖ · ‖α,p defines a norm on the space

Wα,p := {u : Rn → R measurable : ‖u‖α,p <∞}.

Clearly Wα,p ⊂ Wα,p(Ω), where Wα,p(Ω) denotes the usual fractional Sobolev
space endowed with the norm

‖u‖Wα,p = ‖u‖Lp +
(∫

Ω×Ω

(u(x)− u(y))p

|x− y|n+pα
dx dy

)1/p

.

To study the fractional Sobolev space in detail see [19].

Definition 2.1. A function u ∈ Wα,p is a weak solution of (1.1), if for every
v ∈ Wα,p, u satisfies

Λn,p(1− α)Hα,p(u, v) +

∫
Ω

|u|p−2uv − a

ε

∫
Ωε

(u+)p−1v +
b

ε

∫
Ωε

(u−)p−1v = 0.



4 D. GOEL, S. GOYAL, K. SREENADH EJDE-2018/74

Now, we define the functional J associated to problem (1.1) as J : Wα,p → R
such that

J(u) = Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u|p dx

− a

ε

∫
Ωε

(u+)p dx+
b

ε

∫
Ωε

(u−)p dx.

Then J is Fréchet differentiable in Wα,p and for all v ∈ Wα,p.

〈J ′(u), v〉 = Λn,p(1−α)Hα,p(u, v) +

∫
Ω

|u|p−2uv− a
ε

∫
Ωε

(u+)p−1v+
b

ε

∫
Ωε

(u−)p−1v.

For the sake of completeness, we describe the Steklov problem

(−∆)pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

(2.2)

where Ω is a bounded domain and p > 1. By [7], (1.1) is related to (2.2) in the
sense that if Ω be a bounded smooth domain in Rn with Lipschitz boundary and
p ∈ (1,∞). For a fixed u ∈W 1,p(Ω) \W 1,p

0 (Ω), we have

lim
ε→0+

1

ε

∫
Ωε

|u|pdx =

∫
∂Ω

|u|pdS and lim
α→1−

Λn,p(1− α)[Eu]pα,p = ‖∇u‖pLp(Ω),

where E is a bounded linear extension operator from W 1,p(Ω) to W 1,p
0 (BR) such

that Eu = u in Ω and Ω is relatively compact in BR, the ball of radius R in Rn.
This leads to the following Lemma in [20].

Lemma 2.2. Let Ω be a smooth domain in Rn with Lipschitz boundary and p ∈
(1,∞). For a fixed u ∈W 1,p(Ω) \W 1,p

0 (Ω), it holds

lim
α→1−

Λn,p(1− α)[Eu]pα,p + ‖Eu‖pLp(Ω)

1
1−α‖Eu‖

p
Lp(Ω1−α)

=
‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)

‖u‖pLp(∂Ω)

.

Taking ε = 1− α, by Lemma 2.2 the eigenvalue λ1,1−α(Ω1−α)→ λ1 as α→ 1−,
where λ1 is the first eigenvalue of the operator associated with (2.2). Similarly, we
obtain that as α → 1− the Fučik Spectrum of the operator associated with (1.1)
tends to Fučik Spectrum of the Steklov problem.

We shall throughout use the function space Wα,p with the norm ‖ · ‖ and we use
the standard Lp(Ω) space whose norms are denoted by ‖u‖Lp(Ω). Also, we denote
λn,ε(Ωε) by λn,ε. Here φ1,ε is the eigenfunction corresponding to λ1,ε.

3. The Fučik spectrum Σp

In this section, we study existence of the first nontrivial curve in the Fučik
spectrum Σp of (1.1). We find that the points in Σp are associated with the critical
value of some restricted functional. For this, for fixed s ∈ R and s ≥ 0, we consider
the functional Js :Wα,p → R defined by

Js(u) = Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u|p dx− s

ε

∫
Ωε

(u+)p dx.

Then Js ∈ C1(Wα,p,R) and for any φ ∈ Wα,p

〈J ′s(u), φ〉 = p Λn,p(1− α)Hα,p(u, φ) + p

∫
Ω

|u|p−2uφ dx− ps

ε

∫
Ωε

(u+)p−1φdx.
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Also J̃s := Js|S is C1(Wα,p,R), where S is defined as

S :=
{
u ∈ Wα,p : I(u) :=

1

ε

∫
Ωε

|u|p = 1
}
.

We first note that u ∈ S is a critical point of J̃s if and only if there exists t ∈ R
such that

Λn,p(1− α)Hα,p(u, v)− s

ε

∫
Ωε

(u+)p−1v dx =
t

ε

∫
Ωε

|u|p−2uv dx, (3.1)

for all v ∈ Wα,p. Hence u ∈ S is a nontrivial weak solution of the problem

Λn,p(1− α)(−∆)αp + |u|p−2u =
χΩε

ε

(
(s+ t)(u+)p−1 − t(u−)p−1

)
in Ω,

Nα,pu = 0 in Rn \ Ω,

which exactly means (s+t, t) ∈ Σp. Substituting v = u in (3.1), we obtain t = J̃s(u).

Thus we obtain the following Lemma which links the critical point of J̃s and the
spectrum Σp.

Lemma 3.1. For s ≥ 0, (s + t, t) ∈ R2 belongs to the spectrum Σp if and only if

there exists a critical point u ∈ S of J̃s such that t = J̃s(u), a critical value.

Proposition 3.2. The first eigenfunction φ1,ε is a global minimum for J̃s with

J̃s(φ1,ε) = λ1,ε − s. The corresponding point in Σp is (λ1,ε, λ1,ε − s) which lies on
the vertical line through (λ1,ε, λ1,ε).

Proof. We have

J̃s(u) =Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u|pdx− s

ε

∫
Ωε

(u+)p dx

≥λ1,ε

ε

∫
Ωε

|u|p dx− s

ε

∫
Ωε

(u+)p dx ≥ λ1,ε − s.

Thus J̃s is bounded below by λ1,ε − s. Moreover,

J̃s(φ1,ε) = λ1,ε −
s

ε

∫
Ωε

(φ+
1,ε)

p dx = λ1,ε − s.

Thus φ1,ε is a global minimum of J̃s with J̃s(φ1,ε) = λ1,ε − s. �

Proposition 3.3. The negative eigenfunction −φ1,ε is a strict local minimum for

J̃s with J̃s(−φ1,ε) = λ1,ε. The corresponding point in Σp is (λ1,ε + s, λ1,ε), which
lies on the horizontal line through (λ1,ε, λ1,ε).

