
����������
�������

Citation: Faroughi, S.A.; Roriz, A.I.;

Fernandes, C. A Meta-Model to

Predict the Drag Coefficient of a

Particle Translating in Viscoelastic

Fluids: A Machine Learning

Approach. Polymers 2022, 14, 430.

https://doi.org/10.3390/

polym14030430

Academic Editor: Mirta I. Aranguren

Received: 22 December 2021

Accepted: 18 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

A Meta-Model to Predict the Drag Coefficient of a Particle
Translating in Viscoelastic Fluids: A Machine Learning Approach
Salah A. Faroughi 1,* , Ana I. Roriz 2 and Célio Fernandes 1,2

1 Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University,
San Marcos, TX 78666, USA

2 Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus of Azurém,
Engineering School of the University of Minho, 4800-058 Guimarães, Portugal;
b12374@dep.uminho.pt (A.I.R.); cbpf@dep.uminho.pt (C.F.)

* Correspondence: salah.faroughi@txstate.edu

Abstract: This study presents a framework based on Machine Learning (ML) models to predict the
drag coefficient of a spherical particle translating in viscoelastic fluids. For the purpose of training
and testing the ML models, two datasets were generated using direct numerical simulations (DNSs)
for the viscoelastic unbounded flow of Oldroyd-B (OB-set containing 12,120 data points) and Giesekus
(GI-set containing 4950 data points) fluids past a spherical particle. The kinematic input features
were selected to be Reynolds number, 0 < Re ≤ 50, Weissenberg number, 0 ≤ Wi ≤ 10, polymeric
retardation ratio, 0 < ζ < 1, and shear thinning mobility parameter, 0 < α < 1. The ML models,
specifically Random Forest (RF), Deep Neural Network (DNN) and Extreme Gradient Boosting
(XGBoost), were all trained, validated, and tested, and their best architecture was obtained using
a 10-Fold cross-validation method. All the ML models presented remarkable accuracy on these
datasets; however the XGBoost model resulted in the highest R2 and the lowest root mean square
error (RMSE) and mean absolute percentage error (MAPE) measures. Additionally, a blind dataset
was generated using DNSs, where the input feature coverage was outside the scope of the training
set or interpolated within the training sets. The ML models were tested against this blind dataset, to
further assess their generalization capability. The DNN model achieved the highest R2 and the lowest
RMSE and MAPE measures when inferred on this blind dataset. Finally, we developed a meta-model
using stacking technique to ensemble RF, XGBoost and DNN models and output a prediction based
on the individual learner’s predictions and a DNN meta-regressor. The meta-model consistently
outperformed the individual models on all datasets.

Keywords: machine learning; deep learning; stacked learning; viscoelastic flows; Oldroyd-B fluid;
Giesekus fluid; sphere drag coefficient

1. Introduction

The flow of particle-laden complex fluids has been the centerpiece of many well-
documented experimental, theoretical, and numerical approaches [1–4]. These fluids
are non-Newtonian in character showing shear thinning, shear thickening, viscoplastic,
time-dependent and viscoelastic behaviors under different flow conditions. Resolving the
dynamics of particles within these fluids is extremely challenging both experimentally and
computationally, especially when the matrix fluid is viscoelastic, e.g., a polymer solution or
polymer melt [4–7].

Characterizing the dynamics of particles in complex fluids under different flow and/or
environmental conditions requires comprehensive experimentation and simulation tools
to resolve the nonlinear interplay of multiple physical variables, flow parameters and
many-body interactions [8]. This is computationally expensive even when using high per-
formance computing resources with robust parallelized algorithms [4]. In recent decades,

Polymers 2022, 14, 430. https://doi.org/10.3390/polym14030430 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14030430
https://doi.org/10.3390/polym14030430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6543-1691
https://orcid.org/0000-0002-0340-3556
https://doi.org/10.3390/polym14030430
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14030430?type=check_update&version=3

Polymers 2022, 14, 430 2 of 24

many physics-based numerical models have been proposed to model complex fluids, see
the review by Maxey [9]. These approaches are limited to specific conditions and cannot
be practically applied to large-scale engineering applications where hundreds or millions
of particles are suspended, e.g., blood and other biological fluids, hydraulic fracturing,
cementing, etc. [10,11]. In addition to the computing power, the insufficiency of com-
prehensive physics-based constitutive models to describe a broad range of complexities
involved with such fluids, their use in realistic conditions encounter severe uncertainties or
limitations. Therefore, the wealth of existing domain knowledge and scientific capabilities
in this field need to be complemented with evolving technologies such as Machine Learning
(ML) and Deep Learning (DL) to accelerate fundamental and applied research and close
knowledge and computational gaps. For example, for a time intensive conventional compu-
tational model, both inner-loop (i.e., forward simulations) and the outer-loop (optimization
and data assimilation) can be improved using the adaptivity and acceleration of ML- or
DL-based models [12,13].

One main challenge for the application of ML and DL in the field of complex fluids is
the lack of datasets. This challenge can be resolved by an in-line integration of traditional
(e.g., CFD) and DL-based modeling, so-called a physics-informed DL, physics-guided DL,
or digital-twin technique [14]. The ML or DL algorithms can be trained and integrated with
traditional physics-based forward modeling to predict the flow dynamics under different
conditions at a reduced computational cost. The latter is done by learning the solutions
for ordinary and partial differential equations governing the system [13] or learning the
closure laws for the pertinent physics, e.g., lift and drag forces, turbulence models, etc.

Such integration can be explored for the Eulerian-Lagrangian multi-phase model [6,15],
as one of the main computational methods to resolve the flow of complex fluids. The ML/DL
integration can drastically increase the robustness of this numerical algorithm that inte-
grates the presence of multiple non-Brownian particles as the discrete material phase em-
bedded in a viscoelastic fluid treated as a continuum phase. In particular, the momentum-
exchange model, including drag, lift, hindrance, and retardation closure laws to couple the
constituents [6,16,17], can be replaced with ML or DL models. In this approach, the fun-
damental goal is to provide reasonably accurate data-driven predictions that substitute
expensive computational steps. These data-driven models learn the multitude of coupling
within the complex fluids at the particle-level and enable accurate simulations of complex
fluids at larger length and time scales.

In the present contribution, we propose to take the first step and complement the
Eulerian-Lagrangian multi-phase approach with a data-driven drag model for the transla-
tion of a spherical particle in constant viscosity and shear thinning matrix-based viscoelastic
fluids. In a constant viscosity elastic fluid, the drag coefficient decreases at low levels of
elasticity, and increases at high elasticity due to the large elastic stresses developing on
the surface and on the wake of the particles [1,18–20]. When the shear thinning effect is
added, the drag coefficient decreases as elasticity increases. Recently, Faroughi et al. [6]
developed a closure drag model for a single spherical particle translating through constant
viscosity elastic fluids described by the Oldroyd-B constitutive equation. However, due to
strong interaction of elasticity (e.g., high Weissenberg number) and kinematic parameters
(shear thinning and thickening), a general solution for this problem that can integrate all
dimensions of the data and perform well over a wide range of parameters, is still missing
and cannot be formed using traditional approaches.

Accordingly, the present contribution is undertaken to achieve two goals. First, we
generate and condition comprehensive datasets capturing the dynamics of a spherical
particle translating through constant viscosity and shear thinning viscoelastic fluids. This
is done using direct numerical simulations (DNSs) following the work of Faroughi et al. [6].
The data are processed and labeled for a set of operational conditions to be consumed
by supervised ML and DL methodologies. Second, we develop data-driven drag models
by examining several ML-based regression methods trained, validated and tested on the

Polymers 2022, 14, 430 3 of 24

generated datasets. The performance, accuracy and productivity of different models are
thoroughly evaluated based on common statistical measures.

The paper is organized in the following manner: in Section 2 we present the govern-
ing equations describing the transient, incompressible and isothermal laminar flows of
viscoelastic matrix-based fluids. We also present the physical system and computational
domain used to generate the training datasets. In Section 3, the ML-based regression algo-
rithms employed to predict the viscoelastic drag coefficient are described. Next, in Section 4,
we present the complexity of the training datasets in detail and compare the performance of
each ML model employed to learn the characteristics of these datasets. A meta-model, based
on different ML models, is then trained to fully describe the datasets. Finally, in Section 5,
we summarize the main conclusions of this work.

2. Underlying Physics

The conservation equations governing transient, incompressible and isothermal lam-
inar flow of viscoelastic fluids are the continuity, momentum balance and constitutive
equations. The continuity and momentum balance equations read as follows,

∇ · (ρu) = 0 (1)

∂(ρu)
∂t

+∇ · (ρuu) +∇ · (pI)−∇ · τ = 0 (2)

where ρ is the fluid density, u is the velocity vector, t is the time, p is the pressure, I is the
identity tensor and τ is the total extra-stress tensor, which is split into solvent (τS) and
polymeric (τP) contributions, such that τ = τS + τP. These stress terms are obtained by
the following constitutive equations,

τS = ηS

(
∇u +∇uT

)
(3)

λτ
O

P + τP +
αλ

ηP
τP · τP = ηP

(
∇u +∇uT

)
(4)

where ηS and ηP are the solvent and polymeric viscosities, respectively, λ is the fluid
relaxation time, α is the mobility parameter and τ

O
P indicates the upper-convective time

derivative of the polymeric extra-stress tensor defined as,

τ
O

P ≡
∂τP
∂t

+ u · ∇τP − τP · ∇u−∇uT · τP (5)

Equation (4) is known as the Giesekus viscoelastic constitutive model [21]. For the
particular case where the mobility parameter is zero, α = 0, Equation (4) reduces to the
well-known quasi-linear elastic dumbbell fluid, the Oldroyd-B fluid. When written in the
continuum formulation, viscoelastic fluid flows are well known to introduce numerical
convergence difficulties at high Weissenberg numbers. This is mainly related to the lack
of sufficient resolution of the discretization methods to resolve the exponential growth of
stresses near critical points as the Weissenberg number is incremented. To prevent this
issue in the calculation of the polymeric extra-stress tensor components, we follow the log-
conformation approach [22,23] implemented in the OpenFOAM [24] computational library.