Proof. Suppose by contradiction that there exists a sequence uk ∈ S, uk 6= −φ1,ε

with J̃s(uk) ≤ λ1,ε, uk → −φ1,ε in Wα,p. We claim that uk changes sign for
sufficiently large k. Since uk → −φ1,ε, uk must be < 0 for sufficiently large k. If
uk ≤ 0 for a.e x ∈ Ω, then

J̃s(uk) = Λn,p(1− α)

∫
Q

|uk(x)− uk(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|uk|p dx > λ1,ε,

since uk 6≡ ±φ1,ε and we obtain contradiction as J̃s(uk) ≤ λ1,ε. Therefore the claim
is proved.
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Now, define wk :=
ε1/pu+

k

‖u+
k ‖Lp(Ωε)

and

rk := Λn,p(1− α)

∫
Q

|wk(x)− wk(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|wk|p dx.

We claim that rk → ∞ as k → ∞. Assume by contradiction that rk is bounded.
Then there exists a subsequence (still denoted by {wk}) of {wk} and w ∈ Wα,p

such that wk ⇀ w weakly in Wα,p and wk → w strongly in Lp(Ω). It implies
wk → w strongly in Lp(Ωε). Therefore 1

ε

∫
Ωε
wp dx = 1, w ≥ 0 a.e. in Ωε and so for

some η > 0, δ = |{x ∈ Ωε : w(x) ≥ η}| > 0. Since, uk → −φ1,ε in Wα,p and hence
in Lp(Ω). Therefore, for each η > 0, |{x ∈ Ωε : uk(x) ≥ η}| → 0 as k → ∞ and
|{x ∈ Ωε : wk(x) ≥ η}| → 0 as k → ∞, which is a contradiction to η > 0. Hence,
rk →∞. Clearly, one can have

|uk(x)− uk(y)|p

= (|uk(x)− uk(y)|2)p/2 = [((u+
k (x)− u+

k (y))− (u−k (x)− u−k (y)))2]p/2

= [(u+
k (x)− u+

k (y))2 + (u−k (x)− u−k (y))2 − 2(u+
k (x)− u+

k (y))(u−k (x)− u−k (y))]p/2

= [(u+
k (x)− u+

k (y))2 + (u−k (x)− u−k (y))2 + 2u+
k (x)u−k (y) + 2u−k (x)u+

k (y)]p/2

≥ |u+
k (x)− u+

k (y)|p + |u−k (x)− u−k (y)|p.

Using the above inequality, we have

J̃s(uk) = Λn,p(1− α)

∫
Q

|uk(x)− uk(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|uk|p −
s

ε

∫
Ωε

(u+
k )p dx

≥
[
Λn,p(1− α)

∫
Q

|u+
k (x)− u+

k (y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u+
k |
p

]
+
[
Λn,p(1− α)

∫
Q

|u−k (x)− u−k (y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u−k |
p

− s

ε

∫
Ωε

(u+
k )p dx

]
≥ (rk − s)

ε

∫
Ωε

(u+
k )p dx+

λ1,ε

ε

∫
Ωε

(u−k )p dx.

(3.2)

On the other hand, since uk ∈ S, we obtain

J̃s(uk) ≤ λ1,ε =
λ1,ε

ε

∫
Ωε

(u+
k )p dx+

λ1,ε

ε

∫
Ωε

(u−k )p dx. (3.3)

From (3.2) and (3.3), we have

(rk − s− λ1,ε)

ε

∫
Ωε

(u+
k )p dx ≤ 0,

and this implies rk − s ≤ λ1,ε, which contradicts that rk → +∞. Therefore, −φ1,ε

is the strict local minimum. �

Proposition 3.4 ([1]). Let Y be a Banach space, g, f ∈ C1(Y,R), M = {u ∈ Y :
g(u) = 1} and u0, u1 ∈M . Let ε > 0 such that ‖u1 − u0‖ > ε and

inf{f(u) : u ∈M and ‖u− u0‖Y = ε} > max{f(u0), f(u1)}.
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Assume that f satisfies the (PS) condition on M and that

Γ = {γ ∈ C([−1, 1],M) : γ(−1) = u0 and γ(1) = u1}
is non empty. Then c = infγ∈Γ maxu∈γ[−1,1] f(u) is a critical value of f |M .

We now find the third critical point via mountain pass Theorem as stated above.
A norm of derivative of the restriction J̃s of Js at u ∈ S is defined as

‖J̃ ′s(u)‖∗ = min{‖J̃ ′s(u)− tI ′(u)‖ : t ∈ R}.

Lemma 3.5. Js satisfies the (PS) condition on S.

Proof. Let Js(uk) and tk ∈ R be a sequences such that for some K > 0,

|Js(uk)| ≤ K, (3.4)∣∣∣Λn,p(1− α)Hα,p(uk, v) +

∫
Ω

|uk|p−2ukv −
s

ε

∫
Ωε

(u+
k )pv dx

− tk
ε

∫
Ωε

|uk|p−2ukv dx
∣∣∣

≤ ηk‖v‖

(3.5)

for all v ∈ Wα,p, ηk → 0. From (3.4), using fractional Sobolev embedding, we
obtain {uk} is bounded in Wα,p which implies there is a subsequence denoted by
uk and u0 ∈ Wα,p such that uk ⇀ u0 weakly in Wα,p, and uk → u0 strongly in
Lp(Ω) for all 1 ≤ p < p∗α. Substituting v = uk in (3.5), we obtain

|tk| ≤ Λn,p(1− α)

∫
Q

|uk(x)− uk(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|uk|p +
s

ε

∫
Ωε

(u+
k )p dx+ ηk‖uk‖

≤ C.
Hence, tk is a bounded sequence so has a convergent subsequence say tk that con-
verges to t. Next, we claim that uk → u0 strongly in Wα,p. Since uk ⇀ u0 weakly
in Wα,p, we obtain∫

Q

|u0(x)− u0(y)|p−2(u0(x)− u0(y))(uk(x)− uk(y))

|x− y|n+pα
dx dy

→
∫
Q

|u0(x)− u0(y)|p

|x− y|n+pα
dx dy as k →∞.

(3.6)

Also 〈J̃ ′s(uk), (uk − u0)〉 = o(ηk). This implies∣∣∣Λn,p(1− α)

∫
Q

1

|x− y|n+pα

(
|uk(x)− uk(y)|p−2

× (uk(x)− uk(y))((uk − u0)(x)− (uk − u0)(y))
)
dx dy

∣∣∣
≤ o(ηk) + ‖uk‖p−1

Lp(Ω)‖uk − u0‖Lp(Ω) + s‖u+
k ‖

p−1
Lp(Ωε)

‖uk − u0‖Lp(Ωε)

+ |tk|‖uk‖p−1
Lp(Ωε)

‖uk − u0‖Lp(Ωε) → 0

as k →∞. Thus,∫
Q

|uk(x)− uk(y)|p

|x− y|n+pα
dx dy

−
∫
Q

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(u0(x)− u0(y))

|x− y|n+pα
dx dy → 0,

(3.7)
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as k →∞. As we know that |a− b|p ≤ 2p(|a|p−2a− |b|p−2b)(a− b) for all a, b ∈ R.
Therefore, from (3.6) and (3.7) we obtain∫

Q

|(uk − u0)(x)− (uk − u0)(y)|p

|x− y|n+pα
dx dy → 0 as k →∞

Hence, uk converges strongly to u0 in Wα,p. �

Lemma 3.6. Let η0 > 0 be such that

J̃s(u) > J̃s(−φ1,ε) (3.8)

for all u ∈ B(−φ1,ε, η0) ∩ S with u 6≡ −φ1,ε, where the ball is taken in Wα,p. Then
for any 0 < η < η0,

inf{J̃s(u) : u ∈ S and ‖u− (−φ1,ε)‖ = η} > J̃s(−φ1,ε). (3.9)

Proof. If possible, let infimum in (3.9) is equal to J̃s(−φ1,ε) = λ1,ε for some η with
0 < η < η0. It implies there exists a sequence uk ∈ S with ‖uk − (−φ1,ε)‖ = η such
that

J̃s(uk) ≤ λ1,ε +
1

2k2
. (3.10)

Consider the set V = {u ∈ S : η − δ ≤ ‖u − (−φ1,ε)‖ ≤ η + δ}, where δ is chosen
such that η − δ > 0 and η + δ < η0. From (3.9) and given hypotheses, it follows

that inf{J̃s(u) : u ∈ V } = λ1,ε. Now for each k, we apply Ekeland’s variational

principle to the functional J̃s on V to get the existence of vk ∈ V such that

J̃s(vk) ≤ J̃s(uk), ‖vk − uk‖ ≤
1

k
, (3.11)

J̃s(vk) ≤ J̃s(u) +
1

k
‖u− vk‖, for all u ∈ V. (3.12)

We claim that vk is a Palais-Smale sequence for J̃s on S. That is, there exists M > 0
such that |J̃s(vk)| < M and ‖J̃ ′s(vk)‖∗ → 0 as k → ∞. Once this is proved then
by Lemma 3.5, there exists a subsequence denoted by vk of vk such that vk → v
strongly in Wα,p. Clearly, v ∈ S and satisfies ‖v − (−φ1,ε)‖ ≤ η + δ < η0 and

J̃s(v) = λ1,ε which contradicts (3.8).

Now, the boundedness of J̃s(vk) follows from (3.10) and (3.11). So, we only need

to prove that ‖J̃ ′s(vk)‖∗ → 0. Let k > 1
δ and take w ∈ Wα,p tangent to S at vk.

That is, 1
ε

∫
Ωε
|vk|p−2vkw dx = 0. Then by taking ut := ε1/p(vk+tw)

‖vk+tw‖Lp(Ωε)
for t ∈ R, we

obtain

lim
t→0
‖ut − (−φ1,ε)‖ = ‖vk − (−φ1,ε)‖ ≤ ‖vk − uk‖+ ‖uk − (−φ1,ε)‖

≤ 1

k
+ η < δ + η,

and

lim
t→0
‖ut − (−φ1,ε)‖ = ‖vk − (−φ1,ε)‖ ≥ ‖uk − (−φ1,ε)‖ − ‖vk − uk‖

≥ η − 1

k
> η − δ.

Hence, for t small enough ut ∈ V and replacing u by ut in (3.12), we obtain

J̃s(vk) ≤ J̃s(ut) +
1

k
‖ut − vk‖.
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Let r(t) := ε1/p‖vk + tw‖Lp(Ωε), then

Js(vk)− Js(vk + tw)

t

≤
Js(ut) + 1

k‖ut − vk‖ − Js(vk + tw)

t

=
1

k t r(t)
‖vk(1− r(t) + tw)‖+

1

t

( 1

r(t)p
− 1
)
J(vk + tw).

Now since
d

dt
r(t)p|t=0 =

p

ε

∫
Ωε

|vk|p−2vkw = 0,

we obtain r(t)p−1
t → 0 as t → 0, and then 1−r(t)

t → 0 as t → 0. Therefore, we
obtain

|〈J ′s(vk), w〉| ≤ 1

k
‖w‖. (3.13)

Since w is arbitrary inWα,p, we choose ak such that 1
ε

∫
Ωε
|vk|p−2vk(w−akvk) dx =

0. Replacing w by w − akvk in (3.13), we obtain∣∣〈J ′s(vk), w〉 − ak〈J ′s(vk), vk〉
∣∣ ≤ 1

k
‖w − akvk‖.

Since ‖akvk‖ ≤ C‖w‖, we obtain
∣∣〈J ′s(vk), w〉−tk

∫
Ω
|vk|p−2vkw dx

∣∣ ≤ C
k ‖w‖, where

tk = 〈J ′s(vk), vk〉. Hence, ‖J̃ ′s(vk)‖∗ → 0 as k →∞, as we required. �

Proposition 3.7. Let Wα,p be a Banach Space. Let η > 0 such that
‖φ1,ε − (−φ1,ε)‖ > η and

inf{J̃s(u) : u ∈ S and ‖u− (−φ1,ε)‖ = η} > max{J̃s(−φ1,ε), J̃s(φ1,ε)}.

Then Γ = {γ ∈ C([−1, 1],S) : γ(−1) = −φ1,ε and γ(1) = φ1,ε} is non empty and

c(s) = inf
γ∈Γ

max
u∈γ[−1,1]

Js(u) (3.14)

is a critical value of J̃s. Moreover c(s) > λ1,ε.

Proof. We prove that Γ is non-empty. To end this, we take φ ∈ Wα,p such that
φ 6∈ Rφ1,ε and consider the path tφ1,ε + (1− |t|)φ then

w =
ε1/p(tφ1,ε + (1− |t|)φ)

‖tφ1,ε + (1− |t|)φ‖Lp(Ωε)
.

Moreover the (PS) condition and the geometric assumption are satisfied by the

Lemmas 3.5 and 3.6. Then by Proposition 3.4, c(s) is a critical value of J̃s. Using

the definition of c(s) we have c(s) > max{J̃s(−φ1,ε), J̃s(φ1,ε)} = λ1,ε. �

Thus we have proved the following result.

Theorem 3.8. For each s ≥ 0, the point (s + c(s), c(s)), where c(s) > λ1,ε is
defined by the minimax formula (3.14), then the point (s+ c(s), c(s)) belongs to Σp.

It is a trivial fact that Σp is symmetric with respect to diagonal. The whole
curve, that we obtain using Theorem 3.8 is denoted by

C := {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0}.
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4. First nontrivial curve

We start this section by establishing that the lines R × {λ1,ε} and {λ1,ε} × R
are isolated in Σp. Then we state some topological properties of the functional J̃s
and some Lemmas. Finally, we prove that the curve C constructed in the previous
section is the first non trivial curve in the spectrum Σp. As a consequence of this,
we also obtain a variational characterization of the second eigenvalue λ2,ε.