We use the above governing equations to perform an extensive set of DNSs and calcu-
late the drag coefficient for a spherical particle translating in viscoelastic fluids. Figure 1
schematically illustrates the computational domain used in this study to simulate the
unbounded viscoelastic flow around a sphere [6]. The domain size in flow direction, Lx, is
considered larger than other dimensions to allow enough space for the polymer chains to
be relaxed. Our numerical model and solver were comprehensively tested against this com-
putational challenge (see, e.g., Fernandes et al. [25] and Faroughi et al. [6] for the case of an
Oldroyd-B fluid flow around a sphere). All the numerical simulations were performed in
parallel using several High-Performance Computing facilities (see Acknowledgments sec-

Polymers 2022, 14, 430 4 of 24

tion). On a system with a 2.30 GHz AMD EPYC 7742 64-Core processor, the computational
time for a single run was 12 ± 1 h.

Figure 1. Schematic illustration of the computational domain (square duct) used to simulate the
viscoelastic fluid flow past a sphere.

For the present problem, we define the Reynolds and Weissenberg dimensionless
numbers as follows,

Re =
2aρU

η0
(6)

Wi =
λU
a

(7)

where U is the inlet average fluid velocity and a is the sphere radius (D = 2a is the sphere
diameter). Additionally, the other dimensionless numbers considered in this work are the
shear thinning mobility parameter α, and the polymeric viscosity ratio ζ. The latter is also
known as the characteristic retardation ratio defined as,

ζ =
ηP

ηS + ηP
=

ηP
η0

(8)

where η0 is the total fluid viscosity in the limit of vanishing shear rate and ηS and ηP are
the solvent and polymeric contributions to the fluid viscosity, respectively.

Here, we carry out the calculations for the viscoelastic drag coefficient, CD, using the
surface integration of the total stress, τ = τP + τS, and pressure field, p, on the surface of
the sphere as,

CD =
2

ρU2 A

∫
δΩs

(τP + τS − pI) · n · x dS (9)

where A is the cross-sectional area of the sphere, n is the unit normal vector to the sphere
surface, S, and x is the unit vector parallel to the flow direction. The results computed for
the viscoelastic drag coefficient using Equation (9) are normalized by,

χ =
CD

CD(Wi = 0)
(10)

where χ is the viscoelastic drag coefficient correction factor [6].

3. Machine Learning Regression Algorithms

To relate the input features (i.e., a set of explanatory variables, Re, Wi, ζ and α) to
the output features (i.e., the response variable, χ), different ML-based regression algo-
rithms are employed in this work. These algorithms enable us to model multidimensional
datasets which cannot be described using traditional techniques [6]. In the most basic form,

Polymers 2022, 14, 430 5 of 24

the linear regression model explains a dependent variable y via a linear combination of the
independent features, xi (i = 1, . . . , n),

y = β0 + β1x1 + . . . + βnxn + ε (11)

where ε is an additive error and β j (j = 0, . . . , n) are the coefficients of the features. Despite
its simplicity, this model is widely used as a baseline and a tool to analytically study the
independent variables and understand the significance of the input features. To achieve
more accurate estimates and prevent the overfitting issue, we consider more sophisticated
regression models such as ensemble decision tree algorithms (Random Forest and Extreme
Gradient Boosting) and a Deep Neural Network (DNN). These methods possess their own
challenges and should be applied with special care in scenarios where the training data are
sparse [26].

The Random Forest (RF) is an ensemble learning technique that alleviates the over-
fitting issue and offers excellent performance within the scope of the training data [27].
In this approach, multiple decision trees are constructed at training time and the mean
of the individual predictions is reported as the output of the ensemble method. At each
candidate splitting within each tree model, a randomly selected subset of feature space is
used. This trick has proven to be very effective and the resulting models are usually robust
to the overfitting problem [28]. The RF models have emerged as a versatile and highly
accurate regression methodology requiring little tuning while providing interpretable out-
puts. In summary, the RF algorithm includes (i) randomly select n subsamples, (ii) train
the regression tree for each sample, and finally (iii) average all prediction results from
all trees. This algorithm has 16 main hyperparameters as listed in Table 1, and the most
important ones to tune are the n_estimators that represents the total number of trees in the
forest, and Max_feature that represents the number of features to consider when looking
for the best split. The selection of the feature for node splitting from a random set of
features decreases the correlation between different trees and, thus, the average prediction
of multiple regression trees is expected to have lower variance than individual regression
trees [28].

The Extreme Gradient Boosting (XGBoost) algorithm proposed by Chen and
Guestrin [29] is an improved algorithm of gradient boosting to recognize complex,
nonlinear patterns inside datasets. One of the differences between XGBoost and RF
models is related to the way the trees are built. In RF, trees are built independent
of each other, but, in XGBoost, a new tree is added to complement the already built
ones [30]. A prediction value (y∗i) from an ensemble model can be represented as,

y∗i = h(xi) =
K

∑
k=1

fk(xi), i = 1, . . . , N (12)

where fk is a regression tree, and fk(xi) represents the score given by the k-th tree to the i-th
observation in data. The goal in XGBoost is to minimize the regularized objective function
expressed as [30],

L =
N

∑
i=1

Λ(yi, y∗i) +
K

∑
k=1

Ω(fk) (13)

in order to choose functions fk. Here, N is the number of observation (e.g., rows of data), Λ
is the loss function which measures the accuracy and performance of the model in terms
of its relationship between input (xi) and output (yi) features, and the penalty term Ω is
included to prevent too large complexity of the model, being defined as [30]

Ω(fk) = γT +
1
2

β||ω||2 (14)

where γ and β are parameters controlling penalty for the number of leaves, T, and magni-
tude of leaf weights, ω, respectively. This penalty term makes XGBoost unique compared

Polymers 2022, 14, 430 6 of 24

to general tree boosting methods. It has two main goals; (i) to prevent overfitting, and (ii) to
simplify the end model produced by this algorithm. In addition to this regularized loss
function, XGBoost is reinforced with two additional features that further prevent overfitting.
First, the weights of each new tree can be scaled down reducing an impact of a single tree
on the final score, which provides more room for next trees to improve the model [30].
The second feature is a column sampling working in a similar way as RF where each tree
is built using only a column-wise sample from the training dataset [31]. The XGBoost
algorithm has 24 main hyperparameters as listed in Table 1, divided in three categories:
(a) general parameters as a guide to the overall functioning, (b) booster parameters as a
guide to the individual booster at each step, and (c) learning task parameters as a guide to
the optimization performance.

Table 1. Tunable hyperparameters in different machine learning regression models applied in
this study.

Model Hyperparameters Total Number

Random Forest

Bootstrap, criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease,
min_impurity_split, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf,
n_estimators, n_jobs, oob_score, random_state,
verbose, warm_start

16

XGBoost

base_score, booster, colsample_bylevel,
colsample_bynode, colsample_bytree, gamma,
importance_type, learning_rate, max_delta_step,
max_depth, min_child_weight, missing, n_estimators,
n_jobs, nthread, objective, random_state, reg_alpha,
reg_lambda, scale_pos_weight, seed, silent,
subsample, verbosity

24

DNN

activation, alpha, batch_size, beta_1, beta_2,
early_stopping, epsilon, hidden_layer_sizes,
learning_rate, learning_rate_init, max_iter, momentum,
n_iter_no_change, nesterovs_momentum, power_t,
random_state, shuffle, solver, tol, validation_fraction,
verbose, warm_start

21

The Deep Neural Network (DNN) algorithms are one of the most commonly applied
regression algorithms for stationary datasets [32]. The popular implementation is the
multilayer perceptron (MLP), in which the architecture is optimized by iterating on various
numbers of hidden neurons and layers that would lead to the best model with the highest
accuracy on a dataset [33]. In MLP algorithm, the model is expressed as [34],

y = h

(
ϕ0 +

N

∑
j=1

ϕjg

(
M

∑
i=1

θixi

))
(15)

where N and M represent the number of neurons in the hidden and input layers, respec-
tively, g and h denote the transfer functions for the input layer and hidden layer, and the
vector matrices of θ and ϕ represent the weight values for neurons in the input and hidden
layers, respectively. A cost function is defined to measure the accuracy and performance of
the model in terms of its relationship between input and output features. The objective in
MLP is to minimize the cost function defined as [35],

Arg min :
1

2n

n

∑
i=1

(h(xi)− yi)
2 (16)

Polymers 2022, 14, 430 7 of 24

where n is the number of samples and h(xi) represents the model prediction. The batch
gradient descent technique and stochastic gradient descent are the well-known optimization
algorithms used to minimize the cost function [26]. These algorithms find the direction
(gradient) necessary to minimize the cost function and often they are known as a hill-
climbing approach [36]. It is important to note that a DNN model might have the highest
accuracy in the training set obtained from multiple attempts, but it is prone to memorize
the trend, noise, and detail in training set instead of intuitively understanding the trend in
the dataset. Therefore, it loses the prediction capability. In order to avoid this, one may set a
stoppage criteria for learning where the model tests its predictive capability on a validation
set and stops training when validation accuracy departs from training accuracy. The DNN
algorithm in total has 21 main hyperparameters as listed in Table 1, and the most important
ones are hidden_layer_sizes and learning_rate [37].

4. Results and Discussion

This section reports the processes taken to generate training datasets and develop ML
models that predict the drag coefficient correction of a spherical particle translating in vis-
coelastic fluids described by the Oldroyd-B (constant viscosity fluids) and Giesekus (shear
thinning fluids) constitutive equations. Figure 2 shows a summary of the inputs and output
data considered in the development of the ML models described in Section 3. The input
features are Reynolds number, Weissenberg number, retardation ratio, and mobility param-
eter, and the output variable is the drag coefficient normalized by the Newtonian value,
i.e., χ as defined in Section 2. Figure 2 shows a schematic architecture for the DNN model.