Proposition 4.1. The lines R×{λ1,ε} and {λ1,ε}×R are isolated in Σp. In other
words, there exists no sequence (ak, bk) ∈ Σp with ak > λ1,ε and bk > λ1,ε such that
(ak, bk)→ (a, b) with a = λ1,ε or b = λ1,ε.

Proof. Suppose by contradiction that there exists a sequence (ak, bk) ∈ Σp with ak,
bk > λ1,ε and (ak, bk)→ (a, b) with a or b = λ1,ε. Let uk ∈ Wα,p be a solution of

Λn,p(1− α)(−∆)αpuk + |uk|p−2uk =
χΩε

ε
(ak(u+

k )p−1 − bk(u−k )p−1) in Ω,

Nα,puk = 0 in Rn \ Ω,
(4.1)

with 1
ε

∫
Ωε
|uk|pdx = 1. Multiplying by uk in (4.1) and integrate, we have

Λn,p(1− α)

∫
Q

|uk(x)− uk(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|uk|pdx

=
ak
ε

∫
Ωε

(u+
k )p dx− bk

ε

∫
Ωε

(u−k )p dx ≤ ak.

Thus {uk} is a bounded sequence in Wα,p. Therefore up to a subsequence uk ⇀ u
weakly in Wα,p and uk → u strongly in Lp(Ωε). Then taking limit k → ∞ in the
weak formulation of (4.1), we obtain

Λn,p(1− α)(−∆)αpu+ |u|p−2u =
χΩε

ε
(λ1,ε(u

+)p−1 − b(u−)p−1) in Ω,

Nα,pu = 0 in Rn \ Ω.
(4.2)

Taking u+ as test function in (4.2) we obtain

Λn,p(1− α)Hα,p(u, u+) +

∫
Ω

(u+)pdx =
λ1,ε

ε

∫
Ωε

(u+)p dx. (4.3)

Observe that

((u(x)− u(y))(u+(x)− u+(y)) = 2u−(x)u+(y) + (u+(x)− u+(y))2, (4.4)

and

|u(x)− u(y)|p−2 = (|u(x)− u(y)|2)
p−2

2

= (|u+(x)− u+(y)|2 + |u−(x)− u−(y)|2 + 2u+(x)u−(y)

+ 2u+(y)u−(x))
p−2

2

≥ |u+(x)− u+(y)|p−2.

(4.5)

Using (4.4) and (4.5) in (4.3) and the definition of λ1,ε, we obtain

λ1,ε

ε

∫
Ωε

(u+)p dx ≤ Λn,p(1− α)

∫
Q

|u+(x)− u+(y)|p

|x− y|n+pα
dx dy +

∫
Ω

(u+)pdx

≤ λ1,ε

ε

∫
Ωε

(u+)p dx.
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Thus

Λn,p(1− α)

∫
Q

|u+(x)− u+(y)|p

|x− y|n+pα
dx dy +

∫
Ω

(u+)pdx =
λ1,ε

ε

∫
Ωε

(u+)p dx,

so either u+ ≡ 0 or u = φ1,ε. If u+ ≡ 0 then u ≤ 0 and (4.2) implies that u is an
eigenfunction with u ≤ 0 so that u = −φ1,ε. So, in any case uk converges to either
φ1,ε or −φ1,ε in Lp(Ωε). Thus

either |{x ∈ Ωε : uk(x) < 0}| → 0 or |{x ∈ Ωε : uk(x) > 0}| → 0 (4.6)

as k →∞. On the other hand, taking u+
k as test function in (4.1), we obtain

Λn,p(1− α)Hα,p(uk, u+
k ) +

∫
Ω

|uk|p−2uku
+
k =

ak
ε

∫
Ωε

(u+
k )p. (4.7)

Using Hölders inequality, fractional Sobolev embeddings and (4.7), we obtain

Λn,p(1− α)

∫
Q

|u+
k (x)− u+

k (y)|p

|x− y|n+pα
dx dy +

∫
Ω

(u+
k )pdx

≤ Λn,p(1− α)

∫
Q

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(u+
k (x)− u+

k (y))

|x− y|n+pα
dx dy

+

∫
Ω

|uk|p−2uku
+
k dx

= Λn,p(1− α)Hα,p(uk, u+
k ) +

∫
Ω

|uk|p−2uku
+
k dx

=
ak
ε

∫
Ωε

(u+
k )p dx

≤ ak
ε
C|{x ∈ Ωε : uk(x) > 0}|1−

p
q ‖u+

k ‖
p

with a constant C > 0, p < q ≤ p∗ = np
n−pα . Then we have

|{x ∈ Ω : uk(x) > 0}|1−
p
q ≥ εa−1

k C−1 min{Λn,p(1− α), 1}.
Similarly, one can show that

|{x ∈ Ω : uk(x) < 0}|1−
p
q ≥ εb−1

k C−1 min{Λn,p(1− α), 1}.
Since (ak, bk) does not belong to the trivial lines λ1,ε × R and R × λ1,ε of Σp, by
(4.1) we conclude that uk changes sign. Hence, from the above inequalities, we
obtain a contradiction with (4.6). Therefore, the trivial lines λ1,ε ×R and R× λ1,ε

are isolated in Σp. �

Lemma 4.2 ([6]). Let S = {u ∈ Wα,p : 1
ε

∫
Ωε
|u|p dx = 1} then

(1) S is locally arcwise connected.
(2) Any open connected subset O of S is arcwise connected.

(3) If O′ is any connected component of an open set O ⊂ S, then ∂O′ ∩O = ∅.

Lemma 4.3. Let O = {u ∈ S : J̃s(u) < r}, then any connected component of O
contains a critical point of J̃s.

Proof. Let O1 be any connected component of O, let d = inf{J̃s(u) : u ∈ O1},
where O1 denotes the closure of O1 in Wα,p. We show that there exists u0 ∈ Wα,p

such that J̃s(u0) = d. For this let uk ∈ O1 be a minimizing sequence such that
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J̃s(uk) ≤ d + 1
2k2 . For each k, by applying Ekeland’s Variational principle, we

obtain a sequence vk ∈ O1 such that

J̃s(vk) ≤ J̃s(uk), ‖vk − uk‖ ≤
1

k
, J̃s(vk) ≤ J̃s(v) +

1

k
‖v − vk‖ ∀v ∈ O1.