Figure 2. A summary of the training approach, input and output features to develop ML-based
regression models (e.g., it is shown for a DNN model).

4.1. Data Collection and Analysis for Oldroyd-B Fluids

For constant viscosity viscoelastic fluids [38], the relaxation time, λ, and retardation
ratio, ζ, are the two important characteristics that define the viscoelastic behaviors. These
fluids are generally modeled using the Oldroyd-B constitutive equation [39], and best
represent very dilute polymer solutions at low Weissenberg number. Direct numerical
simulations (DNSs), following the methodology implemented by Faroughi et al. [6] on the
physical system elaborated in Section 2, were employed to generate the training dataset
for the viscoelastic drag coefficient correction of a sphere translating in Oldroyd-B fluids
(α = 0). For that purpose, the range of the input features varied within 0 < Re ≤ 50,
0 ≤ Wi ≤ 10, and 0 < ζ < 1, which resulted in a total of 12,120 input values (hereafter
we call this dataset OB-set). In addition to this dataset, we also generated a blind dataset,
from a total of 60 DNSs, with an input feature coverage outside the scope or interpolated
within the scope of OB-set. The blind dataset did not enter in the initial training, validation
and testing phases and is used to scope the inference of the ML models beyond the limits
of the training set, i.e., test the ML models’ generalization as described in Section 4.4.

Figures 3 and 4 show the flow characteristics associated with the OB-set. In Figure 3a,b,
the contours of the viscoelastic drag coefficient correction, χ, are presented for Reynolds

Polymers 2022, 14, 430 8 of 24

numbers 0 < Re ≤ 1 and Weissenberg numbers 0 ≤Wi ≤ 10 at two polymeric retardation
ratios ζ = 0.1 and 0.9, respectively. The viscoelastic drag coefficient correction follows
the same behavior for both ζ = 0.1 and 0.9 across all considered Wi and Re numbers.
As shown in Figure 3c,d, the viscoelastic drag coefficient correction slightly decreases at
low Wi number, hits a minimum and then sharply increases with Wi number. The drag
enhancement is more significant at higher ζ values (star blue symbols).

In Figure 4a,b, the contours of the viscoelastic drag coefficient correction, χ, are
presented for Weissenberg numbers 0 ≤Wi ≤ 10 and Reynolds numbers Re ≤ 50 at two
polymeric retardation ratios ζ = 0.05 and 0.9, respectively. For both cases, the viscoelastic
drag coefficient correction decreases with the increase of inertia and increases with Wi,
being more noticeable for higher ζ. Figure 4c,d, show the behavior of χ at a fixed Reynolds
number, Re = 50. The viscoelastic drag coefficient correction increases up to Wi < 0.2, then
stays more or less constant up to Wi ≈ 2, and then increases with Wi number, being this
behavior more abrupt at higher retardation ratios.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

0.997 1.1 1.2 1.3 1.336

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

0.988 2 3 4 5 5.808

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

Weissenberg Number, Wi

0.988

0.990

0.992

0.994

0.996

0.998

1.000

D
ra

g
C

o
ef

fi
ci

en
t
C

o
rr

ec
ti
on
,
χ

Faroughi et al. (2019)

ζ= 0.1

ζ= 0.5

ζ= 0.9

1 2 3 4 5 6 7 8 9 10

Weissenberg Number, Wi

0

1

2

3

4

5

6

7

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Faroughi et al. (2019)

ζ= 0.1

ζ= 0.5

ζ= 0.9

(c) (d)

Figure 3. Contours of the viscoelastic drag coefficient correction, χ, for the Oldroyd-B fluid at
0 < Re ≤ 1, 0 ≤ Wi ≤ 10 and (a) ζ = 0.1 and (b) ζ = 0.9. Panels (c,d) show the variation of χ with
Weissenberg numbers for different values of ζ at Re = 1.

Figure 5 shows the contours of the normal component of the dimensionless polymeric
stress, τxx, for different values of Wi and ζ at Re = 1. The left column in Figure 5 shows the
τxx contours at Wi = 1, and the right column shows the same but at Wi = 10. As expected,
one observes that the magnitude of τxx increases as ζ increases. In addition, the location at
which the maximum value of τxx occurs shifts from the top/bottom flow separation points
to the wake of the particle as Wi increases. At Wi = 10, for both ζ values, a long wake was
also observed in the downstream region of the flow, where extensional flow dominates due
to the significant effects of the flow elasticity.

Due to the similarity observed in the behavior of χ under different flow conditions
(Re, Wi and ζ), the OB-set is an ideal dataset to be used in developing the building blocks
for the ML-based models predicting the viscoelastic drag coefficient correction. However,
the OB-set does not represents a large body of fluids that are encountered in nature or

Polymers 2022, 14, 430 9 of 24

industrial applications. This issue is rectified in the next section using the shear thinning
Giesekus constitutive equation [21] to augment the data.

0 10 20 30 40 50

0

2

4

6

8

10

0.997 1.01 1.03 1.05 1.07 1.088

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

Weissenberg Number, Wi

1.00

1.02

1.04

1.06

1.08

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.05

ζ= 0.5

ζ= 0.9

1 2 3 4 5 6 7 8 9 10

Weissenberg Number, Wi

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.05

ζ= 0.5

ζ= 0.9

(c) (d)

Figure 4. Contours of the viscoelastic drag coefficient correction, χ, for the Oldroyd-B fluid at
0 < Re ≤ 50, 0 ≤Wi ≤ 10 and (a) ζ = 0.05 and (b) ζ = 0.9. Panels (c,d) show the variation of χ with
Weissenberg numbers for different values of ζ at Re = 50.

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x/a

1.5

0.0

1.5

y/
a

ζ= 0.1, Wi= 1

−0.05 0.10 0.30 0.50 0.62

τxx/(η0 Uin/a)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x/a

1.5

0.0

1.5

y/
a

ζ= 0.1, Wi= 10

0 50 100 150 171

τxx/(η0 Uin/a)

(a) (b)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x/a

1.5

0.0

1.5

y/
a

ζ= 0.9, Wi= 1

−0.5 1.0 3.0 5.3

τxx/(η0 Uin/a)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x/a

1.5

0.0

1.5

y/
a

ζ= 0.9, Wi= 10

0 50 100 150 197

τxx/(η0 Uin/a)

(c) (d)

Figure 5. Contours of the dimensionless normal component of the polymeric extra-stress tensor τxx

for the Oldroyd-B fluid at Re = 1 for different values of ζ and Wi: (a) ζ = 0.1 and Wi = 1, (b) ζ = 0.1
and Wi = 10, (c) ζ = 0.9 and Wi = 1, and (d) ζ = 0.9 and Wi = 10.

4.2. Data Collection and Analysis for Giesekus Fluids

Most of the viscoelastic fluids show mid to strong shear thinning features. Shear
thinning behavior leads to more complex and nonlinear dependencies at non-vanishing
Weissenberg numbers, at which shear thinning effects become more pronounced. This
behavior (neglected in the previous section) dramatically changes the behavior of the

Polymers 2022, 14, 430 10 of 24

viscoelastic drag coefficient correction, χ. Therefore, the inference of the models trained
based on the OB-set will certainly fail for shear thinning fluids. Hence, the OB-set must be
augmented with data representing shear thinning fluids, or ML models developed based
on the OB-set must be further trained to also account for shear thinning effects. Several
viscoelastic constitutive models have been developed over the past few decades to model
shear thinning fluids [40]. The Giesekus fluid is the one generally used to best represent
the polymer molecules contribution to the momentum exchange in dilute to semi-dilute
polymer solutions [41]. This model is based on a concept of configuration-dependent
molecular mobility, and thus, the viscoelastic component of the polymeric stress tensor is
represented by λ and ζ as well as the mobility parameter, α. The mobility parameter varies
between zero and unity (practically 0.5 is the upper limit [41]) and accounts for the shear
thinning behavior of the viscoelastic fluids.

We again used DNSs to generate the training dataset for the viscoelastic drag coefficient
correction of a sphere translating in Giesekus fluids. A total of 4950 numerical simulations
for the unbounded flow of the shear thinning viscoelastic Giesekus fluid past a sphere
(using the physical system described in Section 2) were performed. Hereafter, we call this
dataset GI-set. Simulations were conducted under a wide range of numbers for the input
features, specifically 0 < Re ≤ 50, 0 ≤ Wi ≤ 10, 0 < ζ < 1, and 0 < α < 1. The end goal
is to use GI-set to augment the OB-set and develop a ML-based meta-model that can be
used by the scientific community to obtain a prediction of the dimensionless viscoelastic
drag coefficient correction of a sphere translating in both Oldroyd-B and Giesekus fluids.
We also generated a blind dataset using DNSs with flow features (Re, Wi, ζ and α) outside
the ranges provided in the generation of GI-set. This dataset, consisting of 64 data points,
is used to scope the accuracy of the ML models when inferred outside the limits of the
training dataset, see Section 4.4.

Figures 6 and 7 present the flow characteristics associated with GI-set. Figure 6
shows the contours of the viscoelastic drag coefficient correction, χ, for 0 < Re ≤ 50 and
0 ≤ Wi ≤ 10 at polymeric retardation ratios ζ = 0.05 and 0.9, and mobility parameters
α = 0.1 and 0.9. As shown in Figure 6, increasing inertia (i.e., Re number) leads to a
reduction in the viscoelastic drag coefficient correction, similar to the behavior observed for
the Oldroyd-B fluid. However, interestingly, increasing the elasticity of the flow (increasing
the Wi number) results in a sharp reduction of the viscoelastic drag coefficient correction.
The reduction is more pronounced at higher retardation ratio results. This behavior is
totally different than what was observed for constant viscosity fluids, where the viscoelastic
drag coefficient correction increases with Wi. Additionally, when the mobility parameter is
increased (i.e., stronger shear thinning effect), it promotes the drag reduction even further
as shown in Figure 6d.

To better illustrate the complexity of the flow and the effects of all flow features (Re,
Wi, ζ and α), we compare the contours of the normal component of the dimensionless
polymeric stress, τxx, in Figure 7. These comparisons are shown for different values of Re
(top line Re = 0.01 and bottom line Re = 50) and ζ (left column ζ = 0.05 and right column
ζ = 0.9) at fixed Wi = 5 and α = 0.1. One observes that the magnitude of τxx increases as
Re number increases. In addition, the change in the flow structure (i.e., flow separation
and formation of symmetric eddies) due to Re number shifts around the location where
the maximum of τxx occurs. Figure 7 also shows that an increase in the retardation ratio
ζ promotes an elongated wake in the downstream of the flow. In Figure 8, we show the
contours of τxx for the shear thinning Giesekus viscoelastic fluid for two different values of
the mobility parameter, α = 0.1 and 0.5, at fixed Re = 1, Wi = 2 and ζ = 0.5. As expected
and illustrated in Figure 8, increasing the mobility parameter decreases the stress overshoot
on the surface as well as in the wake of the sphere, which in turn drastically hinders the
enhancement of the viscoelastic drag coefficient correction due to elasticity (a behavior that
was observed for Oldroyd-B fluids).

Figures 3–8 collectively show the presence of a complex, multidimensional dynam-
ics associated with a single spherical particle flowing through a viscoelastic fluid. All

Polymers 2022, 14, 430 11 of 24

flow features (Re, Wi, ζ and α) strongly affect the flow fields and hence the viscoelastic
drag coefficient correction (χ). These effects can be hardly decoupled to derive an analyti-
cal/empirical or semi-empirical expression for the viscoelastic drag coefficient correction
prediction. A machine learning model, however, can be developed to learn these hidden
features, in addition to features that are obvious to us in the data, to predict the viscoelastic
drag coefficient of a spherical particle translating in an unbounded Oldroyd-B and Giesekus
viscoelastic fluids.

0 10 20 30 40 50

0

2

4

6

8

10

0.980 1.00 1.02 1.04 1.058

0 10 20 30 40 50

0

2

4

6

8

10

0.391 0.6 0.8 1.0 1.100

(a) (b)

0 10 20 30 40 50

0

2

4

6

8

10

0.976 1.00 1.02 1.04 1.052

0 10 20 30 40 50

0

2

4

6

8

10

0.287 0.5 0.7 0.9 1.098

(c) (d)

Figure 6. Contours of the viscoelastic drag coefficient correction, χ, for the shear thinning Giesekus
viscoelastic fluid for 0 < Re ≤ 50, 0 ≤ Wi ≤ 10 and different values of α and ζ: (a) ζ = 0.05 and
α = 0.1, (b) ζ = 0.9 and α = 0.1, (c) ζ = 0.05 and α = 0.9, and (d) ζ = 0.9 and α = 0.9.

1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

Re= 0.01, ζ= 0.05

−0.01

0.06

0.13

0.20

0.27

τ
x
x /(η

0
U
in /a

) 1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

Re= 0.01, ζ= 0.9

−0.2

1.7

3.5

5.3

7.1

τ
x
x /(η

0
U
in /a

)

(a) (b)

1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

Re= 50, ζ= 0.05

−0.01

0.07

0.15

0.23

0.31

τ
x
x /(η

0
U
in /a

) 1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

Re= 50, ζ= 0.9

−0.2

3.1

6.4

9.7

12.9

τ
x
x /(η

0
U
in /a

)

(c) (d)

Figure 7. Contours of the dimensionless normal component of the polymeric extra-stress tensor
τxx for the shear thinning Giesekus viscoelastic fluid at fixed Wi = 5, α = 0.1 and different values
of Re and ζ: (a) Re = 0.01 and ζ = 0.05, (b) Re = 0.01 and ζ = 0.9, (c) Re = 50 and ζ = 0.05,
and (d) Re = 50 and ζ = 0.9.

Polymers 2022, 14, 430 12 of 24

1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

α= 0.1

−0.2

0.4

0.9

1.5

2.0

τ
x
x /(η

0
U
in /a

) 1 0 1 2 3 4 5 6 7 8 9 10

x/a

1.5

0.0

1.5

y/
a

α= 0.5

−0.2

0.1

0.3

0.6

0.8

τ
x
x /(η

0
U
in /a

)

(a) (b)

Figure 8. Contours of the dimensionless normal component of the polymeric extra-stress tensor τxx

for the shear thinning Giesekus viscoelastic fluid at fixed Re = 1, Wi = 2, ζ = 0.5 and different values
of mobility parameter: (a) α = 0.1 and (b) α = 0.5.

4.3. ML Models Development

In this section, we leverage the OB-set and GI-set to train, validate and test the ML
models discussed in Section 3. Based on these datasets, the design space for the input
variables is defined as 0 < Re ≤ 50, 0 ≤ Wi ≤ 10, 0 < ζ < 1 and 0 < α < 1. First,
a normalization stage is followed to restrict the input value range, which transforms the
original input feature x to x̃ = (x− xmin)/(xmax − xmin). This is a common practice which
speeds up learning and leads to faster convergence, especially for the DNN model. Next,
we split each dataset to a training set (consisted of 80% of the data) and a test set (consisted
of 20% of the data) that are bundled randomly. One of the primary objectives in this
section is to improve the performance score, based on data patterns and observed evidence.
To achieve this objective, the ML model architecture needs to be optimized by tuning a
specific set of hyperparameters defined for each model (see Table 1 for a complete list of
hyperparameters of the ML models considered in this study).

4.3.1. Hyperparameter Tuning

Hyperparameter tuning relies more on experimental results than theory, and thus
the best method to determine the optimal settings is to try many different combinations
and evaluate the performance of each model. However, evaluating each model only on
the training set can lead to overfitting (i.e., a model scores very well on the training set
but performs poorly on the test set or blind dataset). Routinely, a subset of data from the
training set, known as validation set, is reserved for this purpose. We adopt the K-Fold
cross-validation (K-Fold CV) technique [42,43] to conduct hyperparameter tuning. In K-
Fold CV technique, the training set is further split into K number of subsets, called folds,
as schematically shown in Figure 2. The ML model is then iteratively fitted K times; each
time, the training is done on K-1 of the folds and evaluation is done on the Kth fold (the
validation set). At the very end of training, we average the performance on each of the
folds to come up with final validation metrics for the model. The trained models each
defined with specific hyperparameters are compared against each other, and the best one
that offer the highest accuracy metrics is selected. In this study, unless otherwise stated, we
apply 10-Fold CV, i.e., to assess a different set of hyperparameters, we split our training
dataset into 10 folds and train and evaluate each model with selected hyperparameters
10 times. If we select X sets of hyperparameters using 10-Fold CV technique, which
represents 10X training loops on the entire training dataset (e.g., X = 24 for XGBoost ML
model). This process is thus computationally tedious. To facilitate that, K-Fold technique
is coupled with RandomSearchCV algorithm to optimize selected hyperparameters [44].
This coupled approach tries random combinations within a range of values given for each
parameter, with a defined number of iterations of random searches. The training time,
using a workstation with 48 CPU cores and a NVIDIA RTX A8000 GPU, was on average
7± 0.5 h and 320 ± 8 h, respectively, for each iteration and all iterations required to perform
hyperparameter tuning for a model.

To train and compare the performance of the ML models, the accuracy is evaluated
based on three common statistical measures, R2, RMSE, and MAPE. The latter, MAPE, rep-
resents the mean-absolute-value of the ratio of estimation errors to actual values. A lower
MAPE value indicates that the predicted value is closer to the ground truth. The RMSE rep-
resents the root-mean-square error, which is also used to measure the differences between

Polymers 2022, 14, 430 13 of 24

actual and predicted values by a model. The R2 coefficient represents the fitness perfor-
mance, i.e., higher values of R2, with a max value of 1, are preferred. The mathematical
expressions for R2, RMSE and MAPE are as follows [45,46],

R2 = 1−

n

∑
i=1

(yi − y∗i)
2

n

∑
i=1

(yi − ȳi)
2

RMSE =

√
1
n

n

∑
i=1

(yi − y∗i)
2

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣× 100%

(17)

where n is the total number of observations, yi is the actual value, y∗i is the predicted value
and ȳi is the average of the actual values.

4.3.2. Training and Testing

We first train, validate and test three different ML-based regression models to predict
the drag coefficient correction of a single spherical particle translating through a viscoelastic
fluid described by the Oldroyd-B constitutive equation (using the OB-set). We used 10-Fold
CV approach in conjunction with RandomSearchCV algorithm for hyperparameters tuning,
and employed the statistical measures given in Equation (17) to analyze the accuracy of the
regression models. Table 2 reports the best set of hyperparameters (i.e., best architecture)
obtained for each ML model. Notice that only hyperparameters that have been tuned are
reported. These architectures, tuned by cross-validation technique on the OB-set, offer the
best statistical measures for the predictions as reported in Table 3. The accuracy between
real and predicted values is remarkable for all ML models as represented by the large R2

values in Table 3. For the OB-set, XGBoost is the model that presents the best R2 with the
lowest values of RMSE and MAPE.

Table 2. Optimized hyperparameters for different ML-based regression models trained, validated
and tested on the OB-set.