For k large enough, we have

J̃s(vk) ≤ J̃s(uk) ≤ d+
1

2k2
< r,

then vk ∈ O. By Lemma 4.2, we obtain vk 6∈ ∂O1 so vk ∈ O1. On the other hand,
for t small enough and w such that 1

ε

∫
Ωε
|vk|p−2vkw dx = 0, we have

ut :=
ε1/p(vk + tw)

‖vk + tw‖Lp(Ωε)
∈ O1.

Then J̃s(vk) ≤ J̃s(ut) + 1
k‖ut − vk‖. Following the same calculation as in Lemma

3.6, we have that vk is a Palais-Smale sequence for J̃s on S i.e J̃s(vk) is bounded

and ‖J̃s(vk)‖∗ → 0. Again by Lemma 3.5, up to a subsequence vk → u0 strongly

in Wα,p and hence J̃s(u0) = d < r and moreover u0 ∈ O. By part 3 of Lemma

4.2, u0 6∈ ∂O1 so u0 ∈ O1. Hence u0 is a critical point of J̃s, which completes the
proof. �

Before proving the main Theorem 1.1, we state some Lemmas and the details of
the proof can be found in [4] and [11].

Lemma 4.4 ([4, Lemma B.1]). Let 1 ≤ p ≤ ∞ and U, V ∈ R such that U.V ≤ 0.
Define the following function

g(t) = |U − tV |p + |U − V |p−2(U − V )V |t|p, t ∈ R.

Then we have

g(t) ≤ g(1) = |U − V |p−2(U − V )U, t ∈ R.

Lemma 4.5 ([11, Lemma 4.1]). Let α ∈ (0, 1) and p > 1. For any non-negative

functions u, v ∈ Wα,p, consider the function σt := [(1− t)vp(x) + tup(x)]
1/p

for
all t ∈ [0, 1]. Then

[σt]α,p ≤ (1− t)[v]α,p + t[u]α,p, for all t ∈ [0, 1],

where [u]α,p is defined in (2.1).

Proof of Theorem 1.1. Assume by contradiction that there exists µ such that λ1,ε <
µ < c(s) and (s + µ, µ) ∈ Σp. Using the fact that {λ1,ε} × R and R × {λ1,ε} are
isolated in Σp and Σp is closed we can choose such a point with µ minimum. In other

words, J̃s has a critical value µ with λ1,ε < µ < c(s), but there is no critical value

in (λ1,ε, µ). If we construct a path connecting from φ1,ε to −φ1,ε such that J̃s ≤ µ,
then we obtain a contradiction with the definition of c(s), which wiil complete the
proof.

Let u ∈ S be a critical point of J̃s at level µ. Then u satisfies

Λn,p(1− α)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+pα
dx dy +

∫
Ω

|u|p−2uv dx

=
(s+ µ)

ε

∫
Ωε

(u+)p−1v dx− µ

ε

∫
Ωε

(u−)p−1v dx (4.8)
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for all v ∈ Wα,p. Substituting v = u+ in (4.8), we have

Λn,p(1− α)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(u+(x)− u+(y))

|x− y|n+pα
dx dy +

∫
Ω

(u+)pdx

=
(s+ µ)

ε

∫
Ωε

(u+)p dx. (4.9)

Since, |u+(x)− u+(y)|p ≤ |u(x)− u(y)|p−2(u(x)− u(y))(u+(x)− u+(y), we obtain

Λn,p(1− α)

∫
Q

|u+(x)− u+(y)|p

|x− y|n+pα
dx dy +

∫
Ω

(u+)pdx− s

ε

∫
Ωε

(u+)pdx ≤ µ.

Again substituting v = u− in (4.8), we have

Λn,p(1− α)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(u−(x)− u−(y))

|x− y|n+pα
dx dy −

∫
Ω

(u−)pdx

= −µ
ε

∫
Ωε

(u−)p dx. (4.10)

Therefore,

Λn,p(1− α)

∫
Q

|u(x)− u(y)|p−2((u−(x)− u−(y))2 + 2u+(x)u−(y))

|x− y|n+pα
dx dy

+

∫
Ω

(u−)pdx

=
µ

ε

∫
Ωε

(u−)p dx

Since |u−(x) − u−(y)|p ≤ |u(x) − u(y)|p−2[(u−(x) − u−(y))2 + 2u+(x)u−(y)], ti
follows that

Λn,p(1− α)

∫
Q

|u−(x)− u−(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u−|pdx ≤ µ.

Therefore, from all above relations, one can easily verify that

J̃s(u) = µ, J̃s

( ε
1
pu+

‖u+‖Lp(Ωε)

)
≤ µ, J̃s

( ε
1
pu−

‖u−‖Lp(Ωε)

)
≤ µ− s, J̃s

( −ε
1
pu−

‖u−‖Lp(Ωε)

)
≤ µ.

Since, u changes sign (see Proposition 3.3), the following paths are well-defined on
S:

u1(t) =
u+ − (1− t)u−

ε
−1
p ‖u+ − (1− t)u−‖Lp(Ωε)

,

u2(t) =
[(1− t)(u+)p + t(u−)p]1/p

ε
−1
p ‖(1− t)(u+)p + t(u−)p‖Lp(Ωε)

,

u3(t) =
(1− t)u+ − u−

ε
−1
p ‖(1− t)u+ − u−‖Lp(Ωε)

.

Then, using the above calculations and Lemma 4.4 for U = u+(x) − u+(y) and
V = u−(x)− u−(y), one can easily obtain that for all t ∈ [0, 1],

J̃s(u1(t)) ≤
Λn,p(1− α)

∫
Q
|U−V |p−2(U−V )U
|x−y|n+pα +

∫
Ω

(u+)p − s
ε

∫
Ωε

(u+)p

ε−1‖u+ − (1− t)u−‖pLp(Ωε)
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+
|1− t|p

[
− Λn,p(1− α)

∫
Q
|U−V |p−2(U−V )V
|x−y|n+pα +

∫
Ω

(u−)p
]

ε−1‖u+ − (1− t)u−‖pLp(Ωε)

= µ,

by using (4.9) and (4.10). Now using Lemma 4.5 we have

J̃s(u2(t)) ≤
(1− t)

[
Λn,p(1− α)

∫
Q
|u+(x)−u+(y)|p
|x−y|n+pα +

∫
Ω

(u+)p − s
ε

∫
Ωε

(u+)p
]

ε−1‖(1− t)(u+)p + t(u−)p‖pLp(Ωε)

+
t
[
Λn,p(1− α)

∫
Q
|u−(x)−u−(y)|p
|x−y|n+pα +

∫
Ω

(u−)p − s
ε

∫
Ωε

(u−)p
]

ε−1‖(1− t)(u+)p + t(u−)p‖pLp(Ωε)

≤ µ−
st
∫

Ωε
(u−)p

ε−1‖(1− t)(u+)p + t(u−)p‖pLp(Ωε)

≤ µ.