Model Hyperparameter Value

Random Forest bootstrap = True, criterion = mse, max_depth = 110, max_features = auto,
min_samples_leaf = 3, min_samples_split = 5, n_estimators = 800

XGBoost
colsample_bynode = 0.8, colsample_bytree = 0.8, learning_rate = 0.1,
max_depth = 15, n_estimators = 300, objective = reg:gamma, reg_alpha = 1.2,
reg_lambda = 1.3, subsample = 0.7

DNN
activation = relu, alpha = 0.0001, hidden_layer_sizes = (40, 20, 10),
learning_rate = adaptive, max_iter = 8000, momentum = 0.9,
n_iter_no_change = 10, solver = adam, tol = 0.0001

Table 3. Optimal statistical measures for different ML-based regression models trained, validated
and tested on the OB-set.

RF XGBoost DNN

R2 0.9991 0.9995 0.9989

RMSE 0.0228 0.0134 0.0451

MAPE 0.0048 0.0012 0.0145

The residuals (or the prediction errors) and quantile-quantile (Q-Q) plots for the ML-
based regression models trained, validated and tested on the OB-set are shown in Figure 9.

Polymers 2022, 14, 430 14 of 24

The residuals are computed as the difference between the actual value (in the test set) and
the values predicted by the optimized ML models. Figure 9 shows that the data points are
mainly scattered around the horizontal axis and the calculated error is mainly distributed
around zero. Figure 9 also shows Q-Q plots for each model in which the probability
distributions for errors are compared for both train and test sets by plotting their quantiles
against theoretical quantiles [47]. The theoretical quantiles on the x-axis represents normal
distribution as the base distribution. This plot readily depicts whether or not the residuals
(errors) are normally distributed. If points are close to the normal line, y = x, then residuals
are assumed to be normally distributed. It can be seen that, for all models, most of the
errors lies on y = 0 line and data follow a heavy tail distribution [47]. Figure 9d illustrates
the comparison between the actual and predicted values of the viscoelastic drag coefficient
correction, χ, on the OB-set for the XGBoost model. As shown the best fit line coincides
with the identity line, which corroborates the high R2 value presented in Table 3.

(a) (b)

(c) (d)

Figure 9. Residuals and quantile-quantile (Q-Q) plots obtained for the ML algorithms trained,
validated and tested on the OB-set: (a) Neural Network, (b) Random Forrest, and (c) XGBoost models.
Panel (d) shows the prediction error plot for XGBoost that yields the highest R2 as reported in Table 3.

The ML models trained on the OB-set fail, as expected, when inferred against a
dataset generated for shear thinning fluids (e.g., even at α = 0.1, which is just slightly
outside the scope of the OB-set where α is set to zero). To accurately predict the drag
coefficient correction of a spherical particle translating through a more realistic viscoelastic
fluid, the trained models require further augmentation. For that purpose, three different

Polymers 2022, 14, 430 15 of 24

approaches can be explored: (i) start training, validation and testing from scratch using
a combination of the datasets developed for Oldroyd-B and Giesekus fluids (augmented
OB-set and GI-set), (ii) use transfer learning technique [48] where models with knowledge
gained on the OB-set are further reinforced using GI-set, or (iii) infuse physics in the models’
architecture using the constitutive fluid models as loss or activation function broadening
the range over which the ML models are valid [49]. The latter approach is outside the scope
of the current study and will be explored elsewhere. The accuracy obtained for the model
derived by the second approach (i.e., transfer learning) was found to be significantly lower
than the first approach when tested on the blind datasets. This is mainly due to the difficulty
associated with transfer learning in decision tree ML models (Random Forest in particular
where there is a limited capacity to accommodate local changes [50]). Thus, we adopted
the first approach to develop ML-based models that satisfies both Oldroyd-B and Giesekus
fluids. This approach is also challenging because datasets are not balanced. The weight of
the OB-set (bigger dataset with 12,120 data points) is a lot larger than the GI-set (smaller
dataset with 4950 data points), and consequently ML models will be more biased towards
the OB-set (e.g., undermines the effects of α on the models’ predictability). To resolve this
issue, we used synthetic minority over-sampling technique [51], SMOTE, which blends
under-sampling of the majority set (OB-set) with a special form of over-sampling of the
minority set (GI-set). In SMOTE, we synthesized elements for the minority set, based on
the data that already exist. It works randomly by picking a point from the minority set
and computing the k-nearest neighbors for this point. The synthetic points for minority
set (GI-set) are placed between the chosen point and its neighbors. This process continues
until we reach balanced states for both datasets, hereafter we call this dataset SMOTE-set
containing 21,750 data points.

Again, we used 10-Fold CV approach in conjunction with the RandomSearchCV
algorithm for the hyperparameters tuning of the ML models trained,validated and tested
on SMOTE-set. Table 4 reports the best set of hyperparameters (i.e., best architecture)
obtained for each one of the ML model employed in this work. These architectures offer
the best statistical measures (R2, RMSE and MAPE) for the ML-based regression models as
reported in Table 5. The accuracy obtained for all ML models is acceptable as represented by
the large R2 and low RMSE values. For the SMOTE-set, again, the XGBoost model possesses
the highest R2, and the lowest values of RMSE and MAPE. This result is in agreement
with the literature [44,52–54] and shows that the decision-tree models perform better than
neural network models to learn hidden features on relatively midsize datasets. However,
performing well on the test set still does not guarantee the accuracy of decision-tree-based
regression models when inferred on blind datasets generated outside the scope of training
set or interpolated within the training sets (see Section 4.4).

Table 4. Optimized hyperparameters for the different ML-based regression models trained, validated
and tested on SMOTE-set.

Model Hyperparameter Value

Random Forest bootstrap = True, criterion = mse, max_depth = 45, max_features = auto,
min_samples_leaf = 3, min_samples_split = 5, n_estimators = 950

XGBoost
colsample_bynode = 1, colsample_bytree = 0.8, learning_rate = 0.2,
max_depth = 5, n_estimators = 400, objective = reg:gamma, reg_alpha = 1.2,
reg_lambda = 1.3, subsample = 0.7

DNN
activation = relu, alpha = 0.0001, hidden_layer_sizes = (120, 50, 20, 3),
learning_rate = adaptive, max_iter = 10,000, momentum = 0.95,
n_iter_no_change = 15, solver = adam, tol = 0.0001

Polymers 2022, 14, 430 16 of 24

Table 5. Optimal statistical measures for different ML-based regression models trained, validated
and tested on SMOTE-set.

RF XGBoost DNN

R2 0.9965 0.9967 0.9945

RMSE 0.0388 0.0378 0.0463

MAPE 0.0131 0.0127 0.0216

In Figure 10, we show the residuals and Q-Q plots for the ML models trained, validated
and tested on SMOTE-set. The residuals are computed as the difference between the actual
value (in the test set) and the values predicted by the optimized ML models. Figure 10
again shows that the data points are mainly scattered around the horizontal axis and the
calculated error is mainly distributed around zero. The Q-Q plots for Random Forest and
DNN models again depict that most of the errors lies on y = 0 line, within the standard
deviation range, and data follow a heavy tail distributions [47]. For the XGBoost model,
the residuals are closer to the normal line, y = x, and thus, they follow a distribution
closer to normal distribution. Figure 9d illustrates the comparison between the actual and
predicted values of the viscoelastic drag coefficient correction, χ, for the SMOTE-set using
the XGBoost model. This comparison corroborates the high R2 values presented in Table 5
and the fact that the residual plot for XGBoost model is symmetric around y = 0 as shown
in Figure 9c.

(a) (b)

(c) (d)

Figure 10. Residuals and quantile-quantile (Q-Q) plots obtained for the ML algorithms trained,
validated and tested on SMOTE-set: (a) Neural Network, (b) Random Forrest, and (c) XGBoost
models. Panel (d) shows the prediction error plot for XGBoost that yields the highest R2 as reported
in Table 5.

Polymers 2022, 14, 430 17 of 24

4.4. Models Performance on Blind Datasets

To further evaluate the performance of the ML models trained on SMOTE-set in
Section 4.3, we test them against blind datasets. We designed the blind datasets to have an
input feature coverage outside the scope of training set or interpolated within the training
sets. The blind datasets are generated using DNSs on the physical system described in
Section 2 following the work of Faroughi et al. [6] for both Oldroyd-B and Giesekus fluids.

The blind dataset for the Oldroyd-B fluid is constructed with a total of 60 DNS runs
using ζ = {0.25, 0.5, 0.75, 0.9}, Wi = {0.1, 0.3, 0.5, 0.65, 0.8, 1, 1.2, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
at a constant Re = 1. Figure 11 shows the comparisons between the real values for the
viscoelastic drag coefficient correction (obtained by DNSs and represented with a solid
line) and the values predicted by the ML models (represented by symbols). The ML
models used in this comparison are those trained, validated and tested based on the OB-
set. As depicted in Figure 11, all models perform very well to predict the blind dataset.
The statistical measures for ML models to predict this blind dataset are reported in Table 6.
The XGBoost model performs superior than other models and its predictions are in a very
good agreement with the numerical results.

0 1 2 3 4 5
Weissenberg Number, Wi

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.25

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

0 1 2 3 4 5
Weissenberg Number, Wi

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.5

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

(a) (b)

0 1 2 3 4 5
Weissenberg Number, Wi

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.75

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

0 1 2 3 4 5
Weissenberg Number, Wi

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

ζ= 0.9

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

(c) (d)

Figure 11. Validation of the ML models against the blind dataset generated for the Oldroyd-B fluid.
The comparisons are between the DNSs (solid lines showing the real values for the viscoelastic drag
coefficient correction) and the predicted values by the ML models. The comparisons are shown at
Re = 1 for different values of ζ: (a) ζ = 0.25, (b) ζ = 0.5, (c) ζ = 0.75 and (d) ζ = 0.9. The predictions
obtained with the Deep Neural Network, Random Forest and XGBoost models are represented by
square, triangle and circle symbols, respectively.

Polymers 2022, 14, 430 18 of 24

Table 6. Statistical measures for different ML-based regression models tested against the blind dataset
provided for Oldroyd-B fluids.