Again, by Lemma 4.4, for U = u−(y)− u−(x) and V = u+(y)− u+(x), we obtain

J̃s(u3(t))

≤
Λn,p(1− α)

∫
Q
|U−V |p−2(U−V )U
|x−y|n+pα +

∫
Ω

(u−)p

ε−1‖(1− t)u+ − u−‖pLp(Ωε)

+
|1− t|p

[
− Λn,p(1− α)

∫
Q
|U−V |p−2(U−V )V
|x−y|n+pα +

∫
Ω

(u+)p − s
ε

∫
Ωε

(u+)p
]

ε−1‖(1− t)u+ − u−‖pLp(Ωε)

= µ, by using (4.9) and (4.10).

Let O = {v ∈ S : J̃s(v) < µ − s}. Then clearly φ1,ε ∈ O, while −φ1,ε ∈ O if

µ− s > λ1,ε. Moreover φ1,ε and −φ1,ε are the only possible critical points of J̃s in
O because of the choice of µ. We note that

J̃s

( ε1/pu−

‖u−‖Lp(Ωε)

)
≤ µ− s,

ε1/pu−/‖u−‖Lp(Ωε) does not change sign and vanishes on a set of positive measure,

it is not a critical point of J̃s. Therefore, there exists a C1 path η : [−δ, δ] → S
with η(0) = ε1/pu−/‖u−‖Lp(Ωε) and d

dt J̃s(η(t))|t=0 6= 0. Using this path we can

move from ε1/pu−/‖u−‖Lp(Ωε) to a point v with J̃s(v) < µ− s. Taking a connected
component of O containing v and applying Lemma 4.3 we have that either φ1,ε or
−φ1,ε is in this component. Let us assume that it is φ1,ε. So we continue by a path

u4(t) from ε1/pu−/‖u−‖Lp(Ωε) to φ1,ε which is at level less than µ. Then the path

−u4(t) connects −ε1/pu−/‖u−‖Lp(Ωε) to −φ1,ε. We observe that

|J̃s(u)− J̃s(−u)| ≤ s.
Then it follows that

J̃s(−u4(t)) ≤ J̃s(u4(t)) + s ≤ µ− s+ s = µ for all t.

Connecting u1(t), u2(t) and u4(t), we obtain a path from u to φ1,ε and joining u3(t)
and −u4(t) we obtain a path from u to −φ1,ε. These yields a path γ(t) on S joining

from φ1,ε to −φ1,ε such that J̃s(γ(t)) ≤ µ for all t, which concludes the proof. �

As a consequence of Theorem 1.1, we give a variational characterization of the
second value of (1.2).
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Corollary 4.6. The second eigenvalue λ2 of (1.2) has the variational characteri-
zation given by

λ2 := inf
γ∈Γ

sup
u∈γ

(
Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|u|p dx
)
,

where Γ is as in Proposition 3.7.

Proof. Taking s = 0 in Theorem 1.1 and using (3.14) we have c(0) = λ2. �

5. Properties of the curve C

In this section, we prove that the curve C is Lipschitz continuous, has a certain
asymptotic behavior and is strictly decreasing. For A ⊂ Ωε, define the eigenvalue
problem

Λn,p(1− α)(−∆)αpu+ |u|p−2u =
χA
ε

(λ|u|p−2u) in Ω,

Nα,pu = 0 in Rn \ Ω,
(5.1)

Let λ1,ε(A) denotes the first eigenvalue of (5.1), then

λ1,ε(A) = inf
u∈Wα,p

{
Λn,p(1− α)

∫
Q

|u(x)− u(y)|p

|x− y|n+pα
dx dy

+

∫
Ω

|u|p dx :

∫
A

|u|p dx = ε
}
.

Lemma 5.1. Let A, B be two bounded open sets in Ωε, with A ( B and B is
connected then λ1,ε(A) > λ1,ε(B).

Proof. Clearly from the definition of λ1,ε, we have λ1,ε(A) ≥ λ1,ε(B). Let if possible
equality holds and let φ1,ε be a non-negative normalized eigenfunction associated
to λ1,ε(A) such that φ1,ε is equal to zero outside A. Therefore, from the definition
of λ1,ε(A), we have

Λn,p(1− α)

∫
Q

|φ1,ε(x)− φ1,ε(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|φ1,ε|pdx

=
λ1(A)

ε

∫
A

φp1,ε dx =
λ1(B)

ε

∫
B

φp1,ε dx.

It implies φ1,ε is an eigenfunction associated to λ1,ε(B). But this is impossible since
B is connected and φ1,ε vanishes on B \A 6= ∅. �

Proposition 5.2. The curve s → (s + c(s), c(s)), s ∈ R+ is Lipschitz continuous
and strictly decreasing (in the sense that s1 < s2 implies s1 + c(s1) < s2 + c(s2)
and c(s1) > c(s2)).

Proof. Let s1 < s2 then J̃s1(u) > J̃s2(u) for all u ∈ S. So we have c(s1) > c(s2).

Now for every η > 0 there exists γ ∈ Γ such that maxu∈γ[−1,1] J̃s2(u) ≤ c(s2) + η,
and so

0 ≤ c(s1)− c(s2) ≤ max
u∈γ[−1,1]

J̃s1(u)− max
u∈γ[−1,1]

J̃s2(u) + η.

Let u0 ∈ γ[−1, 1] such that maxu∈γ[−1,1] J̃s1(u) = J̃s1(u0). Then

0 ≤ c(s1)− c(s2) ≤ J̃s1(u0)− J̃s2(u0) + η ≤ s2 − s1 + η,

as η > 0 is arbitrary so the curve C is Lipschitz continuous with constant ≤ 1.
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Next, to prove that the curve is decreasing, it suffices to argue for s > 0. Let
0 < s1 < s2 then it implies c(s1) > c(s2). On the other hand, since (s1+c(s1), c(s1)),
(s2 + c(s2), c(s2)) ∈ Σp, Theorem 1.1 implies that s1 + c(s1) < s2 + c(s2), which
completes the proof. �

As c(s) is decreasing and positive so the limit of c(s) exists as s→∞.

Theorem 5.3. If n ≥ pα, then the limit of c(s) as s→∞ is λ1,ε.

Proof. For n ≥ pα, we can choose a function φ ∈ Wα,p such that there does not exist
r ∈ R such that φ(x) ≤ rφ1,ε(x) a.e. in Ωε (it suffices to take φ ∈ Wα,p such that it is
unbounded from above in a neighborhood of some point 0 6= x ∈ Ωε). Suppose that

the result is not true then there exists δ > 0 such that maxu∈γ[−1,1] J̃s(u) ≥ λ1,ε+δ
for all γ ∈ Γ and all s ≥ 0. Consider a path γ ∈ Γ by

γ(t) =
ε1/p(tφ1,ε + (1− |t|)φ)

‖tφ1,ε + (1− |t|)φ‖Lp(Ωε)
for all t ∈ [−1, 1].