RF XGBoost DNN

R2 0.9926 0.9931 0.9621

RMSE 0.0085 0.0074 0.0173

MAPE 0.051 0.0042 0.0139

The blind dataset for Giesekus fluids is constructed with a total of 64 DNS runs
using Re = {0.3, 75}, ζ = {0.15, 0.8}, α = {0.2, 0.4}, and Wi = {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4}.
Figure 12 shows the comparisons for two sample sets between the real values of the
viscoelastic drag coefficient correction obtained by DNS (solid lines) and the predicted
values by the ML models (symbols). The ML models used in this comparison are trained,
validated and tested based on SMOTE-set. The statistical measures to predict this blind
dataset are reported in Table 7. A sharp reduction in prediction performance is noticed for
all models. This is due to two reasons: (i) the presence of values of Re which are out of
the limits of the SMOTE-set, and (ii) the sparsity of data points in the combined dataset,
i.e., OB-set and GI-set. Even using the SMOTE technique to balance the data sets (enforce the
effect of high Re numbers and α), the ML models trained on SMOTE-set show a relatively
poorer performance in predicting the blind dataset compared to the same models trained
and tested on the OB-set (see Figure 11 and Table 6).

As shown in Figure 12, the DNN model performs slightly better than the decision
tree models for both Re and α values. In general, ensemble decision tree models (e.g.,
XGBoost) are easy to train and prevent overfitting to a great extent [44,52,55]; however,
they do not perform well in predicting sparse datasets where interpolation between input
features is required. On the other hand, deep neural networks models are hard to train,
but offer a better performance when inferred outside the scope of the training dataset or
when interpolation between input features is needed [55,56]. Therefore, the DNN model
provides a better potential for the generality of the model. In addition, for a ML model
to be fully predictive under any new or unseen conditions (e.g., flow features), physics
must complement the model. This can only be achieved using deep learning models,
known as physics-based neural networks [57] or physics-guided neural networks [58] that
mimic an infinitely deep model. Incorporating physics in DNN is essential in the field
of particle-laden fluid flow, because it is not a data-oriented domain (i.e., large datasets
can be hardly found). Developing true physics-based neural network is outside the scope
of the current work, and it will be presented elsewhere. Here, to resolve this issue and
provide a meta-model for the viscoelastic drag coefficient correction that can be coupled
with Eulerian-Lagrangian algorithms [4], we use stacking technique [59]. This technique
leverages the superiority of all developed ML models (i.e., the fact that each model performs
better in a different section of the data), and is a very powerful method to increase the
generality of the model in predicting unseen data.

Table 7. Statistical measures for ML-based models tested against the blind dataset provided for
Oldroyd-B and Giesekus fluids.

RF XGBoost DNN

R2 0.8664 0.8566 0.9013

RMSE 0.0495 0.0516 0.0428

MAPE 0.0326 0.0341 0.0305

Polymers 2022, 14, 430 19 of 24

0 1 2 3 4
Weissenberg Number, Wi

0.7

0.8

0.9

1.0

1.1

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 0.3, ζ= 0.8, α= 0.2

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

0 1 2 3 4
Weissenberg Number, Wi

0.7

0.8

0.9

1.0

1.1

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 0.3, ζ= 0.8, α= 0.4

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

(a) (b)

0 1 2 3 4
Weissenberg Number, Wi

0.6

0.7

0.8

0.9

1.0

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 75, ζ= 0.8, α= 0.2

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

0 1 2 3 4
Weissenberg Number, Wi

0.6

0.7

0.8

0.9

1.0

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 75, ζ= 0.8, α= 0.4

Numerical simulations
 (Blind data)
Random Forest
XGBoost
Deep Neural Network

(c) (d)

Figure 12. Validation of the ML models against blind datasets generated for Giesekus fluids. The com-
parisons are between the DNSs (solid lines showing the real values for the viscoelastic drag coefficient
correction) and the predicted values by the ML models. The comparisons are shown at ζ = 0.8 for dif-
ferent values of Re and α: (a) Re = 0.3 and α = 0.2, (b) Re = 0.3 and α = 0.4, (c) Re = 75 and α = 0.2,
and (d) Re = 75 and α = 0.4. The predictions obtained with the Deep Neural Network, Random
Forest and XGBoost models are represented by square, triangle and circle symbols, respectively.

4.5. Model Ensembling

In this section, we leverage stacking which is an ensemble learning technique to
combine multiple ML-based regression models via a meta-regressor. The objective is
to develop a meta-model with high accuracy when predicting the drag coefficient for a
particle translating in viscoelastic fluids. In previous sections, we showed that different
ML models perform better on different sections of the data when inferred against blind
datasets. For example, the XGBoost performs better on the Oldroyd-B blind dataset (see
Table 6), and the DNN model performs better on the Giesekus blind dataset (see Table 7).
The hypothesis here is to leverage the superiority of all developed ML models (i.e., decision
tree models to prevent overfitting and DNN model to learn complicated features in a sparse
dataset) and increase the generality of the model in predicting unseen data.

A schematic architecture for the stack model is shown in Figure 13. We first use the ML
models trained on SMOTE-set (with their best architectures found in the previous section)
to provide the level-1 predictions. These predictions are then provided as input features to
the second-level regressor, which is a DNN meta-regressor. The hyperparameters for DNN
meta-regressor are also tuned again using the 10-Fold CV approach in conjunction with the
RandomSearchCV algorithm, similar to other models. The stack model is trained, validated
and tested on SMOTE-set. The optimized architecture obtained for the DNN meta-regressor
is reported in Table 8. This meta-model developed using stacking generalizes better and
provides more accurate predictions on unseen data when compared to the performance of
the individual models. One example comparison is reported in Table 9. As reported, the R2

value for the meta-model increased to 0.9472 from 0.9013, which was previously obtained
for the DNN model, as the best model in Section 4.4 to predict the blind datasets.

Polymers 2022, 14, 430 20 of 24

Figure 13. A schematic architecture for the meta-model to predict the viscoelastic drag coefficient
using the stacking technique ensembling three optimized ML models and a meta-regressor.

Table 8. Optimized hyperparameters for the DNN meta-regressor trained, validated and tested on
SMOTE-set.

Model Hyperparameter Value

DNN Meta-Regressor
activation = relu, alpha = 0.0001, hidden_layer_sizes = (20, 40, 10),
learning_rate = adaptive, max_iter = 10,000, momentum = 0.95,
n_iter_no_change = 15, solver = adam, tol = 0.0001

Table 9. Comparison of the statistical measures for the performance of the meta-model and DNN
model against the SMOTE-set and blind datasets.

Meta-Model DNN Model

SMOTE-Set Blind Set SMOTE-Set Blind Set

R2 0.9993 0.9472 0.9945 0.9013

RMSE 0.0178 0.0313 0.0463 0.0428

MAPE 0.0103 0.0209 0.0216 0.0305

In Figure 14, we show the residuals and Q-Q plots for the meta-model trained, vali-
dated and tested on SMOTE-set. Figure 14a shows that the data points are mainly scattered
around the horizontal axis and the calculated error is mainly distributed around zero.
The Q-Q plot for meta-model depicts that most of the errors lies closer to y = x line within
the standard deviation range, and thus the data follow a distribution closer to normal
distribution [47]. Figure 14b illustrates the comparison between the actual and predicted
values of the viscoelastic drag coefficient correction using the meta-model. The very good
agreement between the meta-model predictions and the actual values corroborates the
high R2 values presented in Table 9 and the fact that the residual plot for meta-model is
relatively symmetric around y = 0 as shown in Figure 14a.

Figure 15 shows the performance of the meta-model against the blind datasets gener-
ated for Oldroyd-B and Giesekus viscoelastic fluids. The blind datasets are shown using
solid lines for the flow of an Oldroyd-B fluid past a sphere at Re = 1, ζ = 0.75 and α = 0,
and for the flow of a Giesekus fluid past a sphere at Re = 75, ζ = 0.8 and α = 0.4. The pre-
dictions obtained with the meta-model are represented by diamond symbols in Figure 15a,b.
A 95% confidence interval region for the meta-model predictions is also illustrated. These
comparisons and the statistical measures reported in Table 9 collectively show that the
meta-model consistently outperforms the individual decision tree ML models as well as
the DNN model on all unseen datasets.

Polymers 2022, 14, 430 21 of 24

(a) (b)

Figure 14. (a) Residuals and quantile-quantile (Q-Q) plots and (b) prediction error plot obtained for
the meta-model shown in Figure 13 and trained, validated and tested on SMOTE-set. The statistical
measures are reported in Table 9.

0 1 2 3 4 5
Weissenberg Number, Wi

1.0

1.1

1.2

1.3

1.4

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 1, ζ= 0.75, α= 0

Numerical simulations
 (Blind data)
Stack Model
95% confidence interval

0 1 2 3 4
Weissenberg Number, Wi

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
ra

g
C

oe
ff
ic

ie
n
t
C

or
re

ct
io

n
,
χ

Re= 75, ζ= 0.8, α= 0.4

Numerical simulations
 (Blind data)
Stack Model
95% confidence interval

(a) (b)

Figure 15. Performance of the meta-model (stack model) against the blind datasets generated for
Oldroyd-B and Giesekus fluids. The blind datasets are shown using solid lines for the flow of an
Oldroyd-B fluid past a sphere at (a) Re = 1, ζ = 0.75 and α = 0; and for the flow of a Giesekus fluid
past a sphere at (b) Re = 75, ζ = 0.8 and α = 0.4. The predictions obtained with the meta-model are
represented by diamond symbols. A 95% confidence interval region for the predictions is also shown.

This meta-model alongside the training datasets (OB-set and GI-set) are packaged and
published with this paper, as supplementary materials. The viscoelastic fluid dynamics
community can leverage this meta-model in their simulations and/or leverage the data to
train new data-driven models.