Now, for every s > 0, let ts ∈ [−1, 1] satisfy maxt∈[−1,1] J̃s(γ(t)) = J̃s(γ(ts)). Let
vts = tsφ1,ε + (1− |ts|)φ. Then we have

J̃s(vts) ≥
(λ1,ε + δ)

ε

∫
Ωε

|vts |p. (5.2)

Letting s → ∞, we can assume a subsequence ts → t̃ ∈ [−1, 1]. Then vts is
bounded in Wα,p. So, from last inequality we obtain

∫
Ωε

(v+
ts)

p dx → 0 as s → ∞,

which forces ∫
Ωε

((t̃φ1,ε + (1− |t̃|)φ)+)p dx = 0.

Hence, t̃φ1,ε + (1− |t̃|)φ ≤ 0. By the choice of φ, t̃ must be equal to −1. Passing to
the limit in (5.2), we obtain

λ1,ε

ε

∫
Ωε

φp1,εdx = Λn,p(1− α)

∫
Q

|φ1,ε(x)− φ1,ε(y)|p

|x− y|n+pα
dx dy +

∫
Ω

|φ1,ε|p dx

≥ (λ1,ε + δ)

ε

∫
Ωε

|vts |p.

We arrive at a contradiction that δ ≤ 0. Hence c(s)→ λ1,ε as s→∞. �

6. Non resonance between (λ1, λ1) and C

In this section, we study the non-resonance problem with respect to the Fučik
spectrum for p = 2 case.

Lemma 6.1. Let (a, b) ∈ C, and let m(x), b(x) ∈ L∞(Ω) satisfying

λ1,ε ≤ m(x) ≤ a, λ1,ε ≤ b(x) ≤ b. (6.1)

Assume that

λ1,ε < m(x) and λ1,ε < b(x) on subsets of positive measure of Ωε. (6.2)

Then any non-trivial solution u of

Λn,2(1− α)(−∆)αu+ u =
χΩε

ε
(m(x)u+ − b(x)u−) in Ω,

Nα,2u = 0 in Rn \ Ω,
(6.3)
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changes sign in Ωε and

m(x) = a a.e. on {x ∈ Ωε : u(x) > 0} b(x) = b a.e. on {x ∈ Ωε : u(x) < 0}.

Proof. Let u be a nontrivial solution of (6.3). Replacing u by −u if necessary, we
can assume that the point (a, b) in C is such that a ≥ b. We first claim that u
changes sign in Ωε. Suppose by contradiction that this is not true, first consider
the case u ≥ 0, (case u ≤ 0 can be proved similarly). Then u solves

Λn,2(1− α)(−∆)αu+ u =
χΩε

ε
m(x)u+ in Ω, Nα,2u = 0 in Rn \ Ω.

This means that u is an eigenfunction of the problem with weight m(x) correspond-
ing to the eigenvalue equal to one. From the definition of the first eigenvalue of the
problem with weight m(x) ≥ λ1,ε, we have

λ1,ε(m(x))

= inf
06≡u∈Wα,2

{Λn,2(1− α)
∫
Q
|u(x)−u(y)|2
|x−y|n+2α dx dy +

∫
Ω
|u|2(x) dx

1
ε

∫
Ωε
m(x)|u|2 dx

:
}

= 1.
(6.4)

From (6.1), (6.1) and (6.4), we have

1 =
Λn,2(1− α)

∫
Q
|φ1,ε(x)− φ1,ε(y)|2|x− y|−(n+2α) dx dy +

∫
Ω
|φ1,ε|2(x) dx

λ1,ε

>
Λn,2(1− α)

∫
Q
|φ1,ε(x)− φ1,ε(y)|2|x− y|−(n+2α) dx dy +

∫
Ω
|φ1,ε|2(x) dx

1
ε

∫
Ωε
m(x)|φ1,ε|2 dx

≥ 1,

which is a contradiction. Hence, u changes sign on Ωε.
Let suppose by contradiction that either

|{x ∈ Ωε : m(x) < a and u(x) > 0}| > 0 (6.5)

or

|{x ∈ Ωε : b(x) < b and u(x) < 0}| > 0. (6.6)

Suppose that (6.5) holds (a similar argument will hold for (6.6)). Put a−b = s ≥ 0.
Then b = c(s), where c(s) is given by (3.14). We show that there exists a path
γ ∈ Γ such that

max
u∈γ[−1,1]

J̃s(u) < b, (6.7)

which gives a contradiction with the definition of c(s), prove the last part of the
Lemma.

To construct γ we show that there exists of a function v ∈ Wα,2 such that it
changes sign and satisfies

Λn,2(1− α)
∫
Q
|v+(x)− v+(y)|2|x− y|−(n+2α) dx dy +

∫
Ω

(v+)2 dx
1
ε

∫
Ωε

(v+)2 dx
< a,

Λn,2(1− α)
∫
Q
|v−(x)− v−(y)|2|x− y|−(n+2α) dx dy +

∫
Ω

(v−)2 dx
1
ε

∫
Ωε

(v−)2 dx
< b.

(6.8)
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Let O1 be a component of {x ∈ Ωε : u(x) > 0} such that |{x ∈ O1 : m(x) < a}| > 0
and O2 be a component of {x ∈ Ωε : u(x) < 0} such that |{x ∈ O2 : b(x) < b}| > 0.
Define the eigenvalue problem

Λn,2(1− α)(−∆)αu+ u =
χOi
ε

(λu) in Ω,

Nα,2u = 0 in Rn \ Ω, i = 1, 2.
(6.9)

Let λ1,ε(Oi) denote the first eigenvalue of (6.9). Next, we claim that

λ1,ε(O1) < a and λ1,ε(O2) < b, (6.10)

where λ1,ε(Oi) denotes the first eigenvalue of Λn,2(1−α)(−∆)αu+ u on Wα,2 and

λ1,ε(O1) =
Λn,2(1− α)

∫
Q
|u(x)− u(y)|2|x− y|−(n+2α) dx dy +

∫
Ω
|u|2 dx

1
ε

∫
O1
|u|2 dx

< a
Λn,2(1− α)

∫
Q
|u(x)− u(y)|2|x− y|−(n+2α) dx dy +

∫
Ω
|u|2 dx

1
ε

∫
O1
m(x)|u|2 dx

= a,

since |x ∈ O1 : m(x) < a| > 0. This implies λ1,ε(O1) < a. The other inequality
can be proved similarly. Now with some modification on the sets O1 and O2,
we construct the sets Õ1 and Õ2 such that Õ1 ∩ Õ2 = ∅ and λ1,ε(Õ1) < a and

λ1,ε(Õ2) < b. For ν ≥ 0, O1(ν) = {x ∈ O1 : dist(x, (Ωε)
c) > ν}. By Lemma 5.1,

we have λ1,ε(O1(ν)) ≥ λ1,ε(O1)) and moreover λ1,ε(O1(ν)) → λ1,ε(O1)) as ν → 0.
Then there exists ν0 > 0 such that

λ1,ε(O1(ν)) < a for all 0 ≤ ν ≤ ν0. (6.11)

Let x0 ∈ ∂O2∩Ωε (not empty as O1∩O2 = ∅), choose 0 < ν < min{ν0,dist(x0,Ω
c
ε)}

and Õ1 = O1(ν) and Õ2 = O2 ∪ B(x0,
ν
2 ). Then Õ1 ∩ Õ2 = ∅ and by (6.11),

λ1,ε(Õ1) < a. Since Õ2 is connected, by (6.10) and Lemma 5.1, we obtain λ1(Õ2) <

b. Now, we define v = v1−v2, where vi are the eigenfunctions associated to λi,ε(Õi).
Then v satisfies (6.8).

Thus there exist v ∈ Wα,2 which changes sign, satisfies condition (6.8). Moreover
we have

J̃s

( ε
1
2 v

‖v‖L2(Ωε)

)
=

Λn,2(1− α)
∫
Q
|v+(x)−v+(y)|2
|x−y|n+2α dx dy +

∫
Ω

(v+)2

1
ε ‖v‖

2
L2(Ωε)

− s
∫

Ωε
(v+)2 dx

‖v‖2L2(Ωε)

+
Λn,2(1− α)

∫
Q
|v−(x)−v−(y)|2
|x−y|n+2α dx dy +

∫
Ω

(v−)2 dx

1
ε ‖v‖

2
L2(Ωε)

+ 4
Λn,2(1− α)

∫
Q
v+(x)v−(y)
|x−y|n+2α dx dy

1
ε ‖v‖

2
L2(Ωε)

< (a− s)
∫

Ωε
(v+)2 dx

‖v‖2L2(Ωε)

+ b

∫
Ωε

(v−)2 dx

‖v‖2L2(Ωε)

= b.

J̃s

( ε
1
2 v+

‖v+‖L2(Ωε)

)
< a− s = b, J̃s

( ε
1
2 v−

‖v−‖L2(Ωε)

)
< b− s.

Using Lemma 4.3, we have that there exists a critical point in the connected com-
ponent of the set O = {u ∈ S : J̃s(u) < b − s}. As the point (a, b) ∈ C, the
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only possible critical point is φ1,ε, then we can construct a path from φ1,ε to −φ1,ε

exactly in the same manner as in Theorem 1.1 only by taking v in place of u. Thus
we have construct a path satisfying (6.7), and hence the result follows. �

Corollary 6.2. Let (a, b) ∈ C and let m(x), b(x) ∈ L∞(Ω) satisfying λ1,ε ≤ m(x) ≤
a a.e., λ1,ε ≤ b(x) ≤ b a.e. Assume that λ1,ε < m(x) and λ1,ε < b(x) on subsets of
positive measure on Ωε. If either m(x) < a a.e. in Ωε or b(x) < b a.e. in Ωε. Then
(6.3) has only the trivial solution.

Proof. By Lemma 6.1, any non-trival solution of (6.3) changes sign and m(x) = a
a.e. on {x ∈ Ωε : u(x) > 0} or b(x) = b a.e. on {x ∈ Ωε : u(x) < 0}. So, by our
hypotheses, (6.3) has only trivial solution. �

Now, we study the non-resonance between (λ1, λ1) and C,

Λn,2(1− α)(−∆)αu+ u =
χΩεf(x, u)

ε
in Ω,

Nα,2u = 0 in Rn \ Ω,
(6.12)

where f(x, u)/u lies asymptotically between (λ1,ε, λ1,ε) and (a, b) ∈ C.
Let f : Ω × R → R be a function satisfying L∞(Ω) Caratheodory conditions.

Given a point (a, b) ∈ C, we assume that

γ±(x) ≤ lim inf
s→±∞

f(x, s)

s
≤ lim sup

s→±∞

f(x, s)

s
≤ Γ±(x) (6.13)

holds uniformly with respect to x, where γ±(x) and Γ±(x) are L∞(Ω) functions
which satisfy

λ1,ε ≤ γ+(x) ≤ Γ+(x) ≤ a a.e. in Ωε

λ1,ε ≤ γ−(x) ≤ Γ−(x) ≤ b a.e. in Ωε.
(6.14)

The function F (x, s) =
∫ s

0
f(x, t)dt, we also satisfies

δ±(x) ≤ lim inf
s→±∞

2F (x, s)

|s|2
≤ lim sup

s→±∞

2F (x, s)

|s|2
≤ ∆±(x) (6.15)

uniformly with respect to x, where δ±(x) and ∆±(x) are L∞(Ω) functions which
satisfy

λ1,ε ≤ δ+(x) ≤ ∆+(x) ≤ a a.e. in Ωε, λ1,ε ≤ δ−(x) ≤ ∆−(x) ≤ b a.e. in Ωε,

δ+(x) > λ1,ε and δ−(x) > λ1,ε on subsets of positive measure,

either ∆+(x) < a a.e. in Ωε or ∆−(x) < b a.e. in Ωε.

(6.16)

Theorem 6.3. Let (6.13), (6.14), (6.15) and (6.16) hold and (a, b) ∈ C. Then
(6.12) admits at least one solution u in Wα,2.

Define the energy functional Ψ :Wα,2 → R as

Ψ(u) =
Λn,2(1− α)

2

∫
Q

|u(x)− u(y)|2

|x− y|n+2α
dx dy +

1

2

∫
Ω

|u|2 dx− 1

ε

∫
Ωε

F (x, u) dx

Then Ψ is a C1 functional on Wα,2 and for all v ∈ Wα,2,

〈Ψ′(u), v〉 = Λn,2(1− α)

∫
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2α
dx dy +

∫
Ω

uv dx
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− 1

ε

∫
Ωε

f(x, u)v dx

and critical points of Ψ are exactly the weak solutions of (6.12).
Next, we state some Lemmas, whose proofs can be found in [14, Lemma 5.2 and

5.3].

Lemma 6.4. Ψ satisfies the (PS) condition on Wα,2.

Lemma 6.5. There exists R > 0 such that

max{Ψ(Rφ1,ε),Ψ(−Rφ1,ε)} < max
u∈γ[−1,1]

Ψ(u),

for any γ ∈ Γ1 := {γ ∈ C([−1, 1],S) : γ(±1) = ±Rφ1,ε}.

Proof of Theorem 6.3. Lemmas 6.4 and 6.5 complete the proof. �
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