5. Conclusions

This study presents a framework to predict the drag coefficient of a spherical particle
translating in viscoelastic fluids. To this end, continuum simulations and Machine Learning
(ML) models were employed to generate a data-driven meta-model. We first generated
two datasets using direct numerical simulations; the OB-set (the dataset for the Oldroyd-B
fluid) and the GI-set (the dataset for the Giesekus fluid) that include a total of 12,120 and
4950 data points, respectively. The kinematic input features were selected to be Reynolds
number, 0 < Re ≤ 50, Weissenberg number, 0 ≤ Wi ≤ 10, polymeric retardation ratio,

Polymers 2022, 14, 430 22 of 24

0 < ζ < 1, and shear thinning mobility parameter, 0 < α < 1. Three ML regression
models, Random Forest (RF), Deep Neural Network (DNN) and Extreme Gradient Boosting
(XGBoost), were employed to predict the drag coefficient enhancement or reduction due to
the fluids’ elasticity and shear thinning effects. The ML models were all trained, validated,
and tested on the OB-set and SMOTE-set (a balanced dataset combining the OB-set and
GI-set), and their best architecture (i.e., tuned hyperparameters) were obtained using a
10-Fold cross-validation method. All the ML models presented remarkable accuracy when
trained and inferred on these datasets; however the XGBoost model resulted in the highest
R2 and lowest RMSE and MAPE measures.

The trained ML models were also tested against a blind dataset where the input
features coverage was outside the scope of the training set or interpolated within the
training sets. A total of 124 data points were generated using DNSs for both Oldroyd-B and
Giesekus fluids. The predictions obtained with the DNN model achieved the highest R2

and lowest RMSE and MAPE measures when inferred on the blind test dataset. To leverage
the power of all models (decision tree models to prevent overfitting and DNN model
to learn complicated features), we developed a meta-model using stacking technique.
The meta-model ensembles RF, XGBoost, and DNN models and outputs a prediction based
on the individual learner’s predictions and a DNN meta-regressor. The meta-learner model
consistently outperformed the individual decision tree and DNN models on all datasets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14030430/s1.

Author Contributions: Conceptualization, S.A.F. and C.F.; Formal analysis, S.A.F. and C.F.; Inves-
tigation, S.A.F., A.I.R. and C.F.; Methodology, S.A.F. and C.F.; Resources, S.A.F. and C.F.; Software,
S.A.F. and C.F.; Supervision, S.A.F. and C.F.; Validation, S.A.F., A.I.R. and C.F.; Writing—original
draft, S.A.F., A.I.R. and C.F.; Writing—review & editing, S.A.F. and C.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by FEDER funds through the COMPETE 2020 Programme
and National Funds through FCT (Portuguese Foundation for Science and Technology) under the
projects UID-B/05256/2020, UID-P/05256/2020 and MIT-EXPL/TDI/0038/2019—APROVA—Deep
learning for particle-laden viscoelastic flow modelling (POCI-01-0145-FEDER-016665) under MIT
Portugal program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the University of Minho cluster under
the project NORTE-07-0162-FEDER-000086 (URL: http://search6.di.uminho.pt), the Minho Advanced
Computing Center (MACC) (URL: https://macc.fccn.pt) under the project CPCA_A2_6052_2020,
the Consorzio Interuniversitario dell’Italia Nord Est per il Calcolo Automatico (CINECA) under the
Project HPC-EUROPA3 (INFRAIA-2016-1-730897) with the support of the EC Research Innovation
Action under the H2020 Programme, and PRACE—Partnership for Advanced Computing in Europe
under the project icei-prace-2020-0009, for providing HPC resources that have contributed to the
research results reported within this paper. The authors thank Professor Gareth Huw McKinley from
the Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering at the Massachusetts
Institute of Technology for insightful comments regarding this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chhabra, R.P. Bubbles, Drops, and Particles in Non-Newtonian Fluids; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-4290-7480-6.

[CrossRef]
2. Deshpande, A.P.; Krishnan, J.M.; Kumar, S. Rheology of Complex Fluids; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6493-9.

[CrossRef]

https://www.mdpi.com/article/10.3390/polym14030430/s1
https://www.mdpi.com/article/10.3390/polym14030430/s1
http://search6.di.uminho.pt
https://macc.fccn.pt
http://doi.org/10.1201/9781420015386
http://dx.doi.org/10.1007/978-1-4419-6494-6

Polymers 2022, 14, 430 23 of 24

3. Barbati, A.C.; Desroches, J.; Robisson, A.; McKinley, G.H. Complex fluids and hydraulic fracturing. Annu. Rev. Chem. Biomol. Eng.
2016, 7, 415–453. [CrossRef]

4. Fernandes, C.; Faroughi, S.A.; Carneiro, O.S.; Nóbrega, J.M.; McKinley, G.H. Fully-resolved simulations of particle-laden
viscoelastic fluids using an immersed boundary method. J. Non-Newton. Fluid Mech. 2019, 266, 80–94. [CrossRef]

5. Faroughi, S.; Huber, C. A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to
simple shear at low Reynolds number. Rheol. Acta 2014, 54, 85–108. [CrossRef]

6. Faroughi, S.A.; Fernandes, C.; Nóbrega, J.M.; McKinley, G.H. A closure model for the drag coefficient of a sphere translating in a
viscoelastic fluid. J. Non-Newton. Fluid Mech. 2020, 277, 104218. [CrossRef]

7. Fernandes, C.; Faroughi, S.A.; Ribeiro, R.; Roriz, A.I.; McKinley, G.H. Finite volume simulations of particle-laden viscoelastic fluid
flows: Application to hydraulic fracture processes. Eng. Comput. 2021. [CrossRef]

8. Faroughi, S.A.; Huber, C. Crowding-based rheological model for suspensions of rigid bimodal-sized particles with interfering size
ratios. Phys. Rev. E 2014, 90, 052303. [CrossRef]

9. Maxey, M. Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 2017, 49, 171–193.
[CrossRef]

10. Faroughi, S.A.; Huber, C. A self-similar behavior for the relative viscosity of concentrated suspensions of rigid spheroids. Rheol.
Acta 2017, 56, 35–49. [CrossRef]

11. Faroughi, S.A.; Pruvot, A.J.-C.J.; McAndrew, J. The rheological behavior of energized fluids and foams with application to
hydraulic fracturing. J. Pet. Sci. Eng. 2018, 163, 243–263. [CrossRef]

12. Kutz, J.N. Deep learning in fluid dynamics. J. Fluid Mech. 2017, 814, 1–4. [CrossRef]
13. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]
14. Molinaro, R.; Singh, J.-S.; Catsoulis, S.; Narayanan, C.; Lakehal, D. Embedding data analytics and CFD into the digital twin

concept. Comput. Fluids 2021, 214, 104759. [CrossRef]
15. Fernandes, C.; Semyonov, D.; Ferrás, L.L.; Nóbrega, J.M. Validation of the CFD-DPM solver DPMFoam in OpenFOAM through

analytical, numerical and experimental comparisons. Granul. Matter 2018, 20, 64. [CrossRef]
16. Kelbaliyev, G.I. Drag coefficients of variously shaped solid particles, drops, and bubbles. Theor. Found. Chem. Eng. 2011,

45, 248–266. [CrossRef]
17. Faroughi, S.A.; Huber, C. Unifying the relative hindered velocity in suspensions and emulsions of nondeformable particles.

Geophys. Res. Lett. 2015, 42, 53–59. [CrossRef]
18. Gheissary, G.; van den Brule, B.H.A.A. Unexpected phenomena observed in particle settling in non-Newtonian media. J. Non-

Newton. Fluid Mech. 1996, 67, 1–18. [CrossRef]
19. Chilcott, M.D.; Rallison, J.M. Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newton. Fluid Mech.

1988, 29, 381–432. [CrossRef]
20. McKinley, G.H. Steady and transient motion of spherical particles in viscoelastic liquids. In Transport Processes in Bubble, Drops, and

Particles; Chhabra, R., Kee, D.D., Eds.; Taylor & Francis: New York, NY, USA, 2002; pp. 338–375. ISBN 978-1-5603-2906-0.
21. Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility.

J. Non-Newton. Fluid Mech. 1982, 11, 69–109. [CrossRef]
22. Habla, F.; Tan, M.W.; Hablberger, J.; Hinrichsen, O. Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven

cavity using the log-conformation reformulation in OpenFOAM. J. Non-Newton. Fluid Mech. 2014, 212, 47–62. [CrossRef]
23. Pimenta, F.; Alves, M.A. Stabilization of an open-source finite volume solver for viscoelastic fluid flows. J. Non-Newton. Fluid

Mech. 2017, 239, 85–104. [CrossRef]
24. OpenFOAM. The Open Source CFD Toolbox. 2004. Available online: https://www.openfoam.com/ (accessed on 5 Decem-

ber 2021).
25. Fernandes, C.; Araujo, M.S.B.; Ferrás, L.L.; Nóbrega, J.M. Improved both sides diffusion (iBSD): A new and straightforward

stabilization approach for viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 2017, 249, 63–78. [CrossRef]
26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
27. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
28. Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in

neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [CrossRef]
29. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
30. Luckner, M.; Topolski, B.; Mazurek, M. Application of XGBoost algorithm in fingerprinting localisation task. In Computer

Information Systems and Industrial Management; Saeed, K., Homenda, W., Chaki, R., Eds.; Springer: Cham, Switzerland, 2017;
pp. 661–671. ISBN 978-3-319-59105-6. [CrossRef]

31. Brownlee, J. XGBoost with Python: Gradient Boosted Trees with XGBoost and Scikit-Learn; Machine Learning Mastery. 2016.
Available online: https://books.google.pt/books?id=HgmqDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=
false (accessed on 5 January 2022).

32. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef] [PubMed]

http://dx.doi.org/10.1146/annurev-chembioeng-080615-033630
http://dx.doi.org/10.1016/j.jnnfm.2019.02.007
http://dx.doi.org/10.1007/s00397-014-0825-8
http://dx.doi.org/10.1016/j.jnnfm.2019.104218
http://dx.doi.org/10.21203/rs.3.rs-1009381/v1
http://dx.doi.org/10.1103/PhysRevE.90.052303
http://dx.doi.org/10.1146/annurev-fluid-122414-034408
http://dx.doi.org/10.1007/s00397-016-0978-8
http://dx.doi.org/10.1016/j.petrol.2017.12.051
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1016/j.compfluid.2020.104759
http://dx.doi.org/10.1007/s10035-018-0834-x
http://dx.doi.org/10.1134/S0040579511020084
http://dx.doi.org/10.1002/2014GL062570
http://dx.doi.org/10.1016/S0377-0257(96)01436-X
http://dx.doi.org/10.1016/0377-0257(88)85062-6
http://dx.doi.org/10.1016/0377-0257(82)85016-7
http://dx.doi.org/10.1016/j.jnnfm.2014.08.005
http://dx.doi.org/10.1016/j.jnnfm.2016.12.002
https://www.openfoam.com/
http://dx.doi.org/10.1016/j.jnnfm.2017.09.008
http://dx.doi.org/10.1016/j.jneumeth.2013.08.024
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/978-3-319-59105-6_57
https://books.google.pt/books?id=HgmqDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
https://books.google.pt/books?id=HgmqDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
http://dx.doi.org/10.1109/72.97934
http://www.ncbi.nlm.nih.gov/pubmed/18282872

Polymers 2022, 14, 430 24 of 24

33. Mahmudul, M.; Mia, A.; Biswas, S.K.; Urmi, M.C.; Siddique, A. An algorithm for training multilayer perceptron (MLP) for image
reconstruction using neural network without overfitting. Int. J. Sci. Technol. Res. 2015, 4, 271–275.

34. Jiang, H.; Zou, Y.; Zhang, S.; Tang, J.; Wang, Y. Short-term speed prediction using remote microwave sensor data: Machine learning
versus statistical model. Math. Probl. Eng. 2016. [CrossRef]

35. Palyam, R.K. Deep feature interpolation for image content changes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 6090–6099. [CrossRef]

36. Trillos, N.G.; Morales, F.; Morales, J. Traditional and accelerated gradient descent for neural architecture search. In Geometric
Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 507–514.
ISBN 978-3-030-80209-7.

37. Asiltürk, I.; Çunkaş, M. Modeling and prediction of surface roughness in turning operations using artificial neural network and
multiple regression method. Expert Syst. Appl. 2011, 38, 5826–5832. [CrossRef]

38. James, D.F. Boger fluids. Annu. Rev. Fluid Mech. 2009, 41, 129–142. [CrossRef]
39. Oldroyd, J.G. On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1950, 200, 523–541.

[CrossRef]
40. Joseph, D.D. Fluid Dynamics of Viscoelastic Liquids; Springer: Berlin/Heidelberg, Germany, 1990; ISBN 978-1-4612-8785-8.
41. Cherizol, R.; Sain, M.; Tjong, J. Review of non-Newtonian mathematical models for rheological characteristics of viscoelastic

composites. Green Sustain. Chem. 2015, 5, 6–14. [CrossRef]
42. Anguita, D.; Ghelardoni, L.; Ghio, A.; Oneto, L.; Ridella, S. The ‘K’ in K-fold cross validation. In Proceedings of the 20th European

Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 25–27
April 2012; pp. 441–446.

43. Jung, Y.; Hu, J. A K-fold averaging cross-validation procedure. J. Nonparametr. Stat. 2015, 27, 167–179. [CrossRef] [PubMed]
44. Memon, N.; Patel, S.B.; Patel, D.P. Comparative analysis of artificial neural network and XGBoost algorithm for PolSAR image

classification. In International Conference on Pattern Recognition and Machine Intelligence; Springer International Publishing: Cham,
Switzerland, 2019; pp. 452–460. ISBN 978-3-030-34868-7.

45. Coleman, C.D.; Swanson, D.A. On MAPE-R as a measure of cross-sectional estimation and forecast accuracy. J. Econ. Soc. Meas.
2007, 32, 219–233. [CrossRef]

46. Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a
semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [CrossRef]

47. Guha, P.; Chakraborty, B. On a multivariate generalization of quantile-quantile plot. In International Conference on Robust
Statistics; 2009; p. 62, ISBN 978-88-903330-0-2. Available online: https://www.researchgate.net/profile/Tadeusz-Bednarski/
publication/220363666_Frechet_Differentiability_in_Statistical_Inference_for_Time_Series/links/552502a80cf2caf11bfcf362
/Frechet-Differentiability-in-Statistical-Inference-for-Time-Series.pdf#page=84 (accessed on 5 January 2022).

48. Yang, Q.; Zhang, Y.; Dai, W.; Pan, S.J. Transfer Learning; Cambridge University Press: Cambridge, UK, 2020; ISBN 978-1107016903.
49. Thuerey, N.; Holl, P.; Mueller, M.; Schnell, P.; Trost, F.; Um, K. Physics-Based Deep Learning. 2021. Available online: https:

//physicsbaseddeeplearning.org (accessed on 5 December 2021).
50. Segev, N.; Harel, M.; Mannor, S.; Crammer, K.; El-Yaniv, R. Learn on source, refine on target: A model transfer learning framework

with random forests. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1811–1824. [CrossRef]
51. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res.

2002, 16, 321–357. [CrossRef]
52. Fauzan, M.A.; Murfi, H. The accuracy of XGBoost for insurance claim prediction. Int. J. Adv. Soft Comput. Its Appl. 2018,

10, 159–171.
53. Giannakas, F.; Troussas, C.; Krouska, A.; Sgouropoulou, C.; Voyiatzis, I. XGBoost and deep neural network comparison: The case

of teams’ performance. In International Conference on Intelligent Tutoring Systems; Springer: Cham, Switzerland, 2021; pp. 343–349.
ISBN 978-3-030-80420-6. [CrossRef]

54. Shehadeh, A.; Alshboul, O.; Mamlook, R.E.A.; Hamedat, O. Machine learning models for predicting the residual value of heavy
construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom. Constr. 2021,
129, 103827. [CrossRef]

55. Ahmad, M.; Hippolyte, J.-L.; Mourshed, M.; Rezgui, Y. Random forests and artificial neural network for predicting daylight
illuminance and energy consumption. In Proceedings of the 15th International Building Performance Simulation Association
Conference, San Francisco, CA, USA, 7–9 August 2017; pp. 1949–1955. [CrossRef]

56. Kim, J.Y.; Cho, B.H.; Im, S.M.; Jeon, M.J.; Kim, I.Y.; Kim, S.I. Comparative study on artificial neural network with multiple
regressions for continuous estimation of blood pressure. In Conference Proceedings IEEE Engineering in Medicine and Biology Society;
IEEE: Piscataway, NJ, USA, 2005; pp. 6942–6945. [CrossRef]

57. Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating physics-based modeling with machine learning: A survey. arXiv
2020, arXiv:2003.04919.

58. Lu, L.; Pestourie, R.; Yao, W.; Wang, Z.; Verdugo, F.; Johnson, S.G. Physics-informed neural networks with hard constraints for
inverse design. Soc. Ind. Appl. Math. J. Sci. Comput. 2021, 43, B1105–B1132. [CrossRef]

59. Sill, J.; Takács, G.; Mackey, L.; Lin, D. Feature-weighted linear stacking. arXiv 2009, arXiv:0911.0460.

http://dx.doi.org/10.1155/2016/9236156
http://dx.doi.org/10.1109/CVPR.2017.645
http://dx.doi.org/10.1016/j.eswa.2010.11.041
http://dx.doi.org/10.1146/annurev.fluid.010908.165125
http://dx.doi.org/10.1098/rspa.1950.0035
http://dx.doi.org/10.4236/gsc.2015.51002
http://dx.doi.org/10.1080/10485252.2015.1010532
http://www.ncbi.nlm.nih.gov/pubmed/27630515
http://dx.doi.org/10.3233/JEM-2007-0290
http://dx.doi.org/10.1016/j.geoderma.2018.09.006
https://www.researchgate.net/profile/Tadeusz-Bednarski/publication/220363666_Frechet_Differentiability_in_Statistical_Inference_for_Time_Series/links/552502a80cf2caf11bfcf362/Frechet-Differentiability-in-Statistical-Inference-for-Time-Series.pdf#page=84
https://www.researchgate.net/profile/Tadeusz-Bednarski/publication/220363666_Frechet_Differentiability_in_Statistical_Inference_for_Time_Series/links/552502a80cf2caf11bfcf362/Frechet-Differentiability-in-Statistical-Inference-for-Time-Series.pdf#page=84
https://www.researchgate.net/profile/Tadeusz-Bednarski/publication/220363666_Frechet_Differentiability_in_Statistical_Inference_for_Time_Series/links/552502a80cf2caf11bfcf362/Frechet-Differentiability-in-Statistical-Inference-for-Time-Series.pdf#page=84
https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org
http://dx.doi.org/10.1109/TPAMI.2016.2618118
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-030-80421-3_37
http://dx.doi.org/10.1016/j.autcon.2021.103827
http://dx.doi.org/10.26868/25222708.2017.525
http://dx.doi.org/10.1109/IEMBS.2005.1616102
http://dx.doi.org/10.1137/21M1397908

	Introduction
	Underlying Physics
	Machine Learning Regression Algorithms
	Results and Discussion
	Data Collection and Analysis for Oldroyd-B Fluids
	Data Collection and Analysis for Giesekus Fluids
	ML Models Development
	Hyperparameter Tuning
	Training and Testing

	Models Performance on Blind Datasets
	Model Ensembling

	Conclusions
	References

